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Abstract-As the development in a software project goes on, 
the structure of the implemented code diverges from the intended 
architecture. To prevent this, architecture conformance methods 
are used to check if the source code complies with the archi­
tecture. In the development of today's enterprise applications, 
general-purpose programming languages are used along with 
a number of domain specific languages. So, there is a need 
for a conformance checking method to support multi-language 
source artifacts. We present a model-based approach for checking 
cross-language architecture conformance rules. Our method is 
extensible, in the sense that it is independent of the specific set 
of languages used in the project. 

I. INTRODUCTION 

Software architecture is the primary artifact designed during 
software development for reasoning about software properties 
either functional or non-functional such as availability or mod­
ifiability. Architectural or design decisions have effects on sev­
eral implementation artifacts. This may cause the developers 
to mistakenly violate these decisions, resulting in architecture 
erosion. This gap between implementation and architecture 
causes the system to fail to satisfy some of the intended non­
functional properties. So, we need the implementation to be 
in conformance with the architecture. 

Today, one can rarely find an enterprise-scale applica­
tion fully written in a single programming language. The 
widespread use of reusable frameworks makes developers 
of the project use several small languages besides the main 
programming language. The frameworks usually allow the 
developers to describe a part of the configuration or def­
inition of the application in a separate artifact outside the 
main application source code. This allows the developers 
to change the description dynamically without re-compiling 
(or even restarting) the application. Also, the syntax of the 
description language is usually in a declarative style and is 
more readable than the equivalent code written in a general­
purpose programming language. For example, in an enterprise 
information system, the architect may decide to use a third­
party framework that allows the developers to define the 
flow between user-interface pages in a language with a state 
machine-like structure. As an example, Fig. 1 shows part of 
such a description in the Spring Web Flow [1] framework. 
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<flow> 

<on-start> 
<evaluate expression="bookingService.createBooking( 

hotelId, currentUser.name)" 

result="flowScope.booking" I> 

<Ion-start> 

<view-state id="enterBookingDetails"> 

<transition on="submit" to="reviewBooking" /> 

</view-state> 

<view-state id="reviewBooking"> 
<transition on="confirm" to="bookingConfirmed" I> 

<transition on="revise" to="enterBookingDetails" /> 
<transition on="cancel" to="bookingCancelled" I> 

</view-state> 

<end-state id="bookingConfirmed" I> 

<end-state id="bookingCancelled" I> 
</flow> 

Fig. l. A simple flow description in Spring Web Flow [1] 

Moreover, the rising use of Domain-Specific Languages 
(DSLs) in software development industry [2], adds to the 
number of languages used in a typical project. For example, 
the developers may define a set of business rules in an 
external DSL to allow the domain experts to dynamically 
modify some aspects of the program behavior during the 
application maintenance phase. These languages are DSLs 
related to business domains (e.g. financial or health) while 
the configuration or description languages mentioned before 
can be considered as DSLs related to technical domains (e.g. 
persistence or web flow). Throughout this paper, the term DSL 
is referred to the languages in both classes in general. 

As several languages are used in developing software 
systems, architectural rules may affect artifacts of multiple 
languages. For example, in an application using Spring Web 
Flow, there may be a rule such as "when making a transition 

from a web page in a subsystem to a web page in another 

subsystem, the leaveContext method of the source subsystem's 

session fa�ade shall be called'. Checking this rule requires 
inspecting both the flow description artifacts as well as the 
Java source code of the subsystems. Therefore, in addition 
to rules over individual languages, there are some rules across 
several languages. To support cross-language rules, we need to 



have a method to build a unified model from different artifacts. 
Moreover, as any project may use a different set of DSLs, 

a requirement for an effective conformance checking method 
for enterprise-scale application is to be independent of the 
specific languages. In other words, such a method should 
have the capability of being customized according to the set 
of languages used in the project, which means the ability 
to dynamically add new languages to the toolset. Most of 
the existing methods focus on checking the compliance of 
source code written in one programming language with the 
architecture. So, they may not be adequate for enterprise-scale 
applications. 

In this paper, we present a model-based approach to ar­
chitecture conformance checking capable of handling cross­
language rules. The proposed approach uniformly represents 
various languages in the system in the form of a meta­
model of the relevant source artifacts at the desired level 
of detail. Rules are described in terms of the elements of 
this high-level uniform representation. We follow the well­
known standards Meta-Object Facility (MOF) [3] and Object 
Constraint Language (OCL) [3] to represent the meta-model 
and the rules respectively. Each source artifact is abstracted 
into a separate model as specified by its meta-model. Then, 
these models are integrated into a unified model according 
to the integrated meta-model of the system. The rules are 
specified in terms of OCL expressions, which are evaluated 
on the unified model to check the conformance of the source 
code to the architecture. 

