
Architecture Conformance Checking of

Multi-Language Applications

Razieh Rahimi
School of Electrical and
Computer Engineering
University of Tehran

North Karegar Avenue, Tehran, Iran
Email: r.rahimi@ece.ut.ac.ir

Abstract-As the development in a software project goes on,
the structure of the implemented code diverges from the intended
architecture. To prevent this, architecture conformance methods
are used to check if the source code complies with the archi­
tecture. In the development of today's enterprise applications,
general-purpose programming languages are used along with
a number of domain specific languages. So, there is a need
for a conformance checking method to support multi-language
source artifacts. We present a model-based approach for checking
cross-language architecture conformance rules. Our method is
extensible, in the sense that it is independent of the specific set
of languages used in the project.

I. INTRODUCTION

Software architecture is the primary artifact designed during
software development for reasoning about software properties
either functional or non-functional such as availability or mod­
ifiability. Architectural or design decisions have effects on sev­
eral implementation artifacts. This may cause the developers
to mistakenly violate these decisions, resulting in architecture
erosion. This gap between implementation and architecture
causes the system to fail to satisfy some of the intended non­
functional properties. So, we need the implementation to be
in conformance with the architecture.

Today, one can rarely find an enterprise-scale applica­
tion fully written in a single programming language. The
widespread use of reusable frameworks makes developers
of the project use several small languages besides the main
programming language. The frameworks usually allow the
developers to describe a part of the configuration or def­
inition of the application in a separate artifact outside the
main application source code. This allows the developers
to change the description dynamically without re-compiling
(or even restarting) the application. Also, the syntax of the
description language is usually in a declarative style and is
more readable than the equivalent code written in a general­
purpose programming language. For example, in an enterprise
information system, the architect may decide to use a third­
party framework that allows the developers to define the
flow between user-interface pages in a language with a state
machine-like structure. As an example, Fig. 1 shows part of
such a description in the Spring Web Flow [1] framework.

Ramtin Khosravi
School of Electrical and
Computer Engineering
University of Tehran

North Karegar Avenue, Tehran, Iran
Email: rkhosravi@ece.ut.ac.ir

<flow>

<on-start>
<evaluate expression="bookingService.createBooking(

hotelId, currentUser.name)"

result="flowScope.booking" I>

<Ion-start>

<view-state id="enterBookingDetails">

<transition on="submit" to="reviewBooking" />

</view-state>

<view-state id="reviewBooking">
<transition on="confirm" to="bookingConfirmed" I>

<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="bookingCancelled" I>

</view-state>

<end-state id="bookingConfirmed" I>

<end-state id="bookingCancelled" I>
</flow>

Fig. l. A simple flow description in Spring Web Flow [1]

Moreover, the rising use of Domain-Specific Languages
(DSLs) in software development industry [2], adds to the
number of languages used in a typical project. For example,
the developers may define a set of business rules in an
external DSL to allow the domain experts to dynamically
modify some aspects of the program behavior during the
application maintenance phase. These languages are DSLs
related to business domains (e.g. financial or health) while
the configuration or description languages mentioned before
can be considered as DSLs related to technical domains (e.g.
persistence or web flow). Throughout this paper, the term DSL
is referred to the languages in both classes in general.

As several languages are used in developing software
systems, architectural rules may affect artifacts of multiple
languages. For example, in an application using Spring Web
Flow, there may be a rule such as "when making a transition

from a web page in a subsystem to a web page in another

subsystem, the leaveContext method of the source subsystem's

session fa�ade shall be called'. Checking this rule requires
inspecting both the flow description artifacts as well as the
Java source code of the subsystems. Therefore, in addition
to rules over individual languages, there are some rules across
several languages. To support cross-language rules, we need to

have a method to build a unified model from different artifacts.
Moreover, as any project may use a different set of DSLs,

a requirement for an effective conformance checking method
for enterprise-scale application is to be independent of the
specific languages. In other words, such a method should
have the capability of being customized according to the set
of languages used in the project, which means the ability
to dynamically add new languages to the toolset. Most of
the existing methods focus on checking the compliance of
source code written in one programming language with the
architecture. So, they may not be adequate for enterprise-scale
applications.

