Recap

- Overview of the scientific method
- Basics of statistical analysis
 - Why do we need statistical analysis?
 - Why is this particularly important for randomized algorithms?
 - What’s the difference between statistically significant and practically significant?
 - What’s the difference between parametric and non-parametric statistics?
 - What is internal, external, and construct validity?

Recap: the scientific method

- Question
- Observations
- Hypothesis
- Experiment
- Predictions

- Falsifiable
- Data collection and analysis!
- Repeatable
Recap: basics of statistical analyses

Example: Number of faults detected by two techniques A and B
A: 5 3 6 3 3 avg = 4.0
B: 0 0 0 0 22 avg = 4.4

- Why do we need statistical analysis?
- Why is this particularly important for randomized algorithms?
- What's the difference between statistically significant and practically significant?
- What's the difference between parametric and non-parametric statistics?
- What is internal, external, and construct validity?
<table>
<thead>
<tr>
<th>External and construct validity</th>
<th>Internal validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>External validity</td>
<td>Internal validity</td>
</tr>
<tr>
<td>How well does the experimental design generalize to the real world (i.e., other populations, situations, etc.)?</td>
<td>How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?</td>
</tr>
<tr>
<td>Construct validity</td>
<td>Classic example</td>
</tr>
<tr>
<td>How well does the experimental design measure what it is supposed to measure? Does it use the right metrics and collect the right measurements?</td>
<td>Throughout the year, murder rates and ice cream sales are highly positively correlated. Possible explanations?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal validity</th>
<th>Internal validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal validity</td>
<td>Internal validity</td>
</tr>
<tr>
<td>How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?</td>
<td>How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?</td>
</tr>
<tr>
<td>Classic example</td>
<td>Classic example</td>
</tr>
<tr>
<td>Throughout the year, murder rates and ice cream sales are highly positively correlated. Possible explanations?</td>
<td>Throughout the year, murder rates and ice cream sales are highly positively correlated. Possible explanations?</td>
</tr>
<tr>
<td>● Possibilities:</td>
<td>● Possibilities:</td>
</tr>
</tbody>
</table>
| ● Resurrected zombies primarily feed off ice cream | ● Resurrected zombies primarily feed off ice cream
| | ● Excessive ice cream consumption makes others jealous |
Internal validity

How well does the experimental design isolate the effect/variables that it studies (i.e., control for confounds)?

Classic example
Throughout the year, murder rates and ice cream sales are highly positively correlated. Possible explanations?
- Possibilities:
 - Resurrected zombies primarily feed off ice cream
 - Excessive ice cream consumption makes others jealous

Actually, the weather is a non-controlled confound!

Threats to validity: example experiment

Research question:
Does coffee consumption improve code quality?

Methodology
- I program on project 1: Mondays with coffee.
- I program on project 2: Fridays without coffee.
- Measure code quality in number of defects I encounter.
- Measure coffee consumption in dollars spent on coffee beans, as listed on my grocery-shopping receipt.

What are threats to construct, internal, and external validity?

Today

Introduction to software testing
- Structural code coverage
 - Statement coverage
 - Decision coverage
 - Condition coverage
- Mutation testing (if time permits)
Software testing

Software testing can show the **presence of defects**, but never show their absence! (Edsger W. Dijkstra)

- A good test is one that fails because of a defect.
- When should we stop testing if no (new) test fails?

Test adequacy metric
- The best test-adequacy metric is: **ratio of detected defects**
- Problem: the set of defects is unknown
- Solution: use a proxy metric

Structural code coverage: live example

See code examples (online)
Statement coverage

- **Every statement** in the program must be **executed at least once**
- Given the CFG, this is equivalent to node coverage

Structural code coverage: statement coverage

```
Entry point
```

```
true
```

```
false
```

Decision coverage

- **Every decision** in the program must take on all possible outcomes (true/false) at least once
- Given the CFG, this is equivalent to edge coverage
- Example: \((a>0 \&\& b>0)\)
 - \(a=1, b=1\)
 - \(a=0, b=0\)

Condition coverage vs. decision coverage

Terminology

- **Condition**: a boolean expression that cannot be decomposed into simpler boolean expressions.
- **Decision**: a boolean expression that is composed of conditions, using 0 or more logical connectors (a decision with 0 logical connectors is a condition).

Example: if \((a \&\& b)\) { ... }
 - \(a\) and \(b\) are conditions.
 - The boolean expression \(a \&\& b\) is a decision.
Structural code coverage: decision coverage

Condition coverage

- **Every condition** in the program must take on all possible outcomes (true/false) at least once
 - Example: \((a>0 \&\& b>0)\)
 - \(a=1, b=0\)
 - \(a=0, b=1\)

Structural code coverage: condition coverage

Structural code coverage: subsumption

Given two coverage criteria A and B, A subsumes B iff satisfying A implies satisfying B

- Subsumption relationships:
 - Decision coverage subsumes statement coverage
 - Decision coverage does not subsume condition coverage
 - Condition coverage does not subsume decision coverage