
Proposing a New Feature for Structure-Aware

Analysis of Android Malwares

Shahrooz Pooryousef

Department of Computer Engineering

Data and Network Security Lab

Sharif University of Technology

Tehran, Iran

pooryousef@ce.sharif.edu

Kazim Fouladi

Department of Computer Engineering

Faculty of Engineering, College of Farabi

University of Tehran

Tehran, Iran

kfouladi@ut.ac.ir

Abstract—Android is a major target of attackers for ma-
licious purposes due to its popularity. Despite obvious ma-
licious functionality of Android malware, its analysis is a
challenging task. Extracting and using features that dis-
criminate malicious and benign behaviors in applications is
essential for malware classi�cation in using machine learning
methods. In this paper, we propose a new feature in Android
malware classi�cation process which in combination with
other proposed features, can discriminate malicious and be-
nign behaviors with a good accuracy. Using components such
as activities and services in Android applications’ source code
will lead to di�erent �ows on invoking between application’s
components. We consider this �ows of invoking between as
a new feature which based on Android malware behaviors
analysis, is di�erent in benign and malicious applications.
Even tough inter-app communications have been covered in
many researches, using intra-app communication as a feature
in Android malware analysis �eld using ML methods has
been seldom addressed. Our results show that we are able
to achieve an accuracy as high as 85% and a false positive
rate as low as 10% using SVM classi�er on a data-set contain
10,320 Android malware and benign applications.

I. Introduction

Nowdays, smart phones prepare common functionality of

traditional computers for users because of the improvements

in their hardware and computing capabilities [1]. There are so

many third party markets which contain applications in dif-

ferent categories for users [2]. However, the trustworthiness

of third party applications’ developers can not be veri�ed

and these markets usually are the main origin of malicious

applications distribution [3], [4]. Based on McAfee reports in

2013, there are 68,000 malicious Android applications which

indicate a 197% increase over 2012 [2]. These malwares steal

users private data, sending premium-rate SMS messages, and

generally do malicious actions on users devices.

Using Machine Learning (ML) in classi�cation algorithms

for malware analysis [5], [6], [7] has been considered in

many researches to enable better detection of unknown

malwares. While malware classi�ers with ML algorithms

have the potential to detect Android malwares on market

shares, there are a number of challenges in determining

which features are the most e�ective in malware detection.

In addition to use a good classi�er and also a good data-

set in classi�cation process, the most important concept in

application analysis is providing a good set of features in

which illustrates the structure and discriminates malicious

and benign behaviors obviously. Furthermore, a problem was

raised when we want to decide how many features we would

choose for the classi�cation task from the ranked lists in the

output of a feature selection algorithm.

In order to have a good sense about application structure in

the application analysis process, in this paper, we have pro-

posed a new feature for structure-aware analysis of Android

malwares. Android applications can use di�erent components

in their program codes based on di�erent attributes of func-

tionalities [8]; For example, Services are used for background

processing and do not have any interface for interacting

with users. Using these components in application source

code will lead to di�erent �ows on invoking application’s

components in benign and malicious applications which have

been seldom addressed in Android malware analysis �eld.

We have used this information alongside of other proposed

features in previous works in an SVM classi�er. The proposed

solutions in this research area have focused on inter-app

communication analysis [9], [8], [10], [8] or �nding vulnera-

bility in application interface via intra-app communication

analysis [11], [12], [13]. Our approach is based on intra-

app communication analysis for malware detection usin ML

classi�ers. In order to �nd the optimum combination of

features with di�erent sample data-set, we use, six sets with

di�erent sample sizes for each combination of component-

�ow with other features. Our results show that our proposed

feature could help us to �nd malicious applications in a data-

set containing 10,341 benign and malicious applications with

84% accuracy and little false positive (10%) samples.

The rest of this paper is organized as follows: we introduce

our proposed feature and our system design for detecting

Android malwares in Section II, and present a detailed eval-

uation in Section III. Related works are discussed in Section

IV, and Section V concludes the paper and enumerates

limitations of our approach.



