A Comparison of Dag-Scheduling Strategies for Internet-Baed Computing

Robert Hall, Arnold L. Rosenberg, Arun Venkataramani
{rwhal I , rsnbrg, arun}@s. unass. edu

Dept. of Computer Science, Univ. of Massachusetts Amhamsterst, MA 01003, USA

Abstract Recent papers [3, 11, 12, 13] identify a new goal when
scheduling computations consisting of multiple jobs with

A fundamental challenge in Internet computing (IC) is to ef- complex interdependencies for Internet-based computing
ficiently schedule computations having complex interjob de (IC). These sources develop the conceptual and algorithmic
pendencies, given the unpredictability of remote machines foundations ofC Schedulindor an idealized version of IC.
in availability and time of access. The recent IC Schedul- IC Scheduling attempts to schedule a complex computation
ing theory focuses on these sources of unpredictability byin a manner that always maximizes the number of jobs that
crafting schedules that maximize the number of executableare eligible for allocation to remote clients, seeking to:
jobs at every point in time. In this paper, we experimen- e utilize remote clients’ computational resources well,

tally investigate the key question: does IC Schedulinglyiel by always having work available for allocation;
significant positive benefits for real IC? To this end, we e lessen the likelihood that a computation will stall for
develop a realistic computation model to match jobs to lack of tasks that are eligible for execution.

client machines and conduct extensive simulations to com-ic Scheduling focuses on grids of committed clients (cf. the
pare IC-optimal schedules against popular, intuitivelyreo | 4c Computing Grid or the UK e-Science Grid), rather
pelling heuristics. Our results suggest that for a large than completely public ones (as in [8]). Thus, we assume
range of computation-dags, client availability patterasd that clients are trustworthy and that they may tarry but do
two quite different performance metrics, IC-optimal sched ot gisappear.
ules significantly outperform schedules produced by popu-jc scheduling theory optimally schedules a large variety of
lar heuristics, by as much as 10-20%. common computations, such as those in Fig. 1 (whose op-
timal schedules are derived in [4], using algorithms from
[3, 11]), as well as myriad less uniform ones. The theory
1. Introduction seeks a regimen for scheduling complex IC computations,
that has both a strong theoretical grounding and significant

Advances in technology have made collections of comput- Penéfit for real computations. This paper begins to investi-
ers that communicate across the Internet a viable compu9ate the theory’s benefits, via the following questions:
tational platform [5], even for solving individual computa ~ ® What are reasonable computational models within
tional problems [1, 2, 8]. Perhaps the major impediment which to evaluate the theory’s performance undeaan

to scheduling complex computations efficiently in this new priori unknown sequence of available client machines?
environment igemporal unpredictability e Does IC Scheduling theory have significant positive

« Communication is over the Internet, hence may expe- benefit over simpler scheduling heuristics within these

rience unpredictable delays. models?

e Remote computing clients may not be dedicated to per-We address these questions by comparing schedules man-
forming the work they receive remotely, hence may ex- dated by the theory against schedules based on popular
ecute that work at an unpredictable rate. heuristics, on randomly generated dags, using two new

quality metrics. Our study shares its motivation with [9]

V\PUt differs from that study in three major respects, thad lea

Jo our main contributions.

1. We test the IC-optimal schedulero, of [11] on hun-
dreds of random dags and many client availability pat-
1-4244-0910-1/07/$20.0@)2007 |EEE. terns; we generate only dags that are certain to admit

This uncertainty makes it difficult to accurately identifyte
ical paths in complex computations, hence demands a ne
scheduling paradigm that acknowledges the strengths an
weaknesses of the Internet as a computational medium.

Figure 1. Data-dependency dags for (left to right): matrix multigiton, the Fast Fourier Transform (FFT), a generic
wavefront computation, the discrete Laplace transformeagic divide-and-conquer computation.

