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Abstract—EEG signals contain highly sensitive information
about an individual’s mental state, cognitive processes, and health
conditions, making privacy preservation crucial. With the rise
of commercial headwear capable of capturing EEG signals,
developing robust mechanisms for ensuring privacy of such data
is imperative. This work aims to protect EEG data privacy in
cloud-based processing systems by sending intermediate output
after neural network layer splitting to the cloud. We propose a
novel holistic Combined Privacy Metric (CPM) that quantifies
privacy leakage between raw EEG signals and intermediate
outputs. Our study focuses on EEG-based seizure detection using
a 1D CNN architecture, achieving accuracy of 96.25%. We
evaluate various splitting configurations to optimize the trade-off
between privacy preservation and computational efficiency. We
find that splitting after the second convolutional layer achieves
a CPM of 0.82 with a modest client-side model size of 509kB.
This approach significantly enhances EEG data privacy while
enabling effective cloud-based analysis, potentially facilitating
wider adoption of secure EEG technologies in healthcare and
research applications.

Index Terms—EEG signals, neural networks, privacy leakage,
computational headwear

I. INTRODUCTION

The integration of sensors into head-worn devices has rev-
olutionized our ability to capture brain signals non-invasively,
significantly enhancing our understanding. This technological
advancement has paved the way for a wide range of applica-
tions utilizing EEG headwear including Brain-Computer In-
terfaces (BCI), Human-Computer Interaction (HCI), cognitive
load monitoring, and brain disorder surveillance. The field has
seen remarkable innovations, attracting attention from both
industry leaders and academic researchers. Industry giants like
Apple have proposed ways to monitor brain activity through
their AirPods [3], while researchers explore applications rang-
ing from sleep pattern tracking [12] to monitoring neurological
disorders such as seizure [11] or dementia [8].

Although exciting, head-worn wearables sense sensitive
physiological signals such as EEG, EOG, EMG, HRV, and
EDA, often leveraging external servers or the cloud for
complex processing thereby introducing privacy and security
vulnerabilities. EEG data, in particular, presents significant
privacy concerns due to its highly sensitive nature [10].
Brain activity patterns can reveal mental workload, attention
levels, and emotional responses. The increasing prevalence of
wearable EEG devices has expanded data collection beyond
clinical settings, raising concerns about user awareness and

Privacy Metrics Resource-Aware Privacy- Privacy Metrics

9 / \ \\ Modeling Preserving Design Evaluation
\ Hardware-Assisted Privacy Preserving Algorithm
\
Earbuds Headband \ & .)))

1NN A

NWInVani

.,))

N

// Signal S
Headband Headscarf | Processing Privacy-Related Non-Privacy Related
Sensor Front-end Computation Computation
~ —~ N iy J

Fig. 1: We propose to investigate the computational offloading
method where privacy signals are computed and erased imme-
diately after sensing at the hardware level, and the remaining
computations are performed on the cloud.

data control. When combined with other biometric data, EEG
information can potentially enable individual identification,
even if anonymized, heightening risks of unauthorized pro-
filing or discriminatory practices.

To address these privacy concerns, researchers have devel-
oped techniques to address privacy concerns such as encryp-
tion [4], differential privacy [7], secure multi-party computa-
tion [2]. Frameworks such as Generative Adversarial Networks
(GANS) help generate and classify synthetic EEG data while
preserving privacy [5]. Layer splitting in neural networks has
been explored previously for privacy-preservation, but existing
approaches lack a comprehensive method to determine the
optimal split point to optimize privacy-efficiency trade-offs.
Abuadbba et al. [1] found high privacy leakage in 1D CNN
models, indicating inadequate protection for raw data in split
architectures. They used correlation and DTW distance as
privacy metrics, but a holistic metric is still lacking. Without a
holistic metric informed decisions about the privacy-efficiency
trade-off, critical in edge computing, are hindered. Malekzadeh
et al. [9] proposed Salted DNNs allowing edge clients to con-
trol DNN output interpretation without revealing true outputs.
However, there is still a lack of a robust framework to quantify
privacy leakage across neural network layers.