II. Proposed Feature and Motivation

A. Over View

In this section, we will explain the structure and steps of

our ML-based classi�er, features which we will use in our

classi�cation process, and our methodology for extracting

these features from "apk" �les. Furthermore, we will explain

our motivation for using a new feature in classi�cation

process. In Fig. 1, two phases of training and detection phase

of our SVM classi�er have been shown. In the training phase,

we �rst, disassemble applications’ apk �les, extract di�erent

features and information from generated Smali �les of the

applications, and generate SVM’s support vectors of features.

Working directly on Smali codes [14] helps us to overcome

the limitations that obfuscation techniques create for most

static analysis tools and make them ine�cient. For extracting

some of our used features, we have used Androguard tool set.

Androguard [15] is a tool set that provides a fairly easy-to-

use interface for analyzing and reverse engineering Android

applications at byte code level.

Afterwards, we use extracted features to train a single-

class Support Vector Machine (SVM) [16], using the Scikit-

learn framework [17], which provides a �rendly interface

to LIBSVM [18]. SVM is a supervised learning method that

proceeds through dividing the training data by an optimal

separating hyperplane. Then, we divide our data-set for

training and detection phase and train our classi�er with

di�erent couple of feature sets.

B. Motivation and Extracted Features

In order to use any classi�cation algorithm, we need

to �rst extract appropriate features from application in a

way that extracted features exhibit the application structure

and behaviors. Android malwares use di�erent trikes to

bypass existing detection methods [19],[20] and [21]. One

of these techniques is using di�erent kinds of components

that provide this ability for malicious application to run its

malicious actions in the background or in a speci�c time [19].

Android applications can use four di�erent components in

order to perform their actions. These components are activity,

service, broadcast receiver, and content provider. Activities

are applications’ interfaces. Services are used for background

processing. Anytime that an action needs to perform a long

time operation in which do not need user interactions,

developers use this component. Broadcast receivers as an

interesting class in Android programming, are triggered via

broadcast messages in the system or received messages from

other components of applications. Using content providers,

developers can store and retrieve data from SQL Lite data

base [20]. Android uses Intents for provide a mechanism for

interacting an application’s components with each other. An

Intent object, is a passive data structure that has an abstract

description of an operation to be performed [10].

Using components such as broadcast receivers is a very

common behavior in Android malwares [20], [21]. Di�erent
component usage in the application’s source code can generate

�ows on invoking between di�erent components which is dis-
criminate in benign and malicious applications. An instance of

this �ow between Android components has been addressed in

Fig. 2. Based on Fig. 2, receiving an event inside the system,

for example, can trigger a broadcast receiver component, and

then, an activity is invoked by this component and a method

from a service component will be triggered afterwards.

In below, we have explained our proposed feature and

three of the most used features in previous researches which

have been used in combination with our proposed new

feature in evaluation section.

1) Component Invoking Flow: In training and detection

of our proposed system, for every given application, we

extract its components’ name from the manifest �le. Each An-

droid application has a XML �le, called "Manifest.xml", which

contains some important information about the application

such as names of its components, and required permissions

of the application. For each component, we identify its

methods and afterwards, we construct a Component Flow

Graph (CFG) between its components. CFG is an abstract

representation of a �ow in which vertices represent the name

of application’s components, and edges represent the possible

paths of method invoking of di�erent components.

2) Permissions: Every application in Android system

must de�ne di�erent permissions in order to access cer-

tain resources of the Android operating system. For

example, the permission "android.permission.INTERNET"

requests the right to access the Internet, and "an-

droid.permission.READ_CONTACTS" requests the right to

access contacts database on the user’s device [22]. These

permissions have been used in many researches for malware

analysis purpose [21], [3], [23].

3) Security Sensitive APIs: Another feature which has

been used in [21] and [22] as a good feature for malware anal-

ysis is Security Sensitive APIs (SS-APIs) in the application

source code. SS-APIs are those APIs in the Android system

which handle a security sensitive action in the system (for

example, access to the camera) [19]. These APIs trigger An-

droid access control mechanism whenever they are invoked.