IC-optimal schedules. In [9] a heuristic basedioco

is tested on four dags that arise in real computations;

2.1. A Quality Model for IC . When one executes a dag
G, anodev € Ng is ELIGIBLE (for execution) only after

this heuristic produces schedules for all dags. We feelall of its parents have been executed. We do not allow re-

that understanding the performance of the actaal

computation of nodes, so a node lose<EitsGIBLE status

scheduler is a necessary test for assessing its imporonce it is executed. In compensation, a noldeexecution

tance for real IC.
. We evaluateco against: enhanced versions of FIFO

may render new nodeBLIGIBLE, if v is their last parent
to be executed. Aschedulefor G is a rule for selecting

and LIFO schedulers; a greedy scheduler that employswhich ELIGIBLE node to execute at each step of an exe-

locally the scheduling criteria thato employsglob-
ally; the competitor in [9] is a FIFO scheduler inspired

by the one used in Condor [2].
. Our comparisons employ a new “area-maximizing”

metric that measures tlaweragerate of producing eli-
gible jobs, in addition to the “batched makespan” met-
ric of [10, 9].
Our results suggesfor a broad range of situations that
one might expect to encounter in IC, ICO achieves sig-
nificant performance improvements over its competi-
tors for a wide range of client availability patterns.

Note 1 We are comparingalgorithmic approaches to
scheduling not scheduling systems that must cope with,
e.g., faults, changes in the computational environmeat, et

Related work. The most closely related study is [9], as dis-
cussed above. The closest sources involving IC Schedulin

cution ofG. We measure the quality of an execution by the
number ofELIGIBLE nodes after each node-execution—the
more, the better. (Note thate measure time in an event-
driven manneras the number of nodes that have been ex-
ecuted up to that point.) Our goal is to execgte nodes

in an order that maximizes the production rate&bpfGIBLE
nodesat every step of the computatiorA schedule that
achieves this demanding goalli8-optimal. The signifi-
cance of IC optimality stems from the following facts. (1)
Schedules that produ@ 1GIBLE nodes more quickly may
reduce the chance of the “gridlock” that could occur when
no new jobs can be allocated pending the return of already
allocated ones. (2) If the IC Server receives a batch of re-
guests for jobs at (roughly) the same time, then having more
ELIGIBLE jobs available allows it to satisfy more requests,
thereby increasing “parallelism.”

% .2. A Framework for IC-Optimal Scheduling.

theory are: [12, 13], wherein the new scheduling paradigm Oneprioritizes dags as follows. For = 1,2, let the bipar-

is introduced and optimal schedules are computed for sev+;;a dagg;

eral uniform dags; [3, 11], whereico is developed; [10],

wherein our “batched makespan” quality metric is stud-
ied theoretically. Our study is motivated by the excit-
ing systems- and/or application-oriented studies of IC in
sources such as [1, 2, 5, 6, 7, 8, 14]. Traditional, critical-

path-based, scheduling is not relevant to our study because Fy, (z) + Es,(y) <

temporal unpredictability renders the notion of criticatip
fuzzy at best.

2. Foundations of IC-Scheduling Theory

The arcs of a dag connecparentnode to achild; sources
have no parentsinkshave no children.

haves; sources, and let it admit the IC-optimal
scheduleX;. Let Eyx,(z) denote the number of eligible
nodes after executing jobs using the schedulg;. If the
following inequalities hold:

(Vx € [0, s1]) (Vy € [0, s9]) :
Es, (min{sy,z 4+ y})+
Es,(max{0,2 +y — $1})

1)

thengG; has priority overG,, denotedj; > G-. Informally,
one never decreases IC quality by executing a sour¢g of
whenever possible.

Onecomposes dags as follows.

1[a, b] denotes the set of integefa, a + 1, ..., b}.

e Start with a sef3 of base “building block” dags (which
are CBBBS in [3, 11]).

e Compose dag§1, G2 € B—which could be the same
dag with nodes renamed to achieve disjointness—to
obtain a composite dag, as follows.

— Let G begin as thsum(or, disjoint union)G; +
G,, of the dag¥j;, Go. Rename nodes to ensure
that Vg is disjoint fromNg, andNg,.

— Select some sef; of sinks from the copy o/
in the sumg; + G, and an equal-size sét of
sources from the copy @, in the sum.

— Pairwise merge the nodes # andS; in some
way. The resulting set of nodesdgs node-set;
the induced set of arcs &s arc-sef

¢ Add the dagg thus obtained to the base g&t

We denote the composition operationfognd say thag is
composite of typ&y, 1} Ga).

