Coming up: Project Final Presentations

* December 12, 10AM-11:15AM
e CS 150 (in the CS building)
* Think of this as a science fair.

* Each team will get an easel. Bring a poster or
printed slides. And laptop for demo.

* Describe and discuss the solution, and
demo the implementation.

* Will see (at least) 2 separate judges.
* Chance to see other projects too!

In-Class Exercise: Reasoning About Mutants

* Today we’ll learn how to use Z3,
a formal theorem prover

* And we’ll use it to help us create tests

/3

* Online interface: https://rise4fun.com/Z3

e Tutorial: https://rise4fun.com/Z3/tutorial/guide

* In-class assignment:
https://people.cs.umass.edu/~rjust/courses/2017Fall/CS520/inclass4/inclass4.pdf

Z3’s language

e Z3 uses a a kind of programming language

* Can declare variables and functions,
define constraints, print things to the screen,
etc.




Z3’s language

(echo "starting Z3...")
(declare-const a Int)
(declare-fun f (Int Bool) Int)
(assert (> a 10))

(assert (< (f a true) 100))
(check-sat)

VT A WN -

This code prints “starting Z3...” to the screen,
declares a constant a

declares a function Int f (Int Bool)

makes 2 assertions: a > 10 and f(a, true) < 100
asks “is this possible?”

Encoding programs in constraints

Given a program P and a question about P,
encode them into constraints and
ask Z3 to answer the question!

int P(int a, int Db) {
P: return a + b;

}
Question: Can P ever return 0?

1 (declare-const a Int)
2 (declare-const b Int)
3 (assert (= (+ a b) 2))
4 (check-sat)
5 (get-model)

; We want a + b to be @
; Find out if this is satisfiable
; It is, so let's get a satisfying model

Modeling Control Flow

int doesStuff(int a, int b, int c){
if (¢ == 0 ) return O0;
if (c == 4 ) return 0;
if (a + b < ¢ ) return 1;
if (a + b > ¢ ) return 2;
if (a * b == c¢) return 3; // Does this ever happen??

return 4;

To ask if doesStuff ever returns 3, encode:

l(c==0) I(c ==4)
l(a+b>c) (a*b==c)

l(a+b<c)

int doesStuff

Modeling Control Flow

(int a, int b, int c¢){
if (¢ == 0 ) return O0;
4 ) return O0;
) return 1;
) 2;
) 3i

return

return // Does this ever happen??

return 4;

(define-sort JInt (O (_ BitVec 32))
(declare-const a JInt)
(declare-const b JInt)
(declare-const c¢ JInt)

(assert (not (= c #x00000000)))
(assert (not (= c #x00000004)))
(assert (not (bvslt (bvadd a b) c)))
(assert (not (bvsgt (bvadd a b) ©)))
(assert (= (bvmul a b) c))

(check-sat)
(get-model)|

WNRPoSVW~NOOU A WN R




/3 for Mutation Testing

int normal_sum(int a, 1int b){
return a + b;

int mutant_sum(int a, 1int b){
return a * b;

(declare-const a Int)
(declare-const b Int)
(assert (= (+ a b) (* a b)))
(check-sat)

5 (get-model)

w N =

S

We have to frame the question in terms of
“Does there exist an input such that...”

 |f two functions are identical, then for all
inputs, they act the same.

e We can ask if two functions are NOT identical.

“Does there exist an input for which they
differ?”

(declare-const a Int)
(declare-const b Int)

(assert (not (= (+ a b) (* a b))))
(check-sat)

(get-model)

u b WN B

Now, you drive!

* In-class assignment:
https://people.cs.umass.edu/~rjust/courses/2017Fall/CS520/inclass4/inclass4.pdf

* Online Z3 interface: https://rise4fun.com/Z3

i TUtoria|: https://rise4fun.com/Z3/tutorial/guide