In this research, we aim to enhance the privacy of wearable
sensors by maximizing on-device computation while address-
ing the limitations of existing privacy-preserving techniques.
We propose a novel approach to offload the computation of



privacy-sensitive data to the edge, on the wearable device
hardware, for privacy-efficiency EEG sensing and computing
as illustrated in Figure 1. Note that existing works perform
splitting to reduce computation on edge devices without
considering privacy metrics. To be specific, we study cur-
rent privacy practices and introduce a novel, comprehensive
Combined Privacy Metric (CPM) that incorporates multiple
statistical, geometric, and information-theoretic measures. We
then used these metrics as the key criteria and developed an
optimized Convolutional Neural Network (CNN) architecture,
partitioned in two subnetworks: one to perform sensitive
related computation deployed on Commercial Off-The-Shelf
(COTS) EEG headwear and another to compute non-privacy-
sensitive on external servers. This holistic approach allows us
to quantify privacy leakage across different layers of the neural
network, enabling informed decisions about where to offload
the computation for optimizing both privacy protection and
computational efficiency. In summary, this paper makes the
following contributions:

e We explore statistical, geometric, and information-
theoretic privacy metrics (CPM) to measure privacy leak-
age when transferring user data from edge to cloud.

o We integrate the above finding into a seizure detection
CNN model based on EEG data from real patients.

o We propose a standardized approach to identify the opti-
mal layer to split a machine learning model, maximizing
privacy with minimal loss in accuracy.

o We discuss our findings related to the variation in privacy
and efficiency based on different types of computational
offloading.

Our results demonstrate that our approach enables system-
atic optimization of machine learning model deployment on
wearable devices, enhancing privacy without compromising
efficiency and accuracy in EEG-based seizure detection.

II. METHODS

In our proposed approach, a machine learning model is split
across a client and the server where: (i) the initial layers are
deployed on the wearable device (client), and (ii) the remain-
ing layers are deployed on the server. Only the intermediate
activations, which are less sensitive and contain abstracted
features rather than raw data, are transmitted between the two
parts, significantly reducing the risk of exposing personal and
sensitive information. We hypothesize that if the intermediate
activations from the client output are significantly different
from the raw inputs, they will not reveal any meaningful
information about the raw data.

Analyzing Privacy: To evaluate the privacy preservation
of our EEG signal processing system, we implemented a
comprehensive set of privacy metrics aimed at quantifying
the information leakage between the raw EEG signal and the
intermediate output after layer splitting in our 1D CNN model.
We utilized several statistical, geometric, and information-
theoretic measures to provide a multifaceted analysis of pri-
vacy preservation. EEG data contains various types of in-
formation, including temporal patterns, amplitude variations,

and frequency components and different metrics are sensitive
to different aspects of this information. These metrics in-
cluded cosine similarity (cg;,,) to assess directional similarity,
Pearson (pcorr) and Spearman correlations (s.q) to evaluate
linear and monotonic relationships, and mutual information
(Minto) score to quantify the mutual dependence between the
raw and intermediate signals. To account for potential temporal
variations, we incorporated Dynamic Time Warping (DTW)
(dg;st) distance, which measures the similarity between tem-
poral sequences. Additionally, we used reconstruction error
(rerr), calculated as mean squared error, to quantify how
well the intermediate representation could reconstruct the
original signal. For cosine similarity, correlations, and mutual
information, lower values indicate better privacy preservation.
Conversely, higher values of distances and reconstruction error
suggest improved privacy.
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These metrics allow for evaluating how well the input is
transformed over the client-side network and how much infor-
mation a malicious party could glean, should they get access to
the intermediate data during transmission. By combining these
diverse metrics into our Combined Privacy Metric (CPM), we
create a more comprehensive and robust measure of privacy.
CPM is the average of normalized values of all the privacy
metrics as shown in equation (2) where; where M, is the ith
privacy metric. For Pcorrs Scorrs Minfo, and Csim, WE subtract
them from 1 because the lower values of these metrics reflect
lower privacy leakage. So, the higher values of CPM would
indicate lower privacy leakage. This approach allows us to
capture a wider range of potential privacy leaks and provides
a more nuanced understanding of the privacy-preservation
capabilities of our system.

