Assessing the Computational Benefits of AREA-Oriented DAGscheduling

Gennaro Cordasco, Rosario De Chiara Arnold L. Rosenberg
Universita degli Studi Salerno, Italy Colorado State University, USA
Email: {cor dasco, dechi ara}@li a. uni sa.it Email: r snbrg@s. umass. edu

Abstract—Many modern computational platforms, including by executing an inpubAG so as to render task=LIGIBLE
“aggressive” multicore architectures, proposed exascalarchi- for execution as fast as possible (cf. [5], [7], [10], [23],
tectures, and many modalities of Internet-based computing [24], [27], [28]). Dual intuition motivatesC-scheduling

are “task hungry’—their performance is enhanced by always
having as many tasks eligible for allocation to processorssa (1) Schedules that produceLiGIBLE tasks/nodes more

possible. ThelC-scheduling paradigm for computations with ~ quickly may prevent a computation’s stalling pending the
inter-task dependencies—modeled asAcs—was developed to return of already allocated tasks. (2) If the server re-
address the *hunger” of such platforms, by executing an ceives many requests for tasks at (roughly) the same
input DAG SO as lo render tasks eligible for execution as ime then having mor&LIGIBLE tasks available allows it

fast as possible. The fact that manybAGs do not admit ¢ tisf ts. thereby i o el
schedules that are optimal under IC-scheduling spawned the 0 sauisly more requests, thereby Increasing “parafielism

development of a new paradigm—AREA-Oriented scheduling The fact that manybDAGS do not admit schedules that
(AO-scheduling)—that coincides with optimal IC-schedulng are optimal under IC-scheduling [24] spawned the devel-
on DAGs that admit IC-optimal schedules but that allows opment of a new paradigmAREA-Oriented scheduling
optimal AO-scheduling of all bAGs. AO-scheduling achieves (AO-scheduling). Optimal AO-schedules—callkREA-max

its universal applicability by weakening the often-unachevable
demand of IC-scheduling that the number of eligible tasks be SCh_edU|8$or reasons explained in SeCt'c_m ll—coincide with
maximized at every step when executing aDAG to the always- Optlmal IC-schedules omAGs that admit such SChedUleS;
achievable demand that this number be maximizean average. but, AO-scheduling allows one to develop an AREA-max
The computational complexity of optimal AO-schedulingis mt schedulefor every baG. AO-scheduling achieves its uni-
yet known; therefore, this goal is replaced here by a multi-pase |,ogq optimizability by weakening the often-unachieeabl

heuristic that produces optimal AO-schedules for series-arallel :
bAGs but possibly suboptimal schedules for generabaGs. demand of IC-scheduling that the numbeEafGIBLE tasks

As with IC-scheduling, it is not clear a priori that AO- be maximized aeverystep when executing BAG to the
scheduling enhances the efficiency of executing aAG by always-achievable demand that this number be maximized
minimizing the makespan of its execution. This paper emplay on averageThe foundations of AO-scheduling are presented
simulation experiments to assess the computational beneit for generalpacs in [8] and for series-parallel DAGS in

of AO-scheduling in a variety of scenarios and on a range 9. Seri lleb | tral role in thread-b d
of DAGS whose structure is reminiscent of ones encountered [9]. Series-parallebAGs play a central role in thread-base

in scientific computing. The experiments pit AO-scheduling ~Parallel programming, as iGilk [2], [3]; they are significant

against a variety of heuristics that range from lightweightones in AO-scheduling because of the ease of finding AREA-
such as FIFO scheduling to computationally more intensive max schedules for them [9]—which leads to an efficient
ones that mimic IC-scheduling’slocal decisions. The observed o\ ristic for general AO-scheduling. The need for such

results indicate that, statistically, AO-scheduling doesnhance L . -
the efficiency of task-hungry platforms, by amounts that vay & heuristic resides in results from [8] that suggest that

according to the availability patterns of processors and te developing AREA-max schedules for generGs may

structure of the DAG being executed. be computationally intractable. We respond to this possibl
Keywords-Scheduling DAGs; Scheduling for: task-hungry ~ intractability in Section I1l-B with a multi-phase heuiist
platforms, multicore architectures, exascale architecttes that produces AREA-max schedules for series-paraiiels
but possibly suboptimal AO-schedules for genewabs. The
|. INTRODUCTION heuristic finds an AO-schedule formG ¢ by:

Many modern computational platforms, including “ag-
gressive” multicore architectures (cf. [29]), proposed ex
ascale architectures (cf. [12]), and many modalities of
Internet-based computing (cf. [15], [19], [20], [27]), are
“task hungry”—their performance is enhanced by always
having as many tasks eligible for allocation to processsers a
possible. The server-cliet€-schedulingparadigm for com- As with IC-scheduling, it is not cleaa priori that AO-
putations with inter-task dependencies—modeledsss— scheduling enhances the efficiency of executingas by
was developed to address the “hunger” of such platformaninimizing the makespan of its execution. The enhancement

1) using an algorithm such as those proposed in [13],
[18], [25] to convertG to a series-parallabac G'.

2) developing an AO-schedule f@f by “filtering” the
optimal AO-schedule fog’ produced by the efficient
algorithm of [9].

of efficiency via IC-schedulingis verified experimentally
in [6], [16], [22] for many families ofDAGS, including a
broad range of randomly generatedGs that admit IC-
optimal schedules. But, as we have noted, mangs do

hence, every source ¢f is ELIGIBLE at the beginning of an
execution. The goal is to render all fs targetseELIGIBLE.

Informally, ascheduleX for G is a rule for selecting which
ELIGIBLE node to execute at each step of an executiof;of

not admit IC-optimal schedules—which fact motivates theformally, 3 is atopological sortof G, i.e., a linearization of
current study. The current paper employs a methodologyg under which all arcs point from left to right (cf. [11]). We
similar to that of [16] in order to assess the potentialdo not allow recomputation of nodes/tasks, so a node loses
computational benefits of AO-scheduling. We model a “task-ts ELIGIBLE status once it is executed. In compensation,
hungry” computational platform as a stream of task-seekingfter v € V; has been executed, there may be new nodes
clients that arrive according to a random process. We focuthat are renderedLIGIBLE; this occurs when is their last

on two random populations @AGS.

1) We study AREA-max schedules for randomly con-

structed series-parall@AGs. SuchDAGs arise, e.g.,
via transformation from thedAaGs of the preceding
paragraph; cf. [13], [18], [25]

2)
phase heuristic fopAGs that are random compositions
of small “building-block” DAGs. (We thereby focus
only on efficiently constructedAO-schedules.) The

DAGS we schedule model computations each of whose

subcomputations has the structureaofexpansiorfas

in a search treeh reduction(as in an accumulation),
a parallel-prefix (a/k/a scarj, an all-to-all communi-
cation (as in a “gossip”). It is shown in [6] how com-
positions of suchbAGs represent computations such

as divide-and-conquer algorithms (e.g., mergesort ot

numerical integration), matrix multiplication, the Fast-
Fourier Transform, the Discrete Laplace Transform
and LU-decomposition. Thus, the resultingGs are

reminiscent of ones that arise in scientific computing.