We have used Felt et al. [22] research results for identifying

SS-APIs inside the byte codes of applications.

4) Application Intent Information: There is di�erent

information about components of an application such as

intent �lters inside the manifest �le. For example, an intent

�lter is an expression that speci�es type of intents which an

speci�c component in the application would like to receive.

Whenever a new event occurs in the system, such as re-

ceiving a new sms, Android system will �nd the appropriate

component for invoking based on the contents of the intent

�lters declared in the manifest �le. Malicious applications can

capture system events with this capability and trigger their

malicious codes in speci�c time or conditions. We have used

these information as a feature alongside other features.



Disassebling
Extracting 
Features

Feature Vectors

Disassebling
Extracting 
Features

Classifier

Training Phase

Detection Phase

Training

Detection

Fig. 1: The steps of our static analysis framework

Broadcast 
Receiver

Activity

Service

Fig. 2: An instance of �ow of invoking between di�erent

components of an application

III. RESULTS

Our method is evaluated on a large data-set of real Android

malicious and benign applications. In the following, we begin

by providing a detailed description of our data-set in Section

III-A, then we proceed to evaluate our classi�er’s ability to

detect malicious Android applications in Section III-B.

A. Data Set

Our data-set consists of 5,102 benign applications down-

loaded from o�cial Google play store that we have collected

in July 2016 and 5,287 malicious Android applications ob-

tained from VirusShare and ISBX repositories which are pub-

licly available for researchers. Among these malwares, 4,067

Android malwares have been downloaded from VirusShare

repository [24] and 1,220 malwares from ISBX center [25].

B. Experiments and Results

Our goal is to �nd the impact of using our proposed feature

besides of other features used in previous researches to

�nd malicious application in a data-set contain malware and

benign applications. To evaluate our SVM classi�cation model

using di�erent features, we have used split validation. That

is, we randomly divide our data-set into di�erent instances

for training and testing (detection) phases. We �rst, train

the classi�cation model using training set (2/3) and then,

use the testing instances (1/3) to evaluate our SVM classi�er

using di�erent metrics. In evaluation, we have used below

criterions.

• True Positive (TP): The number of malware instances

correctly identi�ed.

• True Positive Rate (TPR): The proportion of malware

instances that were correctly classi�ed.

• True Negative (TN): The number of benign instances

correctly identi�ed.

• True Negative Rate (TNR): The proportion of benign

instances that were correctly classi�ed.

The results of TP and TN, using di�erent features sepa-

rately in our classi�er, have been shown in Fig. 3. Note that,

increasing the sample size of benign and malicious applica-

tions, causes TP and TN to increase which the best increase

is for component invoking �ow (indicated as Components

�ow in Fig. 3) and permission features. Even though TP

and TN rate in using �ow of invoking between di�erent

components and permission features (3a and 3b) increase

as the sample size is increased, it does not lead to a very

good accuracy. So, for achieving better TP and TN rate,

we ran another experiment, using our same data-set for

training and testing, in order to �nd the best combination

of two features which will produce the best performance

in accuracy, TPR, and TNR. Even though using SS-API
and component invoking �ow features separately generate

good TP and TN values in malware detection, unexpectedly,

as shown in Fig. 4a and 4b, the classi�er’s TN and TP

rate is not the optimum. The optimum combination is for

using permission and component �ow set with 84% TP rate.

The reason is that using features such as permission can

not illustrate a good sense of application’s structure lonely.



We checked some of our classi�er’s labeled applications

manually, and found that some of our samples of benign

and malicious applications have the same set of permissions.

In addition, there is a little similarity between the number

of same �ow between di�erent components in malicious and

benign applications.

