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Abstract: Event-driven actions in Android malwares and complexity of extracted profiles of applications’ behaviors are
two challenges in dynamic malware analysis tools to find malicious behaviors. Thanks to ability of event-
driven actions in Android applications, malwares can trigger their malicious behaviors at specific conditions
and evade from detection. In this paper, we propose a framework for instrumenting Intents in Android appli-
cations’ source code in a way that different parts of the application be triggered automatically at runtime. Our
instrumented codes force the application to exhibit its behaviors and so we can have a more complete profile of
the application’s behaviors. Our framework, which is implemented as a tool, first uses static analysis to extract
an application’s structure and components and then, instruments Intents inside the application’s Smali codes.
Experimental results show that applying our code instrumentation framework on applications help exhibiting
more data leakage behaviors such as disclosing Android ID in 79 more applications in a data set containing
6,187 malwares in comparison to using traditional malware analysis tools.

1 INTRODUCTION

Smart Phones play an essential role in many concepts
of our daily life such as entertainment, socialization
and business (Corporation, 2014). Users of these de-
vices can download diverse applications from third
party markets and install them on their devices. As
well as these devices be common, they have become
the primary target of many attackers (Report, 2014).
Android, as the most popular platform in the smart
phone market share(IDC, 2014), has huge malware
surface (Zhou et al., 2012a; Rastogi et al., 2014).
According to the McAfee reports in 2013, Android
has 2.47 million new malware samples, which indi-
cate a 197% increase over 2012 (Report, 2014). Most
of these malwares spread through the online markets
such as Google Play (Zhou et al., 2012a) and these
malwares perform activities such as collecting user in-
formation, sending premium-rate SMS messages, or
stealing credentials (Felt et al., 2011b).

Many different static and dynamic methods have
been proposed in the industry and academic world for
detecting Android malwares. Static analysis meth-
ods (Bartel et al., 2014; Yang et al., 2015; Grace
et al., 2012; Chin et al., 2011) search malicious
signatures inside the application’s source code. In
contrast, dynamic malware analysis methods (Zheng

et al., 2012a; Enck et al., 2014; Gilbert et al., 2011;
Zhou et al., 2012a) run applications inside a sand-
box environment and analyze applications’ behaviors.
Even though dynamic malware analysis tools exhibit
many undesirable behaviors of malwares, they cannot
capture all of the applications’ suspicious behaviors
completely. Android malwares use different tricks to
evade from detection by malware analysis tools. Un-
fortunately, in Android, traditional dynamic malware
analysis methods cannot yield a good accuracy in de-
tecting suspicious behaviors due to the following rea-
sons:

Existing Event-driven Actions. Due to the An-
droid architecture, applications can register some of
their functionalities to be triggered whenever an event
is received or happened in the system. Android mal-
wares use this feature to hide their suspicious be-
haviors in the presence of dynamic malware analy-
sis methods. For example, a malicious action in the
application can be triggered whenever the device is
connected to the charger.

Complexity of Extracted Profiles of Applications’
Behaviors. Second problem in Android malware
analysis is the complexity of extracted profiles of ap-
plications’ behaviors. In malware detection, getting a
fine grained profiles of applications’ internal behav-
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iors is critical for obtaining a good accuracy (Zhang
et al., 2013). Some features of Android applications
such as using Binder mechanism prevalently, or inter-
acting with OS services (directly or indirectly) make
extracting the profile of applications a very complex
process. For example, using Binder mechanism leads
generating so many system calls in the application
so that extracting suspicious trace of system calls be-
tween these so many system calls is a challenging task
(Zhang et al., 2013). In addition, after extracting ap-
plication behaviors, we need to consider some other
concepts such as the contexts of actions for differen-
tiating them from the benign behaviors (Yang et al.,
2015).

Evading from detection in Android malwares
along with the complexity of generated profiles could
impact on the accuracy of dynamic analysis methods.
With our experiments on a data set containing 6,187
Android malwares, we found that many of the appli-
cations Security Sensitive APIs (SS-APIs) are invok-
ing inside the specific components such as broadcast
receivers. These components help malwares to trigger
their malicious actions at the specific conditions. In
this paper, in order to help dynamic malware analysis
methods gathering more complete and exact profiles
of applications’ behaviors, we propose a framework
for automatic code instrumentation in Android appli-
cations. With code instrumentation at an application’s
specific points, we can trigger the application’s hid-
den behaviors and get a straight profile of the appli-
cation’s critical parts. After the instrumentation, our
tool automatically builds and generates an executable
application package and signs it.