G is ar>-linear compositiorof the CBBBsG, ..., G, if:
(a) G is composite of typ&;, 1 --- I G, (composition is
associative);{) G; > G; 41, foralli € [1,n — 1].

Theorem 1 ([11]) Let G be a r>-linear composition of
G1,...,G,, where eachy; admits an IC-optimal schedule
Y;. The schedul& for G that proceeds as follows is IC

optimal.

1. Fori=1,...,n,inturn, X executes the nodes Gf
that correspond to sources gf, in the order
mandated by;.

2. X finally executes all sinks ©f in any order.

3. The Four Competing Schedulers

3.1. The IC-Optimal SchedulerICO. One finds in [11] a
suite of algorithms that determine whether or not a gag
can be decomposed into a set of CBBBs satisfying Theo-
rem 1 and, if so, uses the theorem to derive an IC-optimal
schedule fog. These algorithms, collectively called sched-
ulerico, process; via the following steps.

1. Prune G to remove all shortcut arcs.

e An arca = (u — v) is ashortcutif there is a path
from v to v that does not use.
¢ The resulting “pruned” dag’ shares its IC-optimal
schedules witlg.

. Decompose G’ into CBBBs, G, ...,G,, such that
G’ is composite of type G1 1 - - - 1} Go.
e When such a “parsing” exists, it is unique and can

be found by iteratively greedily removing a maximal
CBBB of G’ all of whose sources are sourcegif

2CBBBis short forConnectedBipartite Building Block.
3An arc (u — v) isinducedif {u, v} C Ng.

3. Replace G’ by the super-dag G” whose nodes
are the CBBBs G, ...,G, and whose arcs form
a blueprint of the sequence of compositions that
created G'.

o Specifically, ifG’ was formed by identifying sources
of CBBB G, with sinks of CBBBG;, then there is an
arcing"” from supernod¢; to supernod¢;.

. Determine whether or not there is an -
linearization of G,,...,G, that is consistent with
the topological dependencies within G”.

e This determines if> is consistent with a topological
sort of G”.

. If all steps have succeeded, then output the
schedule for G mandated by Theorem 1.

3.2. The Competing Heuristic Schedulers

A. The FIFO heuristic initially enqueuesj’s sources into

a FIFO queue®, in nonincreasing order of outdegree
(maximum-outdegree nodes emerge first); nodes of equal
outdegree are enqueued randonfly0 dequeues) to ob-

tain a node for a requesting client. When a nodempletes
executionFIFO enqueues, in nonincreasing order of outde-
gree, those of’s children that are newl¢LIGIBLE; nodes

of equal outdegree are enqueued randomly.

B. The LIFO heuristic initially pushesG’s sources into a
(LIFO) stacksS, in nondecreasing order of outdegree; nodes
of equal outdegree are pushed randomlyz0 popsS to
obtain a node for a requesting client. When a nod®m-
pletes execution,.IFO pushes, in nondecreasing order of
outdegree, those af's children that are newlhELIGIBLE
execution; nodes of equal outdegree are pushed randomly.
C. The GREEDY heuristic initially insertsG’s sources, in
random order, into a MAX-Priority Queue. (The ultimate
order of nodes having distinct outdegrees is determined by
P’s queuing discipline.) GREEDY uses EXTRACT-MAX
on P to obtain a node for a requesting client. When a node
v completes executiolgREEDY inserts, randomly, those of
v's children that are newlgLIGIBLE.

4. The Experimental Setup

We use the following experimental setup to compare

againsfFIFo, LIFO, andGREEDY.
1. We generate a dag that is random within a class of

dags that admit IC-optimal schedules; cf. Section 4.1.

2. We execut&; using all four schedulers of Section 3.
SinceFIFO, LIFO, and GREEDY all involve a degree
of randomization, we invoke each fifty times on each
dag and use the means and variances of their “perfor-
mances” for our comparisons witbo.

