
Reasoning	about	programs

Last	time

Coming	up

• This	Thursday,	Nov	30:
4th in-class	exercise
– sign	up	for	group	on	moodle
– bring	laptop	to	class

• Final	projects:
– final	project	presentations:	Tue	Dec	12,	in	CS	150
final	submission	due:	Fri	Dec	15,	11:55	PM

Project	Final	Presentations

• December	12,	10AM-11:15AM
• CS	150	(in	the	CS	building)
• Think	of	this	as	a	science	fair.
• Each	team	will	get	an	easel.	Bring	a	poster	or	
printed	slides.		And	laptop	for	demo.

• Describe	and	discuss	the	solution,	and	
demo	the	implementation.

• Will	see	(at	least)	2	separate	judges.
• Chance	to	see	other	projects	too!



Reasoning	about	programs

Ways	to	verify	your	code
• The	hard	way:

– Make	up	some	inputs
– If	it	doesn't	crash,	ship	it
– When	it	fails	in	the	field,	attempt	to	debug

• The	easier	way:
– Reason	about	possible	behavior	and	desired	outcomes
– Construct	simple	tests	that	exercise	that	behavior

• Another	way	that	can	be	easy
– Prove	that	the	system	does	what	you	want

• Rep	invariants	are	preserved
• Implementation	satisfies	specification

– Proof	can	be	formal	or	informal	(we	will	be	informal)
– Complementary	to	testing

Reasoning	about	code

• Determine	what	facts	are	true	during	execution
– x	>	0
– for	all	nodes	n:		n.next.previous	==	n
– array	a	is	sorted
– x	+	y	==	z
– if		x	!=	null,	then		x.a	>	x.b

• Applications:
– Ensure	code	is	correct	(via	reasoning	or	testing)
– Understand	why	code	is	incorrect

Forward	reasoning
• You	know	what	is	true	before	running	the	code

What	is	true	after	running	the	code?
• Given	a	precondition,	what	is	the	postcondition?

• Applications:
Representation	invariant	holds	before	running	code
Does	it	still	hold	after	running	code?

• Example:
//	precondition:	x	is	even
x	=	x	+	3;
y	=	2x;
x	=	5;
//	postcondition:		??



Backward	reasoning
• You	know	what	you	want	to	be	true	after	running	the	code

What	must	be	true	beforehand	in	order	to	ensure	that?
• Given	a	postcondition,	what	is	the	corresponding	precondition?

• Applications:
(Re-)establish	rep	invariant	at	method	exit:		what’s	required?
Reproduce	a	bug:		what	must	the	input	have	been?

• Example:
//	precondition:		??
x	=	x	+	3;
y	=	2x;
x	=	5;
//	postcondition:		y	>	x

• How	did	you	(informally)	compute	this?

Forward	vs.	backward	reasoning

• Forward	reasoning	is	more	intuitive	for	most	people
– Helps	understand	what	will	happen	(simulates	the	code)
– Introduces	facts	that	may	be	irrelevant	to	goal

Set	of	current	facts	may	get	large

– Takes	longer	to	realize	that	the	task	is	hopeless

• Backward	reasoning	is	usually	more	helpful
– Helps	you	understand	what	should	happen
– Given	a	specific	goal,	indicates	how	to	achieve	it
– Given	an	error,	gives	a	test	case	that	exposes	it

Forward	reasoning	example
assert	x	>=	0;
i	=	x;

//	x	≥	0		&		i	=	x
z	=	0;

//	x	≥	0		&		i	=	x		&		z	=	0
while	(i	!=	0)	{
z	=	z	+	1;
i	=	i	–1;

}
//	x	≥	0		&		i	=	0		&		z	=	x

assert	x	==	z;

Ü What	property	holds	here?

Ü What	property	holds	here?

Backward	reasoning

Technique	for	backward	reasoning:
• Compute	the	weakest	precondition	(wp)
• There	is	a	wp rule	for	each	statement	in	the	
programming	language

• Weakest	precondition	yields	strongest	
specification	for	the	computation	
(analogous	to	function	specifications)



Assignment
//	precondition:	??
x	=	e;
//	postcondition:	Q

Precondition:	Q	with	all	(free)	occurrences	of	x	
replaced	by	e
• Example:

//	assert:		??
x	=	x	+	1;
//	assert	x	>	0

Precondition	=		(x+1)	>	0

Method	calls

//	precondition:	??
x	=	foo();
//	postcondition:	Q

• If	the	method	has	no	side	effects:	just	like	
ordinary	assignment

• If	it	has	side	effects:		an	assignment	to	every	
variable	it	modifies

Use	the	method	specification	to	
determine	the	new	value

If	statements

//	precondition:		??
if	(b)	S1	else	S2
//	postcondition:	Q

Essentially	case	analysis:
wp(“if	(b)	S1	else	S2”,	Q)	=

(								b	Þ wp(“S1”,	Q)	
∧ ¬ b	Þ wp(“S2”,	Q)		)

If:	an	example
//	precondition:	??
if	(x	==	0)	{
x	=	x	+	1;

}	else	{
x	=	(x/x);	

}
//	postcondition:		x	³ 0

Precondition:
wp(“if	(x==0)	{x	=	x+1}	else	{x	=	x/x}”,	x	³ 0)	=
=	(					x	=	0	Þ wp(“x	=	x+1”,	x	³ 0)

&		x	¹ 0	Þ wp(“x	=	x/x”,	x	³ 0)				)
=	(x	=	0	Þ x	+	1	³ 0)		&		(x	¹ 0	Þ x/x	³ 0)
=	1	³ 0		&		1	³ 0
=	true			



Reasoning	About	Loops

• A	loop	represents	an	unknown	number	of	paths
– Case	analysis	is	problematic
– Recursion	presents	the	same	issue

• Cannot	enumerate	all	paths
– That	is	what	makes	testing	and	reasoning	hard

Loops:		values	and	termination

1)	Pre-assertion	guarantees	that	x	³ y
2)	Every	time	through	loop

x	³ y	holds	and,	if	body	is	entered,	x	>	y
y	is	incremented	by	1
x	is	unchanged
Therefore,	y	is	closer	to	x			(but	x	³ y	still	holds)

3)	Since	there	are	only	a	finite	number	of	integers	
between	x	and	y,	y	will	eventually	equal	x
4)	Execution	exits	the	loop	as	soon	as	x	=	y

// assert x ³ 0 & y = 0
while (x != y) {

y = y + 1;
}
// assert x = y

Understanding	loops	by	induction
• We	just	made	an	inductive	argument

Inducting	over	the	number	of	iterations

• Computation	induction
Show	that	conjecture	holds	if	zero	iterations
Assume	it	holds	after	n	iterations	and	show	it	holds	after	n+1

• There	are	two	things	to	prove:
Some	property	is	preserved	(known	as	“partial	correctness”)

loop	invariant	is	preserved	by	each	iteration

The	loop	completes	(known	as	“termination”)
The	“decrementing	function”	is	reduced	by	each	iteration

Loop	invariant	for	the	example

• So,	what	is	a	suitable	invariant?
• What	makes	the	loop	work?

Loop	Invariant	(LI)	=	x	³ y

1) x ³ 0  &  y = 0 Þ LI
2) LI		&		x	¹ y	{y = y+1;}	LI
3) (LI		&		¬(x	¹ y))			Þ x	=	y

// assert x ³ 0 & y = 0
while (x != y) {

y = y + 1;
}
// assert x = y



Is	anything	missing?

Does	the	loop	terminate?

// assert x ³ 0 & y = 0
while (x != y) {

y = y + 1;
}
// assert x = y

Total	Correctness	via	Well-Ordered	Sets

• We have not established that the loop terminates
• Suppose that the loop always reduces some variable’s 

value.  Does the loop terminate if the variable is a
– Natural number?
– Integer?
– Non-negative real number?
– Boolean?
– ArrayList?

• The loop terminates if the variable values are 
(a subset of) a well-ordered set
– Ordered set
– Every non-empty subset has least element

Decrementing	Function

• Decrementing function D(X)
– Maps state (program variables) to some well-ordered set
– This greatly simplifies reasoning about termination

• Consider:  while (b) S;
• We seek D(X), where X is the state, such that

1. An execution of the loop reduces the function’s value:
LI & b {S} D(Xpost) < D(Xpre) 

2. If the function’s value is minimal, the loop terminates:
(LI & D(X) = minVal) Þ ¬b

Proving	Termination

• Is	“x-y”	a	good	decrementing	function?
1. Does	the	loop	reduce	the	decrementing	function’s	value?

//	assert	(y	!=	x);	let	dpre =	(x	– y)
y	=	y	+	1;
//	assert	(xpost – ypost)	<	dpre

2. If	the	function	has	minimum	value,	does	the	loop	exit?
(x	>=	y	&	x	– y	=	0)	à (x	=	y)

// assert x ³ 0 & y = 0
// Loop invariant: x ³ y
// Loop decrements:  (x-y)
while (x != y) {

y = y + 1;
}
// assert x = y



Choosing	Loop	Invariant
• For straight-line code, the wp (weakest precondition) 

function gives us the appropriate property
• For loops, you have to guess:

– The loop invariant
– The decrementing function

• Then, use reasoning techniques to prove the goal property
• If the proof doesn't work:

– Maybe you chose a bad invariant or decrementing function
• Choose another and try again

– Maybe the loop is incorrect
• Fix the code

• Automatically choosing loop invariants is a research topic

In	practice

I	don’t	routinely	write	loop	invariants

I	do	write	them	when	I	am	unsure	about	a	loop	and	
when	I	have	evidence	that	a	loop	is	not	working

– Add	invariant	and	decrementing	function	if	missing
– Write	code	to	check	them
– Understand	why	the	code	doesn't	work
– Reason	to	ensure	that	no	similar	bugs	remain

More	on	Induction

• Induction	is	a	very	powerful	tool

Proof	by	induction:	Base	Case

For	n=1,	

2n =1+ 2k−1
k=1

n

∑

1+ 2k−1
k=1

1

∑ =1+ 20 =1+1= 2 = 21

Inductive	Step

Assume																										and	show	that	2m =1+ 2k−1
k=1

m

∑ 2m+1 =1+ 2k−1
k=1

m+1

∑

2m+1 =1+ 2k−1
k=1

m+1

∑ =1+ 2k−1
k=1

m

∑ + 2m = 2m + 2m = 2×2m = 2m+1



Is	Induction	Too	Powerful? Next	time

• Using	theorem	provers	to	reason	about	programs
• We’ll	use	Z3
• Take	a	look	at	the	tutorial	before	class:
https://rise4fun.com/Z3/tutorial/guide