In our framework, we enjoy Intents messages
(Chin et al., 2011) to invoke and trigger different parts
of Android applications automatically at runtime. In
our proposed method, in contrast to fuzzing methods,
for analyzing an application, by considering the ap-
plication’s structure and attributes, we do not need
to generate too many input values (Fuzz, 2014). In
fact, our proposed framework, first extracts the appli-
cation’s call graph and then, instruments Intents in the
application’s Smali codes and generates a new APK
file of the application. As we directly work on the
application’s Smali codes and do not need to get the
application’s Java source code, neither decompilation
of the Dalvik byte codes to Java source code nor ob-
fuscation techniques have negative effect on our in-
strumentation process.

The rest of this paper is organized as follows. In
Section 2, some background information about An-
droid applications structure, Intent mechanism, and
Smali format is presented. Section 3, presents the
components of our Intent instrumentation framework,

and describes these components’ functionality, sepa-
rately. After that, we present our evaluation results in
Section 4. Section 5 presents the related work, and
finally Section 6 concludes the paper and draws the
future work.

2 BACKGROUND

Before describing the proposed method for code in-
strumentation in Android applications, we require
to survey the components of Android applications,
briefly describing the Android Intent mechanism, and
introducing the Smali format of Android applications
source code.

2.1 Components of Android
Applications

Android is a mobile operating system that runs on the
millions of devices in the world. One of the key suc-
cess of the Android huge market share is existence of
diverse applications for this platform; because of the
open nature of its applications market place (Xu et al.,
2012). Android applications usually are developed
in Java language and packaged in APK files, which
are ZIP compressed files. Android applications con-
sist of four different components in order to perform
their tasks. These components are activity, service,
broadcast receiver, and content provider. Activities
include applications’ interfaces which users interact
with them. Services are components that are used
for background processing and do not have any inter-
face for interacting with users. Anytime that an action
needs to perform some long operations which do not
need user interactions, developers use such compo-
nents. Broadcast receivers are triggered with broad-
cast messages which are broadcasted by the operat-
ing system or other components of applications. The
content providers can store and retrieve data in many
types such as file system and SQL Lite data bases.

In addition to these components, Android appli-
cations have an XML file (Manifest.xml file) which
includes some important information about an appli-
cation such as the required permissions of the applica-
tion, the names of its components, and the version of
the OS compatible with the application. In Fig. 1, we
have shown a manifest file where a broadcast receiver
component and a service have been defined.

2.2 Android Intent Mechanism

Android uses Binder and Intent messages for provid-
ing Inter Process Communication. Binder mechanism
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<receiver android:name="MyScheduleReceiver" >
            <intent-filter>
                <action 
android:name="android.intent.action.BOOT_COMPLETED" 
/>
            </intent-filter>
        </receiver>
        
    <service android:name=".BackgroundService" >
        </service>

Figure 1: An example of an Android Manifest.xml file that
defines a service and a broadcast receiver.

is used when an application requires to interact with
system privileged services (Chen et al., 2015). In or-
der to provide a mechanism for interacting an applica-
tion’s components with each other and also with other
applications’ components, Android uses Intents (Chin
et al., 2011). An Intent object, is a passive data struc-
ture that has an abstract description of an operation
to be performed. In addition to the applications, the
operating system can use Intents for triggering differ-
ent components of applications. Intent invocation is
done through some APIs such as startActivityForRe-
sult, and startActivity. In Android, Intents can be sent
explicitly or implicitly. In explicit sending, sender
specifies the receiver in the Intent definition. In im-
plicit sending, sender does not specify the receiver
and the operating system based on the Intent descrip-
tion chooses the target application or component for
handling the received Intent.

2.3 Smali Format

Smali format is a representation of dex format (op-
codes) used by Android Dalvik machine (Zheng et al.,
2012a). Smali codes of Android applications can be
obtained using tools such as Apktool (Google, 2014).
To give a small example of the Smali format, in Fig. 2,
the Smali code of a Java method is represented. This
method writes custom log messages.