We simulate executing each generateds on our platform
model: @) using an AO-schedule and)(using a variety of

scheduling heuristics that range from lightweight common
heuristics such as FIFO scheduling to computationally more

intensive ones that mimic IC-schedulindéxal decisions.

The results we observe indicate that, statistically, AO-
schedulingdoes significantly enhance the efficiency of task-

hungry platforms by amounts that vary according to the

availability patterns of processors and the structure ef th

DAG being executed.

Il. BACKGROUND
A. Basic notions

We study computations that are describeddbys. Each
DAG G has a se¥/; of nodes each representingtask and
a setAg of (directed)arcs each representing an intertask
dependency. For ara: — v) € Ag:
e taskw cannot be executed until tagkis;

e u is aparentof v, andv is achild of w in G.
The number of children of; is its outdegree A parentless

node is asource a childless node is t&arget G is connected

We study the AO-schedules produced by our multi-

parent to be executed.
We henceforth refer ttasksrather thamodes to empha-
size the computational aspect of our study.

B. Series-parallebAaGs (SPDPAGS)

A (2-terminal) series-parallebac G (SPDAG, for short)
is produced via the following operations (cf. Fig. 1):

t=t=t

o & o
Parallel composition 59

s =s8=5s"

N J/

Figure 1. Compositions of SPAGS.

1) Create a basic SPAG G, that has:

a) two nodes, aources and atargett, which are
jointly G’s terminals
b) one arc(s — t), directed froms to ¢.

2) Compose SPDAGS, G’ with terminalss’, t’, andG”,
with terminalss”, ¢':

a) Parallel composition: Form G = G’ { G” by
identifying/mergings’ with s” to form a new
sources andt’ with ¢” to form a new target.

b) Series composition: Form G = (G’ — G") by
identifying/mergingt’ with s”. G has the single
sources’ and the single target’.

C. Quality metrics

We measure the quality of a schedulefor DAG G via
the rate at whictt renders nodes @ ELIGIBLE: the faster,
the better. To this end, we defide;(¢), the quality ofY at
stept, as the number of nodes ¢fthat areELIGIBLE after
¥ has executed nodes (¢ € [1, Ng]).

The goal of IC-schedulings to executej’s nodes in an

if it is so when one ignores arc orientations. When oneorder that maximize&s () at every steg € [1, Ng] of the

executes @AG G, a nodev € Vy; becomes=LIGIBLE (for

execution) only after all of its parents have been executed; 1[a, b] denotes the set of integefs, a + 1,...,b}; Ng = [Vgl.

execution A scheduleX* that achieves this demanding goal R G)

is IC-optimal; formally,

(Vt € [1,Ng]) Es-(t) =

A Parallel composition
P> Series composition
© Single-arc DAG

{Ex(t)}
The goal of AO-schedulings to maximize theAREA of
a schedul& for G, whereAREA(Y), is the sum

def

AREA(Y) ¥ Ex(0) + Ex(1) +--- + Ex(Ng).

max
3 a schedule foG

The normalized AREAE(Y) £ AREA(Y) + Ng, is |_
the averagenumber of nodes that areLIGIBLE when X
execute@_2 The goal of AO-scheduIing is, thus, to find an Figure 2. An example of the series-parallel decompositiba 8PDAG.
AREA-max schedul®er g, i.e., a schedul&* such that

AREA(Z) = max AREA(X). B. Toward Efficient AO-Scheduling for GeneraiGs

Easily (see [24]), manypaGs with simple structures, We exploit two algorithmic sources to devise an efficient
including manytree-DAGS® and SPDAGs do not admit IC- (specifically, time©(n?)) four-phase AO-scheduling heuris-
optimal schedules. Hence, even these well-structured-famfic for generaln-nodebAGs. Given ann-nodeDAG §:

lies benefit from the more inclusive goal of AO-scheduling.Phase 1: Find G’s transitive skeletorg’.
This phase, which removes all shortcut arcs frgmeduces

Ill. FINDING GOOD AO-SCHEDULESEFFICIENTLY the overall complexity of finding the AO-schedule. Formally
A. The Complexity of AREA-Maximization G’ is a smallest sulpAG of G that shareg's node-set and
transitive closure. Easilyj andG’ share all of their AREA-

It is shown in [8] that, for everypAG G: . .
. (8l PAG G max schedules, because removing shortcuts does not impact
o G admits an AREA-max schedule. any node’s dependencies.

o« If G admi_ts an IC-optimal sch_edule, then every such,, - ». Convertg’ to an SPPAG o(G') (SP-izeG).
schedule is AREA-max, and vice-versa. We invoke anSP-ization algorithm—i.e., an algorithm that

This good news is tempered by a demonstrated close relapnverts an arbitrarpac to an SPpAG—that:
tionship between the problem of producing an AREA-max
schedule for @AG G and theMaximum Linear Arrangement
(MLA) Problem forG [26]. This relationship makes it likely
that the general problem of producing AREA-max schedules
is computationally intractable. Fortunately, efficientclsu
algorithms exist for two important classes mAGs.

Lemma 3.1 ([8]): One can find an AREA-max schedule o) N
for any n-nodemonotonic treepac? G in time O(n log n). Nlo.te thato (G") WI|.| generally contain addmonql “synchro-

The algorithm of Lemma 3.1 adapts an algorithm fromNizing” nodes, which are not nodes 6f. See Fig. 3.
[1] that optimally solves the MLA Problem for monotonic ~ One finds SP-ization algorithms that fit our requirements

« maintains ino(G’') all of the internode dependencies
inherent inG’;

o (approximately) retains the degree of parallelism in-
herent inG’ (this precludes, e.g., having(G’) simply
linearizeG’);

« operates within timed(n?).

treeDAGS. in sources such as [13], [18], [25]. For convenience, we use
Lemma 3.2 ([9]): One can find an AREA-max schedule the second, more efficient, SP-ization algorithm from [13] i
for any n-node SPRAG G in time O(n?). our experiments. It remains a topic of research to find an SP-
In brief, the algorithm of Lemma 3.2 exploigs series- ization algorithm that is best suited for our AO-scheduling
parallel structure in the following way. heuristic.

. 1 !/
« It decompose% (using an algorithm such as the SP- C\;\as_e 3‘kF'nﬂ anlAR_Er,]A-ma;stchedufzfolr (9)'_ .
DAG-recognizing algorithm of [30]) to produce the tree e invoke the algorithm of Lemma 3.2. It remains a topic

T that exposeg’s series-parallel structure; cf. Fig. 2. ©F resezflr::h o see if a more efficient algotnhm exISts.
« It recursively unrollsT; from the leaves up, crafting Phase 4: “Filter” the AREA-max schedule” for o(g') to

an AREA-max schedule for each @f;’s nodepags. ~ °btain the AO-schedul® for G. , o
(Recall thatY’ is a linearization ofc(G').) “Filtering”

2The term ‘ared arises by formal analogy with Riemann sums as > removes the additional nodes added by the SP-ization
approximations to integrals. algorithm. For each additional node we assign the parents
SA treeDAG is aDAG that remains cycle-free when the orientation of ofuing apriority that equals the priority of in X/, 2 then
its arcs is ignored. . . SO
9 schedules equal-priority nodes@freedily, by theiryield—

4A tree-DAG is monotonicif all arcs either point away from a unique ! g
source or toward a unique target. the number ofELIGIBLE nodes their execution produces.