. We compile the statistics that compare the “qualities”
of the executions of step 2. We employ two quality

metrics for our comparisons, which arise from quite Executing dagsico is deterministic, butiFo, LIFO, and
distinct intuitions. The first metric can be viewed as GREEDY all employ randomness. Therefore, we had heuris-
measuring the “average” IC quality of a schedule; the tics execute each generated dag fifty times and used means
second introduces a computational model and uses arand deviations from the results in our comparisons.
analogue of “time to completion” as its metric. Sec- 4.2. The Area-Maximization Experiment

tions 4.2 and 4.3 provide details. A. The area-maximization metric. IC optimality re-
wards a schedul® for maximizing the number ofLIGI-

BLE nodesat every stepvhile executing a dag. Thearea-
dnaximizatiormetric rewards: for maximizing theaverage

4.1. On Generating “Random” Dags Of course, the real
test for any scheduler is to deal with given dags of possibly

complex structures. However, since our goal is to assess th ,
number of nodes of that areELIGIBLE asg is executed.

value of IC optimality when it exists, we “cheat” by evalu- _ c ,
ating our competing schedulers on dags that are chosen vidVe term this average the “area” Bf because of the formal

random compositions from among dags that are guaranteeéfimalOgy with Riemann sums as approximate integrals.

(by results in [12, 13, 11]) to admit such schedules. Our | heplotof schedule is the(n + 1)-entry vectodI(X) =
selection process proceeds as follows. (Ex(0), Ex(1),..., Ex(n)). (We retain entrieg’s (0) =

1. We select a random target size for the dag we want tothe number of sources & a_ndEz(n) = 07flor com‘plete-
ness.) Thareaof schedul&is A(X) = > ", Ex(i). Of
generate (from a few hundred nodes to several thou- i ~ et i=0
sand). course, the normalized aré{x) = 1 A(X)isthe average
2. We choose a collection of CBBBs randomly from a number of nodes o that areELIGIBLE under spheduIE.
X) . . Notes (a) Some dags do not admit any IC-optimal schedule
repertoire that is defined and analyzed in [11]. . o
_ [11], but every dag admits an area-maximizing schedule.
3. We compose the selected CBB_BS in ways that are cho-(b) If a dag G admits an IC-optimal schedule, then every
sen randomly among compositions that are guaranteedsyea-maximizing schedule f@ is IC optimal, and every
(by Theorem 1) to preserve IC-optimal schedulability. |c-gptimal schedule fog is area-maximizing.

B. The area-maximization experiment. This experiment
q generates random dags in the manner described earlier. We
~ study each generated dggs follows.

A. Selecting CBBBs. Although we select CBBBs from
[11], our methodology applies easily to any CBBBs that a
mit IC-optimal schedules. The CBBBs we use are random-

size instantiations of those depicted in Fig. 2. 1. We computet(ico) directly, asg is generated.
B. Schedulability and >-priorities among the CBBBs 2. Foreach heuristiE, we executg fifty times and com-
are specified in [11]. pute the mean oE/(X), denotedE(X), and the stan-

C. Executing random composite dags. We generate dard deviation.

dags as follows.

Selecting random CBBBsWe guarantee that generated
dags admit IC-optimal schedules by constructing random
>-linearizable compositions of CBBBs. We target dags
that are likely to abstract real computations by combining
CBBBs as follows, inspired by the dags in Fig. 1.

1. Random W-dags, abstracting “expansive” dags, that
grow from sources to sinks.

We compare schedule¥sandy’ under this metric via the
quantityA(S,¥/) £ E(X) — E(X'). [E(1Ico) = E(1co)
by convention.] (Noten - A(X,Y’) is the L1 distance be-
tweenlI(X) andII(X’).) Asjust observed)(ico,X’) > 0.
4.3. The Batched-Makespan Experiment
A. The batched-makespan metric. This quality metric
compares schedulers using a “server-centric,” rather than
_) “client-centric,” model of IC. Théclient-centric” model—
2. Random M-dags, abstracting “reductive” dags, that \yhich is the one studied in [3, 11, 12, 13]—views the Server
shrink from sources to sinks. as being interrupted by the arrival of an available remote
3. Random W-dags, “followed by” N-dags, “followed client. In response, the Server allocatearcIBLE job to
by” M-dags, abstracting “fork-join” dags, that grow the client, if one exists; otherwise, the client “disapg&ar