3 PROPOSED
INSTRUMENTATION
FRAMEWORK

The main idea of our Intent instrumentation frame-
work is to place some specific Intents at the specific
points of the application’s source code. The goal is
to trigger the components of the application automat-
ically in order to activate all parts of the application
at runtime. Furthermore, we can choose which com-

.method public log()V
    .locals 2

    .prologue
    .line 13
    const-string v0, "remote"

    const-string v1, "This is a Log method"

    invoke-static {v0, v1}, Landroid/util/Log;->v(Ljava/
lang/String;Ljava/lang/String;)I

    .line 14
    return-void
.end method

Figure 2: Smali format of a method.

ponents of the application be run respectively with
regards to the application’s function call graph. As
we do not have access to the application’s Java code,
we use Smali codes for Intent instrumentation. The
overall architecture of our framework has been de-
picted in Fig. 3. Our tool is based on static analy-
sis, and thus we disassemble Android applications to
the Smali files first. Then, we specify the structure
of the application, for example the application’s call
graph and type of the components and their input val-
ues which are passed to them at runtime. After the in-
strumentation, we decompile the application’s Smali
files to generate a new APK file. In below, each of
these steps are explained.

3.1 Disassembling Application

In the first phase, our tool takes an APK file, disas-
sembles its dex file, and generates Smali files for all
application’s components, for example broadcast re-
ceivers and services. We disassemble applications’
APK files using Apktool (Google, 2014). In this step,
each Smali file is mapped to a single Java class, and
its path corresponds to the path of the Java class in
the application’s source code. Working directly on
the Smali codes helps us to overcome the obfuscation
techniques which make most static analysis tools in-
efficient.

3.2 Extracting Application Structure

The tool then, parses the application manifest and
Smali files for extracting the application’s structure,
i.e., the application’s call graph. We used Androguard
toolset (Desnos, 2014) to construct the application’s
function call graph in this step. Thereafter, we parse
the application’s manifest file to extract the names of
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Figure 4: Dependency in component invocation.

its components. For generating Intents in the next
step, we need some information about each compo-
nent, such as components’ expected values, whenever
they are invoked from other components at runtime.
In this step, these values are identified and extracted.

3.3 Instrumenting Intents

Manipulating an application’s Smali codes and
adding some new codes between Smali instructions
can influence the application’s main execution flow
and so leads to change the application’s original be-
haviors. In addition, we cannot guarantee that merg-
ing our Intent codes into the target application, does
not affect the manipulated application to crash after
installation. Also, we need to make sure that our in-
strumented Intents will invoke the application’s dif-
ferent components at runtime. Specifically, for instru-
menting Smali codes inside Android applications we
need to consider the following issues.

Application Functionality: The order and depen-
dency of invoking the application’s components must
be considered in triggering the application’s compo-
nents. For example, as depicted in Fig. 4, first, com-
ponent A calls component B and then, component C
is triggered by component B. So, we must consider
this sequence and dependency in generating our In-
tents for the application. In addition, for some compo-
nents, namely SMS receivers, if the target component
expects some specific inputs, we must include these
inputs in our Intent definition.

Executing Instrumented Codes: Another issue

in instrumenting Intents, is assurance of executing the
injected codes. If the application execution reaches
with low probability to where our Intents have been
instrumented, the place of instrumentation is not ap-
propriate. This is a crucial issue; because our Intents
must surely invoke the application different compo-
nents.

In order to overcome the above constraints, we
instrument our Intents at a specific point of the ap-
plication. The best point is the application’s main
activity. Each application in Android, has an activ-
ity which is the application’s main entry point. This
activity is specified with ”LUANCHER” tag in the
manifest file. As oncreate method exists in all ac-
tivities, we chose this method for placing our Smali
codes. We found experimentally that the function’s
beginning is the most appropriate place for placing
our codes and instrumenting in other places leads ap-
plications to crash at runtime.

Another challenge is the registers of the oncreate
method. If they are manipulated carelessly, it can re-
sult in crashing the application at runtime. In Dalvik
bytecode, registers are always 32 bits, and can hold
any type of values; however there is a limitation on
the number of registers for each method. As we re-
quire to use registers in defining our Intents and in-
voking them, changing the values of the registers that
are used in another points of the application is risky.
In our proposed framework, we need only three reg-
isters for Intent definition. However, for some com-
ponents, if we require to pass some values to a target
component, we need more registers.

In instrumentation, we consider components that
have at least one SS-API. SS-APIs are APIs in An-
droid system which handle a security sensitive action
in the system (for example, connection to the Internet)
(Yang et al., 2015). These APIs trigger the Android
access control mechanism whenever they are invoked.
We have used Felt et al. (Felt et al., 2011a) proposed
method for identifying SS-APIs in applications.

