Recap: the analysis phase

- It is the process of formally specifying exactly what is to be built based on the client’s ideas and needs.
- Obtain a clear understanding of the client’s needs (clear means unambiguous in this context).
- Software engineer is an active participant. Client may not understand the potential/feasibility of a system.
- Analysis may uncover unknown potential/pitfalls.

The high-level questions to answer

1. What is the purpose of the system?
2. Who uses the system (can be human and non-human)?
3. What functionality/benefits must it provide (what’s the desired behavior)?
4. Is it feasible to build the system with the given expectations?

Today

Post-mortem of discussion session
- What analysis techniques did you use?
- How useful/informative was the client interview?
- What are the lessons learned?
- How will you proceed?

Modelling techniques
- Entity-Relationship (ER) diagrams
Open discussion

Post-mortem of discussion session
- What analysis techniques did you use?
- How useful/informative was the client interview?
- What are the lessons learned?
- How will you proceed?

The high-level questions
- What’s the purpose of the system?
- Who uses the system?
- What functionality must it provide?
- Is it feasible to build the system?

Common analysis techniques
- Meetings, questionnaires, interviews.
- Prototyping.
- User stories, use cases.
- Modeling (Diagramming).

ER diagrams: overview
- An Entity Relationship (ER) diagram is a **graphical representation** of a **data model**.
- It shows the **relationship** between **entities** (e.g., people, objects, events, or concepts) within a system.
- It can be mapped to a relational (database) schema.

ER diagrams: graphical syntax
- An entity E

ER diagrams: graphical syntax
- An entity E
- An attribute A of entity E
ER diagrams: graphical syntax

- An entity E
- An attribute A of entity E
- A relationship R between two entities E_1 and E_2

ER diagrams: rules

- An interconnecting line is only allowed between:
 - a box and a diamond,
 - a box and an oval,
 - a diamond and a oval.
- An oval must have exactly one connecting line.
- Names of boxes must be unique in the diagram.
- Names of ovals must be unique per box/diamond.

ER diagrams: example

Let's model the following entities and their relationships in the context of a simple course registration system at UMass:

- Students
- Instructors
- Courses
ER diagrams: example

- Student
 - SpireID
 - Name

- Instructor
 - SSN
 - Name

- Course

ER diagrams: keys and cardinalities

- A key is an (underlined) attribute, or a set of attributes, which uniquely identifies an entity.

- A key can be artificial or natural.

- The cardinalities define the kind of relationship (one-to-one, one-to-many, or many-to-many).

- There are different notations for cardinalities. For example:
 - 1 = (1,1)
 - c = (0,1)
 - m = (1,*)
 - mc = (0,*)
- A weak entity can’t exist on its own (if a building is torn down, its rooms disappear).

- A weak entity is only uniquely identifiable in reference to another entity.

- An is_a relationship represents a generalization relationship between two entities.

- Attributes (including keys) are “inherited”.
ER diagrams: generalization

- An is_a relationship represents a generalization relationship between two entities.
- Attributes (including keys) are “inherited”.
- Additional attributes can be defined.

ER diagrams: self references and roles

- A self reference is usually explicitly annotated with roles to clarify the meaning of the self-referencing relationship.

Think about (but never draw) the following:

ER diagrams: example

Let’s improve our initial model of a simple course registration system at UMass:

- Students
- Instructors
- Courses
- Sections
- Prerequisites
- Assignments
- Points/grades