Reasoning about programs

Last time

Coming up

• This Thursday, Nov 30:
 4th in-class exercise
 – sign up for group on moodle
 – bring laptop to class
• Final projects:
 – final project presentations: Tue Dec 12, in CS 150
 final submission due: Fri Dec 15, 11:55 PM

Project Final Presentations

• December 12, 10AM-11:15AM
• CS 150 (in the CS building)
• Think of this as a science fair.
• Each team will get an easel. Bring a poster or printed slides. And laptop for demo.
• Describe and discuss the solution, and demo the implementation.
• Will see (at least) 2 separate judges.
• Chance to see other projects too!

Project Final Presentations

• December 12, 10AM-11:15AM
• CS 150 (in the CS building)
• Think of this as a science fair.
• Each team will get an easel. Bring a poster or printed slides. And laptop for demo.
• Describe and discuss the solution, and demo the implementation.
• Will see (at least) 2 separate judges.
• Chance to see other projects too!
Reasoning about programs

Ways to verify your code

• The hard way:
 – Make up some inputs
 – If it doesn’t crash, ship it
 – When it fails in the field, attempt to debug

• The easier way:
 – Reason about possible behavior and desired outcomes
 – Construct simple tests that exercise that behavior

• Another way that can be easy
 – Prove that the system does what you want
 • Rep invariants are preserved
 • Implementation satisfies specification
 – Proof can be formal or informal (we will be informal)
 – Complementary to testing

Reasoning about code

• Determine what facts are true during execution
 – \(x > 0 \)
 – for all nodes \(n \): \(n\text{.next}\text{.previous} == n \)
 – array \(a \) is sorted
 – \(x + y == z \)
 – if \(x != null \), then \(x\text{.a} > x\text{.b} \)

• Applications:
 – Ensure code is correct (via reasoning or testing)
 – Understand why code is incorrect

Forward reasoning

• You know what is true before running the code

 What is true after running the code?

• Given a precondition, what is the postcondition?

• Applications:
 Representation invariant holds before running code
 Does it still hold after running code?

• Example:
 // precondition: \(x \) is even
 \(x = x + 3; \)
 \(y = 2x; \)
 \(x = 5; \)
 // postcondition: ??
Backward reasoning

- You know what you want to be true after running the code. What must be true beforehand in order to ensure that?
- Given a postcondition, what is the corresponding precondition?

Applications:

- (Re-)establish rep invariant at method exit: what’s required?
- Reproduce a bug: what must the input have been?

Example:

```plaintext
// precondition: ??
x = x + 3;
y = 2x;
x = 5;
// postcondition: y > x
```

- How did you (informally) compute this?

Forward vs. backward reasoning

- **Forward reasoning** is more intuitive for most people
 - Helps understand what will happen (simulates the code)
 - Introduces facts that may be irrelevant to goal
 - Set of current facts may get large
 - Takes longer to realize that the task is hopeless
- **Backward reasoning** is usually more helpful
 - Helps you understand what should happen
 - Given a specific goal, indicates how to achieve it
 - Given an error, gives a test case that exposes it

Forward reasoning example

```plaintext
assert x >= 0;
i = x;
    // x ≥ 0 & i = x
z = 0;
    // x ≥ 0 & i = x & z = 0
while (i != 0) {
    z = z + 1;
    i = i - 1;
    // x ≥ 0 & i = 0 & z = x
}
assert x == z;
```

Backward reasoning

Technique for backward reasoning:

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)
Assignment

// precondition: ??
x = e;
// postcondition: Q

Precondition: Q with all (free) occurrences of x replaced by e

- Example:
 // assert: ??
x = x + 1;
 // assert x > 0

Precondition = (x+1) > 0

Method calls

// precondition: ??
x = foo();
// postcondition: Q

- If the method has no side effects: just like ordinary assignment
- If it has side effects: an assignment to every variable it modifies

Use the method specification to determine the new value

If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Essentially case analysis:

wp("if (b) S1 else S2", Q) =

(b ⇒ wp("S1", Q)
 ∧ ¬ b ⇒ wp("S2", Q))

If: an example

// precondition: ??
if (x == 0) {
 x = x + 1;
} else {
 x = (x/x);
}
// postcondition: x ≥ 0

Precondition:

wp("if (x==0) {x = x+1} else {x = x/x}" , x ≥ 0) =

= (x = 0 ⇒ wp("x = x+1", x ≥ 0)
 & x ≠ 0 ⇒ wp("x = x/x", x ≥ 0))