I 2) the AREAof each schedule.

Our interest in the schedules’ AREAs results from the
observed smaller makespans of our AO-schedules.

2) The DAGs that we executeWe generateDAGS ran-
domly from two populations.

Spisation Q) —Randomn-node SPRAGS.
wlo L —Randomn-node LEG®-DAGS (named for the toy). We
RO O begin, as in [24], with a repertoire d€onnected Bipar-

tite Building BlockbaGs (CBBBs, for short). We employ
various-size instances of six CBBB-structures, to represe
a variety of subcomputations of the final computatis.

o The leftmost twoDAGs in Fig. 4 exemplifyexpansive
subcomputations such as occur in a search tree.

o The third and fourthbAGcs from the left in Fig. 4

Figure 3. A sample SP-ization. Additional nodes have fuzagdérs. exemplify reductivesubcomputations such as occur in
an accumulation tree.

« The fifth DAG from the left in Fig. 4 exemplifies pieces

We llustrate the preceding heuristic on the LU- of subcomputations such as the parallel-prefix.
decompositiorbAG G of Fig. 3(a).G contains no shortcut « The sixthDAG from the left in Fig. 4 exemplifies the
arcs, soG’ = G. One possible SP-ization(G') of G’ basic building blocks of computatioDaGs such as
appears in Fig. 3(b); note the two additional nodesnd comparators, sorters, and the Fast Fourier Transform.
p. The algorithm of Lemma 3.2 produces the Area-max « The seventtbAG from the left in Fig. 4 exemplifies
schedule(a, b, f,c,d, e, 0,1, 3,9, h,p, 1, k,m,n) for o(G): the basic building blocks of computatimnGs such
note the node-numbering in Fig. 3(b). Finally, we obtain as total-exchange comparators and the Fast Fourier
an AO-scheduleX for G by simply removing nodes Transform.
and p from X’. We have found that the AO-schedules « The rightmosbAg in Fig. 4 exemplifies the basic build-
produced by our heuristic are more efficient if we allow ing blocks of computatiomAGs that perform pivoting
them latitude in executing the parents of additional nodes— operations. It is also a subaG of a largefunctional
which is why we introduce the just-mentioned priority Magnetic Resonance ImagimpG studied in [22].

scheme. In the current case, e.g., we produce the AOwe generate a random LEGBDAG by selecting a sequence
schedule(a, b, {c,d,e, f},i,{g,h,j},1,k,m,n) and man- of CBBBs, randomized according to both size and structure,
date that equal-priority nodes be executed greedily, byandcomposinghe CBBBs from left to right in the manner
yield; this greedy strategy schedules the detsl,e, f} and described in [24], which is depicted schematically in Fig. 5
{g.h,j} in the order(c, f,d,e) and (g, j, h), respectively. 3) The five competing schedulerhe scheduler against
By looking at theDAG G carefully, one can see that the \which all other schedulers are measured is our AO-scheduler
final schedule(a, b, ¢, f,d,e,i,g,j,h,l,k,m,n),is AREA- a0, This heuristic has two modes of operation.

maximizing. 1) When Ao is presented with @AG G that is known
IV. OUR EXPERIMENTS to be series-parallel (say, because the composition
tree 7 ¢ is provided), thenao uses the algorithm of

We now describe our experiments and their results.
P Lemma 3.2 to craft an AREA-max schedule @r

A. Experimental Design 2) Whenao is presented with @AG G that isnotknown
1) Overview: We randomly generateas from a pop- to be series-parallel (possibly becauSeis not an
ulation that shares structural characteristics with aetgri SPDAG), then A0 uses the multi-phase heuristic of

of “real” computationpAcs, especially those encountered Section IlI-B to craft an AO-schedule fdj.

in scientific computing. We craft five schedules for eachin either caseao schedules am-nodeDbAG in time O(n?)
generateddAG, one using the AO-scheduling heuristic of (using our current implementation).
Section I, and four using heuristics that represent aeanfg The heuristics that compete against differ in the data
sophistication and computational intensiveness. We coenpastructures that they use to store the curmeniGiBLE tasks
the five schedules using two metrics: of G. (The definitions and characteristics of the upcoming
1) the batched makespanf each schedule, which is data structures can be found in [11].)
obtained using a probabilistic model that specifies the « The FIFO (first-in, first-ou) scheduler organize§’s
arrival patterns of “hungry” clients and the execution currenteLIGIBLE nodes in a FIFO queue. It serves a
time of each allocated task; “hungry” client by dequeuing the node at the front of

VIV bdd VAL P] AT

Figure 4. A sequence of eight CBBBs. (All arcs point upward.)

the queue; it enqueues nodes that are newly rendered 4) The computational platform:The setup described
ELIGIBLE in random order.FIFO is, essentially, the thus far suffices for our AREA-measuring experiment. Our

scheduler used by systems such as Condor [4]. batched-makespan experiment, however, demands a model
Complexity Each dequeue or enqueue of a single nodef the computational platform in whicbhaGs will be exe-
takes timeO(1). cuted. We employ a server-centric model similar to that in

The LIFO (last-in, first-ou} scheduler organize§'’s [16], the IC-scheduling precursor to this paper. We model
currentELIGIBLE nodes in a stack. It serves a “hungry” the simulated execution of BAG G by scheduling heuris-
client by popping the node at the top of the stack; ittic® HEUR via a discrete time-ordered queue of “events.”
pushes nodes that are newly rendeeedGIBLE onto Each “event” is represented by the not-yet-execugsiue

the stack in random order. of G, together with the current set afLIGIBLE nodes,
Complexity Each push or pop of a single node takesorganized as mandated BEUR. The initial residue ofG
time O(1). is G itself; the initial set ofELIGIBLE nodes comprise§’s

The STATIC-GREEDY scheduler organizes nodes that sources. The transition from one “event” to its successor
are newly renderedLIGIBLE in a MAX-priority queue proceeds as follows

whose entries are (partially) ordered butdegree It
serves a “hungry” client by dequeuing the node at the
front of the queue. It enqueues nodes that are newly
renderecELIGIBLE in random order; the priority-queue
automatically arranges these nodes in decreasing order
of outdegree (with ties broken randomly).