The rest of this paper is organized as follows. The next 
section provides a background on conformance checking. 
Section III presents an example case. Section IV explains 
our approach and the implementation method. Section V 
presents a selected subset of architectural constraints and their 
specifications. Section VI briefly reviews the related work. 
Finally, we conclude the paper and discuss the benefits and 
drawbacks of our method in Section VII. 

II. CONFORMANCE CHECKING OF ARCHITECTURE 

Architecture is the set of design decisions that the architect 
or expert developers would like to get right as early as 
possible in the development of systems. These include the 
decomposition of system into modules and specification of 
allowed interactions among them [4]. The implementation is 
constrained by these decisions and is supposed to exhibit the 
architecture to guarantee the intents behind the decisions. As 
developers implement the designed elements and make lower­
level decisions, they may mistakenly violate the designed 
structure. Even they may do this intentionally, for example, 
they may introduce a direct dependency to improve perfor­
mance. But through their lack of an overall view of the sys­
tem design, they violate an architectural decision that affects 
the system's maintainability. Therefore, without source code 
architecture conformance, architecture becomes less useful. 

Conformance checking is a process that can investigate 
consistency between different artifacts in a wide scope. The 
main use is in ensuring that the software is implemented 

according to the architecture, which is the foremost high-level 
artifact. Model-driven approaches generate multiple models 
by converting high-level model to models at lower levels of 
abstraction. Consistency between models at different levels 
of abstraction can also be a part of conformance checking 
process. 

Architecture is described using different views and each im­
posing constraints on the implementation. Violations of these 
constraints can be categorized according to the architectural 
aspect that is the concern of the corresponding view. For 
instance, structural violations are usually related to the module 

viewpoint of architecture in SEI documentation model [5] or 
development view of the "viewpoints and perspectives" method 
[6]. Structural violations can be resulted from constraints 
like "Presentation layer must call domain services through 
controllers". Some constraints address runtime aspects of the 
system like imposing certain topological constraints on the 
components and connectors of the system. Some need runtime 
information along with static information to be checked, like 
"At the end of each control path of every service imple­
mentation method, if a transaction is opened, it must be 
eventually committed or rolled back". Some may constrain 
naming convention of software elements like "The name of 
control classes must end with ctrl". An architecture con­
formance approach can investigate compliance with different 
architecture viewpoints. 

Architecture conformance approaches can also have features 
like traceability of violations to source code so that the part 
of the source code that causes the violation can be identified 
and corrected easily. Another useful feature is incremental 
refinement during development process. If violations can be 
detected as early as possible by continuously checking the 
conformance, their ripple effects will be less and its source 
can be corrected more simply. The approach can be integrated 
with the IDE to automatically checks the source code. 

Several approaches have been proposed to enforce archi­
tectural rules or check the compliance of source code with 
the architecture [7]. They can be categorized as either static 
or dynamic according to the time that they can be applied 
[8]. Static conformance checking is done without executing 
code, while dynamic approaches use execution information. 
For instance, Reflexion model [9] is a static approach that 
checks compliance of the source model with the architec­
ture model. Architecture-centric Model-driven development 
approaches [10] can also be used to enforce the architecture, 
but in cases that the generated code is completed manually 
by the developers, implementation may diverge from the 
architecture. The feature of defining compile time declaration 
of Aspect Oriented Programming (AOP) can also be used to 
check the architecture compliance [7]. 

III. AN EXAMPLE CASE 

This section introduces a simple case that is referred to 
in the other sections to explain the use of the proposed 
approach. This case study consists of a small programming 
language called /lpl and a DSL called p,flow. The programming 



module Adder { 
var sum 

fun add(num1 num2) 
sum = doAdd(num1 num2) 

return 2 

} 
fun again () { 

return 1 

} 
fun doAdd(a b) 

return a + b 

Fig. 2. p,p/ sample script 

flow addition(Adder) 

page ( 1) { 
input num1 

input num2 
button add 

page ( 2) { 
output sum 

button again 

Fig. 3. p,flow sample script 

language is used to develop domain logic and the DSL has 
been designed to specify a flow of user interface pages and 
the related module handlers of each page action. 

