
Evaluating and Improving
Fault Localization

Spencer Pearson†, José Campos*, René Just, Gordon Fraser*, 
Rui Abreu‡, Michael D. Ernst†, Deric Pang†, Benjamin Keller†

University of Massachusetts
†University of Washington

*University of Sheffield
‡University of Lisbon

May 25, 2017



Fault localization: an important problem

Two use cases: developers and automated program repair

Many techniques and evaluations



Fault localization: an important problem

Two use cases: developers and automated program repair

Many techniques and evaluations

Do these results hold for real 
world programs?  



Fault localization: an important problem

Do these results hold for real 
world programs? NO!

Why?
1. Unrealistic evaluations 

(artificial faults)
2. Negligible or small effect sizes
3. Unrealistic evaluation metrics

Two use cases: developers and automated program repair

Many techniques and evaluations



Fault 
localization 
technique

What is fault localization?



Fault 
localization 
technique

Program

What is fault localization?

Test suite

Failing
tests

Passing
tests

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}



Fault 
localization 
technique

Program Statement ranking

What is fault localization?

Test suite

Failing
tests

Passing
tests

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

Most 
suspicious

Least 
suspicious



Program

Fault localization: how it works

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}



Program

Spectrum-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

Spectrum-based FL (SBFL)
● Compute suspiciousness per statement
● Example:

Jones et al., Visualization of test information to assist fault localization, ICSE’02

    Statement covered by failing test
    Statement covered by passing test

More         statement is more suspicious! 



Program

Mutation-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

Papadakis and Traon, Metallaxis‐FL: mutation‐based fault localization, STVR’15

Mutants
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum + n;

}

    Mutant affects failing test outcome
    Mutant breaks passing test

More         mutant is more suspicious! 

Mutation-based FL (MBFL)
● Compute suspiciousness per mutant
● Aggregate results per statement
● Example:



Outline and contributions

● How to evaluate fault localization techniques?

● Empirical study on artificial and real faults:
○ Do the results agree with prior work?
○ Do the results agree on artificial and real faults?
○ No! Explain why not.

● What design decisions matter (on real faults)?

● How to improve fault localization?



Evaluating fault localization techniques

Fault 
localization 
technique

Program Statement ranking
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}



Evaluating fault localization techniques

1
2
3
4
5

Fault 
localization 
technique

Program Statement ranking
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

EXAM score: relative rank of the                     
defective statement (e.g., 3/5  = 0.6).

Smaller EXAM scores are better!



Evaluating fault localization techniques

1
2
3
4
5

EXAM score: relative rank of the                     
defective statement (e.g., 3/5  = 0.6).

Smaller EXAM scores are better!

Not straightforward for real faults:
● Multi-line defects (localize 1 or all lines?)
● Non-executable code (declarations)
● Fault of omission (>1 possible location)
Details in the paper



Empirical study on artificial and real faults

Experimental design
● 7 widely studied FL techniques

○ SBFL: Barinel, D*, Ochiai, Op2, and Tarantula
○ MBFL: Metallaxis and Muse

● 310 real faults (5 times as many as prior studies combined)
● 2995 artificial faults (more than prior studies combined)
● 100,000 CPU hours (MBFL is expensive)

http://www.defects4j.org          http://www.mutation-testing.org

http://www.defects4j.org
http://www.mutation-testing.org
http://www.defects4j.org


Results of prior studies

MBFL
vs.

SBFL

SBFL
vs.

SBFL



Our results on artificial faults

Results agree with most prior studies on artificial faults
but only 3 effect sizes are not negligible.

MBFL
vs.

SBFL

SBFL
vs.

SBFL



Our results on real faults

Results disagree with all prior studies on real faults.

MBFL
vs.

SBFL

SBFL
vs.

SBFL



Results on artificial vs. real faults

Barinel
D*

better better

Metallaxis (MBFL)
MUSE (MBFL)

Ochiai
Op2
Tarantula



All SBFL techniques are equally good

For SBFL, results on artificial faults
do not predict results on real faults!