Algorithm 1 depicts the steps of our Intent instru-
mentation approach. After the instrumentation, our
tool automatically generates an executable APK and
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signs it, which can be installed on the device. Our
framework sign each instrumented APK using a ran-
domly generated key.

Algorithm 1: Intent Instrumentation Flow chart.

Input: Application′s Smali Files, Application′s
Call Graph

Output: Instrumented APK f ile
1: Find the Application’s main activity and oncreate

function
2: for Each application Component: do
3: if Component is an end point in the call graph

and have SS-API then
4: Extract components’ attributes
5: Generate Intents with considering com-

ponents structure
6: Instrument Intents in Oncreate

7: end if
8: end for
9: return Instrumented APK f ile

4 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We implemented the proposed framework to show
the applicability of the proposed approach and eval-
uate it. In our implementation, we used Andro-
Guard (Desnos, 2014) modules for constructing ap-
plications’ function call graphs. For identifying the
Android privileged APIs, we used the results of Felt
et al. (Felt et al., 2011a) research. In order to dis-
assemble APK files to Smali files, we employed Apk-
tool (Google, 2014). Apktool allows us to take an An-
droid APK file, convert it into a Smali source repre-
sentation, and then recompile it back into a new APK
file. We used Python scripts for static analysis and
integrating the mentioned tool set and modules.

Using the implemented framework we can evalu-
ate the feasibility and the beneficial of our code in-
strumentation approach on malware detection. First,
we show the impact of profiling the specific parts (or
components) of applications on analyzing application
behaviors. Afterward, we evaluate the impact of our
Intent instrumentation on illustrating more suspicious
behaviors of Android malwares using traditional mal-
ware analysis frameworks such as AppsPlayground
(Rastogi et al., 2013). We analyze how the accu-
racy of malware analysis tools can be enhanced af-
ter Intent instrumentation. The following subsections,
demonstrate the practical advantages of our Intent in-
strumentation framework.

4.1 Malware Collection

To evaluate our framework, we collected 6,187 An-
droid malwares, which are publicly available for re-
searchers, in June 2016. Among these malwares,
4,367 Android malwares were downloaded from
Virus share repository (VirusShare, 2014) and 1,820
malwares from ISBX center (ISBX, 2014). Our mal-
ware data set consists both old and new malware sam-
ples, and contains samples of the most known mal-
ware families.

4.2 Extracting Profiles of Applications

As explained in 1, the complexity of extracted pro-
files of applications can produce challenges for tradi-
tional proposed solutions in extracting and analyzing
suspicious behaviors. In this section, we show that
how separate analyzing the different components of
an application can simplify the identification of the
suspicious behaviors of the application. Note that our
goal is not identifying the malicious behaviors and we
just illustrate that extracting and separate analyzing an
application’s different components can show up clues
about suspicious behaviors quickly. We consider a
trace of function call graph which reach an SS-API
as a sign of a suspicious behavior in our analysis pro-
cess. Distinguishing malicious behaviors from the be-
nign ones in the extracted behaviors requires further
analysis using mechanism, such as machine learning
techniques, which is out of the scope of this paper.

We analyzed the whole data set for characteriz-
ing how much Android components namely broadcast
receivers and services are used in Android malwares
and how many of applications’ overall SS-APIs in-
clude in each component. As indicated in Fig. 5,
5,870 of the collected malwares (94.8%) contain at
least one service and, 5,265 of the collected malwares
(85%) include at least one broadcast receiver. Also,
3,633 of the malwares have at least 7 services and
2,400 of the malwares have at least 7 broadcast re-
ceivers. Almost 54 percent of applications’ SS-APIs
are invoked in broadcast receiver and service compo-
nents as depicted in Fig. 6. This indicates that most
of the malwares use SS-APIs in broadcast receivers
and services permanently. In this way, malwares can
trigger their malicious behaviors at the specific condi-
tions and can evade from detection in malware analy-
sis tools.

