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Abstract

A “big-ideas” approach to an undergraduate Computatiorofijheourse
is described. The aim of this approach to the Theory is tofdba student
on those of the Theory’s concepts and tools that are morly likebe rele-
vant to a student’s non-theoretical endeavors. By expigimihy these are
the “big” concepts, the course also prepares the studerssimdate these

concepts into higier conceptual toolkit.

1 The Ideal Computation Theory Course

1.1 Course Goals

What should we expect from an undergraduate course tharsove abstract
branch of theoretical computer science that one can calirii@dation Theory”
(in counterpoint to “Algorithms™)? The course, which maydstudent’s unique
exposure to this genre of material, should impart to the tgrdduate student:

1. the need for theoretigahathematical underpinnings for what is predomi-
nantly an engineering discipline.

This demands careful selection of topics. One must assglyanciude
foundational material that is relevant to “practi&dfbmputer science and
avoid material that only the dedicated specialist is likelgppreciate. (The
first of these goals may require tailoring the choice of te&oal material

1] always put the word “practical” in quotes because the nigtar academic courses is virtu-
ally never applied in an unmodified form in practice.



to complement the “practical” topics that appear elsewiretbe students’
curriculum.)

2. the rudiments of the “theoretical method,” as it appleesdmputer science.

This demands including material that demonstrates thefitermd being
able to thinkrigorouslyabout the artifacts and processes of “practical” com-
puting. It also, in my eyes, demands clear identificatiorhefltasic mathe-
matical concepts and tools needed for the rigorous thinking

3. a firm foundation in the most important concepts of Comjutal heory,
that is adequate for subsequent study of advanced topics.

This demands giving students aperationalcommand of the basic con-
cepts and tools of Computation Theory, and of the underlgnaghematics.
What isnot helpful is a cursory exposure to this material.

By including topics from Computation Theory that have a clpath to major
topics in “practical” computing and by elucidating the thetacaymathematical
underpinnings of these topics, one enhances the chanceswiicing the student
of the relevance of the Theory to her professional develop@red, ultimately, her
professional life.

My motivation in writing this (hopefully thought-provok) article and pursu-
ing the development of a specific “big-ideas” approach to Gatation Theory is
that | would argue, with regret, that most current Compataiiheory curricula—
as inferred from the contents of the standard texts (seebhiedraphy)—neither
focus on nor satisfy the three enunciated objectives. degatily regrettable (in
my eyes) is that many of the texts facilitate courses thasgarean untextured
grand tour of esoteric concepts, so that the students “sgésX andY and
... but are never told, “TopiX is central to the following ‘practical’ pursuit,” or
“Topic Y is included because of its inherent beauty, even thouglrei$ dot relate
to the specific problems you will encounter in your ‘pradfigaursuits.” | view
such an approach to the material as counterproductive dothiargoal of making
the theoretical method part of a student’s professional lif

1.2 Course Organization

Computation Theory seldom occupies more than one semeaster undergrad-
uate curriculum. (Regrettably, even that one semestettés afot compulsory.)
Time restrictions therefore force an instructor to makegtoghoices, not only
about what material to cover, but also about how to orgarhiaé material in a
way that suggests to the student what message(s) to takefemmayhe course.
In my view, there are basically three imperfect, incompgatfinessage-oriented”



organizations of a course in Computation Theory. (I ignbeernessage-less or-
ganization that just covers material from a text seriatifing material can be:

1. organized around underlying mathematical conceptsexithiques.

Unfortunately, this approach almost inevitably violatesibdaries man-

dated by
computation-theoretic themes.

2. organized around basic computation-theoretic themes.

Unfortunately, this approach usually obscures commaaslit underlying
concepts and mathematical underpinnings within appareitérse topics.
These commonalities are essential if the student is to applse concepts
and techniques in novel situations that are unlike the biesk” situations..

3. organized in a way that emphasizes applications to reapatational (hard-
ware and software) artifacts.

Unfortunately, this approach can obscure the underlyingepconcepts,
both mathematical and computational.

In order to garner much of the benefit of each of these orgtoim without
sufering too many of the shortcomings, one is probably bestsadvio organize
the course via anatrix organization rather than a hierarchical one. Of course,
such an organization places a greater burden of contezatialn on the instructor,
but in the legendary words of A. Nonymous, “That’s why they pa the big bucks
(or euros).”

The next two sections are dedicated, respectively, to a {aekwittedly opin-
ionated) of how most current Computation Theory courseaganized and a
description of a proposed alternative organization, wittattonale for specific
choices of topic and approach.

2 Today’s Typical Curricula

Almost all undergraduate Computation Theory texts optherdecond organiza-
tional approach of Sectidn’1.2; a very few opt for the thirthr@8ard texts (see the
bibliography) typically employ a two-module approach te gubject.

