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Problem
neural ranking models with pointwise or pairwise loss functions that operate 
on query-document interaction signals can be biased towards queries with 
more judged or retrieved documents .

Conventional Learning to Rank Models:
• Operate on human-engineered 

features
• Better performance using listwise 

loss functions

Loss functions for learning-to-rank models:
• Pointwise
• Pairwise
• Groupwise
• Listwise

• Problem: 
With the same amount of labeled data, learning-to-rank algorithms with pointwise or pairwise 
loss functions have more training instances than algorithms with listwise loss functions 

• Proposed solution:
random sampling of documents retrieved for each query before a new epoch of training
reshuffling before a new epoch of training
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Training a neural ranker  
with listwise loss 

Training a neural ranker 
with pairwise loss

Datasets:
• Robust’04
• 250 topics

• ClueWeb’09-Category-B
• 200 topic 

• Retrieved the top 2,000 documents per query
• pre-trained word embeddings 
• dimension 300 from Glove 

Table 1: Precision andMAP performance of the neural rankers on di�erent datasets. Better performance betweenDRMMpl and
DRMMll models is indicated in bold format. Symbol • indicates that improvements of DRMMll over DRMMpl are statistically
signi�cant. Method Robust04 ClueWeb

P@1 P@3 P@5 P@10 MAP P@1 P@3 P@5 P@10 MAP
DRMMpl 0.52 0.4844 0.4613 0.424 0.2923 0.3833 0.3278 0.3367 0.3267 0.2634
DRMMll 0.56• 0.5244• 0.4773 0.424 0.2989 0.4167 0.3722• 0.37 0.355• 0.2725•
DRMMll�ws 0.4667 0.5289 0.4747 0.4227 0.2962 0.4 0.3722 0.3667 0.36 0.2634

Table 2: nDCG performance of the neural rankers on di�erent datasets. Better performance between DRMMpl and DRMMll
models is indicated in bold format. Symbol • indicates that improvements of DRMMll over DRMMpl are statistically signi�cant.

Method Robust04 ClueWeb
nDCG@1 nDCG@3 nDCG@5 nDCG@10 nDCG@1 nDCG@3 nDCG@5 nDCG@10

DRMMpl 0.4666 0.4422 0.4385 0.4252 0.3484 0.3118 0.32 0.3277
DRMMll 0.4711 0.4742• 0.4528 0.4355 0.3732 0.359• 0.3595• 0.3666•
DRMMll�ws 0.4133 0.4589 0.442 0.4283 0.3565 0.3539 0.3519 0.3638

Figure 1 shows learning curves of the DRMMmodel trained with
pairwise and listwise loss functions. As the diagram indicates, opti-
mization of listwise loss converges with less �uctuation compared
to that of pairwise loss. This observation demonstrates that more
reliable estimates of the gradient of the listwise loss function are
obtained compared to those of the pairwise loss function. Figure 2
shows MAP performance on test data after each step of training. In
the �nal steps shown in the diagram, all networks using pairwise
or listwise loss functions are su�ciently trained according to the
loss of validation set. However, performance of the pairwise trained
model still shows large �uctuations, which is not the case for the
listwise trained model. This observation shows that the learned
ranking model using a listwise loss function is more robust than
that using a pairwise loss function.
4.2 Impacts of Data Sampling
Tables 1 and 2 also include the performance of DRMM model when
it is trained using the listwise loss function but without random
sampling of documents. Although training on the entire set of doc-
uments associated with each query has lower performance than
that with random sampling of documents, it improves the perfor-
mance of the pairwise model for all metrics except P@1, P@10,
and nDCG@1 over Robust04. We believe the lower performance
is because of fewer training samples in the listwise setting com-
pared to the pairwise setting given the same amount of labeled
data. The learning curves for the cases of training with and without
random sampling of documents before each epoch of training are
also depicted in Figure 1. The learning curves demonstrate that
without sampling, we get a sharper decrease in training loss. Keskar
et al. [11] have shown that a �at minimizer of loss better general-
izes to test data. This fact justi�es the performance improvements
obtained by random sampling of documents. Figure 2 shows that
with sampling, not only does the performance of the trained model
increase on test data, but the performance also has less �uctuations
in the �nal steps of training, which is desirable.
5 CONCLUSION AND FUTURE WORK
We demonstrate how listwise loss functions can improve the re-
trieval performance of neural ranking models. More speci�cally,
we examine how training the deep relevance matching model, which
is a pairwise model, with a listwise loss function impacts the per-
formance of retrieval. We also show that reshu�ing and random
sampling of documents associated with each query before each
epoch of training improves the performance of retrieval. There are
several possible directions for future work. A promising line is to
examine more smart sampling approaches as we demonstrated that

sampling can improve the retrieval performance. We also would
like to investigate how other listwise loss functions impact the
performance of neural ranking models.
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pairwise and listwise loss functions. As the diagram indicates, opti-
mization of listwise loss converges with less �uctuation compared
to that of pairwise loss. This observation demonstrates that more
reliable estimates of the gradient of the listwise loss function are
obtained compared to those of the pairwise loss function. Figure 2
shows MAP performance on test data after each step of training. In
the �nal steps shown in the diagram, all networks using pairwise
or listwise loss functions are su�ciently trained according to the
loss of validation set. However, performance of the pairwise trained
model still shows large �uctuations, which is not the case for the
listwise trained model. This observation shows that the learned
ranking model using a listwise loss function is more robust than
that using a pairwise loss function.
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Tables 1 and 2 also include the performance of DRMM model when
it is trained using the listwise loss function but without random
sampling of documents. Although training on the entire set of doc-
uments associated with each query has lower performance than
that with random sampling of documents, it improves the perfor-
mance of the pairwise model for all metrics except P@1, P@10,
and nDCG@1 over Robust04. We believe the lower performance
is because of fewer training samples in the listwise setting com-
pared to the pairwise setting given the same amount of labeled
data. The learning curves for the cases of training with and without
random sampling of documents before each epoch of training are
also depicted in Figure 1. The learning curves demonstrate that
without sampling, we get a sharper decrease in training loss. Keskar
et al. [11] have shown that a �at minimizer of loss better general-
izes to test data. This fact justi�es the performance improvements
obtained by random sampling of documents. Figure 2 shows that
with sampling, not only does the performance of the trained model
increase on test data, but the performance also has less �uctuations
in the �nal steps of training, which is desirable.
5 CONCLUSION AND FUTURE WORK
We demonstrate how listwise loss functions can improve the re-
trieval performance of neural ranking models. More speci�cally,
we examine how training the deep relevance matching model, which
is a pairwise model, with a listwise loss function impacts the per-
formance of retrieval. We also show that reshu�ing and random
sampling of documents associated with each query before each
epoch of training improves the performance of retrieval. There are
several possible directions for future work. A promising line is to
examine more smart sampling approaches as we demonstrated that

sampling can improve the retrieval performance. We also would
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Network Architecture
Deep Relevance Matching Model (DRMM)

Figure credit: A Deep Relevance Matching Model for Ad-hoc Retrieval, Guo et al., CIKM’16
Figure 2: Architecture of the Deep Relevance Matching Model.

MatchPyramid preserve both exact and similarity match-
ing signals, they do not differentiate these signals but treat
them as equally important. These models focus on learn-
ing the composition of local interactions without addressing
term importance. In particular, the convolutional structures
in ARC-II and MatchPyramid are designed to learn posi-
tional regularities, which may work well under the global
matching requirement but fail under the diverse matching
requirement.(There is more discussion on this in Section 4.)

4. DEEP RELEVANCE MATCHING MODEL
Based on the above analysis, we propose a novel deep

matching model specifically designed for relevance match-
ing in ad-hoc retrieval by explicitly addressing the three
factors described in Section 3. We refer to our model as
a deep relevance matching model (DRMM). Overall, our
model is similar to interaction-focused models rather than
representation-focused models since the latter would inevit-
ably lose the detailed matching signals which are critical for
relevance matching in ad-hoc retrieval.

Specifically, our model employs a joint deep architecture
at the query term level over the local interactions between
query and document terms for relevance matching. We first
build local interactions between each pair of terms from a
query and a document based on term embeddings. For each
query term, we then transform the variable-length local in-
teractions into a fixed-length matching histogram. Based on
the fixed-length matching histogram, we employ a feed for-
ward matching network to learn hierarchical matching pat-
terns and produce a matching score for each query term.
Finally, the overall matching score is generated by aggregat-
ing the scores from each single query term with a term gat-
ing network computing the aggregation weights. The model
architecture is depicted in Figure 2.

More formally, suppose both query and document are rep-
resented as a set of term vectors denoted by q={w(q)

1 , . . . , w
(q)
M }

and d = {w(d)
1 , . . . , w

(d)
N }, where w

(q)
i , i = 1, . . . ,M and

w
(d)
j , j = 1, . . . , N denotes a query term vector and a docu-

ment term vector, respectively, and s denotes the final rel-

evance score, we have
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where ⊗ denotes the interaction operator between a query
term and the document terms, h denotes the mapping func-
tion from local interactions to matching histogram, z(l)

i , l =
0, . . . , L denotes the intermediate hidden layers for the i-th
query term, and gi, i = 1, . . . ,M denotes the aggregation
weight produced by the term gating network. W (l) denotes
the l-th weight matrix and b

(l) denotes the l-th bias term,
which are shared across different query terms. Note that we
adopt cosine similarity, a widely used measure for semantic
closeness in neural embeddings [18, 20], as the interaction
operator between each pair of term vectors from a query
and a document. In our work, we assume the term vectors
are learned a priori using existing neural embedding models
such as Word2Vec [18]. We do not learn term vectors in our
deep relevance matching model for the following reasons: 1)
Reliable term representations can be better acquired from
large scale unlabeled text collections rather than from the
limited ground truth data for ad-hoc retrieval; 2) By using
the a priori learned term vectors, we can focus the learning
of our model on relevance matching patterns and consider-
ably reduce the model complexity. In the following, we will
describe the major components of our model, including the
matching histogram mapping, feed forward matching net-
work, and term gating network in detail, and discuss how
they address the three key factors of relevance matching in
ad-hoc retrieval.

Matching Histogram Mapping: The input of our deep
relevance matching model is the local interactions between
each pair of terms from a query and a document. A ma-
jor problem is that the size of local interactions is not fixed
due to the varied lengths of queries and documents. Previ-
ous interaction-based models view the local interactions as
a matching matrix by preserving the sequential term orders

Feed Forward Matching 
Network

Matching Histogram

Matching Score

Better performance
Especially on top-ranked results

Trained  originally with pairwise hinge loss function

Performance Results

biased ranker

A flatter minimizer of loss 
function with sampling

More robust model

Less fluctuation in MAP performance, when 
1) Model is trained with listwise loss function
2) Train data is sampled in each epoch

Research Question

Performance on test set during training

RQ: How deep neural ranker with listwise 
loss function would perform? 

Experimental Setup Listwise Loss Function

Comparison of Loss Functions

Conclusion

Evidence for the conclusion

& query-based sampling 

Pairwise loss
Listwise loss
Listwise loss with sampling

• Used the loss function of 
ListNet algorithm

• based on estimating a 
probability distribution for a 
list of scored documents 

• Cross-entropy is used to 
measure the distance 
between the two probability 
distributions 


