
git status

• Homework	1	submitted
• Homework	2	will	be	posted	October	26

– due	November	16,	9AM
• Projects	underway

– project	status	check-in	meetings	November	9

Steps	for	project	success
System-building	project
• Formulate	what	you’re	going	to	do
• Design	the	system	you	will	build
• Develop	a	plan	

(assign	team	members	jobs)
• Specify	your	system
• Create	a	testing	plan
• Implement	(prototype)
• Test
• Document

Research-centered	project
• Formulate	what	you’re	going	to	do
• Design	the	experiment	you	will	

perform
• Identify	the	necessary	artifacts	to	

perform	the	experiment
• Develop	a	plan	

(assign	team	members	jobs)
• Learn	state-of-the-art
• Prototype	the	experiment
• Build	necessary	infrastructure

Milestones

• November	9:	
10-min	meeting	with	an	instructor:

– Describe	your	plan	/	proposal	for	the	project
– Tell	us	what	you	will	do
– Show	early	design	documents
– Describe	team	member	roles

Deliverables

• git repository
– code
– tests
– documentation	

• final	poster	presentation	with	10-minute	
demo

• final	report,	if	appropriate
• optional:	continuous	integration	testing

Debugging

Ways	to	get	your	code	right
• Validation

– Purpose	is	to	uncover	problems	and	increase	confidence
– Combination	of	reasoning	and	test

• Debugging
– Finding	out	why	a	program	is	not	functioning	as	intended

• Defensive	programming
– Programming	with	validation	and	debugging	in	mind

• Testing	≠ debugging
– test: reveals	existence	of	problem
– debug: pinpoint	location	+	cause	of	problem

A	bug	– September	9,	1947
US	Navy	Admiral	Grace	Murray	Hopper,	working	on	Mark	I	at	Harvard

A	Bug’s	Life

• Defect	– mistake	committed	by	a	human
• Error	– incorrect	computation
• Failure	– visible	error:		program	violates	its	
specification

• Debugging	starts	when	a	failure	is	observed
– Unit	testing
– Integration	testing
– In	the	field

Defense	in	depth
1. Make	errors	impossible

– Java	makes	memory	overwrite	bugs	impossible
2. Don’t	introduce	defects

– Correctness:	get	things	right	the	first	time
3. Make	errors	immediately	visible

– Local	visibility	of	errors:	best	to	fail	immediately
– Example:		checkRep()	routine	to	check	representation	invariants

4. Last	resort is	debugging
– Needed	when	effect	of	bug	is	distant	from	cause
– Design	experiments to	gain	information	about	bug

• Fairly	easy	in	a	program	with	good	modularity,	representation	hiding,	
specs,	unit	tests	etc.

• Much	harder	and	more	painstaking	with	a	poor	design,	e.g.,	with	rampant	
rep	exposure

First	defense:	Impossible	by	design

• In	the	language
– Java	makes	memory	overwrite	bugs	impossible

• In	the	protocols/libraries/modules
– TCP/IP	will	guarantee	that	data	is	not	reordered
– BigInteger	will	guarantee	that	there	will	be	no	overflow

• In	self-imposed	conventions
– Hierarchical	locking	makes	deadlock	bugs	impossible
– Banning	the	use	of	recursion	will	make	infinite	recursion/insufficient	

stack	bugs	go	away
– Immutable	data	structures	will	guarantee	behavioral	equality
– Caution:		You	must	maintain	the	discipline	

Second	defense:	correctness
• Get	things	right	the	first	time

– Don’t	code	before	you	think!	Think	before	you	code.
– If	you're	making	lots	of	easy-to-find	bugs,

you're	also	making	hard-to-find	bugs	
– don't	use	compiler	as	crutch

• Especially	true,	when	debugging	is	going	to	be	hard
– Concurrency
– Difficult	test	and	instrument	environments
– Program	must	meet	timing	deadlines

• Simplicity	is	key
– Modularity

• Divide	program	into	chunks	that	are	easy	to	understand
• Use	abstract	data	types	with	well-defined	interfaces
• Use	defensive	programming;	avoid	rep	exposure

– Specification
• Write	specs	for	all	modules,	so	that	an	explicit,	well-defined	contract	
exists	between	each	module	and	its	clients

Third	defense:	immediate	visibility
• If	we	can't	prevent	bugs,	we	can	try	to	localize	them	to	
a	small	part	of	the	program
– Assertions:	catch	bugs	early,	before	failure	has	a	chance	to	
contaminate	(and	be	obscured	by)	further	computation