Complexity Initializing the priority queue takes time 2)
O(n); each dequeue of a single node takes titi¢);

each enqueue of a single node takes titigog n).)
The DYNAMIC -GREEDY scheduler organizes nodes that

are newly renderedLIGIBLE in a structure that is
(partially) ordered by nodegyields (with ties broken
randomly). Theyield of an ELIGIBLE nodew at time

t is the number of nomLIGIBLE nodes that would

be renderedeLiGIBLE if v were executed at this (An easy modification of this model would allow for clients
step. DYNAMIC -GREEDY thus makes the samiecal that never execute their assigned tasks.)

decisions as does an optimal IC-scheduler (when one Our model for the computational platform is completed by
exists)—but it cannot match the IC-scheduler’s tie-Specifying two probability distributions, one that debes
breaking foresight. Because the yield of a node change€e arrival pattern of “hungry” clients, and one that desesi
step by step, the execution of a nodemay change the completion time of each task.

the yields of several nodes (specifically, all those thatClient arrivals At each time-step of a simulatedDAG-

1) The server polls the available “hungry” clients and
allocates oneeLIGIBLE task of G to some of these
clients. (Only some “hungry” clients get served be-
cause there may not be enoughiGIBLE nodes to
serve them all.) Once allocated, a task is no longer
ELIGIBLE.

Independently, and asynchronously, the served clients
execute their allocated tasks.

When a client completes (executing) its allocated task,
call it v, the server removesfrom the current residue
of G and adds the nodes that are rendered 1BLE by

v's completion to the set of curremLIGIBLE nodes,

in the manner mandated ByEUR.

share a child with:), we have implementebyNAMIC - execution, we generate a numlgnf “hungry” clients that
GREEDY by maintaining the currentlgLIGIBLE nodes are seeking tasks at stepVe choose, from an exponential
in alist of nodes with attached yield-scores distribution.

Complexity Initializing the list takes time)(n). Serv- Serving clients If e; nodes of G are ELIGIBLE at step
ing a “hungry” client takes timeO(n), using an ¢, then for each scheduling heuristfEUR, we select the
EXTRACT-MAX operation. After an outdegregtask current highest-priority/ = min(c;, e;) nodes to assign

v has completed, adding the resulting nemGIBLE to the “hungry” clients (UsingHEUR's priority measure).
tasks takes timé&(n): (a) We must potentially add all The server does not know which clients, if any, are more
d of v’s children to the list ofeLIGIBLE nodes; §) we powerful than others, so it treats all clients equally. Ries
must update the current yields of all nodes that sharelifferences in client power are modeled via the distributio
a child with v (which could beO(n) in number). This of task execution times.

means thatbYNAMIC -GREEDY and AO have propor-

tional worst-case computational complexities. SHEUR € {AO, FIFO, LIFO, STATIC-GREEDY, DYNAMIC -GREEDY}.

Figure 5. Composing six CBBBs into a LEGDDAG: (left) the CBBBs that compose theac; (right) the resulting LEG®-pDAG.

Task execution time§he execution timet, of an allocated in order to foster connections among CBBBs. We finally
task v is chosen randomly from a normal distribution. We merge/identify thek selected sources @f with a randomly
modelv’s execution by inserting into the timeline, at time chosenk of G,’s targets. The resulting LEG®-DAG is
current _ti me+t, the eventask-completiofv). Giy1. The final LEGA®-DAG, G, is achieved when the then-

When a task completion leaves an empty residue focurrentG; has the desired size. Fig. 5 illustrates the initial
G, the simulation ends; theurrent _ti nme is stored for and final steps of this process.

subsequent analysis. CBBB sizes We consider three different families of
LEGO®-pacs, that differ in the way the sizes of the

B. Experimental Methodology constituent CBBBs (the parameter) is chosen:

Client arrivals We choose the numbey of “hungry” clients « Uniform LEGC®-DAGs: the value ofmm is drawn ran-

at stept from exponential distributions with rate parameters domly from the sef2, 20];
A = 1,1/2,1/4,1/8,1/16,1/32. Because the expected « Exponential LEG®-DAGS: the value ofm is drawn

value of an exponential distribution with rate parametés from an exponential distribution with = 1/10 (so
just u = 1/X, our chosen values of provide, respectively, that CBBBs havel0 nodes on average);

1, 2, 4, 8, 16, and 32 clients per poll on average. « Harmonic LEGX®-DAGS: the value ofn is drawn from
Task execution timesdVe choose the execution time of an a harmonic distribution that generates CBBBs having
allocated task randomly from a normal distribution with average siz&0.

meanl. We have studied two distributions, one with standardexperimental procedures For both the makespan-
deviation 0.1 and one with standard deviation5. The comparison and AREA-comparison experiments, we
latter parameter, in particular, allows us to observe thexecute four sets ol5 DAGS each:5 DAGs of each size
performance of our heuristics on platforms having a rather, ~ 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000.
high level ofheterogeneity Each trial involvesl00 executions of eacbAG. The results
DAG sizes Our experiments simulate the executionbeiGs on like-sizedDAGS are averaged. We then use the means
that range in size fron200 nodes to4,000 nodes. We and variances of the schedulers’ performances (makespans
thereby observe the performance of our heuristicdaas or AREAS) for our comparisons and analyses.

that range from subcomputations to full computations. . . .

Generating randonDAGs having roughlyn nodes (The C. Experimental Results and Discussion

specifics of the random processes we use make it hard to 1) Makespan-comparisonThe experiment described in
specify the number of nodes exactly.) this section is intended to evaluate AO-scheduling in al*rea

e SPDAGS. We generate a random binary trée and setting, i.e., to do for AO-scheduling what the study in [16]
randomly designate each internal nodeZokither aseries- ~ does for optimal IC-scheduling.

composition noder a parallel-composition nodeWe then We have considered20 different test settings, each
view 7 as the composition treZ of ann-node SPRAG. setting characterized by the class mGs considered, the

e LEGO®-paGs. While the size of the currenbac is Scheduling heuristic analyzed, and the rate of arrivals of
smaller thann, we randomly choose afin < n)-node “hungry” clients. Each test setting is identified by a triple
instance of one of our six genres of CBBB. Inductively, (D, H,) where

after processing > 0 CBBBs, we have a LEG®-paG « D indicates the class @fAGs: D € {SPDAGSs, Uniform
G, that has, sayt targets. We next randomly select some LEGO®-paGs, Exponential LEG®-pAGs, Harmonic
0 < k < t sources ofH from a harmonic-like distribution; LEGO®-DAGS}.

specifically, the probability of selecting= ¢t —h+1 sources o H indicates the scheduling heuristidd € {Ao,
is proportional to1/h; we use a harmonic distribution DYNAMIC -GREEDY, STATIC-GREEDY, FIFO, LIFO}.