from sources, then shrink toward sinks. (say, looking elsewhere for work). THserver-centric”
4. Random compositions 6, abstracting convolutional ~modet—a variant of the model in [10]—has remote clients
dags such as the FFT dag. arrive in groups at preassigned times—perhaps, but not nec-
essarily, periodically. At these times, the Server polls fo
Randomly composing CBBBsHaving assembled &- the presence of both clients aediGIBLE jobs. When a

linearizable selection of CBBBs, we composed them in a poll finds, say,; > 1 remote clients and > 1 ELIGIBLE
manner that is consistent with Theorem 1. All selections— jobs, the Server choosesin(r, ¢) ELIGIBLE jobs and allo-
of CBBBs, of partially constructed dags to compose, and of cates them, one per client, until either clients or jobs nuin o
sources and sinks to effect compositions—were random inAt this point, unserved clients “disappear” and unallodate
terms of both numbers and selected individuals. jobs are returned to theLIGIBLE pool.

VYA A X A

W-dags:

M-dags: N-dag: N Cycle-dags:

(1 3)’ (2) (1 3)’ (2 4) ¢,. C,

Figure 2. The CBBBs for our semi-uniform dags. Edges represent uparasi

The “server-centric” model suggests thatched-makespan 5. Experimental Results and Interpretation
metricfor a scheduleE when executing an-node dag;.
Given a pattern of arrivals of batched requestsy, . . .,
meaning that, for each r; clients arrive requesting jobs at
the Server’'sth poll, how many pollings does it take to exe-
cuteG? Letting E%(¢) denote the number @&LIGIBLE jobs

at theith polling, we seek the smallest integer such that
ap+ai+---+a, > n,whereay = min(rg, E%(1)), a1 =
min(ry, E%(2)), ..., @y = min(r,, E5(m)). Under this
model, the Server may have to allocate> 1 ELIGIBLE
jobs at once at some polling times. In contrast always
waits until it sees alF1co (t — 1) jobs that are&LIGIBLE af-
ter the execution of th& — 1)th job before selectingthgh A, Familiar dags. We instantiated the dags of Fig. 1 in
job to allocate to a remote client. This leads to the apparentseveral different sizes: 3-to-10-level FFT dags and 10-to-
anomaly:Under the batched-makespan metric, some sched-100-level mesh-like dags (to equalize the sizes of the &rge

ulers can conceivably outperform schedulep on some dags tested). The plots in Fig. 3 expose a number of mean-
dags. Thus, under this metriaco is actually a heuristic.

We justify using a heuristic by noting that optimizing even
a single step under this metric is NP-Complete [10]. ;

5.1 Area-Maximization Results We present both means
and 95% confidence intervals fak(ico,X), for ¥ €
{FIFO, LIFO, GREEDY}. (The intervals are often so tight
that they are indistinguishable from the means.) To be
conservative and perspicuous, we fitted curves of the form

v® (v is the size of the generated dag) to the con-
vex hull of the lower envelope of the observed data. Thus
fit, A(Ico, X) always grew superlinearly and often few
super-quadratically with dag size!

nnnnnnn

B. The batched-makespan experiment. This experiment o

generates random dags as described earlier and studies the o ;
execution of each dag as follows. We have the Server poll oo

for clients requesting work according to an externally spec
ified schedule. At each poll, the numbeof requests for
work is a random variable with values distributed exponen-
tially in the set[2,2!4]. (Thus, each polling is independent
of all others.) In common with [9], we assume that job exe-
cution times are distributed normally, with mehand stan-
dard deviatiord.1. The variability in the sizes of generated
dags, our range of values fpr and the assumed variability o
in job execution times combine to give us a picture of how

our four schedulers behave under a rather broad range of ...
situations.

250000

200000

nnnnnn

We execute each generated dafjfty times using each of § o
our four schedulers. (In contrast to the area-maximization
experiment, for this experimentco encounters random- e
ness also, due to the request-arrival ratg We end e
up with four batched execution timesvith 7'(X) (X €

{Ico, FIFO, LIFO, GREEDY} denoting the mean observed Figure 3. Area-maximization results for FFT
number of pollings required by schedulér For eachg, dags (top), reduction-meshes (middle), and evolving
we compareco against its three competitors via thease- meshes (bottom).

ratio T'(X) + T'(1co) (so larger ratios favoico).