In this paper, we present a model-based approach to ar­
chitecture conformance checking capable of handling cross­
language rules. The proposed approach uniformly represents
various languages in the system in the form of a meta­
model of the relevant source artifacts at the desired level
of detail. Rules are described in terms of the elements of
this high-level uniform representation. We follow the well­
known standards Meta-Object Facility (MOF) [3] and Object
Constraint Language (OCL) [3] to represent the meta-model
and the rules respectively. Each source artifact is abstracted
into a separate model as specified by its meta-model. Then,
these models are integrated into a unified model according
to the integrated meta-model of the system. The rules are
specified in terms of OCL expressions, which are evaluated
on the unified model to check the conformance of the source
code to the architecture.

The rest of this paper is organized as follows. The next
section provides a background on conformance checking.
Section III presents an example case. Section IV explains
our approach and the implementation method. Section V
presents a selected subset of architectural constraints and their
specifications. Section VI briefly reviews the related work.
Finally, we conclude the paper and discuss the benefits and
drawbacks of our method in Section VII.

II. CONFORMANCE CHECKING OF ARCHITECTURE

Architecture is the set of design decisions that the architect
or expert developers would like to get right as early as
possible in the development of systems. These include the
decomposition of system into modules and specification of
allowed interactions among them [4]. The implementation is
constrained by these decisions and is supposed to exhibit the
architecture to guarantee the intents behind the decisions. As
developers implement the designed elements and make lower­
level decisions, they may mistakenly violate the designed
structure. Even they may do this intentionally, for example,
they may introduce a direct dependency to improve perfor­
mance. But through their lack of an overall view of the sys­
tem design, they violate an architectural decision that affects
the system's maintainability. Therefore, without source code
architecture conformance, architecture becomes less useful.

Conformance checking is a process that can investigate
consistency between different artifacts in a wide scope. The
main use is in ensuring that the software is implemented

according to the architecture, which is the foremost high-level
artifact. Model-driven approaches generate multiple models
by converting high-level model to models at lower levels of
abstraction. Consistency between models at different levels
of abstraction can also be a part of conformance checking
process.

Architecture is described using different views and each im­
posing constraints on the implementation. Violations of these
constraints can be categorized according to the architectural
aspect that is the concern of the corresponding view. For
instance, structural violations are usually related to the module

viewpoint of architecture in SEI documentation model [5] or
development view of the "viewpoints and perspectives" method
[6]. Structural violations can be resulted from constraints
like "Presentation layer must call domain services through
controllers". Some constraints address runtime aspects of the
system like imposing certain topological constraints on the
components and connectors of the system. Some need runtime
information along with static information to be checked, like
"At the end of each control path of every service imple­
mentation method, if a transaction is opened, it must be
eventually committed or rolled back". Some may constrain
naming convention of software elements like "The name of
control classes must end with ctrl". An architecture con­
formance approach can investigate compliance with different
architecture viewpoints.

Architecture conformance approaches can also have features
like traceability of violations to source code so that the part
of the source code that causes the violation can be identified
and corrected easily. Another useful feature is incremental
refinement during development process. If violations can be
detected as early as possible by continuously checking the
conformance, their ripple effects will be less and its source
can be corrected more simply. The approach can be integrated
with the IDE to automatically checks the source code.

Several approaches have been proposed to enforce archi­
tectural rules or check the compliance of source code with
the architecture [7]. They can be categorized as either static
or dynamic according to the time that they can be applied
[8]. Static conformance checking is done without executing
code, while dynamic approaches use execution information.
For instance, Reflexion model [9] is a static approach that
checks compliance of the source model with the architec­
ture model. Architecture-centric Model-driven development
approaches [10] can also be used to enforce the architecture,
but in cases that the generated code is completed manually
by the developers, implementation may diverge from the
architecture. The feature of defining compile time declaration
of Aspect Oriented Programming (AOP) can also be used to
check the architecture compliance [7].

