gt status

e Homework 1 submitted

* Homework 2 will be posted October 26
— due November 16, 9AM

* Projects underway
— project status check-in meetings November 9

Steps for project success

System-building project Research-centered project
 Formulate what you’re goingtodo ¢ Formulate what you’re going to do

e Design the system you will build Design the experiment you will

* Develop a plan perform

(assign team members jobs) e |dentify the necessary artifacts to
° Specrfy your System perform the experiment
* Create a testing plan * Develop aplan

. Implement (prototype) (assign team members jobs)

e Test

e Document * Prototype the experiment
e Build necessary infrastructure

e Learn state-of-the-art

Milestones

* November 9:
10-min meeting with an instructor:
— Describe your plan / proposal for the project
— Tell us what you will do
— Show early design documents
— Describe team member roles

Deliverables

git repository

— code

— tests

— documentation

final poster presentation with 10-minute
demo

final report, if appropriate
optional: continuous integration testing

Debugging

Ways to get your code right

Validation

— Purpose is to uncover problems and increase confidence
— Combination of reasoning and test

Debugging

— Finding out why a program is not functioning as intended
Defensive programming

— Programming with validation and debugging in mind
Testing # debugging

— test: reveals existence of problem

— debug: pinpoint location + cause of problem

A bug — September 9, 1947

74 US Navy Admiral Grace Murray Hopper, working on Mark | at Harvard
‘1/'4 BREEESS
D o QA&*‘O\« M {/.17vo ?.032 ¥y7 015 ,
9.087 §YC T95 <ok

000 . s\v‘of} = oahom ./
13uc (03 Me ~me EFSertRL) cetod) ¥.4/5 72.5057(._)
B3y PRO > 2. 130yq26YiS

Cowdk 2430676 PNp
RIous i g2t belinza ./a.JJ _prwJ ‘T"‘J Jeob” -5 1
im T D T S B TR Ty 2 |Feom]
=g
1799 >Td,|"f=-¢l Co,sw\e : J)bk(Snme c-kcd:)
1S 25 Claited ll‘ul"{’r c\:{er Testh. |
1Sas | - (el "‘70 Fon. [¥

\Mo'ﬁ) in (2 \cw\

’g/do Q}‘_‘\TS.Y QC"‘\& CCLSe. o-f bucl Lc.'m‘ {QQ“J\.

A Bug’s Life

Defect — mistake committed by a human
Error — incorrect computation

Failure — visible error: program violates its
specification

Debugging starts when a failure is observed
— Unit testing

— Integration testing
— In the field

1.

2.

3.

4.

Defense in depth

Make errors impossible
— Java makes memory overwrite bugs impossible

Don’t introduce defects
— Correctness: get things right the first time

Make errors immediately visible
— Local visibility of errors: best to fail immediately
— Example: checkRep() routine to check representation invariants

Last resort is debugging
— Needed when effect of bug is distant from cause

— Design experiments to gain information about bug

* Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.

* Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

First defense: Impossible by design

* |[n the language

— Java makes memory overwrite bugs impossible

* |In the protocols/libraries/modules

— TCP/IP will guarantee that data is not reordered
— Biglnteger will guarantee that there will be no overflow

* |n self-imposed conventions

— Hierarchical locking makes deadlock bugs impossible

— Banning the use of recursion will make infinite recursion/insufficient
stack bugs go away

— Immutable data structures will guarantee behavioral equality
— Caution: You must maintain the discipline

Second defense: correctness

e Get things right the first time
— Don’t code before you think! Think before you code.

— If you're making lots of easy-to-find bugs,
you're also making hard-to-find bugs

— don't use compiler as crutch
e Especially true, when debugging is going to be hard
— Concurrency
— Difficult test and instrument environments
— Program must meet timing deadlines
e Simplicity is key
— Modularity
e Divide program into chunks that are easy to understand

* Use abstract data types with well-defined interfaces
* Use defensive programming; avoid rep exposure
— Specification

* Write specs for all modules, so that an explicit, well-defined contract
exists between each module and its clients

Third defense: immediate visibility

* |f we can't prevent bugs, we can try to localize them to
a small part of the program

— Assertions: catch bugs early, before failure has a chance to
contaminate (and be obscured by) further computation

— Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless
it's in the test driver)

— Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

* When localized to a single method or small module,
bugs can be found simply by studying the program text

Benefits of immediate visibility

* Key difficulty of debugging is to find the code fragment
responsible for an observed problem

— A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

 The earlier a problem is observed, the easier it is to fix

— For example, frequently checking the rep invariant helps
the above problem

* General approach: fail-fast
— Check invariants, don't just assume them
— Don't try to recover from bugs — this just obscures them

How to debug a complle

Program %
 Multiple passes

— Each operate on a complex IR |

— Lot of information passing s

t

— Very complex Rep Invariant *
— Code generation at the end

* Bug types:
— Compiler crashes @ *
— Generated program is buggy %. e

@7 Executable

f
J“

/;
i}

Don't hide bugs

// Kk is guaranteed to be present in array a
inti=0;
while (true) {

if (a[i]==k) break;

i++;

}

This code fragment searches an array a for a value k.
Value is guaranteed to be in the array

If that guarantee is broken (by a bug),
the code throws an exception and dies.

Temptation: make code more “robust” by not failing

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {

if (a[i]==k) break;

i++;

}

* Now at least the loop will always terminate
— But no longer guarantees that a[i]==k
— If rest of code relies on this, then problems arise later

— All we've done is obscure the link between the bug's
origin and the eventual erroneous behavior it causes.

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {
if (a[i]==k) break;
I++;
}

assert (i<a.length) :

e Assertions let us document and check
Invariants

Abort program as soon as problem is detected

Inserting Checks

* Insert checks galore with an intelligent
checking strategy

— Precondition checks
— Consistency checks
— Bug-specific checks
* Goal: stop the program as close to bug as
possible

Use debugger to see where you are, explore
program a bit

Checking For Preconditions

// K Is guaranteed to be present in a
inti=0;
while (i<a.length) {
if (a[i]==k) break;
i++;
}

assert (i<a.length) : "key not found"™:

Precondition violated? Get an assertion!

Downside of Assertions

static int sum(Integer a[], List<Integer> index) {
ints =0;
for (e:index) {
assert(e < a.length, “Precondition violated”);
s =s + ale];

}

return s;

}

Assertion not checked until we use the data
Fault occurs when bad index inserted into list

May be a long distance between fault activation and error detection

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {
assert(e < a.length, “Inconsistent Data Structure™);

}
}

. Perform check after all updates to minimize
distance between bug occurrence and bug
detection

. Can also write a single procedure to check ALL
data structures, then scatter calls to this
procedure throughout code

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {
for (e:index) {
assert(e = 1234, “Inconsistent Data Structure”);

}
}

Bug shows up as 1234 in list
Check for that specific condition

Checks In Production Code

* Should you include assertions and checks in production code?

— Yes: stop program if check fails —don’t want to
take chance program will do something wrong

— No: may need program to keep going, maybe bug
does not have such bad consequences

— Correct answer depends on context!

* Ariane 5 — program halted because of overflow in unused value,
exception thrown but not handled until top level, rocket crashes...

Ariane 5 rocket (1996)

T N