A(1co, X)) grows superquadraticallwith dag size.

so that:

The average per-step gain #LIGIBLE jobs from
usingico rather than a heuristic grows superlinearly,
with dag size.

The fact that some coefficientsare very small suggests that
the indicated advantage may be discernible only for rather

900 10000 11000 12000

- large dags.
s o e Comparisons among the competitors.
- X e GREEDY consistently outperforms both other
i ool T heuristics—by a considerable margin on compo-
" sitions of W-dags. This suggests thakEEDY is the
mw best heuristic scheduler.
— = o e FIFO appears to beéhe weakest scheduler on composi-

tions of W-dags. Thisnayresult from our composition

regimen, which always places W-dags with smaller

- , outdegrees “on top of” ones with larger outdegrees,

5 which leadsriFo to execute potentially shallow sub-

. trees in the expansive regions of a dag, before deeper

ones. Thus, we cannot yet reliably assess the relative

quality of FIFO's schedules.

R e The sparseness of data regarding random compositions

of W-, N-, and M-dags weakens detailed inferences
from the observed values afandb. But, recall that
these values describe only lower envelopes.

e The heuristic schedulers perform almost identically on

- g dags built from cycles.

250000

200000

5
£ 100000 |

50000

nnnnnn

ooooooo

£ ao0000 |-

5.2. Batched-Makespan Results The difficulty of craft-
R ing perspiciou®-dimensional illustrations of our batched-
makespan results, led us to present data here for only two
Figure 4. Area-maximization results for random dags from each class that we studied, selecting dags whose
compositions of W-dags (top), M-dags (second), com- results are typical of those observed throughout the class.
bined W-, N-, and M-dags (third), and bipartite cycles The selected results compare the batched-makespan perfor-
(bottom). mance of each heuristi, as compared with that o€o,
by plotting the phase-ratid () +~ T'(1C0), represented via
means and 95% confidence intervals, as a function of the
client arrival rate p (plotted in a logarithmic scale along the
)) x-axes of the plots). Our results suggest an unexpected con-
ingful patterns. Most importantlyA(ICO, %) grows non- gistency between thetructural area-maximization metric
trivially with the size of the dag being scheduled. Specifi- 5,4 thebehavioralbatched-makespan metric—at least for
cally, excepting evolving meshes (and evolving trees), which,, important range of values pf Specifically, it appears
(almost) any strategy schedules well, we found that: that using schedules of higher IC quality has a benign ef-
fect on batched-makespan. If this observation is verified by
subsequent (planned) study, then this could greatly sfynpli
the scheduling problem for IC.
A. Familiar dags. The FFT-dag plots of Fig. 5 contain in-
stances in whicl'(GREEDY)+T'(1co) < 1, indicating that
GREEDY sometimes takes fewer phases to complete than
doesico, a situation described at the end of Section 4.3.1.
B. Random composite dags. The plots in Fig. 6 provide
insight into schedulers’ “random performance” under the
ComparingiCco against its competitors. batched-makespan metric. Notably, these results are quite

A(1co, X)) grows superlinearlyvith dag size.

so that:

The average per-step gain BLIGIBLE jobs from
usingico rather than a heuristic grows with dag size

B. Random composite dags. When perusing our plots in
Fig. 4, and the following observations, keep in mind that we
are discussingpwer boundn A(ico, ¥).

Batched Makespan for a FFT Dag with 448 vertices Batched Makespan for a FFT Dag with 1024 vertices

