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Abstract

A “big-ideas” approach to an undergraduate Computation Theory course
is described. The aim of this approach to the Theory is to focus the student
on those of the Theory’s concepts and tools that are more likely to be rele-
vant to a student’s non-theoretical endeavors. By explaining why these are
the “big” concepts, the course also prepares the student to assimilate these
concepts into his/her conceptual toolkit.

1 The Ideal Computation Theory Course

1.1 Course Goals

What should we expect from an undergraduate course that covers the abstract
branch of theoretical computer science that one can call “Computation Theory”
(in counterpoint to “Algorithms”)? The course, which may bea student’s unique
exposure to this genre of material, should impart to the undergraduate student:

1. the need for theoretical/mathematical underpinnings for what is predomi-
nantly an engineering discipline.

This demands careful selection of topics. One must assiduously include
foundational material that is relevant to “practical”1 computer science and
avoid material that only the dedicated specialist is likelyto appreciate. (The
first of these goals may require tailoring the choice of theoretical material

1I always put the word “practical” in quotes because the material in academic courses is virtu-
ally never applied in an unmodified form in practice.



to complement the “practical” topics that appear elsewherein the students’
curriculum.)

2. the rudiments of the “theoretical method,” as it applies to computer science.

This demands including material that demonstrates the benefits of being
able to thinkrigorouslyabout the artifacts and processes of “practical” com-
puting. It also, in my eyes, demands clear identification of the basic mathe-
matical concepts and tools needed for the rigorous thinking.

3. a firm foundation in the most important concepts of Computation Theory,
that is adequate for subsequent study of advanced topics.

This demands giving students anoperationalcommand of the basic con-
cepts and tools of Computation Theory, and of the underlyingmathematics.
What isnot helpful is a cursory exposure to this material.

By including topics from Computation Theory that have a clear path to major
topics in “practical” computing and by elucidating the theoretical/mathematical
underpinnings of these topics, one enhances the chances of convincing the student
of the relevance of the Theory to her professional development and, ultimately, her
professional life.

My motivation in writing this (hopefully thought-provoking) article and pursu-
ing the development of a specific “big-ideas” approach to Computation Theory is
that I would argue, with regret, that most current Computation Theory curricula—
as inferred from the contents of the standard texts (see the bibliography)—neither
focus on nor satisfy the three enunciated objectives. Particularly regrettable (in
my eyes) is that many of the texts facilitate courses that present an untextured
grand tour of esoteric concepts, so that the students “see” topics X and Y and
. . . but are never told, “TopicX is central to the following ‘practical’ pursuit,” or
“Topic Y is included because of its inherent beauty, even though it does not relate
to the specific problems you will encounter in your ‘practical’ pursuits.” I view
such an approach to the material as counterproductive toward the goal of making
the theoretical method part of a student’s professional life.

1.2 Course Organization

Computation Theory seldom occupies more than one semester in an undergrad-
uate curriculum. (Regrettably, even that one semester is often not compulsory.)
Time restrictions therefore force an instructor to make tough choices, not only
about what material to cover, but also about how to organize that material in a
way that suggests to the student what message(s) to take awayfrom the course.
In my view, there are basically three imperfect, incompatible “message-oriented”



organizations of a course in Computation Theory. (I ignore the message-less or-
ganization that just covers material from a text seriatim.)The material can be:

1. organized around underlying mathematical concepts and techniques.

Unfortunately, this approach almost inevitably violates boundaries man-
dated by
computation-theoretic themes.

2. organized around basic computation-theoretic themes.

Unfortunately, this approach usually obscures commonalities in underlying
concepts and mathematical underpinnings within apparently diverse topics.
These commonalities are essential if the student is to applythese concepts
and techniques in novel situations that are unlike the “textbook” situations..

3. organized in a way that emphasizes applications to real computational (hard-
ware and software) artifacts.

Unfortunately, this approach can obscure the underlying “pure” concepts,
both mathematical and computational.

In order to garner much of the benefit of each of these organizations, without
suffering too many of the shortcomings, one is probably best advised to organize
the course via amatrix organization, rather than a hierarchical one. Of course,
such an organization places a greater burden of contextualization on the instructor,
but in the legendary words of A. Nonymous, “That’s why they pay us the big bucks
(or euros).”

The next two sections are dedicated, respectively, to a view(admittedly opin-
ionated) of how most current Computation Theory courses areorganized and a
description of a proposed alternative organization, with arationale for specific
choices of topic and approach.

2 Today’s Typical Curricula

Almost all undergraduate Computation Theory texts opt for the second organiza-
tional approach of Section 1.2; a very few opt for the third. Standard texts (see the
bibliography) typically employ a two-module approach to the subject.