Privacy-Efficiency Trade-offs: The privacy improves as
more neural network layers are processed on the client
side as less raw data is transmitted to the server. However,
this increases local processing requiring more computational
resources from the client device potentially affecting per-
formance, especially on resource-constrained devices. Con-
versely, server-side processing reduces client burden improv-
ing efficiency and potentially allowing for more complex
models, but at the cost of transmitting more sensitive data.
Our study aims to identify an optimal split point balancing
privacy protection with resource efficiency, considering client
model size, computational complexity, privacy metrics, and
system accuracy. To determine the optimal layer to split, we
use client model size and CPM. We evaluate each layer of



the trained model to assess the privacy metrics between the
raw input data and the intermediate activations. This score
reflects the degree of information obfuscation achieved at each
layer. The layer with the highest combined privacy score that
still has a manageable client model size is the optimal point
to split the network, ensuring maximum privacy preservation
with minimal impact on computational complexity.

III. IMPLEMENTATION

Dataset: In our investigation, we used our own EEG dataset
collected from real patients in a hospital setting to classify
between seizures and non-seizures. Using a standard 21-
channel scalp-EEG setup, we recorded data from 33 epilepsy
patients aged between 19 and 74, with 17 biological males and
16 biological females represented, in the Epileptic Monitoring
Unit (EMU). We collected 1320 hours of EEG recordings,
in which 22m 35s are seizure events (rare seizure onsets are
frequently observed and anticipated in seizure studies). To
balance the dataset, we removed most non-seizure events and
equalized the size of the resting, speaking, walking, and eating
data. This results in 88 minutes of data for evaluation. Fol-
lowing American Clinical Neurophysiology Society guidelines
[6], we segmented our data into 10s chunks and labeled them
as seizure (1) if the chunk fell completely between seizure
onset and offset times, or non-seizure (0) otherwise.

ML Architecture: We trained a 1D CNN network for our
seizure classification task. The architecture consists of four
ID convolutional layers with 32, 64, 128, and 256 filters
respectively. The kernel size was kept to 3 with padding and
stride both set to 1 for all layers. We applied the ReLU
activation function and used MaxPooling with a kernel size
of 2 after each convolution. The convolutional layers were
followed by three fully connected layers with 256, 128, and
64 units respectively. We also used a dropout layer with a
probability of 0.5 after the first and second fully connected
layers. The final fully connected layer outputs the binary
classification outcome. We trained the model for 30 epochs
using 80% of the data for training and 20% for testing. Out
of the training set, we use 20% for validation.

Configurations: To study privacy preservation, we divided
our model into client-side and server-side components at vari-
ous points, ranging from the first convolutional layer to the first
fully connected layer. This gave us five test configurations with
each configuration representing a different trade-off between
data protection and computational efficiency across different
model architectures.

Privacy Metrics: To ensure dimensional compatibility be-
tween raw EEG signals and intermediate outputs for our
privacy analysis, we used Pytorch’s nn.functional.interpolate
method with linear interpolation. This enabled direct compar-
isons and accurate calculation of privacy metrics at various
stages of our neural network model. The privacy metrics were
calculated using SciPy library functions, and a custom imple-
mentation of DTW. Each metric was calculated for individual
data samples and then averaged across the entire test dataset to
provide robust estimates. We also monitored client-side model

size to evaluate the privacy-efficiency trade-off crucial in edge
computing scenarios. By applying this comprehensive suite
of metrics to different layer-splitting scenarios in our CNN
architecture, we were able to conduct a thorough analysis
of the privacy-utility trade-offs in our EEG-based seizure
detection system.

IV. RESULTS

Baseline: Our completed EEG-based seizure detection
model achieves the test accuracy of 96.25% after 30 epochs
with 100% precision, 88.75% recall, and 94.04% F1 score.
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Fig. 2: Variation of privacy metrics for various layer splitting

Privacy-Preserving Performance: Figure 2 shows how
different privacy metrics change when breaking the model at
various layers: Convl, Conv2, Conv3, Conv4, and FCI. For
cosine similarity, Pearson correlation, and Spearman correla-
tion, lower values indicate better privacy preservation. The
boxplots show that these metrics slightly decrease as we
move from Convl to Conv4, suggesting improved privacy. For
instance, the mean cosine similarity decreases from Convl
(0.021) to Conv4 (0.018), Pearson correlation from Convl
(0.015) to Conv4 (0.012), and Spearman correlation from
Convl (0.018) to Conv4 (0.015). FC1 shows a slight increase
in these metrics, indicating a potential privacy trade-off at
this layer. The mutual information score, which quantifies
the dependence between the input and intermediate represen-
tations, shows a clear decreasing trend from Convl (mean:
3.82) to Conv4 (mean: 0.42). This decrease suggests that
later layers retain less information about the original input,
enhancing privacy. Interestingly, FC1 shows an increase in
mutual information, further supporting the observation of a
privacy trade-off at this layer. The Dynamic Time Warp-
ing distance shows an increasing trend from Convl (mean:
952,234) to Conv4 (mean: 957,347), with a slight decrease at
FC1 (mean: 956,789). Higher DTW distances suggest greater