Module 1 comprises a smattering of topics that provide auagg-theoretic
approach to the theories of automata and grammars. The otifigation for
much of the included material seems to be the long histoffiekese theories.
Within the context of this module, | part ways with the majexts along three
axes:



1. the inclusion of many topics whose only interest is lardes$torical
Example: arcane closure properties of language families

2. the omission of many topics of central conceptual impum#eo “practical”
computation or computer science

Example: the foundational theory underlying state-mization algorithms

3. the presentation of topics via techniques that focus tabishing a specific
result, rather than presenting a basic mathematical tqukrthat recurs in
somewhat dterent guises in many results

Example: not isolating the many aspects of encoding andodilization
that transcend individual applications.

Most of the material in this module and the approaches totlad¢rial seem to be
passed from one generation of texts to the next, withouti@akranalysis of what
is relevant to the general student of computer science (itrast to the aspiring
theorist).

Module 2 (usually the larger one) provides an intense stdd@amplexity
Theory, perhaps preceded by some background on its (luatamd intellectual)
precursor, Computability Theory. This is indisputably mn@ant material: it ex-
poses aspects of the intrinsic nature of (digital) companatit establishes the
theoretical underpinnings of important topics relatingigorithms;” it has quite
important applications in areas as diverse as cryptologypaogram verification.
That said, | would argue that much of what is typically in@ddn this module
goes beyond what is essential for, or even relevant to, thergecomputer sci-
ence student (again, as opposed to the aspiring theoristyedver, because of
restricted time, these topics preclude the inclusion oéss\topics that are more
relevant to the development of embryonic computer scientié\dditionally, |
fear that the typical presentation of much of the materialariificial, automata-
theoretic models obscures the relevance of the materigrtztical” computinﬁ

3 A“Big ldeas” Approach

| heartily endorse the first organizational alternative aghthe three that begin
Sectior 2, motivated by the belief that a deep understarafingnd operational
control overthe few “big” mathematical ideas that underlie the Theothesbest
way to enable the typical student to assimilate theoretigaking into her com-
putational life.

2This last position echoes that espousedn [6] and in thesickisComputability Theory text
[21.



3.1 The “Pillars” of the Proposed Course

In a famous Talmudic story, Rabbi Hillel is challenged to asulate all of the
voluminous laws of Judaism while standing on one leg. (Hipoase was, “What
you find hateful, do not unto others.”) What would a Computafl heorist re-
spond when similarly challenged? It turns out that virtp@Very major result
in elementary Computation Theory—the portion of the Thethigt every com-
puter scientist should have in fher conceptual kitbag—refers in some funda-
mental way to one or more of three conceptual “pillarState Encoding and
Nondeterminism-upon which | propose to build a “big-ideas” approach to Com-
putation Theory. The mathematical correspondents of thgilars” underlie
most of the basic developments in the Theory; and the cosd¢bpinselves un-
derlie many of the intellectual artifacts of “practical’roputing.

A “big-ideas” approach to the Theory allows one to exposeletts to all
of the major introductory-level ideas covered by presextistand courses, while
also covering other topics that are (in my opinion) at leaseéevant to an aspiring
computer scientist (indeed, an aspiring computer prafessj. Additionally, this
approach gives one a chance to expose the student to impogimvant mathe-
matical ideas that are not covered in most current texts. ié\ itheas” approach
thus strictly improves our progress toward all four edwadl goals enumerated
earlier, enhancing students’ preparations for their gun terms of both material
and the intellectual tools for thinking about that materiaow briefly discuss my
proposed three “pillars” of Computation Theory.

3.1.1 State

Myriad computational systems, both hardware and software,organized as
state-transition systems. Such a system evolves over timec¢mputes) by
continually changing state in response to one or more desstenuli (typically
termed “inputs”). When in a “stable” situation, the systesrini a well-defined
one of its (finitely or infinitely many) states. At any such mamt, in response to
any valid stimulus, the system goes through some proceds)gnp in another
“stable” situation, in some well-defined state. One of theaceptual gems of
Finite-Automata Theory, thMyhill-Nerode Theorenfl8,[17], dfers a complete
mathematical characterization of the concept of stateimvilstate-transition sys-
tem. Although the Theorem focuses solelyfonte state-transition systems, one
can fruitfully formulate a version of the Theorem that applalso to (discrete)
infinite-state systems, not just finite ones. The Theoretesacterization of state
allows one to analyze many diverse aspects of state-ti@msiystems, with an
eye toward improving their designs dodexposing and quantifying their limi-
tations. Indeed, one can find in the literature applicatiohthe mathematical



characterization that involve several diverse aspectgstéms, ranging from size
to computational memory resources to computing time. @ifirst one specific
example: being in a department where Markov decision peaseand their vari-
ants permeate the air, | have found that students react vidkbnsd eyes—and a
renewed respect for Computation Theory—to Rabin’s clasgiaper on proba-
bilistic automatal[19].

3.1.2 Encoding

Arguably the most fundamental results in Computability dilyeand Complex-
ity Theory depend on the ability to encode one computatipnathlemA as an-
other computational probler, in a way that yields a solution to (an instance
of) A from a solution to (the corresponding instance Bf)Within Computabil-
ity Theory, one demands that this encoding (calledductior) be supplied via a
program that translates each instance of probfeto an instance of probler;
this guarantees the computability of the encoding. Withim@lexity Theory, the
translating program must kegficient, with the notion of #iciency depending on
the notion of computational complexity being studied. Aerewmore basic use of
encodings is found in Turing’s original study of inheremhitiations of any “rea-
sonabled digital computing system [26]. Turing’s work closely foled Godel’s
seminal work [[5], which demonstrates the inability of angdsonable” logical
system to capture through proof all true arithmetic factethBof theseours de
force use encodings to demonstrate rigorously the stark disgsst of two no-
tions that were intimately entwined in our imaginationsitftrand theoremhood
for Godel, functions and programs for Turing). Importarfity the viewpoint
espoused here, the encodings in both Gédel's and Turing’g @ based on
the relatively simple mathematics underlying the follogvnesults of Cantor]1].
(1) There exist one-to-one associations (based on conignadly simplepair-
ing function$ between the positive integers and the rationals. (2) Tharebe
no one-to-one association between the rationals and the Nnile not central
to Cantor’s set-theoretic theme, pairing functions can $eduo show that sim-
ple integer arithmetic (addition and multiplication)fSces toencodeelaborate
finite structures—e.qg., finite graphs, arithmetic exp@ss, strings of integers—
as single integers. Also relevant to the viewpoint espolmszd, even the orig-
inal, unembellished notion of pairing function has meathew on that retains
juice to this day; cf.[[2R]! Such encodability was crucial@del and Turing,
for it showed that, quite remarkably, even primitive forrsgstems can encode
self-referentialsentences—consider the sentence, “This sentence is falags,
integers in a logical sentence could be encodings of seesemteger inputs to a

3Reasonableness here and with Godel’s work essentiallyygies systems that have answers
“wired in.”



program could be encodings of programs! Turing’s encodiray® evolved into
the mapping-reductions of Computability Theory and thesaurce-bounded ana-
logues in Complexity Theory. An amazing concomitant of igahns is that there
sometimes exists a single problem within a class of problgmatis a “hardest”
one, in the sense that every problem in the class reduceghe italting Problem
for Turing Machines is complete for the class of “semi-dabié” problems[[26];
the Satisfiability Problem is complete for the cl&8 of languages decidable in
nondeterministic polynomial timé&][2].

3.1.3 Nondeterminism

Nondeterminisnis a mathematical fiction that allows a state-transitioriesysto
“hedge its bets” by transitioning to several parallel, mmmenunicating universes
at each step. Real systems are typically, but not univgrsidterministic (asyn-
chrony can engender nondeterministic behavior), for thikée only known av-
enue to verifiable correctness arfti@ency. Since nondeterminism seems, thus,
to have only undesirable properties, it came as a surprigmnwbndeterminism
was shown in the 1950s to leaddamaticallysimplified algorithms for generat-
ing regular expressions from Finite Automatal[18, 20]. Tdusprise became an
intellectual supernova in the early 1970s with the discpwdMNP-Completeness
and its attendar®-vs.-NP problem [2]13]. Nondeterminism was therein exposed
as afundamentatomputational notion that explains the apparent intraktyabf
many important computational problems. Subsequent sudie the early en-
cyclopedic review of([4]) have exposed myriad problems,rigaa ranging from
constraint satisfaction to structure mapping to schedwimd beyond, that would
admit simple, computationallyfiécient—indeed, oftetinear time—solutions on
a truly nondeterministic computing platform but that, testtlay, defy #icient—
indeed,subexponential time-solution on any known deterministic platform. In-
terestingly, the benefits of nondeterminism can be expiaidaut not explained
away!—easily and have been known for decades. Nondetesmiim an “algo-
rithm” (of course, nondeterministic “algorithms” are nettly algorithms, as they
cannot be executed directly on any real computing platf@ssgntially abbrevi-
ate a possibly lengthy, arduous search that is part of anitigon The step-by-
step search appears explicitly in the “algorithm,” as a sapgorithmic dficient
primitive of the form“Search for x,” but it is usually woven intricately into an
algorithm. The existence @ompleteproblems that admitf&cient “algorithms”
means that a speedy algorithm for any of myriad importamaatéble problems
will automatically provide speedy algorithms for all prebis in the class.