Module 1 comprises a smattering of topics that provide a language-theoretic
approach to the theories of automata and grammars. The main justification for
much of the included material seems to be the long histories of these theories.
Within the context of this module, I part ways with the major texts along three
axes:



1. the inclusion of many topics whose only interest is largely historical

Example: arcane closure properties of language families

2. the omission of many topics of central conceptual importance to “practical”
computation or computer science

Example: the foundational theory underlying state-minimization algorithms

3. the presentation of topics via techniques that focus on establishing a specific
result, rather than presenting a basic mathematical technique that recurs in
somewhat different guises in many results

Example: not isolating the many aspects of encoding and diagonalization
that transcend individual applications.

Most of the material in this module and the approaches to thatmaterial seem to be
passed from one generation of texts to the next, without a critical analysis of what
is relevant to the general student of computer science (in contrast to the aspiring
theorist).

Module 2 (usually the larger one) provides an intense study of Complexity
Theory, perhaps preceded by some background on its (historical and intellectual)
precursor, Computability Theory. This is indisputably important material: it ex-
poses aspects of the intrinsic nature of (digital) computation; it establishes the
theoretical underpinnings of important topics relating to“Algorithms;” it has quite
important applications in areas as diverse as cryptology and program verification.
That said, I would argue that much of what is typically included in this module
goes beyond what is essential for, or even relevant to, the general computer sci-
ence student (again, as opposed to the aspiring theorist). Moreover, because of
restricted time, these topics preclude the inclusion of several topics that are more
relevant to the development of embryonic computer scientists. Additionally, I
fear that the typical presentation of much of the material via artificial, automata-
theoretic models obscures the relevance of the material to “practical” computing.2

3 A “Big Ideas” Approach

I heartily endorse the first organizational alternative among the three that begin
Section 2, motivated by the belief that a deep understandingof, and operational
control overthe few “big” mathematical ideas that underlie the Theory isthe best
way to enable the typical student to assimilate theoreticalthinking into her com-
putational life.

2This last position echoes that espoused in [6] and in the classical Computability Theory text
[21].



3.1 The “Pillars” of the Proposed Course

In a famous Talmudic story, Rabbi Hillel is challenged to encapsulate all of the
voluminous laws of Judaism while standing on one leg. (His response was, “What
you find hateful, do not unto others.”) What would a Computation Theorist re-
spond when similarly challenged? It turns out that virtually every major result
in elementary Computation Theory—the portion of the Theorythat every com-
puter scientist should have in his/her conceptual kitbag—refers in some funda-
mental way to one or more of three conceptual “pillars”—State, Encoding, and
Nondeterminism—upon which I propose to build a “big-ideas” approach to Com-
putation Theory. The mathematical correspondents of these“pillars” underlie
most of the basic developments in the Theory; and the concepts themselves un-
derlie many of the intellectual artifacts of “practical” computing.

A “big-ideas” approach to the Theory allows one to expose students to all
of the major introductory-level ideas covered by present texts and courses, while
also covering other topics that are (in my opinion) at least as relevant to an aspiring
computer scientist (indeed, an aspiring computer professional). Additionally, this
approach gives one a chance to expose the student to important, relevant mathe-
matical ideas that are not covered in most current texts. A “big ideas” approach
thus strictly improves our progress toward all four educational goals enumerated
earlier, enhancing students’ preparations for their futures in terms of both material
and the intellectual tools for thinking about that material. I now briefly discuss my
proposed three “pillars” of Computation Theory.

3.1.1 State

Myriad computational systems, both hardware and software,are organized as
state-transition systems. Such a system evolves over time (or, computes) by
continually changing state in response to one or more discrete stimuli (typically
termed “inputs”). When in a “stable” situation, the system is in a well-defined
one of its (finitely or infinitely many) states. At any such moment, in response to
any valid stimulus, the system goes through some process, ending up in another
“stable” situation, in some well-defined state. One of the conceptual gems of
Finite-Automata Theory, theMyhill-Nerode Theorem[16, 17], offers a complete
mathematical characterization of the concept of state within a state-transition sys-
tem. Although the Theorem focuses solely onfinite state-transition systems, one
can fruitfully formulate a version of the Theorem that applies also to (discrete)
infinite-state systems, not just finite ones. The Theorem’s characterization of state
allows one to analyze many diverse aspects of state-transition systems, with an
eye toward improving their designs and/or exposing and quantifying their limi-
tations. Indeed, one can find in the literature applicationsof the mathematical



characterization that involve several diverse aspects of systems, ranging from size
to computational memory resources to computing time. Citing just one specific
example: being in a department where Markov decision processes and their vari-
ants permeate the air, I have found that students react with widened eyes—and a
renewed respect for Computation Theory—to Rabin’s classical paper on proba-
bilistic automata [19].