Considering behaviors of components separately
can be helpful in finding malicious behaviors using
traditional analysis methods, especially the ones an-
alyzing applications’ behaviors at system call level.
We did a simple experiment on our data set for sup-
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Figure 5: Number of components used in the malwares.
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Figure 6: Percent of used SS-APIs in the components of
malwares.

porting this claim. We disassembled some of col-
lected malwares using Apktool and analyzed Smali
files of these malwares. Precisely, we tracked appli-
cations’ function call graph in order to find a trace of
API calls which results in invoking an SS-API as a
sign of suspicious behavior. We found that for find-
ing a suspicious behavior in an application (a trace
of APIs), we need to analyze in average six traces of
function calls as depicted in Fig. 7. However, if we
analyze different parts of applications’ profiles sepa-
rately, we need to analyze only five traces in average.
Of course, for finding some malicious behaviors, we
may need more comprehensive analysis on the whole
application’s profile.
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Table 1: Overall detection of more leaked private informa-
tion in our dataset.

Information type Number of applications
Android ID 79

IMEI 67
Phone number 11

Contact number 9
Location data 10

4.3 Malware Analysis in Presence of
Intent Instrumentation

Here, the advantages of our code instrumentation on
exposing malware suspicious behaviors using one of
the most comprehensive dynamic malware analysis
tools, named AppsPlayground (Rastogi et al., 2013),
is evaluated. Although our instrumentation approach
can be employed in any dynamic malware analysis
framework such as CopperDroid (Tam et al., 2015)
or VetDroid (Zhang et al., 2013), we employed it in
AppsPlayground, due to the fact that its source code is
available online and has a very friendly interface. We
compared the reports of AppsPlayground on our in-
strumented APKs with reports generated on the orig-
inal APKs.

AppsPlayground is a framework for automated
dynamic security analysis of Android applications. It
integrates a number of detection, exploration, and dis-
guise techniques to come up with an effective analysis
environment. AppsPlayground can detect malicious
activities inside malwares and also activities that are
not malicious but can be annoying.

AppsPlayground tracks some data such as An-
droid ID and IMSI in applications. Android ID is used
to identify a user device and is a unique ID for each
device. It is used usually in specific applications such
as games or applications which need to identify the
user’s device. IMSI identifies a GSM subscriber on
the cellular network. Other types of data that might
be leaked include contact numbers and location data.
In order to evaluate the AppsPlayground accuracy af-
ter Intent instrumentation, we compared the reported
data leakage in two runs of it on our data set.

After applying our framework on the data set
including 6,187 malwares, we identified exposures
of private sensitive information in 79 instrumented
applications which did not identified by AppsPlay-
ground employing original APKs. Even though ap-
plying our framework on our data set did not make
AppsPlayground to identify new uncaptured mal-
wares, our instrumentation leads to exposing more
suspicious behaviors in analyzed applications. The
results of the detection of more leaked private infor-
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mation are presented in Table 1. The found expo-
sures include 79 leakage of Android ID and 67 leak-
age of IMEI. In the identified malwares, which leak
user information, we found that related components
need specific inputs. In fact, our instrumented codes
force the components to be triggered and exhibit their
behaviors. In addition, in 16 malwares, we saw that
instrumented codes trigger some components of the
applications which invoke native codes developed in
C and C++ language. Although native codes may be
used by benign Android applications for performance
reasons, since the native code can have system call
directly, malwares can use this capability to exploit
vulnerabilities in OS kernel level.

5 RELATED WORK

There are several studies on the analysis of Android
applications and characterizing the behaviors of An-
droid malwares. In this section, we categorize the re-
lated studies into static code instrumentation, and dy-
namic analysis methods.

5.1 Code Instrumentation and Static
Analysis

Code instrumentation in Android applications and
generating new APK from modified Smali files can
be used for benign or malicious purposes. Some work
use code instrumentation at runtime or statically, as
what we do for analyzing Android applications, for
detecting application vulnerabilities. Karami et al.
(Karami et al., 2013) proposed a framework for au-
tomatic code instrumentation in Android applications
using behaviors of applications at runtime and also
I/O system calls of applications. Aurasium (Xu et al.,
2012) enforces user security policies in Android ap-
plications which enables dynamic and fine-grained
policy enforcement. Aurasium, In contrast to work
such as (Bugiel et al., 2013), (Jeon et al., 2012), and
(Pooryousef and Amini, 2016), which modify An-
droid source code for preparing a fine grained access
control in applications, automatically repackages ar-
bitrary applications to attach user-level sandboxing
and policy enforcement code (Xu et al., 2012). In-
telliDroid (Wong and Lie, 2016) is a generic Android
input generator to produce inputs specific to dynamic
analysis tools, in order to achieve higher code cover-
age in malware analysis process. ApkCombiner (Li
et al., 2015) combines multiple Android applications
using applications’ Smali codes to analyze inter app
vulnerabilities. ADAM (Zheng et al., 2012b) uses
Smali code instrumentation for evaluating Android