SP-DAGS, u=1 ! \Uniform LEGO DAGs, u=1
1,25 1,25
1,2 1,2
1,15 1,15

108 | A 105
' AN L '

|
=

Jinl

1 1t g it HE 1 TT
0,95 0,95
s [©Dynamic-Greedy OStatic-Greedy AFIFO LIFO | 0 [©Dynamic-Greedy DStatic-Greedy AFIFO XLIFO |
X T T T T . : . T | X . T T - T : T T 1
0 500 1000 1500 2000 2500 3.000 3500 4000 4500 o 500 1000 1500 2000 2500 3.000 3.500 4000 4500
13 13 -
2 |SP-DAGS, =2 | e |uniform LEGO DAGs, u=2]

1,15 I T ‘ll 1,15
i my oIl %

. T 5
1,05 fﬂ ‘Hjﬁ 1,05 n T Tl T
. L . moar o S
I
0,95 0,95
s O Dynamic-Greedy OlStatic-Greedy AFIFO LIFO | 0 [©Dynamic-Greedy DStatic-Greedy AFIFO XLIFO |
X T T T T . : . T | X T T T - T : T T 1
0 500 1000 1500 2000 2500 3.000 3500 4000 4500 o 500 1000 1500 2000 2500 3.000 3.500 4000 4500
13 4 13 -
e |SP-DAGS, =4 | e |Uniform LEGO DAGs, u=4]
12 T 12

, T T
1,15 L Tr‘& T[Hg

IB==

A ?_ JIl 1,15
3
11 11
’ it LI g
1,05 L TL L 1,05 T T %
X - . A o i
i R
0,95 0,95
0o & Dynamic-Greedy [IStatic-Greedy AFIFO XLIFO 0o [©Dynamic Greedy OStatic Greedy AFIFO XLIFO |
0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 o 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500
13 1,3 -
|SP-DAGS, =8| |Uniform LEGO DAGs, =8
1,25 + 1,25
1,2 T 1,2
1,15 T ‘Lﬁl(ﬁhf 1,15 i i I
. H T o J;E% f[{ . A I
. i EH?](ﬁ;# ! |
1,05 | +I + T (FI 1,05
i T g
1 T4 1 =
0,95 0,95
s [©Dynamic-Greedy OlStatic-Greedy AFIFO XLIFO s & Dynamic-Greedy OStatic-Greedy AFIFO XLIFO
0 500 1.000 1.500 2.000 2.500 3.000 3.500 4,000 4,500 0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500
13 13 -
|SP-DAGS, u=16 |Uniform LEGO DAGs, =16
1,25 1,25
12 12
1,15 1,15 Kl i \
11 T i} 11 4 m i] o
o (S 7 1R M # ﬂ#ﬁ «fﬂ'[o i
; 05 4
3 O R . .
l ll L T
0,95 0,95
s [©Dynamic-Greedy OStatic-Greedy AFIFO LIFO | s & Dynamic-Greedy OStatic-Greedy AFIFO XLIFO
0 500 1.000 1.500 2.000 2.500 3.000 3.500 4,000 4,500 0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500
13 13 -
SP-DAGS, u=32 Uniform LEGO DAGs, u=32
1,25 4 1,25
12 1,2
1,15
A bl
11 H Hy i m
1l Tl 1,05 (m
g B ot ¢
i T 1
0,95 0,95
0o [©DynamicGreedy OlStaticGreedy AFIFO XLIFO | 0o & Dynamic-Greedy DOStatic-Greedy AFIFO XLIFO
0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 o 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500

Figure 6. Timing-ratios forandom SPpAGs when the average number Figure 7. Timing-ratios fortUniform LEGOP-DAGs when the average
of “hungry” clients isp = 1, 2, 4, 8, 16, 32 (top to bottom). number of “hungry” clients i3t = 1, 2, 4, 8, 16, 32 (top to bottom).

« p indicates the mean number of “hungry” clients per e jllustrate the performance of heuristio, as com-
step:p € {1,2,4,8,16, 32} pared with its four competitors, via thiening-ratiosT'(H)+
For this experiment, the standard deviation of task-execut 7'(A0), where T'(H) denotes the simulation time ob-
time is fixed at0.1. For each test setting, we execute eachserved using scheduling heurisfit € {DYNAMIC -GREEDY,
DAG one hundred times, collecting the final simulation times.STATIC-GREEDY, FIFO, LIFO}. Note that larger values of

13 13

Exponential LEGO DAGSs, u=2 HarmonicLEGO DAGs, u:Z[

1,25 1,25
12 12
115 1,15
1,1 - 11 m -
1,05 i T T T T 1,05 bl 2 T a1l T -
X! D S S 1 . o it S
1 A L O Jits Ik i
0,95 0.95
[©DynamicGreedy Ostatic-Greedy AFFO XLIFO | [oDynamic-Greedy DOStatic-Greedy AFIFO X LIFO |
09 T T - 7 T 7 - g 09 : : ; - - 7 T]
0 500 1000 1500 2000 2500 3000 3500 4000 4.500 0 500 1000 1500 2000 2500 3.000 3.500 4000 4500
13 - 13 -
125 Exponential LEGO DAGS, u:S[125 \Harmonlc LEGO DAGs, u:S[
12 12 T
it
1,15 1,15
1 b i ot
n It .
11 o 11 5 M E
0
1,05 1,05
1 - 1
0,95 0,95
& Dynamic-Greedy [Static-Greedy AFIFO X LIFO [ODynamic-Greedy OStatic-Greedy AFIFO X LIFO
09 : 7 T T T - | 09 : : - - . - T |
o 500 1000 1500 2.000 2500 3000 3500 4000 4.500 0 500 1000 1500 2000 2500 3.000 3.500 4000 4.500

13 13

Exponential LEGO DAGs, 4=32 [HarmonicLEGO DAGs, u=32|

1,25 1,25
12 1.2
115 1,15
A|
11 [i 11 h— |
A 4 o 0 i i Tl B M
1,05 i 1,05 T ﬂ !
1 Sl i

0,95 0,95 - I I ‘
! & Dynamic-Greedy [1Static-Greedy AFIFO XLIFO) [ODynamic-Greedy OStatic-Greedy AFIFO X LIFO
09 : 7 T T T - | 09 : : - - T T T |

0 500 1000 1500 2.000 2500 3000 3500 4.000 4.500 0 500 1000 1500 2000 2500 3.000 3.500 4000 4.500

Figure 8. Timing-ratios folExponential LEGOsAGS when the average Figure 9. Timing-ratios foHarmonic LEGG®-bAGs when the average
number of “hungry” clients ig: = 2, 8, 32 (top to bottom). number of “hungry” clients ig: = 2, 8, 32 (top to bottom).

the ratio favor heuristicao. We present both means and makespan of a heuristic, as exposed in Figs. 6,
95% confidence intervals in Figs. 6, 7, 8 and 9. To enhance 7, 8 and 9, correlates strongly with the AREAs of
legibility, we present a separate plot for each value of both the heuristic’s schedules, as exposed in Fig. 12.
D and u. To conserve space, we present the results about In other words, we observed that schedules with
random SPeAGs andUniform LEGO®-paGs with all the higher AREAs completed executimgpGs with
values ofu analyzed, whereas the results abBxponential smaller makespans.

andHarmonicones are presented only far= 2, 4, 8, solely
to indicate that the three families of LEGODAGS exhibit on three factors: the value of, the size of theDAG

very .Si“.‘”j.f behavior; cf. Flr?f 76 8 9. _In_e(?_ch plot,hthe being executed and the family ohGs. Several cases (e.g.,
X-axis indicateDAG-size, while theY'-axis indicates the u = 8,16) show an improvement in the range B12% for
timing-ratios for the four heuristics that compete witb. LEGO®-DAGs and10-14% for SPDAGS. Recall thatao

Our first observation mirrors one from [16]: one observesa|ways provides am\REA-maxschedule for each SPAG
the benefits of AO-scheduling only for “intermediate” aaliv ,,t not necessarily for each LEGBDAG.

ratesp of “hungry” clients. This is not surprising. When

ﬁhen.ts . arr|_\|/|e very m_freqmlently, .e., whep ~ 1, agy DYNAMIC -GREEDY always outperforms the other competi-

eur.|st|c will require t!m_e close ta to execu_te am-node t4g by a considerable margin. This is not surprising bezaus
DAG; one observes this in the top plots of Figs. 6 and 7. Aty suic -GrREEDY dynamically makes the same local deci-
the other extreme, when clients “flood” the system, there i, as an IC-optimal schedule. In compensatipyAMIC -

EO much pl?La"e::ST thaht trf'e only _ha;]rd I|m:tat|on fany | GREEDY is much more demanding computationally than
euristic will be the length of @AG's inherently sequential o oiher heuristicssTATIC-GREEDY and FIFO perform

“critical path.” In both of these e_xtr.emes, makespan wilt no roughly equivalently much of the time, batrATIC-GREEDY

depend on the schedu_llng heuristic.) sometimes significantly outperformiFo; e.g., (LEGC®-
Between the preceding extrem_es, thoughz there is a rangegs, STATIC-GREEDY, 16) is much better than (LEG®-

of values ofu where the scheduling heuristic has a strondpags, FIFo, 16). LIFO is always the worst heuristic; for SP-

influence on makespan; in our trials, whén< < 32, pags, though, the three static heuristiGsIATIC-GREEDY,
Ao always completed executing tlaG in less (simulated) rro andiiro. do not differ substantially.

time than its competitors. Importantly, we observed that:

The amountof observed advantage in makespan depended

Comparing the competitors’ schedules, we observe that

The impact of client arrival-ratesWe have just noted that
Within a broad range of client arrivals, the average client arrival rate: influences the performance

SP-DAGs, n=1000 SP-DAGs, n=2000 ‘

++3+ Dynamic-Greedy

12 =2 Stati dy 12

= FIFO

== — LFO

11 e
e ™

o

1,05 / . \?‘

1
0,95 0,95
09 09
1 2 4 8 16 32 1 2 4 8 16 32

Figure 10. Timing-ratios for random SfaGs of different sizes. Clockwise
from the top-left: 1000 nodes,2000 nodes,3000 nodes,4000 nodes. The
X-axes indicate the average number of “hungry” clients ah ezl

13 1,3
LEGO DAGs, n=1000 ‘ ‘ LEGO DAGs, n=2000 ‘
1,25 1,25
/)‘\ «+E3+ Dynamic-Greedy
12 N 12 P St
/ -\ =/ Static-Greedy 7 N
115 /7O 15 aro 7‘%*—*
K 7B N NN AR
11 7 RIS T i : <
1,05 s /,’ = €=M § 1,05 /, B S... -
—alT _ =)
. 2 . = L
0,95 0,95
09 09
1 2 a4 ‘[8 16 32 1 2 a4 u 8 16 32
1,3 1,3
LEGO DAGs, n=4000 LEGO DAGs, n=3000
1,25 1,25
1,2 s 12 o
- ~ Ve ~
1,15 / - % 115 /\(gy %
1 Praatiiih S R LT N
. [e = - 7 <
- S R g i -
1,05 WL = 105 23 ®
— /fg{ =
| i 1 T
0,95 0,95
0,9 09
1 2 a4 8 16 32 1 2 a4 8 16 32
u u

Figure 11. Timing-ratios for random Uniform LEG®-DAGs of different
sizes. Clockwise from the top-lef:000 nodes,2000 nodes,3000 nodes,
4000 nodes. TheX-axes indicate the average number of “hungry” clients
at each poll.

of A0 relative to its competitors. In order to refine this
observation, with an eye toward better understanding how
influences the relative qualities of schedules, we provite,

Table |
THE AVERAGE PARALLELIZABILITY OF SPDAGS AND LEGO®-pAGS.

DAG-Size | DAG-size | normalized Critical
(nodes) (arcs) AREA Path Length
SPDAGS 1000 1219 70 150
2000 2429 75 328
3000 3666 106 411
4000 4920 181 445
LEGO-DAGS 1000 2885 76 58
2000 5644 132 74
3000 8332 189 92
4000 11114 255 119

average time-ratios when heuristics execogess having
four (approximate):1000 nodes,2000 nodes,3000 nodes
and 4000 nodes.

The most notable similarity in the plots is that all are uni-
modal: for small ratesao’s relative performance improves
with increasingyu; this trend continues to a unique peak,
after which its relative performance degrades with indreps
1. Moreover, the peak advantage ad is comparable for
DAGs of similar sizes, whether they be LEGG@DAGS or
SPDAGS. However, there are also notable differences in the
plots, particularly between LEG®-DAGs as a class and SP-
DAGS as a class. Specifically we observe the advantage of
peaking at a higher value gf for LEGO®-pAGS than for
SPDAGSs. Moreover, while the value ¢f that maximizes the
advantage oo for SPDAGs grows roughly linearly with
DAG-size (the maximizing values range frotnfor 1000-
nodeDAGSs to 8 for 4000-nodeDAGS), this does not appear
to happen with LEG®-pAGs (the maximizing values there
start at8, for 1000-nodeDAGS, and then jump ta6 for the
other threeDAG-sizes).

In an attempt to understand why our tveac families
react differently to the average client arrival rate, we ehav
analyzed certain characteristicsmfGs from these families.
Based on our analysis of the data in Table I, we conjecture
that the maximizing value of. depends on the inherent
degree of parallelism provided by thmG being executed.
Notably, the entries in the table show that tbaGs in
our two families provide quite different degrees of inheren
parallelism. Specifically, LEG®-pAGs have smaller critical
path lengths and a higher normalized AREAs thant3Rs.
(The observed difference would be even larger if we used
optimal AREA-oriented—i.e., AREA-max—schedules for
LEGO®-paGs rather than the often-suboptimal schedules
provided by heuristian0.) Basically, the values of normal-
ized AREA and critical path length show that LEG@bAGs
are more “parallelizable” than SPAGs.