For the overall performance, we used the accuracy (the

total number of benign and malware instances correctly clas-

si�ed divided by the total number of the dataset instances),

TPR, and TRN as has been depicted in Fig. 4. These metrics

were calculated as below:

TPR =
TP

TP + FN

TNR =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Though the results obtained by other methods via other

classi�ers maybe are a little better than ours, we can identify

from our experiments that our proposed feature can be used

in Android malware analysis as a potential feature. Due to

limited space of this paper and as our main objective is to

�nd the in�uence of using our proposed feature in Android

malware classi�cation, we have not considered di�erent

classi�cation algorithms in our evaluation and we let this

analysis as a future work.

IV. Related Work

In the area of Android inter-app comminication or ICC

analysis a broad body of work has been published in which

we can classify them in inter-app and intra-app ICC analysis.

There are various methods for detecting Intent hijacking

or spoo�ng and ICC vulnerability via tracking sensitive

information within an app [26], [27], [28]. CHEX [9] is a

static analysis method to automatically vet Android apps

for modeling component hijacking vulnerabilities from a

data-�ow analysis perspective. ComDroid [8] investigates the

vulnerabilities related to ICC. Epicc [27] is a sound static

analysis technique for ICC speci�cations and vulnerabilities.

DroidSafe [10] is a static information �ow analysis tool that

analyzes potential leaks of sensitive information in real-world

Android applications by tracking sources and sinks APIs.

For related inter-app ICC analysis, MR-Droid [11] uses

MapReduce framework for highly scalable and accurate inter-

app ICC risk analysis in a large data set of Android applica-

tions. ICCDetector [12] uses applications’ ICC patterns for

detecting those "advanced malwares" which exploit inter-

application collaboration and are not detectable based on

their resources. In contrast to our approach in which we

just consider ICC patterns extracted from application intra-

app ICC, the main goal of ICCDetector is to examin the

communication between applications and Android system.

IccTA [13] and [29] combine maltiple applications and anal-

yse information �ow in the generated single app. Some other

approaches such as IntentFuzzer [30], INTENTDROID [31],

and FineDroid [32] perform dynamic testing and information

tracking in Android application for privacy monitoring and

detecting unsafe handling of ICC interfaces. DroidMiner

[33] and DroidAPIMiner [34] scan application’s apk �le

and extract sensitive API calls for detecting malwares using

classi�cation algorithms.

Android malware analysis also has been covered via dif-

ferent techniques such as machine learning and data mining

[23], [35] and [36]. A good survey on this �eld can be found

in [5]. In static analysis, static features which are extracted

from applications apk �les have been used in classi�ers and

applied to �nd new patterns in application analysis. Dendroid

[37] uses text mining approach to analyze application’s

code and classify malware families. DROIDRANGER [3]

implements a combination of a permission-based behavioral

foot printing scheme to detect samples of already known

malware families and a heuristic-based �ltering scheme to

detect unknown malicious applications. DroidMat [38] uses

di�erent extracted features such as permission and security

sensitive APIs from application apk �les and applies di�erent

clustering algorithms for malware detection. [20] uses Smali

code instrumentation in Android application in order to

trigger applications di�erent components automatically for

malware detection.

Behind malware analysis, there is a broad body of work

on tracking users privacy and proposing new and �ne-

grained access control in Android. TaintDroid [39] uses data

tainting for tracking data �ows inside the applications for

preserving user privacy. Di�erent new access control at

operating system [37], browser and operting system level [40]

and application level [41] have been proposed for restricting

untrusted applications functionalities. All of these proposed

system rewriting-based approaches can be used for resolving

application ICC vulnerabilities, but using them require the

necessity of modifying the code of monitored apps and the

system and thereby face to legal concerns and deployment

problems [42].

V. Conclusion and Future Work

Using machine learning methods for Android malware

classi�cation, needs using good features from applications’

structure in which discriminate malicious and benign behav-

iors. In this paper, we proposed a new feature in Android

malware classi�cation process which in combination with

other proposed features in the literature can discriminate

malicious and benign applications with a good accuracy. We

�rst showed that the �ow between di�erent applications

components can be a good feature in clustering process.

