Last time

• Z3

• Proving stuff about programs!
 – super powerful
 – super cool
Coming up

• Final projects:
 – final project presentations: Tue Dec 12, in CS 150
 – final submission due: Fri Dec 15, 11:55 PM
Project Final Presentations

• Next Tuesday (Dec 12) 10AM-11:15AM
• CS 150 (in the CS building)
• Think of this as a science fair.
• Each team will get an easel. Bring a poster or printed slides. And laptop for demo.
• Describe and discuss the solution, and demo the implementation.
• Will see (at least) 2 separate judges.
• Chance to see other projects too!
Today’s plan

• Evaluations
• Power of software
Evaluations

• We’ll take 15 minutes to do evaluations

• They are anonymous and I don’t see them until (long) after the grades are posted

• I actually use them to improve my teaching

• UMass uses them to decide if I am a good teacher
Evaluations

http://owl.oit.umass.edu/partners/courseEvalSurvey/uma/

• If we get 80% participation by tomorrow:
 – Everyone gets 2 points of extra credit.
 – Everyone gets a chance to submit an optional extra credit assignment.
Power of Software

Can you write any program I describe to you?
Can you write:

A program HALTS? whose input is the body of a method, and that outputs **false** if the method enters an infinite loop, and **true** if it does not.
What’s HALTS?(method)?

```
method() {
    print "hello world";
}
```
What’s HALTS?(method)?

```java
method() {
    for (int x=0; x<5; x++)
        print "hello world";
}
```
What’s HALTS?(method)?

method() {
 for (int x=0; x<-1; x++)
 print “hello world”;
}

What’s HALTS?(method)?

method() {
 while (true);
}

What’s HALTS?(method)?

```java
method() {
    int x = 785\text{th} \text{ digit of } \pi;
    if (x == 7)
        while(true);
}
```
What’s HALTS?(method)?

```java
method() {
    int x = 785^{th} digit of \pi;
    int y = x^{x^{x^{x^{x+1}}}}+1;
    int z = y^{th} digit of \pi;
    if (z == 0)
        while(true);
}
```
What’s HALTS?(method)?

method() {
 int x = 785th digit of \pi; \\
 int y = x^{x^{x^{x^{x}}}} + 1; \\
 int[] z[] = the \textit{y}th through \textit{(x+y)}th digits of \pi; \\
 if (z ever repeats in \pi again) \\
 while(true); \\
}
How about the general case?

- Let’s count programs. How many programs are there?
Specifications

• And how many specification are there?
 – let’s limit ourselves to simple specifications:
 • given a set of numbers, e.g., \{2, 4, 6\}
 • on input \(i\), return 1 if \(i\) is in the set, and 0 otherwise
First 64 programs

• How many of our specifications can I solve with 64 programs?
 (a) 64
 (b) 32
 (c) 8
 (d) 6
 (e) 2
First 64 programs

• With 64 programs, how large can my specification sets get (if I am being compact)
 (a) 64
 (b) 32
 (c) 8
 (d) 6
 (e) 2

• Example: with 4 programs, I could cover: {}
 {1}, {2}, {1,2}
Scalability Problem

• To cover subsets of a set of n numbers, I need 2^n programs.

• But I only have as many programs are there are natural numbers.

• That’s exponentially smaller than the number of specifications there are.

Can’t do it for all subsets!
Can HALTS? exist?

- Imagine that you wrote HALTS?
- I will write a new program NALTS?:

NALTS?(Method p) {
 if (HALTS?(p)==false) return 1;
 else while (true);
}

Key: run the program on itself
What is the value of NALTS? (NALTS?)
What is the value of NALTS? (NALTS?)

• Two cases:

1. If NALTS?(NALTS?) goes into an infinite loop, then HALTS?(NALTS?)==true, which means that NALTS? terminates. So case 1 is impossible.

2. If NALTS?(NALTS?) does not go into an infinite loop, then HALTS?(NALTS?)==false, which means that NALTS? does not terminate. So case 2 is impossible.
Conclusion

• The program HALTS cannot exist!
• Many programs cannot exist!

• Learn more in CS 401 or CS 601
Zero-Knowledge Proofs

How can I prove to you I know X without telling you anything about X?