Accommodating heterogeneity by allowing large variance

Figs. 10 and 11, plots that show the performance advantage task execution-timesA major motivation for the de-

of Ao (in terms of timing-ratios) as a function qf; the
values ofu appear logarithmically along th& -axes of the

velopment of IC-scheduling (cf. [27])—hence also of AO-
scheduling—was the observégimporal unpredictabilityof

plots. Both figures present four plots each, depicting thenany modern computing platforms, which precludes the

accurate use of classical, critical-path baged;-scheduling
strategies (cf. [21]). As noted in sources such as [19],,[27]
we seldom know literallynothing quantitative about the
computational platform; it is more that our knowledge is
very indefinite. A basic tenet of both IC-scheduling and AO-
scheduling is that one does not have to deal explicitly with
this uncertainty when scheduling mac—as long as one
enhances the rate of produciagiGIBLE tasks. We test this
tenet in our experiments by allowing great variability iska

max schedule foG; else, if G is presented via some
standard presentation oRGs, say as an adjacency list
(see [11]), themo uses the multi-phase procedure of
Section 1lI-B to provide a heuristic approximation to
an AREA-max schedule. The question: If we present
an SPbAG G to heuristicAo in two ways, via a series-
parallel decomposition tree and via an adjacency list,
how different will be the AREAs of the schedules for
G that A0 provides?

execution-times, specifically via the variance (or staddar we have attempted to answer these question via an experi-
deviation) in our model's distribution of these times. HOW yant that consider2o different test settings. each character-
important, though, is the size of the allowed variance? Thigzeq py the class of theacs considered and the scheduling

section seeks guidance on this question.

heuristic analyzed. For each test setting we execute each

Our primary model allows0% deviation in the average pag 100 times, collecting the schedule’s AREA value.
task execution-time: a mean time bfand a standard devia- Fig. 12 presents the mean recorded AREA values, as well

tion of 0.1. How would our results change if we allow&d%
deviation: mean time of and a standard deviation 6f5?

as the range&nin, max]. The figure presents one plot for
different-size instances of each of the families miGs

We have repeated all the experiments presented in earligfdicated in the figure caption; the sizes of thes-instances
sections with this new, larger standard deviation. Theltesu gppear along thel-axes.

are rather surprising. When we increase our model’s standar Reasits from Fig. 120f course, for SPAGS, the sched-

deviation from0.1 to 0.5—a truly significant change!—
the observed relative performance of heurigtiz is almost

ules provided by theo scheduler, being AREA-max always
have the largest AREAs. As hoped, for genarals, the

unchanged! Because the new results are so close to the oRg e a-superiority of schedules provided by the heuristic

we have presented, there would be no value in exhibitinge ists. This second observation suggests that the paced
new plots. We have analyzed the relationship between thg, section 111-B that defines theo heuristic works very well
average makespan obtained with the two standard deviations terms of AO-scheduling. This suggestion is reinforced by
in task execution-times$).1 and0.5, and have observed that he fact that difference between the AREAs of scheduled

these differences do not exceéd)5%. Consequently, we

provided by theao heuristic and those provided by the

can report that the quality of AO-schedules (as generateflompetitor heuristics grows more than linearly with theesiz
by heuristicAo) relative to the four competing heuristics ¢ the pac being scheduled.

is virtually unaffected by both heterogeneity and temporal Considering all of experimental results, as exposed in

unpredictability in “task-hungry” platforms.

Figs. 6, 7, 10, and 12, we provide three observations that

2) AREA-comparison:The results of our makespan- sypport our hypothesis théitere is a strong positive relation
oriented experiment suggest that AO-scheduling, as implegatween the AREA of a schedule and its makegptleast
mented by heuristiao, has a benign impact on computa- 45 simulated by our makespan experiment).

tional performance. This inference has led us to wonder:

o How much larger in AREA are the schedules produced
by heuristicao than the schedules produced by its four
heuristic competitors?

« How well do the observed differences in the makespan-
performance of the four competitors track the differ-
ences in the AREAs of schedules produced by these
heuristics?

This section is devoted to studying these questions via an
experiment that compares the AREAs of schedules produced
by heuristicao to the AREAs of schedules for the same
DAGS that are produced byo’s four competitor heuristics.

An additional question of interest is motivated by the heuri

tic A0’s dual nature; cf. Section IV-A3.

« By design, heuristiao operates differently depending
on how aDAG G is presented to it. IfG is pre-

« The schedules provided by all five heuristicas-and

its competitors—have the same relative ranking in the
makespan and AREA experimerits;, statistically,A0
outperforms DYNAMIC -GREEDY, which outperforms
STATIC-GREEDY, which outperforms-iFo, which out-
performsLIFO.

« When used on SPAGS, the schedules provided by

the STATIC-GREEDY, FIFO, and LIFO heuristics have
roughly the same AREA, as well as roughly the same
makespan.

The ratio between theoftima) AREAs of sched-
ules provided by thexo heuristic and the AREAs of
schedules provided by the four competitor heuristics is
roughly4 for SPDAGs and only roughly for LEGO®-
DAGS. This correlates positively with the relative im-
provements in makespan for the same familiesaafs.

sented via a series-parallel decomposition tree, thein the interest of full disclosure, we do not yet know
AO uses the algorithm from [9] to provide an AREA- if the observed differences between results for Bes

1200000

——A0

Random SP-DAGs

1000000 || **TF" Dynamic-Greedy

—/r Static-Greedy

|| =< -FIFO

=¥ -LFO /

800000

600000

400000

200000

R - L -"“"‘”'Ei'_' i
0 G
) 500 1000 1500 2000 2500 3000 3500 4000 4500

1200000

—8—AO0 B

Uniform LEGO-DAGs

1000000 || T+ Dynamic-Greedy

=/ Static-Gready

== FFO
800000

=4 LIFO

600000

400000

200000

o4
0 500 1000 1500 2000 2500 3000 3500 4000 4500

1200000

——A0

Exponential LEGO-DAGs

1000000 || **E* Dynamic-Greedy

=/ Static-Greedy

—% -FIFO
800000 -

—% -LIFO

600000

400000

200000

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Harmonic LEGO-DAGs

1200000

——A0

1000000 || -+ Dynamic-Greedy

— = Static-Greedy

— -FIFO
800000 -f|

=¥ -LIFO

-

=i
e ® =

600000

400000

200000

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 12. AREA comparison. From top to bottom: Random3es,
Uniform LEGO®-pAGs, Exponential LEG®-paGs, Harmonic LEG®-
DAGS.

and for LEGC®®-pDAGs areinherent due to the different
characteristics of sucbacs (cf. Table 1), or algorithmic,

due to a possible loss of quality introduced by the heusstic

of Section IlI-B.

V. CONCLUSION

Building on the novelAREA-oriented(AO) scheduling

structures are reminiscent of those encountered in real sci
entific computations. The hope is that the rate at which AO-
schedules produaeac-nodes that are eligible for allocation
to clients will make such schedules computationally advan-
tageous for modern “task-hungry” computational platforms
such as Internet-based platforms, aggressively mulg-cor
platforms, and exascale platforms.

Our assessment pitted our new efficient heurigta, for
producing AO-schedules against four common scheduling
heuristics that represent different points in the soptasitbn-
complexity space of schedulers. We have shown via simu-
lation experiments that

« The schedules produced 3y have AREAs that are
closer to optimalitythan are the schedules produced by
the four competing heuristics.

o The schedules produced by havelower makespans
than do the four competing heuristics, based on a
probabilistic model of the computational platform and
the DAG-executing process.

Importantly, our experiments suggest that there is a strong
positive relationship between the AREA ofbaG-schedule
and the schedule’s performance, as measured by its
makespan.