15 T T T T 15 T T T T
FIFO +—+—— FIFO +——
LIFO t--x-—a LIFO +--x--4
1.4 GREEDY :--%--- i 1.4 GREEDY :--%--= B]
o 13 _ B o 13} ! -
g [g i
5 1 T - < T Lo
g 12p | [4 8 12 | | R
@ - [& ! !
4] : 3 | 1
2 ! X -
] % : < 1
S \ 4 = auaf box i
- | R RENN
1% £ % ; ¥ X X X x 1% ¥ % = * % X 3
0.9 1 1 1 1 0.9 1 1 1 1
10 100 1000 10000 10 100 1000 10000
Mean arrival rate Mean arrival rate
Batched Makespan for a Reduction Mesh with 820 vertices Batched Makespan for a Reduction Mesh with 1225 vertices
15 T T T T 15 T T T T
FIFO +—+—— FIFO +——
LIFO t--x-—a LIFO +--x--4
1.4 GREEDY :--%--- i 1.4 GREEDY :--%--=]
o 13f B o 13 -
g : g
c | : c x
g 12 x f oo 4 8 12 Ty g
] A @ [
i) B |] Tox :
; ! 1
] A < %
s wuaf ¥ ; % ; 1 = 1wt ox . 1
1% } % | % ~
i ! -
1+ 1 % ok ox ox ox o 1+ = % % *ox o ox x4
0.9 1 1 1 1 0.9 1 1 1 1
10 100 1000 10000 10 100 1000 10000
Mean arrival rate Mean arrival rate
Batched Makespan for a Evolving Mesh with 820 vertices Batched Makespan for a Evolving Mesh with 1225 vertices
15 T T T T 15 T T T T
FIFO +—+—— FIFO +——
LIFO ---x-— LIFO --x--4
1.4 GREEDY :--%--- i 1.4 GREEDY :--%--=]
o 13 — o 13 -
< g
c c
g 12} H 1 & 12f 1
@ ' @
£ T4 ° T
S A g 1% 4 1
= 11t x 1 % B = 11t) 1
T % % ¥
% % X % %
1% % % % ¥k ox o ox ox o 1% * % > o4 ¥ ox ox x4
0.9 1 1 1 1 0.9 1 1 1 1
10 100 1000 10000 10 100 1000 10000
Mean arrival rate Mean arrival rate

Figure 5. Phase-ratios for two different FFT dags (top), reductiorsimes (middle), and evolving meshes (bottom).

consistent with those in [9], despite the differences in the pleted execution in 10-20% fewer phases than its competi-
two studies, as described earlier. The overall “shapedieft tors, over a range of values pf

plots in Figs. 5 and 6 are expected. For extreme values of
p, scheduling strategy has no impact on batched makespan , .
If requests are very sparse, then any scheduler will gmnerat6' Where We Are, and Where We're Going

enougheLIGIBLE jobs. If there is, effectively, an unlimited

supply of requests, then the batched makespan is really lim-Qur study supplements the evidence in [9] that IC-
ited only by the sequential depth of the dag, so any approx-Scheduling theory has significant postive implications for
imately breadth-first allocation of jobs should be rougtdy a |nternet computing. Our simulations have pitted the
good as any other. Itis only between these extremes that ongcheduler against three natural heuristics, on hundreds of
discerns significant differences among schedulers. The derandomly generated dags, using both the area-maximization
tailed placement and amplitude of the “humps” in the plots and batched-makespan quality metrics. The simulations in
depend on the structure of the dag being executed. Notably[9] pit an extension ofico against a verison ofIFO on
though, in no experiment did we notenzeanphase-ratio four real dags, using the batched-makespan metric. The
below1; i.e.: in all experiments, Ico at least matched consistency between our results and those in [9] strength-
the batched-makespan performance of the competing ens our confidence in the new theory. Of course, the ul-
heuristics. And, in many instances—cf. Fig. 6160 com- timate validation—or refutation—of the significance of IC

Scheduling theory will require experiments with real work- [14] X.-H. Sun and M. Wu (2003): GHS: A performance predic-
loads on real computing platforms. The integration of tion and node scheduling system for Grid computifig=E

G. Malewicz'sPRIo scheduling tool into the Condor DAG- Intl. Parallel and Distributed Processing Symp.

Man tool [2] (cf. [9]) may give us this opportunity. This pa-

per contributes one more step toward confirming the value

of such an endeavor.

References

[1] R. Buyya, D. Abramson, J. Giddy (2001): A case for econ-
omy Grid architecture for service oriented Grid computing.
10th Heterogeneous Computing Wkshp.

[2] Condor Project, University of Wisconsin.
http://wwmv. cs. w sc. edu/ condor

[3] G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Ad-
vances in IC-scheduling theory: scheduling expansive and
reductive dags and scheduling dags via dualiyEE
Trans. Parallel and Distributed Systents appear.