Then, we illustrated that we are able to achieve an accuracy

as high as 85% and a false positive rate as low as 10%

using SVM classi�er on a data-set contain 10,320 Android

malwares and benign applications using our proposed fea-

ture. However, analysing Android malwares is exposed with

some challenges. A critical challenge in Android malware

analysis is collecting a good data-set of Android malwares or

�nding the best classi�er regarding to the feature attributes



Sample Size All Permissions Security Sensitive APIsIntent FiltersComponents Flow

0 0 0 0 0 0

500 22 18 12 8 20

700 25 20 18 12 23

900 28 15 28 15 24

1100 35 30 32 20 28

1300 30 28 20 18 27

1500 44 33 30 33 38

1700 48 44 35 28 40

1900 42 40 30 34 48

2100 58 38 42 40 43

2300 55 42 44 25 50

2500 68 39 37 36 49

2700 70 45 44 41 52

2900 77 41 45 40 47

3100 78 42 43 38 51

3300 74 45 39 44 51

3500 75 40 46 50 55

3700 69 44 39 44 50

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

True Negative vs Features

All Permissions

Security Sensitive APIs Intent Filters

Components Flow

(a) True Negative

Sample Size All Permissions Security Sensitive APIsIntent FiltersComponents Flow

0 0 0 0 0 0

500 16 10 12 8 15

700 18 20 18 12 24

900 24 22 28 15 20

1100 28 34 32 20 28

1300 25 40 20 18 23

1500 44 33 30 33 38

1700 40 42 35 28 35

1900 48 33 30 34 44

2100 58 38 42 40 50

2300 55 44 44 25 48

2500 68 32 37 36 49

2700 68 46 44 41 54

2900 77 40 53 40 58

3100 74 42 55 38 62

3300 79 40 50 44 65

3500 68 48 49 50 60

3700 75 44 51 52 73

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

True Positive vs Features

All Permissions

Security Sensitive APIs Intent Filters

Components Flow

(b) True Positive

Fig. 3: True Positive and True Negative for di�erent features

Sample Size Permissions and Com. FlowSecurity Sensitive APIs and Com. FlowIntent Filters and Com. Flow

0 0 0 0

500 20 12 8

700 21 18 12

900 25 28 15

1100 31 32 20

1300 29 20 18

1500 41 30 33

1700 42 35 28

1900 45 40 34

2100 52 42 40

2300 55 44 25

2500 64 42 36

2700 69 47 41

2900 72 46 40

3100 75 51 38

3300 67 52 44

3500 68 48 41

3700 70 55 44

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

True Negative vs Features Combination

Permissions and Com. Flow

Security Sensitive APIs and Com. Flow

Intent Filters and Com. Flow

(a) True Negative

Sample Size Permissions and Com. FlowSecurity Sensitive APIs and Com. FlowIntent Filters and Com. Flow

0 0 0 0

500 20 12 8

700 21 18 12

900 25 28 15

1100 31 32 20

1300 29 20 18

1500 41 30 33

1700 42 35 28

1900 45 40 34

2100 52 42 40

2300 55 44 25

2500 52 42 36

2700 62 47 41

2900 65 46 40

3100 60 51 38

3300 58 52 44

3500 60 48 41

3700 62 55 44

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000

True Positive vs Features Combination

Permissions and Com. Flow

Security Sensitive APIs and Com. Flow

Intent Filters and Com. Flow

(b) True positive

Fig. 4: True Positive and True Negative for di�erent set of featurs combination

Sample Size TPR TNR Accuracy

500 71 69 73

700 70 70 68

900 76 71 75

1100 73 68 70

1300 72 70 73

1500 77 75 70

1700 81 80 77

1900 79 83 81

2100 81 77 79

2300 86 83 82

2500 81 78 83

2700 82 80 84

2900 80 78 82

3100 86 85 83

3300 84 83 80

3500 83 86 82

3700 84 81 85

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

Classifier Performance 

TPR TNR Accuracy

Fig. 5: Accuracy of Permission and Components �ow feature

set per sample size

or data set instances. As a future work, we will use di�erent

data-set and apply our classi�er to them. In addition, this

is very important to use di�erent classi�cation algorithms

in training and detection phase as di�erent algorithms may

have di�erent performance using a data-set or features.

VI. Acknowledgment

We would like to thank Morteza Amini, Rasool Jalili and

anonymous reviewers for their insightful comments. We also

thank Ata Chizari, Sajjad AbdollahRamezani, Mohammad

Hasan Ameri and specially Mohammad Vahid Jamali.

References

[1] I. D. Corporation. (2014) Android market share reached 75% worldwide

in q3 2012. [Online]. Available: http://techcrunch.com/2012/11/02/idc-

androidmarket-share-reached-75-worldwidein-q3-2012 Access time:

May 7, 2013

[2] M. T. Report. (2014) Third quarter 2012. [Online]. Avail-

able: http://www.mcafee.com/ca/resources/reports/rp-quarterly-threat-

q3-2012.pdf Access time: May 7, 2013

[3] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get o� of my

market: Detecting malicious apps in o�cial and alternative android

markets,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), vol. 25, no. 4, 2012, pp. 50–52.

[4] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,

V. Van Der Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A view

on current android malware behaviors,” in Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS), 2014 Third
International Workshop on. IEEE, 2014, pp. 3–17.



[5] B. Amos, H. Turner, and J. White, “Applying machine learning clas-

si�ers to dynamic android malware detection at scale,” in Wireless
communications and mobile computing conference (iwcmc), 2013 9th
international. IEEE, 2013, pp. 1666–1671.

[6] N. Peiravian and X. Zhu, “Machine learning for android malware

detection using permission and api calls,” in Proceedings of the IEEE
25th International Conference on Tools with Arti�cial Intelligence. IEEE,

2013, pp. 300–305.

[7] J. Sahs and L. Khan, “A machine learning approach to android malware

detection,” in Proceedings of the Intelligence and Security Informatics
Conference (EISIC), 2012 European. IEEE, 2012, pp. 141–147.

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-

application communication in android,” in Proceedings of the 9th inter-
national conference on Mobile systems, applications, and services. ACM,

2011, pp. 239–252.

[9] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting

android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security.

ACM, 2012, pp. 229–240.

[10] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and

M. C. Rinard, “Information �ow analysis of android applications in

droidsafe.” in Proceedings of the Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2015, pp. 6:1–6:16.

[11] F. Liu, H. Cai, G. Wang, D. D. Yao, K. O. Elish, and B. G. Ryder, “Mr-

droid: A scalable and prioritized analysis of inter-app communication

risks,” Proc. of MoST, 2017.

[12] K. Xu, Y. Li, and R. H. Deng, “Iccdetector: Icc-based malware detection

on android,” IEEE Transactions on Information Forensics and Security,

vol. 11, no. 6, pp. 1252–1264, 2016.

[13] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,

S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting

inter-component privacy leaks in android apps,” in Proceedings of the
37th International Conference on Software Engineering-Volume 1. IEEE

Press, 2015, pp. 280–291.

[14] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-

droid: an automatic system for revealing ui-based trigger conditions in

android applications,” in Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 2012,

pp. 93–104.

[15] A. Desnos. (2014) Androguard-reverse engineering, malware and

goodware analysis of android applications. [Online]. Available: https:

code.google.com/p/androguard Access time: 2013, May

[16] C. Cortes and V. Vapnik, “Support-vector networks,” in Machine learn-
ing, vol. 20, no. 3. Springer, 1995, pp. 273–297.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” in Journal of Machine
Learning Research, vol. 12, no. Oct, 2011, pp. 2825–2830.

[18] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector

machines,” in ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3. ACM, 2011, pp. 27:1–27:27.