= (x = 0 ⇒ x + 1 ≥ 0) & (x ≠ 0 ⇒ x/x ≥ 0)

= 1 ≥ 0 & 1 ≥ 0

= true
Reasoning About Loops

- A loop represents an unknown number of paths
 - Case analysis is problematic
 - Recursion presents the same issue
- Cannot enumerate all paths
 - That is what makes testing and reasoning hard

Loops: values and termination

1) Pre-assertion guarantees that \(x \geq y \)
2) Every time through loop
 - \(x \geq y \) holds and, if body is entered, \(x > y \)
 - \(y \) is incremented by 1
 - \(x \) is unchanged
 - Therefore, \(y \) is closer to \(x \) (but \(x \geq y \) still holds)
3) Since there are only a finite number of integers between \(x \) and \(y \), \(y \) will eventually equal \(x \)
4) Execution exits the loop as soon as \(x = y \)

Understanding loops by induction

- We just made an inductive argument
 - Inducting over the number of iterations
- Computation induction
 - Show that conjecture holds if zero iterations
 - Assume it holds after \(n \) iterations and show it holds after \(n+1 \)
- There are two things to prove:
 - Some property is preserved (known as “partial correctness”)
 - loop invariant is preserved by each iteration
 - The loop completes (known as “termination”)
 - The “decrementing function” is reduced by each iteration

Loop invariant for the example

- So, what is a suitable invariant?
- What makes the loop work?
 - Loop Invariant (LI) = \(x \geq y \)

1) \(x \geq 0 \) & \(y = 0 \Rightarrow LI \)
2) \(LI \) & \(x \neq y \) \(\{ y = y + 1; \} \) \(LI \)
3) \((LI \) & \(\neg(x \neq y) \) \(\Rightarrow x = y \)
Is anything missing?

• We have not established that the loop terminates
• Suppose that the loop always reduces some variable’s value. Does the loop terminate if the variable is a
 – Natural number?
 – Integer?
 – Non-negative real number?
 – Boolean?
 – ArrayList?
• The loop terminates if the variable values are (a subset of) a well-ordered set
 – Ordered set
 – Every non-empty subset has least element

Does the loop terminate?

Decrementing Function

• Decrementing function D(X)
 – Maps state (program variables) to some well-ordered set
 – This greatly simplifies reasoning about termination
• Consider: while (b) S;
• We seek D(X), where X is the state, such that
 1. An execution of the loop reduces the function’s value:
 LI & b {S} D(X_{post}) < D(X_{pre})
 2. If the function’s value is minimal, the loop terminates:
 (LI & D(X) = minVal) ⇒ ¬b

Proving Termination

• Is “x-y” a good decrementing function?
 1. Does the loop reduce the decrementing function’s value?
 // assert (y != x); let d_{pre} = (x-y)
 y = y + 1;
 // assert (x_{post} - y_{post}) < d_{pre}
 2. If the function has minimum value, does the loop exit?
 (x >= y & x - y = 0) ⇒ (x = y)
Choosing Loop Invariant

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to guess:
 - The loop invariant
 - The decrementing function
- Then, use reasoning techniques to prove the goal property
- If the proof doesn't work:
 - Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
 - Maybe the loop is incorrect
 - Fix the code
- Automatically choosing loop invariants is a research topic

In practice

I don’t routinely write loop invariants

I do write them when I am unsure about a loop and when I have evidence that a loop is not working
 - Add invariant and decrementing function if missing
 - Write code to check them
 - Understand why the code doesn’t work
 - Reason to ensure that no similar bugs remain

More on Induction

- Induction is a very powerful tool
 \[2^n = 1 + \sum_{k=1}^{n} 2^{k-1} \]

Proof by induction: Base Case

For \(n=1 \),

\[1 + \sum_{k=1}^{1} 2^{k-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1 \]

Inductive Step

Assume \(2^m = 1 + \sum_{k=1}^{m} 2^{k-1} \) and show that \(2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1} \)

\[2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1} = 1 + \sum_{k=1}^{m} 2^{k-1} + 2^m = 2^m + 2^m = 2 \times 2^m = 2^{m+1} \]
Is Induction Too Powerful?

Next time

• Using theorem provers to reason about programs
• We’ll use Z3
• Take a look at the tutorial before class: