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Plan for today

I Graph theory

I Review definitions (exercise w/ partner)
I Thought experiment (giant components)
I Giant component video

I Strong and Weak ties

Granovetter (˜1970): “Strength of Weak Ties”

I People get jobs by hearing about them through friends

I “Weak Ties”: people are more likely to hear about their jobs
from “acquantiances” than friends

I Why?

Overview of Approach

How can we explain this using graph theory?

Claim: If a node A in a network satisfies the Strong Triadic
Closure property and is involved in at least two strong ties, then
any local bridge it is involved in must be a weak tie.

What??

Overview of Approach

Not apparent that this (hard-to-understand) statement has
anything to do with Granovetter’s observation

Mathematical model

I Simplification of real world
I Try to make a precise statement that is predictive of what we

observe
I OK to make the “right” simplifications

Overview of Approach

Map of ideas

I Triadic Closure: observed structural property of real social
networks

I Bridges / Local Bridges: mathematical definitions for edges
that connect disparate parts of graph

I Strong and Weak Ties: social notion

Mathematical statement about networks that corroborates
Granovetter’s observations.



Triadic Closure

If A is friends with B and C, then B and C are likely to become
friends
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the e↵ects of triadic
closure, since they have a common neighbor A.

seeking, and o↵ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o↵ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from
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seeking, and o↵ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o↵ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

I Opportunity
I Trust
I Incentive

Triadic Closure

When we take a snapshot of a network, we are likely to see many
“triangles”.
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Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the e↵ect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coe�cient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coe�cient [320, 411]. The clustering coe�cient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coe�cient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coe�cient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coe�cient will tend to be.

Bridges and Local Bridges
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Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in
distinct connected components. Bridges provide nodes with access to parts of the network
that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially

everyone can find examples from their own experience. Moreover, experience suggests some

of the basic reasons why it operates. One reason why B and C are more likely to become

friends, when they have a common friend A, is simply based on the opportunity for B and C

to meet: if A spends time with both B and C, then there is an increased chance that they

will end up knowing each other and potentially becoming friends. A second, related reason

is that in the process of forming a friendship, the fact that each of B and C is friends with

A (provided they are mutually aware of this) gives them a basis for trusting each other that

an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C together: if A is

friends with B and C, then it becomes a source of latent stress in these relationships if B

and C are not friends with each other. This premise is based in theories dating back to early

work in social psychology [217]; it also has empirical reflections that show up in natural but

troubling ways in public-health data. For example, Bearman and Moody have found that

teenage girls who have a low clustering coe�cient in their network of friends are significantly

more likely to contemplate suicide than those whose clustering coe�cient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such

regularity that their best job leads came from acquaintances rather than close friends? In

fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.

I edge from A to B seems more valuable than edges to C, D, E
I C, D, E know same things as A

Definition: edge A-B is a bridge if, when removed, the network
becomes disconnected
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively di↵erent

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a di↵erent part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

di↵erences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B o↵ers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two di↵erent components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very di↵erent background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will

Definition (local bridge): edge A-B is a local bridge if, when
removed, the distance between A and B becomes 3 or more.
Equivalently:

I A and B have no friends in common
I Edge A-B is not part of any triangles

Exercises

Identify bridges and local bridges in an example graph.

Strong and Weak Ties
Back to Granovetter: need a way to differentiate between friends
and acquaintances.

Supose each edge in the graph is classified as “strong” (S) or
“weak” (W)52 CHAPTER 3. STRONG AND WEAK TIES
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the
figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties
to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same



Strong Triadic Closure

Hypothesis: If A has strong edges to B and C, then the B-C edge
is very likely to form

Definition (Strong Triadic Closure)

Example on board

I Node A violates the Strong Triadic Closure property if it has
strong ties to any two nodes B and C, but B and C are not
connected (by either a strong or weak tie).

I Node A satisfies the Strong Triadic Closure property if it does
not violate it.

Exercise

Identify nodes that do and do not satisfy the Strong Triadic
Closure property in an example graph.

Local Bridges and Weak Ties

Now we can make a precise mathematical statement

Claim: If a node A in a network satisfies the Strong Triadic
Closure property and is involved in at least two strong ties, then
any local bridge it is involved in must be a weak tie.

Paraphrased: if “Triadic Closure,” then “local bridge” ==> “weak
tie”

If we assume the structural property of triadic closure (that is
usually observed in social networks), then any edge that connects
disparate parts of the network (according to the mathematical
definition of a local bridge) is a weak tie.

Proof! (on board)

Empirical Support

Cell phone “who-talks-to-whom” network (Onnela et al.)

I Tie strength

I Minutes spent talking to each other
I More refined than strong vs. weak

I Local bridges

I Test if local bridges are are weaker
I No, define more refined version
I Compare “local-bridgedness” to tie strength

Empirical Support

Define Neighborhood overlap of A-B (local bridgedness)

# nodes who are neighbors of both A and B

---------------------------------------------------

# nodes who are neighbors of at least one of A

or B

Example on board

Empirical support

Plot “Local-bridgedness” vs tie strength. What will it look like?
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Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing
tie strength is consistent with the theoretical predictions from Section 3.2. (Image from
[334].)

where in the denominator we don’t count A or B themselves (even though A is a neighbor of

B and B is a neighbor of A). As an example of how this definition works, consider the edge

A-F in Figure 3.4. The denominator of the neighborhood overlap for A-F is determined by

the nodes B, C, D, E, G, and J , since these are the ones that are a neighbor of at least one

of A or F . Of these, only C is a neighbor of both A and F , so the neighborhood overlap is

1/6.

The key feature of this definition is that this ratio in question is 0 precisely when the

numerator is 0, and hence when the edge is a local bridge. So the notion of a local bridge

is contained within this definition — local bridges are the edges of neighborhood overlap 0

— and hence we can think of edges with very small neighborhood overlap as being “almost”

local bridges. (Since intuitively, edges with very small neighborhood overlap consist of nodes

that travel in “social circles” having almost no one in common.) For example, this definition

views the A-F edge as much closer to being a local bridge than the A-E edge is, which

accords with intuition.


