
The Major Mutation Framework:
Efficient and Scalable Mutation Analysis for Java

René Just
University of Washington

Computer Science and Engineering
Seattle, WA, USA

rjust@cs.washington.edu

ABSTRACT
Mutation analysis seeds artificial faults (mutants) into a pro-
gram and evaluates testing techniques by measuring how
well they detect those mutants. Mutation analysis is well-
established in software engineering research but hardly used
in practice due to inherent scalability problems and the lack
of proper tool support. In response to those challenges, this
paper presents Major, a framework for mutation analysis
and fault seeding. Major provides a compiler-integrated mu-
tator and a mutation analyzer for JUnit tests.

Major implements a large set of optimizations to enable
efficient and scalable mutation analysis of large software sys-
tems. It has already been applied to programs with more
than 200,000 lines of code and 150,000 mutants. Moreover,
Major features its own domain specific language and is de-
signed to be highly configurable to support fundamental re-
search in software engineering. Due to its efficiency and
flexibility, the Major mutation framework is suitable for the
application of mutation analysis in research and practice. It
is publicly available at http://mutation-testing.org.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Testing tools

Keywords
Mutation testing, compiler-integrated mutation, weak mu-
tation, strong mutation

1. INTRODUCTION
Mutation analysis is a well-known approach to assess the

quality of test suites or testing techniques [1]. It measures a
test suite’s ability to distinguish a program under test (orig-
inal version) from many small syntactic variations, called
mutants. Quality is quantified in the mutation score, which
is the percentage of mutants that a test suite can kill, i.e.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

Major mutation framework

Compiler-integrated
mutator

(Section 2)

Mutation
analyzer

(Section 3)

Source
files

Test
suite

Mutated
class files

Details of
generated
mutants

Results for
weak/strong

mutation

Figure 1: The main components of the Major mu-
tation framework.

distinguish from the original version. Mutants are created by
systematically injecting small artificial faults into the pro-
gram under test, based on mutation operators. Examples
for such mutation operators are the deletion of program
instructions, the replacement of arithmetic operators (e.g.,
a+b 7→ a-b), or the manipulation of branch conditions.

Although mutation analysis is well-established in software
engineering research, it is not yet widely accepted in practice
due to scalability issues and the lack of proper tool support.
In response to those challenges, this paper presents Major, a
full-fledged framework for mutation analysis. Major enables
efficient and scalable mutation analysis, and also fundamen-
tal research in software engineering.

The Major mutation framework consists of the following
two main components, as visualized in Figure 1:

• Compiler-integrated mutator
In contrast to other mutation analysis tools, Major’s
mutator can be used standalone (e.g., for fault seeding)
as it is integrated into the OpenJDK Java compiler.
Moreover, Major’s mutator can be employed as the
mutator component for an arbitrary mutation analysis
back-end.

• Mutation analyzer
Major provides a default mutation analyzer for JUnit
tests. This analyzer iteratively executes the JUnit
tests and provides the mutation analysis results.
Besides implementing a wide variety of optimizations,
the mutation analyzer supports weak and strong mu-
tation analysis.

for (int i : array) {

System.out.println(i);

}

int len = array.length;

for (int i=0; i<len; ++i) {

int val = array[i];

System.out.println(val);

}

int len = 0;

i<=len

int val = 0;

desugaring

mutating

mapping to source code

X

Figure 2: Byte code mutants of a desugared for-each
loop that cannot be mapped back to the original
source code (mutated expressions are underlined).
In contrast, Major’s mutator applies mutation be-
fore the desugaring step, thus avoids such mutants.

2. COMPILER-INTEGRATED MUTATOR
Developers of mutation tools for Java programs have hith-

erto either focused on source code mutation (e.g., Jester,
MuJava1 [8]) or byte code mutation (e.g., Javalanche [9],
Jumble [2], and PIT).

Compiler-integrated mutation, which transforms the ab-
stract syntax tree (AST), has been widely neglected — pre-
sumably due to engineering challenges and effort. Major
is the only mutation framework for Java that features a
compiler-integrated mutator. Major’s mutator is integrated
in the OpenJDK Java compiler and transforms the attributed
AST. Attributed means that type information is available on
the AST (cf. [7]). Major’s mutator generates and embeds all
mutants during the compilation of the original source code,
hence prevents costly recompilation of mutants.

2.1 Why Compiler-Integrated Mutation?
This section sheds light on the advantages of Major’s

compiler-integrated approach compared to source code and
byte code mutation.