[4] G. Cordasco, G. Malewicz, A.L. Rosenberg (2007): Ap-
plying IC-scheduling theory to familiar classes of compu-
tations.Wkshp. on Large-Scale, Volatile Desktop Grids (PC-
Grid’07), to appear.

[5] I. Foster and C. Kesselman [eds.] (2004)The Grid:
Blueprint for a New Computing Infrastructure (2nd Edition)
Morgan-Kaufmann, San Francisco.

[6] I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of
the Grid: enabling scalable virtual organizatiolml. J. Su-
percomputer Applications

[7] D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Mod-
els and scheduling mechanisms for global computing appli-
cations.Intl. Parallel and Distr. Processing Symp.

[8] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebof-
sky (2000): SETI@home: massively distributed comput-
ing for SETI. In Computing in Science and Engineering
(P.F. Dubois, Ed.) IEEE Computer Soc. Press, Los Alami-
tos, CA.

[9] G. Malewicz, I. Foster, A.L. Rosenberg, M. Wilde (2008):
tool for prioritizing DAGMan jobs and its evaluatiod5th
IEEE Intl. Symp. on High-Performance Distr. Computing
156-167.

[10] G. Malewicz and A.L. Rosenberg (2005): On batch-
scheduling dags for Internet-based computiiiro-Par
2005 In LNCS 3648Springer-Verlag, Berlin, 262—-271.

[11] G. Malewicz, A.L. Rosenberg, M. Yurkewych (2006): To-
ward a theory for scheduling dags in Internet-based comput-
ing. IEEE Trans. Comput. 5557-768.

[12] A.L. Rosenberg (2004): On scheduling mesh-structured
computations for Internet-based computinglEEE
Trans. Comput. 531176-1186.

[13] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for
scheduling some common computation-dags for Internet-
based computindEEE Trans. Comput. 5428-438.

Figure 6.

13

12

Makespan ratio

11

0.9

15

14

13

12

Makespan ratio

11

0.9

15

14

13

12

Makespan ratio

11

0.9

Batched Makespan for a Composition of W, N and M dags with 492 vertices

15

1.4

13

12

Makespan ratio

11

0.9

Phase-ratios for two compositions of (from top): W-dagsiads,

Batched Makespan for a W Dag with 47 vertices

X Eox X oy ox ox ox ox ox x4
1 1 1 1
10 100 1000 10000
Mean arrival rate
Batched Makespan for a M Dag with 1228 vertices
T T
GREEDY :--%--- T 4
L i 4
S * l * *
1 1 1 1
10 100 1000 10000
Mean arrival rate
Batched Makespan for a Cycle Dag with 211 vertices
FIFO >—0—<‘ ‘ ‘
LIFO +--x--4
GREEDY :--x--- |
-
!
£ * * ¥ L * * * .
1 1 1 1

10 100
Mean arrival rate

1000 10000

10 100 1000 10000
Mean arrival rate

Makespan ratio

Makespan ratio

Makespan ratio

Makespan ratio

Batched Makespan for a W Dag with 141 vertices
15

FIFO +——

13 B
1.2 | B
11| B
1% x % ¥ ¥ o ox o ox X %X ox x4
0.9 1 1 1 1
10 100 1000 10000
Mean arrival rate
Batched Makespan for a M Dag with 1697 vertices
15 T T

FIFO ———
LIFO B
1.4 GREEDY =-%-- |

13 T B
12 | R i
11 oo R
_ - s 1

1% x X % % * 3

0.9 1 1 1 1
10 100 1000 10000

Mean arrival rate
Batched Makespan for a Cycle Dag with 1286 vertices
15 T T T

FIFO ———
LIFO =
1.4 GREEDY :--%--- I 4

13 1

11

0.9 ! ! ! !
10 100 1000 10000

Mean arrival rate

Batched Makespan for a Composition of W, N and M dags with 1060 vertices
15

14
13] g
12) B
11 | Jf m
1% % % X l * l % 4

0.9 ‘ : : :
10 100 1000 10000

Mean arrival rate

cycles, combined W-, N-, and M-dags.