Fig. 2 shows a part of a script written in f.Lp/ that defines an 
Adder module with three methods called add, again and 
doAdd. All variables are of Integer type. Fig. 3 shows a script 
in f.Lflow language. In this script, a flow of user interface pages 
is specified that includes two pages. The addition flow uses 
Adder module to handle user requests. When user presses a 
button in a page, a function of the specified module with the 
same name as the button will be called to take appropriate 
action. The return value of that function will determine the 
ID of a page of flow to be represented next. For example, 
when user presses the add button of page 1 the add function 
of Adder module will be called. This function calculates the 
sum of the two inputs and returns 2, so that when the control 
returns to the flow, the page with ID 2 will be represented. 
Several cross-language rules on source code written in these 
two languages will be described in Section V. 

IV. OUR ApPROACH TO CONFORMANCE CHECKING 

We assume that the target software is comprised of a main 
codebase in a general-purpose programming language and 
a set of artifacts in form of domain-specific descriptions. 
Some of these descriptions are based on off-the-shelf reusable 
frameworks while others are based on domain-specific lan­
guages specifically defined for the particular software under 
development. Our goal is to provide a tool-based approach for 
the software architects to validate cross-language architectural 
rules. We intend to use the proposed approach for modeling 
the source code and specifying rules independently of the 
languages used in developing, so that it can be customized 
to support domain-specific languages that are being designed 

specifically for a system. The approach should provide a 
uniform way for the inclusion of newly designed languages so 
the architects/designers can add them dynamically in design 
phase to express cross-language conformance rules. 

This paper introduces a two-phase method to check confor­
mance rules on multi-language software systems. In the first 
phase, the architect is supposed to provide the infrastructure 
to use the approach for the target system. The architect defines 
the languages used in the project and provides an integrated 
system-wide meta-model and specifies architectural rules. In 
the next phase, the approach can be used to check the rules 
anytime during the system development. The code base is 
processed to extract elements related to the rules and build 
a higher level object model of source code. Then, the rules 
are checked on the generated object model. The detailed steps 
of each phase are described in the following subsections. 

The implementation is often more detailed than the archi­
tecture. Some of these details are irrelevant to a specific ar­
chitecture viewpoint. So, conformance check needs inspection 
of the source code to build a higher-level model. Following 
valuable practices of Model Driven Software Development 
(MDSD) [10], we choose to model the source code based on a 
meta-model that describes the structural view of architecture. 
MDSD allows construction of models of a system according 
to the meta-models and transforms them automatically to get 
models at the desired level of abstraction. Following a similar 
approach in conformance checking, the architect describes 
the structural aspect of a system in a meta-model and then 
specifies rules in terms of its elements. It brings the need for 
a uniform description of the meta-model. One way is to follow 
the widely-used standard for modeling, Meta-Object Facility 
(MOF) developed by the Object Management Group (OMG). 
MOF provides a generic framework to define meta-models of 
different modeling languages and lies at the heart of Model 
Driven Architecture (MDA) [3]. We decided to adopt MOF 
as a language for specifying structural view of architecture. 
It provides a unified schema for expressing and checking 
structural rules. Once the architecture is modeled using MOF, 
the rules can be expressed in terms of its elements. We 
choose Object Constraint Language (OCL), another standard 
by OMG, as a platform-independent language to describe 
constraints over the system meta-model. OCL is a declarative 
language that can be used in conjunction with UML or any 
MOF-based meta-model to express constraints and object 
query expressions on their meta-elements and thus precisely 
define their semantics. 

Formulating the inputs of conformance checking in standard 
languages (MOF and OCL) has other advantages in addition 
to uniformity such as vendor independence, extensive tool 
support and short learning curve. So, it would be more easily 
accepted by the architect to specify an architecture and the 
rules in this way compared to using a newly defined syntax. 

As various languages used in development have their own 
structure, the system meta-model can be obtained by integrat­
ing the individual language meta-models. These meta-models 
should be designed at an appropriate level of abstraction 



(a) I.Lp/ meta-model (b) I.LjfOlV meta-model 

Fig. 4. languages' metamodels 

according to the corresponding rules. To provide an integrated 
meta-model for a system, the architect should follow the steps 
below. 

