
Requirements status

• Everyone’s	working	hard	on	projects
• Project	progress	meetings:	November	9
• Tomorrow	(Oct	27),	9	AM,	you	will	receive	an	
email	for	signing	up	for	meeting	slots

• Homework	2	posted:
https://people.cs.umass.edu/~rjust/courses/2017Fall/CS520/hw2.pdf

last	time

Debugging
• Use	languages	/	tools	/	libraries	to	rule	out	
errors

• Get	it	right	the	first	time	through	design	and	
careful	thinking

• Code	defensively	to	make	errors	visible	as	
soon	as	possible

• Debug	as	a	last	resort

Requirements

Lecture	outline

• What are requirements?
• How can we gather requirements?
• How can we document requirements?
• Use cases

Lecture	outline

è What are requirements?
• How can we gather requirements?
• How can we document requirements?
• Use cases

Software	requirements

• requirements:	specify	what	to	build
– "what"	and	not	"how"

– the	system	design,	not	the	software	design

– the	problem,	not	the	(detailed)	solution

“what	vs.	how”:	it’s	relative

• “One	person’s	what	is	another	person’s	how.”
– “One	person’s	constant	is	another	person’s	
variable.”	[Perlis]

What How

Parsing Stack

Stack Array	or	Linked List

Linked	List Doubly Linked	List

Why	requirements?
• Some goals of doing requirements:

– understand precisely what is required of the software
– communicate this understanding precisely to all

development parties
– control production to ensure that system meets specs

(including changes)

• Roles	of	requirements
– customers:	show	what	should	be	delivered;	contractual	base
– managers:	a	scheduling	/	progress	indicator
– designers:	provide	a	spec	to	design
– coders:	list	a	range	of	acceptable	implementations	/	output
– QA	/	testers:	a	basis	for	testing,	validation,	verification

Cockburn's	requirements	list
Requirements	Outline:	A	template	of	all	functional	requirements

1. purpose	and	scope
2. terms	/	glossary
3. use	cases
4. technology	used
5. other

5a. development	process	-
participants,	values	(fast-good-cheap),
visibility,	competition,	dependencies

5b. business	rules	/	constraints
5c. performance	demands
5d. security	(now	a	hot	topic),	documentation
5e. usability
5f. portability
5g. unresolved	/	deferred

6. human	issues:	legal,	political,	organizational,	training

How do we gather requirements?
Let’s start with two facts:
1. Standish group survey of over 8,000

projects, the number one reason that
projects succeed is user involvement

2. Easy access to end users is one of three
critical success factors in rapid-
development projects (McConnell)

Typical	situation

How	do	we	specify	requirements?

• Prototype
• Use	cases
• List	of	features
• Paper	(UI)	prototype	

• System	Requirements	Specification	Document

A good use case
• starts with a request from an actor to the system
• ends with the production of all answers to the request
• defines the interactions (between system and actors)

related to the function
• from the actor's point of view, not the system's
• focuses on interaction, not internal system activities
• doesn't describe the GUI in detail
• has 3-9 steps in the main success scenario
• is easy to read
• summary fits on a page

Use	cases

A	use	case	characterizes	a	way	of	using	a	system.		
It	represents	a	dialog	between	a	user	and	the	

system,	from	the	user’s	point	of	view.

Example:
Jane	has	a	meeting	at	10AM;	when	Jim	tries	
to	schedule	another	meeting	for	her	at	10AM,	

he	is	notified	about	the	conflict	

Use case terminology
Actor: someone who interacts with the system

Primary actor: person who initiates the action

Goal: desired outcome of the primary actor

Level: top or implementation

Who	are	some	possible	actors?

Do use cases capture these?
Which of these requirements should be

represented directly in a use case?