2.1.1 Major vs. Source Code Mutation
Applying source code mutation (e.g., pattern-based re-

placements) is straightforward and requires little engineer-
ing effort. There are, however, two serious drawbacks to this
approach. First, the lack of semantic information (e.g., type
information) leads to many uncompilable mutants (e.g., in-
valid mutations of final fields or the control flow). Second,
individually compiling all generated mutants leads to a sig-
nificant compilation overhead. Major’s mutator avoids those
drawbacks by operating on the AST and embedding all mu-
tants in the generated class files [7].

2.1.2 Major vs. Byte Code Mutation
Byte code mutation is the predominant approach in ex-

isting mutation tools. It is appealing for two reasons. First,
it prevents recompilation and can be applied on the fly, e.g.,
during class loading. Second, byte code representation is
simpler than source code and therefore easier to mutate.

1MuJava is not a traditional source code mutation tool but compiles
mutants individually to filter invalid mutants.

However, byte code mutation also has drawbacks and limi-
tations. Most importantly, byte code is desugared and sim-
plified. Desugaring refers to the process in which syntactic
sugar (i.e., a language feature that improves expressiveness)
is replaced with an equivalent but more complex language
construct.

Figure 2 gives an example for desugaring in Java: the for-
each loop, which represents syntactic sugar, is transformed
into an ordinary for loop. There are two problems that arise
when desugared code is mutated. First, mutating desugared
code generates mutants that could have never been intro-
duced into the source code. Second, the generated mutants
cannot be mapped back to the source code, which hampers
manual inspection of mutants. Since Major’s mutator op-
erates on the AST, which represents the code that a devel-
oper wrote, Major avoids generating mutants that cannot
be mapped to a specific location in the original source code.

2.2 Mutation Operators
Major’s mutator supports a set of commonly applied mu-

tation operators (cf. [10]):

• Binary operator replacement: replace occurrences of
binary operators such as arithmetic, logical, shift, con-
ditional, and relational operators.

• Unary operator replacement: replace occurrences of
unary operators such as negation.

• Constant value replacement: replace numerical and
string constants with pre-defined constants.

• Branch condition manipulation: manipulate branch
conditions without logical connectors.

• Statement deletion: delete (omit) single statements
such as method calls.

Some mutation operators have been shown to generate
redundant mutants [6], which have negative effects on effi-
ciency and accuracy. Therefore, Major’s mutator employs
the non-redundant versions of those mutation operators by
default.

2.3 Generating Mutants
Recall that Major’s mutator is integrated into the Java

compiler. To enable mutation in Major’s mutator, the com-
piler option -XMutator has to be provided. This option
takes a list of mutation operator names as an argument. For
a hassle-free mutation using Major’s default configuration,
this option also provides a wildcard to enable all mutation
operators. The following two commands show examples for
(1) generating all mutants using the wildcard ALL and (2)
generating mutants using only the AOR (arithmetic operator
replacement) and STD (statement deletion) mutation opera-
tors:

(1) javac -XMutator:ALL MyFile.java

(2) javac -XMutator:AOR,STD MyFile.java

Table 1 shows run-time results for applying Major’s com-
piler to mutate 12 open source projects using all mutation
operators. The depicted run time is the total run time nec-
essary to generate, embed, and compile all mutants. The
average compilation overhead per 1,000 generated mutants
is 0.14 seconds, which is negligible in consideration of the
large number of mutants.

Table 1: Total run time of Major’s mutator to gen-
erate, embed, and compile all mutants. Numbers in
parentheses give the baseline run time of the original
Java compiler.

Program KLOC Classes Mutants Compile
time

Apache POI 223 2,056 157,965 75s (54s)
GNU Trove 117 1,594 71,683 31s (24s)
IText PDF 76 592 108,174 28s (12s)
JFreeChart 91 610 67,097 20s (12s)
Math1 40 536 55,550 14s (8s)
Joda Time 27 227 18,415 14s (10s)
Collections1 26 273 11,832 8s (7s)
Jaxen 21 318 7,179 6s (4s)
Lang1 19 147 18,887 8s (5s)
JDom 15 161 10,778 10s (8s)
IO1 9 104 6,756 5s (3s)
Numerics4J 4 86 5,650 3s (2s)

Overall 668 6,704 539,966 222s (149s)

1Apache Commons libraries

2.4 Inspecting and Exporting Mutants
Major’s mutator embeds all mutants during compilation

and produces a detailed summary of the generated mutants.
This summary includes all necessary information (such as
source code location and mutation operator) to inspect or
visualize the mutants. Besides, Major’s mutator provides an
option to generate mutants as individual source files to sup-
port use cases that require individual source code mutants.

2.5 Major’s Domain Specific Language
When conducting experiments in software testing re-

search, more control of the mutation process might be desir-
able. Therefore, Major features a domain specific language
(DSL) that provides a high degree of control of the mutation
process without overwhelming the user with a large number
of additional options. In summary, Major’s DSL enables:

• Selection of specific packages, classes, or methods.
This prevents changing the build infrastructure if mu-
tation analysis should only be applied to specific parts
of the code base.

• Configuration of enabled/disabled mutation operators
on a per package, class, or method basis. This en-
ables applying different sets of mutation operators to
different parts of the code base.

• Configuration of built-in mutation operators (e.g., ap-
ply only certain replacements). This generally pro-
vides fine-grained selective mutation but also enables
conducting or reproducing empirical studies on mutant
reduction.

3. MUTATION ANALYZER
Major provides a default mutation analyzer for the mu-

tation analysis of JUnit tests. This analyzer builds on top
of Apache Ant and implements a wide variety of optimiza-

tions to ensure efficiency and scalability. Generally, Major’s
mutation analyzer operates in three phases:

1. Pre-pass for monitoring state infection: execute test
suite and determine which test has to be executed on
which mutant. This phase also measures the run time
of each test case.

2. Test suite prioritization based on test run time.

3. Strong mutation analysis leveraging the information of
phase 1 and the prioritized test suite of phase 2.

One unique feature of Major is that it supports weak and
strong mutation analysis. In weak mutation analysis, a test
kills a mutant if the test execution leads to a difference be-
tween the program state of the mutant and the program
state of the original version. In contrast, strong mutation
requires that this difference propagates to an observable out-
put, i.e., an assertion failure or an exception.

3.1 Monitoring State Infection
Gathering coverage information to avoid unnecessary mu-

tant executions is a common optimization in mutation anal-
ysis — a test that does not cover (i.e., reach and execute)
a mutant does not need to be run on that mutant. Major
takes this approach a step further and monitors state infec-
tion. The program state of a mutant is said to be infected
if it differs from the program state of the original version
after execution of the mutated expression [3]. A test is not
executed on a mutant if it cannot achieve state infection on
that mutant. Major efficiently monitors state infection dur-
ing its pre-pass (phase 1) and only considers state-infected
mutants for the strong mutation analysis (phase 3).

3.2 Test Suite Prioritization
Another common optimization in mutation analysis is to

exclude mutants from the analysis once they have been
killed. When performing mutation analysis to assess the
quality of a test suite, it is sufficient to kill a mutant with
one test case. Major also takes this optimization a step fur-
ther and orders the test suite by runtime of the individual
test cases. This ensures that a mutant is killed by the fastest
test case that can kill that mutant [5].

3.3 Strong Mutation Analysis
Based on the information gathered in the first two phases,

Major’s mutation analyzer performs strong mutation anal-
ysis using the prioritized test suite. It only executes a test
on a (not killed) mutant if the test achieved state infection
on that mutant. Some mutants lead to an infinite loop,
for instance when mutating loop conditions. Therefore, the
analyzer implements a timeout heuristic to prevent the mu-
tation analysis process from getting stuck — the timeout for
a test on a certain mutant is calculated based on the test’s
run time on the original version.

Major’s mutation analyzer reports the following results
for strong mutation analysis:

• Number of generated, covered, state-infected, and
killed mutants — Major also reports all ratios includ-
ing the mutation score.

• Reason why a mutant was killed (test assertion, excep-
tion, or timeout).

• List of mutants not killed, for further inspection.

Table 2: Total run time of Major’s mutation ana-
lyzer to perform weak and strong mutation. Run
time in parentheses gives the baseline run time of
all tests on the uninstrumented program version.
Mutation score is the ratio of detected to generated
mutants and mutation score in parentheses gives the
ratio of detected to covered mutants.

Program Mutants Tests Mut. score Analysis run time
strong weak

IText PDF 108,174 92 12% (75%) 118m 21s (16s)
GNU Trove 71,683 544 5% (64%) 25m 41s (20s)
Scratchpad2 71,125 703 34% (81%) 609m 117s (85s)
JFreeChart 67,097 2,130 28% (53%) 293m 279s (187s)
Core2 64,567 1,874 9% (49%) 35m 4s (3s)
Math1 55,550 2,169 72% (81%) 105m 402s (246s)
Ooxml2 22,273 643 45% (60%) 439m 183s (179s)
Lang1 18,887 2,047 69% (76%) 14m 41s (32s)
Joda Time 18,415 3,855 73% (87%) 93m 417s (146s)
Collections1 11,832 1,161 61% (72%) 21m 42s (34s)
JDom 10,778 1,638 75% (83%) 19m 73s (55s)
Jaxen 7,179 634 41% (64%) 39m 14s (13s)
IO1 6,756 344 34% (76%) 17m 62s (60s)
Numerics4J 5,650 218 65% (69%) 1m 5s (3s)

Overall 539,966 18,052 45% (71%) 1,828m 1,701s (1,080s)

1Apache Commons libraries
2Apache POI components

Table 2 gives the run times for performing strong mutation
analysis on 14 open source programs. Tests represents the
number of developer-written tests released with each pro-
gram, and the mutation score of those tests is given with
respect to generated and covered mutants.

3.4 Weak Mutation Analysis
Recall that the criterion to kill a mutant in weak mutation

analysis is to achieve state infection for that mutant. Major
monitors state infection during its pre-pass (phase 1), hence
weak mutation analysis in Major requires only one execu-
tion of the test suite. In fact, if weak mutation analysis is
enabled, Major’s analyzer only performs the pre-pass and
reports the corresponding results.

Table 2 also gives the run times for performing weak mu-
tation analysis on the depicted 14 open source programs.
Performing weak mutation analysis requires program instru-
mentation for the pre-pass phase, which leads to a run-time
overhead. For an easy comparison with the baseline, Table 2
gives the run time of each test suite on the uninstrumented
program version (numbers in parentheses).

4. CONCLUSIONS AND FUTURE WORK
This paper presents Major, a framework for mutation

analysis and fault seeding. It provides a compiler-integrated
mutator and a mutation analyzer for JUnit tests. Major
supports weak and strong mutation analysis, and is efficient
and scalable due to a large set of implemented optimizations.

Major has already been applied in large-scale experiments
(e.g., [3, 4]). Moreover, Major is highly configurable and
offers several features that support conducting experiments
or reproducing prior studies in software engineering research.
Hence, the Major mutation framework is suitable for the
application of mutation analysis in research and practice.

Recent studies on the correlation between mutants and
real faults have revealed that the commonly applied set of
mutation operators should be augmented [4]. Those new
mutation operators will be available in a future release of
Major. Morever, mutation analysis offers great potential for
parallelization — every mutant can be analyzed indepen-
dently. Therefore, providing built-in support for paralleliza-
tion is another area for improving Major.

The Major mutation framework is publicly available on
its project web site:

http://mutation-testing.org

5. REFERENCES
[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints

on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, 1978.

[2] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary,
S. Inglis, and M. Utting. Jumble java byte code to
measure the effectiveness of unit tests. In Testing:
Academic and Industrial Conference Practice and
Research Techniques (TAIC PART), pages 169–175,
2007.

[3] R. Just, M. D. Ernst, and G. Fraser. Efficient
mutation analysis by propagating and partitioning
infected execution states. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA), 2014. To appear.

[4] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? Technical
Report UW-CSE-14-02-02, University of Washington,
2014.

[5] R. Just, G. M. Kapfhammer, and F. Schweiggert.
Using non-redundant mutation operators and test
suite prioritization to achieve efficient and scalable
mutation analysis. In Proceedings of the International
Symposium on Software Reliability Engineering
(ISSRE), pages 11–20, 2012.

[6] R. Just and F. Schweiggert. Higher accuracy and
lower runtime: Efficient mutation analysis using
non-redundant mutation operators. Software Testing,
Verification and Reliability (JSTVR), 2014. To appear.

[7] R. Just, F. Schweiggert, and G. M. Kapfhammer.
MAJOR: An efficient and extensible tool for mutation
analysis in a Java compiler. In Proceedings of the
International Conference on Automated Software
Engineering (ASE), pages 612–615, 2011.

[8] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: A
mutation system for Java. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 827–830, 2006.

[9] D. Schuler and A. Zeller. Javalanche: Efficient
mutation testing for Java. In Proceedings of the Joint
Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 297–298,
2009.

[10] A. Siami Namin, J. H. Andrews, and D. J. Murdoch.
Sufficient mutation operators for measuring test
effectiveness. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
351–360, 2008.