III. AN EXAMPLE CASE

This section introduces a simple case that is referred to
in the other sections to explain the use of the proposed
approach. This case study consists of a small programming
language called /lpl and a DSL called p,flow. The programming

module Adder {
var sum

fun add(num1 num2)
sum = doAdd(num1 num2)

return 2

}
fun again () {

return 1

}
fun doAdd(a b)

return a + b

Fig. 2. p,p/ sample script

flow addition(Adder)

page (1) {
input num1

input num2
button add

page (2) {
output sum

button again

Fig. 3. p,flow sample script

language is used to develop domain logic and the DSL has
been designed to specify a flow of user interface pages and
the related module handlers of each page action.

Fig. 2 shows a part of a script written in f.Lp/ that defines an
Adder module with three methods called add, again and
doAdd. All variables are of Integer type. Fig. 3 shows a script
in f.Lflow language. In this script, a flow of user interface pages
is specified that includes two pages. The addition flow uses
Adder module to handle user requests. When user presses a
button in a page, a function of the specified module with the
same name as the button will be called to take appropriate
action. The return value of that function will determine the
ID of a page of flow to be represented next. For example,
when user presses the add button of page 1 the add function
of Adder module will be called. This function calculates the
sum of the two inputs and returns 2, so that when the control
returns to the flow, the page with ID 2 will be represented.
Several cross-language rules on source code written in these
two languages will be described in Section V.

IV. OUR ApPROACH TO CONFORMANCE CHECKING

We assume that the target software is comprised of a main
codebase in a general-purpose programming language and
a set of artifacts in form of domain-specific descriptions.
Some of these descriptions are based on off-the-shelf reusable
frameworks while others are based on domain-specific lan­
guages specifically defined for the particular software under
development. Our goal is to provide a tool-based approach for
the software architects to validate cross-language architectural
rules. We intend to use the proposed approach for modeling
the source code and specifying rules independently of the
languages used in developing, so that it can be customized
to support domain-specific languages that are being designed

specifically for a system. The approach should provide a
uniform way for the inclusion of newly designed languages so
the architects/designers can add them dynamically in design
phase to express cross-language conformance rules.

This paper introduces a two-phase method to check confor­
mance rules on multi-language software systems. In the first
phase, the architect is supposed to provide the infrastructure
to use the approach for the target system. The architect defines
the languages used in the project and provides an integrated
system-wide meta-model and specifies architectural rules. In
the next phase, the approach can be used to check the rules
anytime during the system development. The code base is
processed to extract elements related to the rules and build
a higher level object model of source code. Then, the rules
are checked on the generated object model. The detailed steps
of each phase are described in the following subsections.

The implementation is often more detailed than the archi­
tecture. Some of these details are irrelevant to a specific ar­
chitecture viewpoint. So, conformance check needs inspection
of the source code to build a higher-level model. Following
valuable practices of Model Driven Software Development
(MDSD) [10], we choose to model the source code based on a
meta-model that describes the structural view of architecture.
MDSD allows construction of models of a system according
to the meta-models and transforms them automatically to get
models at the desired level of abstraction. Following a similar
approach in conformance checking, the architect describes
the structural aspect of a system in a meta-model and then
specifies rules in terms of its elements. It brings the need for
a uniform description of the meta-model. One way is to follow
the widely-used standard for modeling, Meta-Object Facility
(MOF) developed by the Object Management Group (OMG).
MOF provides a generic framework to define meta-models of
different modeling languages and lies at the heart of Model
Driven Architecture (MDA) [3]. We decided to adopt MOF
as a language for specifying structural view of architecture.
It provides a unified schema for expressing and checking
structural rules. Once the architecture is modeled using MOF,
the rules can be expressed in terms of its elements. We
choose Object Constraint Language (OCL), another standard
by OMG, as a platform-independent language to describe
constraints over the system meta-model. OCL is a declarative
language that can be used in conjunction with UML or any
MOF-based meta-model to express constraints and object
query expressions on their meta-elements and thus precisely
define their semantics.