– Unit	testing:	when	you	test	a	module	in	isolation,	you	can	
be	confident	that	any	bug	you	find	is	in	that	unit	(unless	
it's	in	the	test	driver)

– Regression	testing:	run	tests	as	often	as	possible	when	
changing	code.		If	there	is	a	failure,	chances	are	there's	a	
mistake	in	the	code	you	just	changed

• When	localized	to	a	single	method	or	small	module,	
bugs	can	be	found	simply	by	studying	the	program	text

Benefits	of	immediate	visibility
• Key	difficulty	of	debugging	is	to	find	the	code	fragment	
responsible	for	an	observed	problem	
– A	method	may	return	an	erroneous	result,	but	be	itself	
error	free,	if	there	is	prior	corruption	of	representation

• The	earlier	a	problem	is	observed,	the	easier	it	is	to	fix
– For	example,	frequently	checking	the	rep	invariant	helps	
the	above	problem

• General	approach:	fail-fast
– Check	invariants,	don't	just	assume	them
– Don't	try	to	recover	from	bugs	– this	just	obscures	them

How	to	debug	a	compiler

• Multiple	passes
– Each	operate	on	a	complex	IR
– Lot	of	information	passing
– Very	complex	Rep	Invariant	
– Code	generation	at	the	end

• Bug	types:
– Compiler	crashes
– Generated	program	is	buggy

Program

Front	End

Intermediate
Representation

Optimization

Intermediate
Representation

Optimization

Intermediate
Representation

Code	GenerationExecutableRUN

J
L

Don't	hide	bugs
// k is guaranteed to be present in array a
int i = 0;
while (true) {

if (a[i]==k) break;
i++;

}

• This	code	fragment	searches	an	array	a for	a	value	k.	
• Value	is	guaranteed	to	be	in	the	array
• If	that	guarantee	is	broken	(by	a	bug),	
the	code	throws	an	exception	and	dies.

• Temptation:	make	code	more	“robust”	by	not	failing

Don't	hide	bugs
// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}

• Now	at	least	the	loop	will	always	terminate
– But	no	longer	guarantees	that	a[i]==k
– If	rest	of	code	relies	on	this,	then	problems	arise	later	
– All	we've	done	is	obscure	the	link	between	the	bug's	
origin	and	the	eventual	erroneous	behavior it	causes.

Don't	hide	bugs
// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}
assert (i<a.length) : "key not found";

• Assertions	let	us	document	and	check	
invariants
Abort	program	as	soon	as	problem	is	detected

Inserting	Checks

• Insert	checks	galore	with	an	intelligent	
checking	strategy
– Precondition	checks
– Consistency	checks
– Bug-specific	checks

• Goal:	stop	the	program	as	close	to	bug	as	
possible
Use	debugger	to	see	where	you	are,	explore	
program	a	bit

Checking	For	Preconditions

// k is guaranteed to be present in a
int i = 0;
while (i<a.length) {

if (a[i]==k) break;
i++;

}
assert (i<a.length) : "key not found";

Precondition	violated?	Get	an	assertion!

Downside	of	Assertions
static int sum(Integer a[], List<Integer> index) {

int s = 0;
for (e:index) {

assert(e < a.length, “Precondition violated”);
s = s + a[e];

}
return s;

}
Assertion	not	checked	until	we	use	the	data
Fault	occurs	when	bad	index	inserted	into	list
May	be	a	long	distance	between	fault	activation	and	error	detection

checkRep:	Data	Structure	Consistency	Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {

assert(e < a.length, “Inconsistent Data Structure”);
}

}

• Perform	check	after	all	updates	to	minimize	
distance	between	bug	occurrence	and	bug	
detection

• Can	also	write	a	single	procedure	to	check	ALL	
data	structures,	then	scatter	calls	to	this	
procedure	throughout	code

Bug-Specific	Checks
static void check(Integer a[], List<Integer> index) {

for (e:index) {
assert(e != 1234, “Inconsistent Data Structure”);

}
}

Bug	shows	up	as	1234	in	list
Check	for	that	specific	condition

Checks	In	Production	Code
• Should	you	include	assertions	and	checks	in	production	code?	

– Yes:	stop	program	if	check	fails	– don’t	want	to	
take	chance	program	will	do	something	wrong

– No:	may	need	program	to	keep	going,	maybe	bug	
does	not	have	such	bad	consequences

– Correct	answer	depends	on	context!
• Ariane 5	– program	halted	because	of	overflow	in	unused	value,	

exception	thrown	but	not	handled	until	top	level,	rocket	crashes…

Ariane	5	rocket	(1996)