[19] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-

text: Di�erentiating malicious and benign mobile app behaviors using

context,” in 37th IEEE International Conference on Software Engineering,

vol. 1. IEEE, 2015, pp. 303–313.

[20] S. Pooryousef and M. Amini, “Enhancing accuracy of android malware

detection using intent instrumentation,” in In Proceedings of the 3rd
International Conference on Information Systems Security and Privacy
(ICISSP 2017). Science and Technology Publications, Lda, 2017, pp.

380–388.

[21] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,

and B. Zang, “Vetting undesirable behaviors in android apps with

permission use analysis,” in Proceedings of the ACM SIGSAC conference
on Computer & communications security. ACM, 2013, pp. 611–622.

[22] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android

permissions demysti�ed,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627–638.

[23] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,

and I. Molloy, “Using probabilistic generative models for ranking risks

of android apps,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 241–252.

[24] VirusShare. (2014) An online data set of malwares. [Online]. Available:

https:virusshare.com Access time: 2015, May

[25] ISBX. (2014) An online data set of malwares. [Online]. Available:

http://www.unb.ca/research/iscx/dataset/ Access time: 2015, May

[26] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-

application communication in android,” in Proceedings of the 9th inter-
national conference on Mobile systems, applications, and services. ACM,

2011, pp. 239–252.

[27] S. J. A. B. E. B. J. K. D. Octeau, P. McDaniel and Y. L. Traon., “E�ective

inter-component communication mapping in android with epicc: An

essential step towards holistic security analysis,” in 22 nd USENIX
Security Symposium. USENIX Association, 2013, pp. 543–558.

[28] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general

inter-component data �ow analysis framework for security vetting of

android apps,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 1329–1341.

[29] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Apkcombiner:

Combining multiple android apps to support inter-app analysis,” in IFIP
International Information Security Conference. Springer, 2015, pp. 513–

527.

[30] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “Intentfuzzer:

detecting capability leaks of android applications,” in Proceedings of
the 9th ACM symposium on Information, computer and communications
security. ACM, 2014, pp. 531–536.

[31] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-

application communication vulnerabilities in android,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 118–128.

[32] Y. Zhang, M. Yang, G. Gu, and H. Chen, “Finedroid: Enforcing per-

missions with system-wide application execution context,” in Interna-
tional Conference on Security and Privacy in Communication Systems.
Springer, 2015, pp. 3–22.

[33] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer:

Automated mining and characterization of �ne-grained malicious be-

haviors in android applications,” in European Symposium on Research
in Computer Security. Springer, 2014, pp. 163–182.

[34] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features

for robust malware detection in android,” in International Conference
on Security and Privacy in Communication Systems. Springer, 2013,

pp. 86–103.

[35] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “Mast: Triage for

market-scale mobile malware analysis,” in Proceedings of the sixth ACM
conference on Security and privacy in wireless and mobile networks.
ACM, 2013, pp. 13–24.

[36] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-

based malware detection system for android,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2011, pp. 15–26.

[37] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Dendroid:

A text mining approach to analyzing and classifying code structures in

android malware families,” in Expert Systems with Applications, vol. 41,

no. 4. Elsevier, 2014, pp. 1104–1117.

[38] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:

Android malware detection through manifest and api calls tracing,” in

Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on.

IEEE, 2012, pp. 62–69.

[39] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,

J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-�ow

tracking system for realtime privacy monitoring on smartphones,” in

ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2. ACM,

Jun. 2014, pp. 5:1–5:29.

[40] S. Pooryousef and S. Amini, “Fine-grained access control for hybrid

mobile applications in android using restricted paths,” in Information
Security and Cryptology (ISCISC), 2016 13th International Iranian Society
of Cryptology Conference on. IEEE, 2016, pp. 85–90.

[41] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and Fixing Origin-

based Access Control in Hybrid Web/Mobile Application Frameworks,”

in Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2014, pp. 1–15.

[42] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-

Rekowsky, “Boxify: Full-�edged app sandboxing for stock android.” in

USENIX Security Symposium, 2015, pp. 691–706.