We view the new scheduling heuristiy, which operates
within time quadratic in the size of tlnG being scheduled
as an important advance because:

« The problem of finding truly AREA-maximizing sched-

ules is likely to be computationally intractable [8].

o AO represents the first efficient scheduling mechanism
that provably enhances the rate of producing allocation-
eligible nodes foreverycomputationbAG.

Finally our experiments have a high degreealfustness
The demonstrated computational benefits of AO-scheduling
persist even when the “task-hungry” platforms have a high
degree of heterogeneity and/or a high degree of temporal
unpredictability. (We model both of these scheduling chal-
lenges by allowing a large variance in task execution-times
within our probabilistic model.)

Where we are goingOur demonstration of the computa-
tional benefits of AO-scheduling reinforces the importance
of the two algorithmic questions raised in Section IlI-B.

« Does there exist an algorithm for crafting AREA-max
schedules for SBAGs that is more efficient than the
guadratic-time algorithm of Lemma 3.27?

o Does there exist an algorithm for SP-izing arbi-
trary DAGS whose use would improve the AREAs
and makespans of schedules provided by our AO-
scheduling heuristiao?

Additionally, the “success” of our experiments suggests
the desirability of assessing the value of AO-schedulirgg vi
experiments with real computations rather than simulated
artificial ones. We hope to follow this path in the not-didtan

paradigm of [8], we have assessed the quality of AO-,ire.

schedules for a variety of artificially generatedcs whose

AcknowledgementThe research of A. Rosenberg was [15] I. Foster and C. Kesselman [eds.] (2008e Grid: Blueprint
supported in part by NSF Grant CNS-0905399. The authors for a New Computing Infrastructure (2nd Editiorylorgan-
thank A. Gonzales-Escribano and his team for providing Kaufmann, San Francisco.
access to theipAG-SP-ization code. [16] R. Hall, A.L. Rosenberg, A. Venkataramani (2007): A com

parison ofbAG-scheduling strategies for Internet-based com-
puting. 21st IEEE Int'l Parallel and Distr. Processing Symp.

[1] D. Adolphson and T.C. Hu (1973): Optimal linear ordering (IPDPS'07)

SIAM J. Appl. Math. 25403-423.
PP > [17] L. He, Z. Han, H. Jin, L. Pan, S. Li (2000): DAG-based

[2] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson parallel real time task scheduling algorithm on a cluster.
K.H. Randall, Y. Zhou (1995): Cilk: An efficient multithread Int'l Conf. on Parallel and Distr. Processing Techniquesdan
runtime system5th ACM SIGPLAN Symp. on Principles and ~ APplications 437-443.

Practices of Parallel Programming (PPoPP’95)

REFERENCES

[18] S. Jayasena and S. Ganesh (2003): Conversion of NSP DAGs

[3] R.D. Blumofe and C.E. Leiserson (1998): Space-efficient to SP DAGs. MIT Course Notes 6.895.

scheduling of multithreaded computationSIAM J. Com-

put. 27 202-229 [19] D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models

and scheduling mechanisms for global computing applinatio

[4] Condor Project, Univ. of Wisconsin, http://www.cs.wiedu/ Intl Parallel and Distr. Processing Symp. (IPDPS'02)

condor. [20] E. Korpela, D. Werthimer, D. Anderson, J. Cobb and

. . M. Lebofsky (2000): SETI@home: massively distributed com-
[5] G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Adesic puting for SETI. InComputing in Science and Engineering

in IC-scheduling theory: scheduling expansive and redecti ;
dags and scheduling dags via dualitiEE Trans. Parallel (P.F. Dubois, Ed.) IEEE Computer Soc. Press.
and Distributed Systems [18607-1617. [21] Y.-K. Kwok and I. Ahmad (1999): Static scheduling algo-

) rithms for allocating directed task graphs to multiprocess
[6] G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Apply- ACM Computing Surveys 3206-471.
ing IC-scheduling theory to some familiar computatiovigk-
shp. on Large-Scale, Volatile Desktop Grids (PCGrid'07) [22] G. Malewicz, I. Foster, A.L. Rosenberg and M. Wilde (Zp0
A tool for prioritizing DAGMan jobs and its evaluatiod. Grid

[7] G. Cordasco, G. Malewicz, A.L. Rosenberg (2010): Extegd Computing 5 197-212.
IC-scheduling via the Sweep algorithr. Parallel and Dis-
tributed Computing 70201-211. [23] G. Malewicz and A.L. Rosenberg (2005): On batch-
scheduling dags for Internet-based computiridith Int'l
[8] G. Cordasco and A.L. Rosenberg (2009): On schedutings Conf. on Parallel Computing (EURO-PAR'05)n Lecture
to maximize area23rd IEEE Int'l Parallel and Distr. Process- Notes in Computer Science 3648pringer, Berlin, 262-271.

ing Symp. (IPDPS’09)
[24] G. Malewicz, A.L. Rosenberg and M. Yurkewych (2006)-To
[9] G. Cordasco and A.L. Rosenberg (2010): Area-maximizing ward a theory for scheduling dags in Internet-based comguiti

schedules for series-parallelags. 16th Int'l Conf. on Par- IEEE Trans. Comput. 55/57-768.
allel Computing (EURO-PAR’1QPart Il. In Lecture Notes in
Computer Science 6273pringer, Berlin, 380-392. [25] M. Mitchell (2004): Creating minimal vertex series phr
lel graphs from directed acyclic graph2004 Australasian
[10] G. Cordasco, A.L. Rosenberg, M. Sims (2008): On clusster Symp. on Information Visualisation 3%33-139.
tasks in IC-optimabAaGs. 37th Int’'| Conf. on Parallel Process-
ing (ICPP’08). [26] C.H. Papadimitriou and M. Yannakakis (1991): Optintiaa,
approximation, and complexity classds.Computer and Sys-
[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein @99 tem Scis. 43425-440.
Introduction to Algorithmg(2nd ed.). MIT Press, Cambridge,
MA. [27] A.L. Rosenberg (2004): On scheduling mesh-structaed-
putations for Internet-based computindEEE Trans. Com-
[12] J. Dongarra et al. (2010): International Exascale \@aife put. 53 1176-1186.

Project Roadmap. Tech. Rpt. UT-CS-10-652, Univ. Tennessee o
[28] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for
[13] A. Gonzalez-Escribano, A. van Gemund, V. Cardefioso- scheduling some common computation-dags for Internetebas
Payo (2002): Mapping unstructured applications into meste ~ computing.|[EEE Trans. Comput. 34428-438.

parallelism.High Performance Computing for Computational .
Science (VECPAR '02) [29] S. Tomov, J. Dongarra, M. Baboulin (2010): Towards @ens

linear algebra for hybrid GPU accelerated manycore systems

[14] A. Gonzalez-Escribano, A. van Gemund and V. Cardefios Parallel Computing 36 (5-6)232-240,

Payo (2009): Performance implications of synchronization . . .
structure in parallel programmingparallel Computing 35 (8- 301 J. Valdes, R.E. Tarjan and E.L. Lawler (1982): The regog
9), 455-474. tion of series-parallel digraphSIAM J. Comput. 11289-313.