antivirus softwares. In comparison to the existing
code instrumentation frameworks, our framework, by
considering application structure and attributes of ap-
plications’ components, can trigger applications’ hid-
den behaviors and get a straight profile of the appli-
cations’ critical parts. Using our framework, we can
consider invoking some specific components. This
is a good idea for analyzing the behaviors of some
specific components separately. In addition, for ma-
licious purposes, attackers can instrument malicious
Smali codes into benign and popular Android appli-
cations (Zhou et al., 2012b; Zhou et al., 2013).

Analyzing source code of Android applications
have been widely covered in many works which focus
on static analysis methods. Appcontext (Yang et al.,
2015) uses context of actions in Android applications
to identify and differentiate malicious and benign ac-
tions. AppContext uses static analysis to extract the
application function call graph and related actions and
then correlates application contexts with the actions.
SAAF (Hoffmann et al., 2013) analyzes application
Smali codes and creates program slices for perform-
ing data-flow analysis. Bartel et al. (Bartel et al.,
2014) use static analysis for extracting permissions
in Android applications. ANDROGUARD (Desnos,
2014) is a tool set that decompiles and analyzes An-
droid applications in order to detect malicious appli-
cations using their signatures. Stowaway (Felt et al.,
2011a) statically analyzes that how an application
uses Android APIs to detect whether an application’s
requests overpass its privileges or not. Woodpecker
(Grace et al., 2012) analyzes Smali codes of appli-
cations statically to uncover capability leaks. Intent’s
vulnerabilities in components of Android applications
have been analyzed with ComDroid framework pro-
posed in (Chin et al., 2011).

5.2 Dynamic Analysis

Dynamic analysis of Android applications’ behaviors
is considered in many researches. We briefly intro-
duce these works but do not elaborate them in details,
because their overlap with our work is rather small.
TaintDroid (Enck et al., 2014) uses data tainting for
tracking data flows inside applications for preserv-
ing user privacy. AppInspector (Gilbert et al., 2011)
can automatically generate input and log during pro-
gram executions, and can detect privacy leakage be-
haviors by the analysis of log information. AppsPlay-
ground (Rastogi et al., 2013) tries to drive applica-
tions along multiple paths in order to reveal their sus-
picious behaviors. SmartDroid (Zheng et al., 2012a)
focuses on Android applications’ behaviors which
trigger with user interactions and uses Smali code
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analysis for revealing application’s structures. Vet-
Droid (Zhang et al., 2013) identifies explicit and im-
plicit permission use points inside applications and
generates profiles of the applications based of these
points. DROIDRANGER (Zhou et al., 2012a) imple-
ments a combination of a permission-based behav-
ioral foot printing scheme to detect samples of al-
ready known malware families and a heuristic-based
filtering scheme to detect unknown malicious appli-
cations. Some other methods such as (Peiravian and
Zhu, 2013; Sahs and Khan, 2012) and (Burguera
et al., 2011) use machine learning for analyzing dif-
ferent features of applications for malware detection.

6 CONCLUSION AND FUTURE
WORK

Dynamic analysis tools usually cannot extract a com-
plete and precise profile of applications’ behaviors or
cannot trigger or extract behaviors of specific compo-
nents of applications separately. In this paper, we pro-
posed a framework for instrumenting Intents in An-
droid applications’ Smali codes. Our instrumented
Intents, trigger different components of applications
automatically at runtime. We first showed that ex-
tracting profiles belong to some specific components
of applications can simplify the analysis of applica-
tions’ behaviors, and consequently facilitates finding
suspicious behaviors. Then, further investigation us-
ing a dynamic malware analysis tool, named App-
sPlayground, showed that code instrumentation (for
forcing some components to be invoked) can facili-
tate detecting more malicious or suspicious behaviors
in applications. We successfully applied our instru-
mentation framework to a data set of 6,187 malware
applications. Experimental results showed that apply-
ing our code instrumentation framework on the ap-
plications, help exhibiting more data leakage such as
Android ID in 79 more applications in comparison to
using traditional malware analysis tools with no In-
tent instrumentation. However, our framework can-
not trigger the native codes that are directly used in
applications. In addition, some of the applications in
our collected malwares do not produce manifest file
in disassembling process of our framework.
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