3.1.2 Encoding

Arguably the most fundamental results in Computability Theory and Complex-
ity Theory depend on the ability to encode one computationalproblemA as an-
other computational problemB, in a way that yields a solution to (an instance
of) A from a solution to (the corresponding instance of)B. Within Computabil-
ity Theory, one demands that this encoding (called areduction) be supplied via a
program that translates each instance of problemA to an instance of problemB;
this guarantees the computability of the encoding. Within Complexity Theory, the
translating program must beefficient, with the notion of efficiency depending on
the notion of computational complexity being studied. An even more basic use of
encodings is found in Turing’s original study of inherent limitations of any “rea-
sonable”3 digital computing system [26]. Turing’s work closely followed Gödel’s
seminal work [5], which demonstrates the inability of any “reasonable” logical
system to capture through proof all true arithmetic facts. Both of thesetours de
force use encodings to demonstrate rigorously the stark distinctness of two no-
tions that were intimately entwined in our imaginations (truth and theoremhood
for Gödel, functions and programs for Turing). Importantlyfor the viewpoint
espoused here, the encodings in both Gödel’s and Turing’s work are based on
the relatively simple mathematics underlying the following results of Cantor [1].
(1) There exist one-to-one associations (based on computationally simplepair-
ing functions) between the positive integers and the rationals. (2) Therecan be
no one-to-one association between the rationals and the reals. While not central
to Cantor’s set-theoretic theme, pairing functions can be used to show that sim-
ple integer arithmetic (addition and multiplication) suffices toencodeelaborate
finite structures—e.g., finite graphs, arithmetic expressions, strings of integers—
as single integers. Also relevant to the viewpoint espousedhere, even the orig-
inal, unembellished notion of pairing function has meat to chew on that retains
juice to this day; cf. [22]! Such encodability was crucial toGödel and Turing,
for it showed that, quite remarkably, even primitive formalsystems can encode
self-referentialsentences—consider the sentence, “This sentence is false.” Thus,
integers in a logical sentence could be encodings of sentences; integer inputs to a

3Reasonableness here and with Gödel’s work essentially precludes systems that have answers
“wired in.”



program could be encodings of programs! Turing’s encodingshave evolved into
the mapping-reductions of Computability Theory and their resource-bounded ana-
logues in Complexity Theory. An amazing concomitant of reductions is that there
sometimes exists a single problem within a class of problemsthat is a “hardest”
one, in the sense that every problem in the class reduces to it: the Halting Problem
for Turing Machines is complete for the class of “semi-decidable” problems [26];
the Satisfiability Problem is complete for the classNP of languages decidable in
nondeterministic polynomial time [2].

3.1.3 Nondeterminism

Nondeterminismis a mathematical fiction that allows a state-transition system to
“hedge its bets” by transitioning to several parallel, noncommunicating universes
at each step. Real systems are typically, but not universally, deterministic (asyn-
chrony can engender nondeterministic behavior), for this is the only known av-
enue to verifiable correctness and efficiency. Since nondeterminism seems, thus,
to have only undesirable properties, it came as a surprise when nondeterminism
was shown in the 1950s to lead todramaticallysimplified algorithms for generat-
ing regular expressions from Finite Automata [18, 20]. Thissurprise became an
intellectual supernova in the early 1970s with the discovery of NP-Completeness
and its attendantP-vs.-NP problem [2, 13]. Nondeterminism was therein exposed
as afundamentalcomputational notion that explains the apparent intractability of
many important computational problems. Subsequent studies (cf. the early en-
cyclopedic review of [4]) have exposed myriad problems, in areas ranging from
constraint satisfaction to structure mapping to scheduling and beyond, that would
admit simple, computationally efficient—indeed, oftenlinear time—solutions on
a truly nondeterministic computing platform but that, to this day, defy efficient—
indeed,subexponential time—solution on any known deterministic platform. In-
terestingly, the benefits of nondeterminism can be explained—but not explained
away!—easily and have been known for decades. Nondeterminism in an “algo-
rithm” (of course, nondeterministic “algorithms” are not really algorithms, as they
cannot be executed directly on any real computing platform)essentially abbrevi-
ate a possibly lengthy, arduous search that is part of an algorithm. The step-by-
step search appears explicitly in the “algorithm,” as a super-algorithmic efficient
primitive of the form“Search for x,” but it is usually woven intricately into an
algorithm. The existence ofcompleteproblems that admit efficient “algorithms”
means that a speedy algorithm for any of myriad important intractable problems
will automatically provide speedy algorithms for all problems in the class.



3.2 A Specific “Big-Ideas” Course

I am currently working on an undergraduate Computation Theory text [23] that
builds upon the three “pillars” of thepreceding section, via a (big) chapter devoted
to each. This text will follow the approach of a course on the topic that I have
been developing and teaching for decades, at several institutions: chronologically,
Polytechnic Institute of Brooklyn, New York University, Duke University, and the
University of Massachusetts. Table 1 depicts the organization of both the text and
the course that are advocated here.

Topics/Pillars → State Encoding Nondeterminism
↓

Finite Automata Myhill-Nerode Theorem Kleene-Myhill Thm
and Applications:
Proofs of nonregularity
State minimization
Probabilistic FA [19]

Computability Model independence Limited model
independence

Mapping-reductions Resource-bounded
reductions

Mapping completenessResource-bounded
completeness

Rice-Myhill Theorem
Complexity Memory-bounds Cook-Levin Thm

for languages [10]
Online Turing Savitch’s Thm [24]

Machines [7]

Table 1:The matrix organization of the proposed course, with selected topics and
major foci highlighted.

Within the organization depicted in the table, I develop therudiments of the
three interrelated, yet distinct, theories ofFinite Automata(FA), Computability,
andComplexity.

Finite Automata Theory. I develop FA Theory up to and including the
Myhill-Nerode Theorem upon the State “pillar,” following that classical result
with many applications, ranging from the state-minimization algorithm for finite-
state machines (which attracts the EE students), the regularity of many proba-
bilistic automata languages [19] (which attracts the markov-decision types), time-
restricted online Turing Machines [7] (which attracts the database-oriented stu-
dents), and memory bounds for nonregular languages [10] (which I have found
appeals to the theoretically-inclined students). The other “big” theorem of FA



Theory, the Kleene-Myhill Theorem (“Regular Expression” Theorem) [12], is
developed upon the Nondeterminism “pillar,” since I would argue that the topic
would not likely have become algorithmically accessible without sources such as
[18, 20], which exploit nondeterminism to derive the result.

Computability Theory . I cleave to themodel-independent mannerof [21] in
building Computability Theory firmly on the Encoding pillar, from the underlying
notions of (non)encodability [of one system as another] andreducibility [of one
computational problem to another]; this development culminates in the notion of
completeness. Perhaps the most exciting source of (mapping-)complete problems
within Computability theory is the Rice-Myhill-Shapiro Theorem (cf. [21]) which,
informally, demonstrates the impossibility of algorithmically deciding any prop-
erty of the dynamic behavior of a program from the program’s static description.
Central to my presentation is the emphasis of the evolution of encoding related
concepts from Cantor to Gödel to Turing, and beyond.

Complexity Theory. Within the preceding framework, it is natural to develop
Complexity Theory as a (computational) resource-bounded extension of Com-
putability theory. This view of Complexity Theory would notbe supported by
many of its practitioners, but I feel that it is a useful pedagogical ploy because of
its allowing the students to see the notion of encoding evolve in a natural progres-
sion from Cantor’s pairing functions, through mapping-reductions, to resource-
bounded reductions, and to see a similar evolution in the notion of diagonalization.
The central result of modern Complexity Theory, Cook’s Theorem [2], and the at-
tendantP-vs.-NP problem, is developed upon the Nondeterminism pillar, with
lavish invocation of earlier-treated results about (efficient) mapping-reducibility
and its attendant notion of completeness. The algorithmic consequences of theP-
vs.-NP problem emerge in a very natural way, as one recognizes nondeterminism
as a high-level search primitive.

4 Summation

Of course, I have no “hard” evidence of the success of my “big-ideas” approach
to Computation Theory. (To be truthful, I have little faith in the kinds of evidence
that are the stock in trade of schools of Education, at least in the U.S.) However,
I do have considerable subjective, anecdotal evidence thatthe proposed approach
does succeed with the “typical” computer science student, both undergraduate and
graduate. Specifically, in none of the institutions where I have taught a version of
the proposed course were my classes even moderately populated with aspiring
theoretical computer scientists. As the course has evolvedfrom a more-or-less
standard treatment of the material (in the late 1960s) to the“big-ideas” approach
described here, I have increasingly found the students talking about underlying



theoretical concepts when describing their own research. My pleasure at such
moments was immense.
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