CS 520
Theory and Practice of Software Engineering
Fall 2017

Experimental design and validity

October 12, 2017
Today

- The scientific method.
- Internal, external, and construct validity.
- Reasoning about two empirical studies.
- Paper discussion:
 Views on Internal and External Validity in Empirical Software Engineering
The scientific method

Question
The scientific method

Question → Observations
The scientific method

1. Question
2. Observations
3. Hypothesis
4. Predictions
5. Experiment
The scientific method

- Question
- Observations
- Hypothesis
- Experiment
- Predictions
The scientific method

1. Question
2. Observations
3. Hypothesis
4. Experiment
5. Predictions

Falsifiable
The scientific method

- Question
- Observations
- Hypothesis
- Predictions
- Experiment

- Falsifiable
- Repeatable
- Data collection and analysis!
The scientific method: common mistake

Question → Data collection → Observations → Hypothesis → Predictions → Data Analysis → Predictions
"If you torture the data long enough, it will confess."
(Ronald Harry Coase)
Internal, external, and construct validity

Internal validity

External validity

Construct validity
Internal, external, and construct validity

Internal validity
How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?

External validity
How well does the experimental design generalize to the real world (i.e., other populations, situations, etc.)?

Construct validity
How well does the experimental design measure what it is supposed to measure? Does it use the right metrics and collect the right measurements?
Internal validity: a classic example

Internal validity
How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?

Classic example
Murder rates and ice cream sales are highly positively correlated. Possible explanations?
Internal validity: a classic example

Internal validity
How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?

Classic example
Murder rates and ice cream sales are highly positively correlated. Possible explanations?

- Possibilities:
 - Resurrected zombies primarily feed off ice cream
 - Excessive ice cream consumption makes others jealous
Internal validity: a classic example

Internal validity
How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?

Classic example
Murder rates and ice cream sales are highly positively correlated. Possible explanations?

- Possibilities:
 - Resurrected zombies primarily feed off ice cream
 - Excessive ice cream consumption makes others jealous

Actually, the weather is a non-controlled confound!
Threats to validity: example experiment

Research question:
Does coffee consumption improve code quality?

Methodology
- I program on project 1 on Mondays with coffee.
- I program on project 2 on Fridays without coffee.
- Measure code quality in number of defects I encounter.
- Measure coffee consumption in dollars spent on coffee beans, as listed on my grocery-shopping receipt.
Threats to validity: example experiment

Research question:
Does coffee consumption improve code quality?

Methodology
● I program on project 1 on Mondays with coffee.
● I program on project 2 on Fridays without coffee.
● Measure code quality in number of defects I encounter.
● Measure coffee consumption in dollars spent on coffee beans, as listed on my grocery-shopping receipt.

What are threats to construct, internal, and external validity?
Another empirical study

Goal:
Studying the relationship between time spent on studying Java and success rate in completing coding assignment.

Methodology:
● 75 participants are randomly selected in front of LGRT.
● Each participant is given a high-level overview of the study.
● Each participant decides on how long to study before attempting to solve any coding assignment.
● Each participant solves as many coding assignments as possible in one hour (after studying).
Conclusion: Spending more time on learning Java makes you a worse Java programmer.
Overall results

Something is fishy… Is there a dead salmon in here somewhere?

Goal:
- Each group comes up with a testable hypothesis about the data.
- Each group comes up with 2 methodology questions.
Results per group (field of study)

This phenomenon is called: Simpson’s paradox.
Paper discussion

Views on Internal and External Validity in Empirical Software Engineering

High-level topics
- Internal validity
- External validity
- Construct validity

Open discussion
- Is there a tradeoff between internal and external validity?
- Should we maximize internal or external validity?
- How representative are students as developers?