dissimilarity between the original and transformed signals,
implying improved privacy preservation in deeper layers. In-
terestingly, the reconstruction error exhibits a decreasing trend
from Convl (mean: 4,021) to Conv4 (mean: 3,498), followed
by an increase at FC1 (mean: 4,326). It’s important to note
that these trends are not uniformly linear across all metrics.
For instance, the reconstruction error trend differs from the
others, highlighting the complexity of privacy dynamics in
neural networks and the value of using multiple metrics for
a comprehensive assessment. These nuanced trends across
different metrics underscore the importance of a multi-faceted
approach to privacy assessment in split learning scenarios.

Privacy-Efficiency Performance: Figure 3 provides a
holistic view of the privacy-efficiency trade-off by plotting the
Combined Privacy Metric (CPM) against the client model size.
The CPM, which aggregates all six privacy metrics, shows
that Conv4 achieves the highest privacy score (0.82) but at
the cost of a larger client model size (509.62 kB). Conv2
presents an interesting balance, with a relatively high CPM
(0.70) and a modest model size (28.12 kB). Convl, while
having the smallest model size (3.88 kB), achieves a CPM
(0.66) comparable to Conv2. Notably, the FC1 configuration,
despite having the largest client model size (20990.12 kB),
shows the lowest CPM (0.36). This result underscores the
non-linear relationship between model complexity and privacy
preservation in split learning scenarios. These findings suggest
that splitting the model at Conv2 or Conv4 could offer optimal
trade-offs between privacy preservation and computational
efficiency on the client device. The choice between these
two configurations would depend on the specific requirements
of the application, balancing the need for privacy with the
computational constraints of the wearable EEG device.

Key Takeaways: Sending intermediate output after convo-
lutions layers significantly improves privacy over sending raw
data to the cloud while retaining the model accuracy. We can
use CPM and model size to identify the best layer to split to
maintain privacy and efficiency. Privacy preservation generally
improves as the split point moves deeper into the network
(from Convl to Conv4), as evidenced by the trends in various
privacy metrics. However, splitting at the FC1 layer shows
a decrease in privacy, indicating a potential trade-off. The
CPM analysis reveals that Conv4 achieves the highest privacy
score (0.82), while Conv2 offers a balanced trade-off between
privacy (0.70) and client model size (28.12 kB), suggesting
these two configurations as optimal choices depending on the
specific application requirements and device constraints.

Generalizability: The current study focuses on EEG signal
processing for seizure detection, yet the insights gained can
be extended to other domains involving privacy-sensitive data.
Further research should be conducted to ensure the proposed
approach’s effectiveness across different datasets, tasks, archi-
tectures, and applications, but the CPM introduced in this
study offers a versatile approach to quantifying privacy in
split learning scenarios. In addition, our CPM also provides
a standardized method to assess privacy-efficiency trade-offs
when splitting neural networks at different layers. Although
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Fig. 3: CPM and model size deployed on wearable devices
across different layer splitting

this study focuses on a 1D CNN for EEG-based seizure
detection, the CPM framework can be readily adapted to other
model architectures and data types.

V. CONCLUSION

This paper presented a computational offloading approach
for privacy-preserving EEG-based seizure detection. We also
introduce a Combined Privacy Metric (CPM) to quantify
privacy preservation. Our experiments demonstrated an op-
timal balance between privacy, efficiency, and performance
by splitting the network after the second convolutional layer.
This configuration achieved a CPM of 0.82, with high seizure
detection accuracy (94.04% F1 score) and a modest client
model size of 509 kB. These results show the feasibility of
protecting EEG data privacy without compromising analysis
accuracy, potentially enabling wider adoption of secure EEG-
based technologies in various applications.
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