3.2 A Specific “Big-ldeas” Course

| am currently working on an undergraduate Computation Theext [23] that
builds upon the three “pillars” of thepreceding sectiom, &i(big) chapter devoted
to each. This text will follow the approach of a course on t@d that | have
been developing and teaching for decades, at severaltnstis: chronologically,
Polytechnic Institute of Brooklyn, New York University, Re University, and the
University of Massachusetts. Talble 1 depicts the orgapizatf both the text and
the course that are advocated here.

Topicg/Pillars — || State Encoding Nondeterminism
!
Finite Automata || Myhill-Nerode Theorem Kleene-Myhill Thm

and Applications:
Proofs of nonregularity
State minimization
Probabilistic FA[19]

Computability Model independence | Limited model
independence
Mapping-reductions | Resource-bounded

reductions

Mapping completeness Resource-bounded
completeness
Rice-Myhill Theorem

Complexity Memory-bounds Cook-Levin Thm
for languaged[10]
Online Turing Savitch’'s Thm[[24]
Machines|[7]

Table 1:The matrix organization of the proposed course, with seliktbpics and
major foci highlighted.

Within the organization depicted in the table, | develop ixdiments of the
three interrelated, yet distinct, theoriesfohite Automata(FA), Computability
andComplexity

Finite Automata Theory. | develop FA Theory up to and including the
Myhill-Nerode Theorem upon the State “pillar,” followingat classical result
with many applications, ranging from the state-minimiaatalgorithm for finite-
state machines (which attracts the EE students), the miyutd many proba-
bilistic automata languagé€s |19] (which attracts the mauttecision types), time-
restricted online Turing Machines![7] (which attracts ttetadbase-oriented stu-
dents), and memory bounds for nonregular languages [10kkwhhave found
appeals to the theoretically-inclined students). The rothigy” theorem of FA



Theory, the Kleene-Myhill Theorem (“Regular Expressiorfiebrem) [12], is
developed upon the Nondeterminism “pillar,” since | woutdwge that the topic
would not likely have become algorithmically accessibléhaut sources such as
[18,20], which exploit nondeterminism to derive the result

Computability Theory . | cleave to thenodel-independent mannef [21] in
building Computability Theory firmly on the Encoding pilJérom the underlying
notions of (non)encodability [of one system as another] adicibility [of one
computational problem to another]; this development cnétes in the notion of
completenes$erhaps the most exciting source of (mapping-)completelpms
within Computability theory is the Rice-Myhill-Shapiro €arem (cf.[[21L]) which,
informally, demonstrates the impossibility of algorithually deciding any prop-
erty of the dynamic behavior of a program from the progrart@sis description.
Central to my presentation is the emphasis of the evolutfeenooding related
concepts from Cantor to Godel to Turing, and beyond.

Complexity Theory. Within the preceding framework, it is natural to develop
Complexity Theory as a (computational) resource-boundeension of Com-
putability theory. This view of Complexity Theory would nbe supported by
many of its practitioners, but | feel that it is a useful pealgigal ploy because of
its allowing the students to see the notion of encoding evimha natural progres-
sion from Cantor’s pairing functions, through mappinguetibns, to resource-
bounded reductions, and to see a similar evolution in thenof diagonalization.
The central result of modern Complexity Theory, Cook’s Tieao 2], and the at-
tendantP-vs..NP problem, is developed upon the Nondeterminism pillar, with
lavish invocation of earlier-treated results aboufi¢eent) mapping-reducibility
and its attendant notion of completeness. The algorithomsequences of thHe
vs.\NP problem emerge in a very natural way, as one recognizes temngaism
as a high-level search primitive.

4 Summation

Of course, | have no “hard” evidence of the success of my fthes” approach
to Computation Theory. (To be truthful, I have little faitihthe kinds of evidence
that are the stock in trade of schools of Education, at |eette U.S.) However,
I do have considerable subjective, anecdotal evidencettagiroposed approach
does succeed with the “typical” computer science studerh bndergraduate and
graduate. Specifically, in none of the institutions wheraventaught a version of
the proposed course were my classes even moderately peguwléth aspiring
theoretical computer scientists. As the course has evdhead a more-or-less
standard treatment of the material (in the late 1960s) tdhigeideas” approach
described here, | have increasingly found the studentstaidbout underlying



theoretical concepts when describing their own researcly. pMasure at such
moments was immense.

Acknowledgments | have benefited from discussions with and criticisms from
colleagues and students too numerous to list. Special shémkugh, are due Oded
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