A. Phase 1: Building the Infrastructure 

Step 1: Generating Language Parsers 

Building the infrastructure means to specify how to process 
the language scripts for constructing their model. The tool re­
quires a model extractor for each language used. These models 
are based on each language meta-model. So, in addition to the 
extractor, their meta-models should also be defined. Because 
these meta-models will be integrated to build the system meta­
model, they should have a unified format. The Eclipse Mod­
eling Framework (EMF) is a meta-modeling framework that 
implements MOF. Being based on EMF, our toolset requires 
language meta-models to be represented in EMF. EMF also 
has the facility for generating Java code corresponding to the 
meta-model which will be used to generate the object model of 
language scripts. For the explained case study, the meta-model 
of f.tpl and f.tflow languages should be specified independently 
in EMF format. EMF meta-model can be generated from either 
a Rational Rose model or a set of annotated Java interfaces 
and classes. Fig. 4 shows the meta-models of f.tpl and f.tflow. 

The architect/designer is free to determine the abstraction 
level of meta-model by putting any element that is significantly 
related to the structural view of architecture in the meta­
model. The set of architectural rules give a good criteria to 
decide on elements of the meta-model. Assuming that we 
only have one rule on the example case study, that "the getter 
methods should have no input parameter", we just need to 
have method and inputParameter elements from the f.tpl meta­
model shown in Fig. 4.(a). In some cases that the rules include 
more implementation details, the provided meta-model can 
tend towards Abstract Syntax Tree (AST). 

The model extractor will populate the semantic model of the 
scripts of a language according to its specified meta-model. 
There is a module corresponding to each input language to 
derive its model. We provide different ways for the architect to 
define the model extractor of the new languages. The architect 
can provide a parser that directly populates the model in a 
single pass or a two-pass parser having AST as an intermediate 
model. In the second case, the extractor performs syntactic 
analysis on the input scripts to produce the AST. It then 

uses an associated tree walker to generate the model. For 
AST generation, the architect is free to introduce the abstract 
syntax grammar or to provide a parser. In the case that a 
grammar is used, a corresponding parser will be generated 
using ANTLR [11] which requires to have a grammar that 
is compatible with ANTLR BNF grammar format along with 
AST construction operators or rewrite rules. If there is not 
any tree construction rule in the grammar, the parser will 
return an AST that has nodes for each term in the right­
hand side of the rules. The extractor sets the output option 
to "AST' and the type of generated tree node to our custom 
implemented "TreeNode" which extends "CommonTree". 

Our "TreeNode" implementation provides some functions 
that facilitate traversing of AST, like "getChildren ()", 
which returns the children of a node. 

ANTLR requires an adaptor as a tree navigator so that a 
related adaptor that creates the defined node would be set as 
the generated parser tree adaptor to inform ANTLR of its 
use. For our case study, the descriptions of f.tpl and f.tflow 

grammar in BNF format are shown in Fig. 5 and Fig. 6 
respectively. In each rule, what follows "-." is the syntax 
for tree construction. Using these grammar definitions, the 
tool will produce a parser for each language that generates 
AST as output. The second rule of f.tpl grammar, will result 
in creation of a microModule node and its name and its 
declared fields and methods as its children. The generated 
ASTs of scripts are given to another program to populate its 
model. This program generates object model of the scripts by 
taking appropriate actions according to each AST node's type. 
For example, we have implemented a method that instantiates 
an object of microModule element of meta-model for each 
microModule node. 

In another case, the architect can provide a parser that 
directly populates the model in a single pass, but the previous 
case is more common. The way that the tool infrastructure 
is set, facilitates supporting new languages. Providing parsers 
that populate the semantic model of languages is a straightfor­
ward task, especially for domain-specific languages, because 
they are supposed to ease the generation of a part of the overall 
domain model. 

Step 2: Define Meta-model Integration Scheme 

After parsing the scripts and populating their semantic 
models, they should be integrated based on the system meta­
model. We need a unified way of describing relationships 
between their meta-models to be able to automatically in­
tegrate the models of different scripts. Model elements that 
refer to elements of other models are supposed to extend a 
specially provided EObject of EMF, called Reference. For 
example, in our case study, the f.tflow flow elements that refer 
to f.tpl module elements should extend Reference element. 
This way, we can have an integrated meta-model, generated 
automatically from individual meta-models. 

Step 3: Describing Rules 

Once we have an integrated meta-model that specifies the 
structure of a system, the constraints that it imposes, the 
rules on its elements and relationships among them can be 



microPL : microModule* -> '(MODULE LIST microModule*); 
microModule : 'module' n=ID , { , fieldDecl* methodDecl* , } , -> '( MICROMODULE $n '(FIELDS fieldDecl*) '( METHODS methodDecl*»; 

fieldDecl : 'var' n=ID -> '(FIELD $n); 
methodDecl : 'fun' n=ID , ( , params* ' ) ' , { , body ' } ' -> '(METHOD $n '(PARAMS params*) '( EXPRESSIONS body»; 

params : n=ID -> '(PARAM $n); 

body : statement*; 
statement : conditional I repetitive I assignment I returnSts I , { , statement* ' }'; 
conditional : 'if' 1 ( ' condExpr ')' statement 'else' statement; 
repetitive : 'do' '( ' condExpr ')' statement; 

assignment : ID '=' expr; 
returnSts : 'return' expr; 
condExpr : expr '==' expr; 

expr : ID I ID '( ' ID* ')' I DIGIT l ID ' + ' ID l ID '-' ID I n=ID '.' ID '( ' expr. ')' -> '( DEPENDENCY $n); 

Fig. 5. J.1-pi grammar 

pavaFlow : pFlow* -> '(FLOW LIST pFlow*); 

pFlow : 'flow' n=ID '( ' m=ID ')' , { ,  page* , } , -> '(FLOW $n '( MODULENAME $m) '(PAGES page*»; 

page : 'page' '( ' n=ID ')' , { ,  elem* ' } ' -> '(PAGE $n '( ELEMENTS elem*» ; 

elem : input -> '(INPUT input*) I output -> '(OUTPUT output*) I button -> '(BUTTON button*); 

input : 'input' n=ID -> '($n); 

output 'output' n=ID '($n); 
button : 'button' n=ID -> '($n); 

Fig. 6. J.1-floW grammar 
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Fig. 7. Confonnance checking process 

expressed in OCL. For instance, one rule on the described 
meta-model for our example case can be derived from the 
fact that user interface pages in a flow are referred to by 
their ID attribute, so they need to have a unique ID. This 
rule can be specified in OCL as: "context Page inv: 

Page. allInstances () -> isunique (id)". The 
rule specification is described in more details in Section V. 

B. Phase 2: Rule Checking 

After building the infrastructure, the tool can be used to 
inspect the source code to check if it follows the specified 
rules. This checking is done in three steps, as illustrated in 
Fig. 7. 

Step 1: Building Models for Each Artifact 

In the first step, the appropriate parser for each input script 

will be called independently. Assuming that we have scripts 
shown in Fig. 2 and Fig. 3, J..lpl parser will interpret the scripts 
of this language and the associated J..lflow parser will parse 
J..lflow source files. As explained before, the output of these 
parsers is an AST. Thereafter, another programs that take these 
ASTs will be called to generate the semantic model of scripts. 
After executing the associated programs we have models of 
each individual language. 

Step 2: Integrating Models 

The second step deals with integrating the generated models. 
The code for linking the objects will be generated in accor­
dance with the association between the reference elements in 
the languages' models. After populating the object models of 
the entire scripts, the linking code is executed. 

Step 3: Checking Rules 

In this step, the rules will be examined on the generated 
object model of the code base. For parsing and evaluation of 
the OCL constraints and queries, we use MDT-OCL plug-in 
of Model Development Tools (MDT) [12]. 

V. SPECIFY ING RULES 

In this section, we present some examples to illustrate 
the use of OCL for specifying rules. Based on the level of 
abstraction of the rules, they are divided into the following 
three categories. 

A. Architectural Rules 

A typical example of architectural rules is the specification 
of allowed dependencies between layers. Following this, we 
consider a rule that states that "Data layer should not be 
dependent on the VI layer". The mapping of layers to J..lpl 

modules is specified as follows: 



l) Controller modules are those associated with the flow dec­
laration, ii) UI layer is the collection of controller modules, 
iil) Data access modules are those that are directly dependent 
on the DB module, iv) Data layer is the collection of data 
access modules plus the DB module. We assume that DB is 
the only module that accesses the database directly. 

Architectural level dependencies result from dependencies 
between the implementation artifacts. Therefore, to com­
pute the dependency of architectural elements, like layers, 
we need information about the dependencies between im­
plementation level elements belonging to them. The syntax 
for expressing dependencies between implementation level 
elements like method calls varies among languages. Due 
to the purpose of being independent of languages, we as­
sume that the expressions causing dependencies will be 
determined from the grammar of the languages. For in­
stance, the format of method call in ILpl is based on the 
"expr : ID '. ' ID ' (, expr* ,),,

, grammar rule. 
We should notify the model generator to model the dependency 
based on this rule, so that we complete it using the tree 
construction rule "A (DEPENDENCY $n)" to let the parser 
add DEPENDENCY nodes to the AST. The model generator 
sets the dependency of model element instances according to 
DEPENDENCY nodes. 

The above rule imposes a constraint on a collection 
of modules that constitute the data layer. Hence, before 
expressing the constraint we should define how we obtain 
this collection. For this purpose, we use OCL query 
expressions. The query that results in the data layer can 
be expressed as "MicroModule. allInstances () 

-> select (c: MicroModule l c. depends -> 

exists (d: MicroModule I d. name = 'DB'» ". 

Then we specify the mentioned constraint on this 
group of entities as "context MicroModule inv: 

MicroModule. allInstances () -> 

collect (depends) -> intersection 

(MicroModule. allInstances () -> 

select (c: MicroModule I c. flows -> 

sizeO >= 1» -> isEmptyO" and we evaluate 
the constraint on the result collection of the query. 

B. Design Rules 

Design rules are mostly derived from design patterns and 
they address elements directly realized in the source code. 
Some examples of design rules are as follows. 

Existence of handler module: each flow of a user inter­
face page defines a module as a handler of users' requests. 
The reference to this module is just by its name, so there 
is a rule that a module with that name must exist. This 
rule can be specified in OCL as: "context Flow inv: 

self. moduleName = self. microModule. name". 

Existence of a corresponding action handler: when users 
make their requests by pushing a button of a page, a method 
with the same name as the button in the corresponding module 
of the page's flow would be called to handle the request. 
Then, the contents of the text boxes, which are defined by the 

input keywords, are passed to the related method as input 
parameters. This leads to the following rule: "For each button, 

there must be a method in the corresponding module, with 

the same name, where the number of parameters are equal 

to the number of inputs in the page". This constraint can 
be explained in OCL as: "context Button inv: 

self. page. flow. microModule. methods -> 

exist (m I m. name = self. name 

and m. inputparameters -> size () 

= self. page . input -> size 0)". 
Existence of appropriate attributes to reveal the results: 

after the called method finishes execution, the control 
should return to the flow, and the result of the action 
would be displayed through the output attributes of the 
called page. These attributes get their values from the 
fields of the corresponding module with the same names. 
This behavior results in the addition of another rule: "For 

every output in a page, there should exist a variable in 

the corresponding module with the same name". This rule 
is formalized in OCL as: "context Output inv: 

self. page. flow. microModule. field -> 

(exist f I f . name = self . name) ". 

C. Implementation rules 

There are implementation level rules such as naming con­
vention rules and coding policies. To illustrate this, we con­
sider a rule that states: "The name of the input elements of 
a page should end with input". This rule can easily be 
expressed in OCL using String operations. 

VI. RELATED WORK 
Reflexion model [9] is an early work on this topic and has 

been applied to some recent empirical studies on architecture 
conformance checking [13] [14]. In this method, the generated 
model of the source code is checked against the architectural 
model according to a mapping which is defined by the 
architect. Some approaches have refined this model [15] [16], 
for instance, by introducing a semi-automatic way to derive 
mappings between the source model and the architectural 
model through clustering. Reflexion model tool [17] uses an 
extractor tool to obtain the source model. Deriving such an 
extractor for the systems that are developed using various 
languages and may be specific to that system, seems not to 
be straightforward; but once we have it, the approach can be 
used to validate architectural rules. 

Feijs et al. extended relational algebra to Relation Partition 
Algebra (RPA) [18] and used it to formulate architectural rules 
[19]. The Part-of relations model the hierarchical structure 
of a system and call relations express the dependencies be­
tween functions. A lifting operator is defined to find out the 
dependencies between software elements at different levels 
of software hierarchy using predefined relations. Eichberg 
et al. [20] propose an approach based on RPA to define 
and continuously check dependencies. Source elements such 
as Class, Method, etc. are recognized and represented by 
relations. A logic programming language is used to define the 



groups of source elements called ensembles and the constraints 
on dependencies between them. These two approaches use 
relation based representations of the source program. If these 
relations can be defined for a multi-language system, the 
dependencies will be extracted accordingly. Defining these 
relations without the help of an automatic tool is a complicated 
task. 

Structural Constraint Language (SCL) [21], based on first 
order logic, is a language for describing a wide variety of de­
sign intents. A graph model of the source program is traversed 
according to quantifiers of SCL expressions to obtain sets of 
entities and check constraints against them. So far, it only 
supports Java and C++ as the programming language. Kel­
lens [22] used a logic-based language to describe executable 
queries on the source code to form logical groups o� source 
elements called Intentional Views. To evaluate constramts, sets 
resulting from executing multiple queries describing a same 
view are matched against each other. 

Aspect-Oriented Programming can use static pointcut that 
allows declaration of compile-time warning or error messages 
which can be used to check architectural rules like structural 
dependencies, naming conventions and pattern usage [7]. 
Checking for structural dependencies is conceivable through 
adding aspect code that specifies unintended dependencies in 
point cuts and will introduce a compile-time warning or error 
message when finding join points that match them. 

Dependency Structure Matrix [23], [24] has also been 
used to visualize the hierarchical structure and inter-module 
dependencies in a scalable way to help architect recognize 
unintended dependencies. 

ArchJava [25] is an approach that statically enforces archi­
tecture by introducing new types to Java language to denote 
architectural elements like component. This way component 
and connector view of architecture can be imposed. 

In another point of view, our approach is related to works 
that investigate an aspect of a software system that is defined 
through different languages. The approach proposed in [26�, 
supports architecture described in different languages. ThIS 
approach is different from ours in the way that we suppose 
a unified representation of architecture is provided through 
the system meta-model, but the code can be developed in 
heterogeneous languages and needs to be abstracted in a 
unified way. 

Moise et al. [27] propose an approach to discover cross­
language dependencies. This work can be considered as a 
method to check the dependencies between the basic elements 
in different programming languages (e.g. C and Java); but it 
only supports dependencies and does not provide the facility 
for description of abstract elements (e.g. layer). So, it should 
be extended to be able to extract other necessary information 
to support various kinds of architectural rules. 

There is a similar approach to our method in the Model 
Driven Software Development tool, openArchitectureWare 
(oA W) [28]. Although our method follows a model-based 
approach, it differs from oA W. oA W is mainly used for code 
generation while our method checks compliance of the source 

code with the architecture. 

VII. CONCLUSION 

We proposed a uniform model-based approach to check the 
compliance of source code with the architecture by examining 
the cross-language conformance rules. Our proposed method 
is not bound to a specific language, rather, it can be extended 
to adopt any language that is used in developing software. 

We have implemented our method in Java and ANTLR, 
but the proposed method is more general and is not restricted 
to the specific tools used. The approach focuses on struc­
tural constraints imposed by the architecture. Dependencies 
between elements are the main subject of structural constraints. 
These dependencies between elements in the multi-language 
software are of two kinds: inter-dependencies (cross-language 
dependencies) and intra-dependencies. Inter-dependencies are 
dependencies between elements of different languages and 
intra-dependencies refer to dependencies between elements of 
a single language. Our approach supports intra-dependenc.ies 
that can be specified by the artifacts of the correspondmg 
language, while inter-dependencies are supported through in­
tegration of the language models. 

Our method is intended to be independent of the language 
used in developing software in order to support cross-language 
rules. We obtain independence of domain specific languages 
in a uniform straightforward way but independence of general­
purpose languages is complicated because of their large-scale 
abstract syntax. Once we define the abstract syntax grammar 
and the model generator of a language in the way described 
in Section IV, they can be reused in any other system that 
uses that language. This way, a repository of languages can 
be formed. So in the infrastructure building phase, we can 
reuse available language definitions. 

We proposed a generic approach to be applied on a multi­
language source code; hence we did not focus on providing 
high-level primitives on language structures. An example of 
such a primitive is a function that investigates source code 
and extracts control dependencies between the expressions in 
the source code. Our method can be extended with libraries, 
each of which provides such facilities for a different language. 

In our approach, rules are expressed in OCL, which is a 
standard, declarative language. It provides the possibility of 
reusing rules at design and implementation levels. Architecture 
level rules that include abstract elements (e.g. layer) are depen­
dent on the meta-model and can only be reused along with it. 
This way, we can also have a repository of rules that reduces 
the cost of defining conformance rules for a project. This is 
particularly important in the context of software product lines 
in which multiple products share a common architecture. 
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