1. Order cost = order item costs × 1.06 (tax)
2. Promotions may not run longer than 6 months.
3. Customers only become Preferred after 1 year
4. A customer has one and only one sales contact
5. Response time is less than 2 seconds
6. Uptime requirement is 99.8%
7. Number of simultaneous users will be 200 max

Three	ways	to	write	down	use	cases

• Diagrams
– unified	modeling	language	(UML)

• Informal	language

• Formal	specification

Use case summary diagrams
The overall list of your system's use cases

can be drawn as high-level diagrams, with:
– actors as stick-men, with their names (nouns)
– use cases as ellipses with their names (verbs)
– line associations, connecting an actor to a use

case in which that actor participates
– use cases can be connected to other cases

that they use / rely on

library patron

check out book

Use	case	summary	diagrams

Actor Goal
Library Patron Search for a book

Check out a book

Return a book

Librarian Search for a book

Check availability

Request a book from
another library

It	can	be	useful	to	create	a	list	or	table	of	
primary	actors	and	their	"goals"

Use case summary diagram 1
Library System

Search

Record new

Reserve

Check out

Librarian

Library Patron

Gen catalog

Use case summary diagram 2

Investment
System

Informal use case
Informal use case is written as a paragraph

describing the scenario/interaction

• Example:
– Patron Loses a Book

The library patron reports to the librarian that she has
lost a book. The librarian prints out the library record
and asks patron to speak with the head librarian, who
will arrange for the patron to pay a fee. The system will
be updated to reflect lost book, and patron's record is
updated as well. The head librarian may authorize
purchase of a replacement tape.

Structured	natural	language

• I
– I.A

• I.A.ii
– I.A.ii.3

» I.A.ii.3.q

Although	not	ideal,	it	is	almost	always	
better	than	unstructured	natural	language

Formal	use	case
Goal Patron wishes to reserve a book using the online

catalog

Primary
actor

Patron

Scope Library system

Level User

Precondition Patron is at the login screen

Success end
condition

Book is reserved

Failure end
condition

Book is not reserved

Trigger Patron logs into system

Main Success
Scenario

1. Patron enters account and password
2. System verifies and logs patron in
3. System presents catalog with search screen
4. Patron enters book title
5. System finds match and presents location

choices to patron
6. Patron selects location and reserves book
7. System confirms reservation and re-presents

catalog
Extensions
(error

scenarios)

2a. Password is incorrect
2a.1 System returns patron to login screen
2a.2 Patron backs out or tries again

5a. System cannot find book
5a.1 …

Variations
(alternative

scenarios)

4. Patron enters author or subject

Steps	to	creating	a	use	case

• Identify	actors	and	their	goals
• Write	the	success	scenario

– identify	happy	path
• List	the	failure	extensions

– almost	every	step	can	fail
• List	the	variations

– forks	in	the	scenario

recycling
The course of events starts when the customer presses

the “Start-Button” on the customer panel. The panel’s
built-in sensors are thereby activated.
The customer can now return deposit items via the

customer panel. The sensors inform the system that an
object has been inserted, they also measure the deposit
item and return the result to the system.
The system uses the measurement result to determine

the type of deposit item: can, bottle or crate.
The day total for the received deposit item type is

incremented as is the number of returned deposit items
of the current type that this customer has returned…

Another	example:	buy	a	product
http://ontolog.cim3.net/cgi-bin/wiki.pl?UseCasesSimpleTextExample

1. Customer	browses	through	catalog	and	selects	items	to	buy
2. Customer	goes	to	check	out
3. Customer	fills	in	shipping	information
4. System	presents	full	pricing	information,	including	shipping
5. Customer	fills	in	credit	card	information
6. System	authorizes	purchase
7. System	confirms	sale	immediately
8. System	sends	confirming	email	to	customer
• Alternative:	Authorization	Failure

– At	step	6,	system	fails	to	authorize	credit	purchase
– Allow	customer	to	re-enter	credit	card	information	and	re-try

• Alternative:	Regular	Customer
– 3a.	System	displays	current	shipping	information,	pricing	information,	and	last	four	

digits	of	credit	card	information
– 3b.	Customer	may	accept	or	override	these	defaults
– Return	to	primary	scenario	at	step	6

Pulling it all together
How much is enough?

You have to find a balance.
comprehensible vs. detailed
graphics vs. explicit wording and tables
short and timely vs. complete and late

Your	balance	may	differ	with	each	customer	
depending	on	your	relationship	and	flexibility