MBFL is only better than SBFL on artificial faults

For MBFL, results on artificial faults
do not predict results on real faults!



Why these differences?

● MBFL does exceptionally well on “reversible” faults

sum / n
Correct

sum * n
Faulty MBFL mutates

sum + n

sum / n

sum - n
Pinpoints the fault



Why these differences?

● MBFL does exceptionally well on “reversible” faults
● Most real faults are not reversible



Why these differences?

● MBFL does exceptionally well on “reversible” faults
● Most real faults are not reversible
● Real faults often involve unmutatable statements

(e.g., break, continue, return)



Why these differences?

● MBFL does exceptionally well on “reversible” faults
● Most real faults are not reversible
● Real faults often involve unmutatable statements

MBFL has pinpoint accuracy on artificial faults
but poor performance on real faults.



What design decisions matter on real faults?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)



What design decisions matter on real faults?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)
● 156 FL techniques



What design decisions matter on real faults?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)
● 156 FL techniques

Results
● Most design decisions don’t

matter (in particular for SBFL)
● Definition of test-mutant interaction matters for MBFL



What design decisions matter on real faults?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)
● 156 FL techniques

Results
● Most design decisions don’t

matter (in particular for SBFL)
● Definition of test-mutant interaction matters for MBFL
● Barinel, D*, Ochiai, and Tarantula are indistinguishable

Existing SBFL techniques perform best.
No breakthroughs in the MBFL/SBFL design space.



How to improve fault localization?

better better



How to improve fault localization?

Explored two options:
1. Make MBFL great again
2. Hybrid: Stronger together



How to improve fault localization?

Hybrid technique is significantly better than all techniques 
in the MBFL/SBFL design space (small effect size).

Explored two options:
1. Make MBFL great again
2. Hybrid: Stronger together



Only top-ranked results matter

● Top-10 useful for practitioners1.
● Top-200 useful for automated program repair2.

1Kochhar et al., Practitioners’ Expectations on Automated Fault Localization, ISSTA’16
2Long and Rinard, An analysis of the search spaces for generate and validate patch
                             generation systems, ICSE’16

Hybrid technique performs well on real use cases.



Evaluating and improving fault localization

http://bitbucket.org/rjust/fault-localization-data      http://www.defects4j.org 

FL performance on artificial faults
is not predictive for real faults.
● MBFL only better on artificial faults
● All SBFL techniques are equally good

 
 

https://bitbucket.org/rjust/fault-localization-data
http://www.defects4j.org
https://bitbucket.org/rjust/fault-localization-data


Evaluating and improving fault localization

http://bitbucket.org/rjust/fault-localization-data      http://www.defects4j.org 

FL performance on artificial faults
is not predictive for real faults.
● MBFL only better on artificial faults
● All SBFL techniques are equally good

MBFL/SBFL design space exploration
● Most design decisions don’t matter
● Existing SBFL techniques perform best
● No breakthroughs in the design space

       FL needs to employ more information

 
 

https://bitbucket.org/rjust/fault-localization-data
http://www.defects4j.org
https://bitbucket.org/rjust/fault-localization-data


Evaluating and improving fault localization

http://bitbucket.org/rjust/fault-localization-data      http://www.defects4j.org 

FL performance on artificial faults
is not predictive for real faults.
● MBFL only better on artificial faults
● All SBFL techniques are equally good

MBFL/SBFL design space exploration
● Most design decisions don’t matter
● Existing SBFL techniques perform best
● No breakthroughs in the design space

       FL needs to employ more information

A new hybrid FL technique
● Combines MBFL and SBFL techniques
● Outperforms all existing FL techniques

 
 

https://bitbucket.org/rjust/fault-localization-data
http://www.defects4j.org
https://bitbucket.org/rjust/fault-localization-data