Formulating the inputs of conformance checking in standard
languages (MOF and OCL) has other advantages in addition
to uniformity such as vendor independence, extensive tool
support and short learning curve. So, it would be more easily
accepted by the architect to specify an architecture and the
rules in this way compared to using a newly defined syntax.

As various languages used in development have their own
structure, the system meta-model can be obtained by integrat­
ing the individual language meta-models. These meta-models
should be designed at an appropriate level of abstraction

(a) I.Lp/ meta-model (b) I.LjfOlV meta-model

Fig. 4. languages' metamodels

according to the corresponding rules. To provide an integrated
meta-model for a system, the architect should follow the steps
below.

A. Phase 1: Building the Infrastructure

Step 1: Generating Language Parsers

Building the infrastructure means to specify how to process
the language scripts for constructing their model. The tool re­
quires a model extractor for each language used. These models
are based on each language meta-model. So, in addition to the
extractor, their meta-models should also be defined. Because
these meta-models will be integrated to build the system meta­
model, they should have a unified format. The Eclipse Mod­
eling Framework (EMF) is a meta-modeling framework that
implements MOF. Being based on EMF, our toolset requires
language meta-models to be represented in EMF. EMF also
has the facility for generating Java code corresponding to the
meta-model which will be used to generate the object model of
language scripts. For the explained case study, the meta-model
of f.tpl and f.tflow languages should be specified independently
in EMF format. EMF meta-model can be generated from either
a Rational Rose model or a set of annotated Java interfaces
and classes. Fig. 4 shows the meta-models of f.tpl and f.tflow.

The architect/designer is free to determine the abstraction
level of meta-model by putting any element that is significantly
related to the structural view of architecture in the meta­
model. The set of architectural rules give a good criteria to
decide on elements of the meta-model. Assuming that we
only have one rule on the example case study, that "the getter
methods should have no input parameter", we just need to
have method and inputParameter elements from the f.tpl meta­
model shown in Fig. 4.(a). In some cases that the rules include
more implementation details, the provided meta-model can
tend towards Abstract Syntax Tree (AST).

The model extractor will populate the semantic model of the
scripts of a language according to its specified meta-model.
There is a module corresponding to each input language to
derive its model. We provide different ways for the architect to
define the model extractor of the new languages. The architect
can provide a parser that directly populates the model in a
single pass or a two-pass parser having AST as an intermediate
model. In the second case, the extractor performs syntactic
analysis on the input scripts to produce the AST. It then

uses an associated tree walker to generate the model. For
AST generation, the architect is free to introduce the abstract
syntax grammar or to provide a parser. In the case that a
grammar is used, a corresponding parser will be generated
using ANTLR [11] which requires to have a grammar that
is compatible with ANTLR BNF grammar format along with
AST construction operators or rewrite rules. If there is not
any tree construction rule in the grammar, the parser will
return an AST that has nodes for each term in the right­
hand side of the rules. The extractor sets the output option
to "AST' and the type of generated tree node to our custom
implemented "TreeNode" which extends "CommonTree".

Our "TreeNode" implementation provides some functions
that facilitate traversing of AST, like "getChildren ()",
which returns the children of a node.

ANTLR requires an adaptor as a tree navigator so that a
related adaptor that creates the defined node would be set as
the generated parser tree adaptor to inform ANTLR of its
use. For our case study, the descriptions of f.tpl and f.tflow

grammar in BNF format are shown in Fig. 5 and Fig. 6
respectively. In each rule, what follows "-." is the syntax
for tree construction. Using these grammar definitions, the
tool will produce a parser for each language that generates
AST as output. The second rule of f.tpl grammar, will result
in creation of a microModule node and its name and its
declared fields and methods as its children. The generated
ASTs of scripts are given to another program to populate its
model. This program generates object model of the scripts by
taking appropriate actions according to each AST node's type.
For example, we have implemented a method that instantiates
an object of microModule element of meta-model for each
microModule node.

In another case, the architect can provide a parser that
directly populates the model in a single pass, but the previous
case is more common. The way that the tool infrastructure
is set, facilitates supporting new languages. Providing parsers
that populate the semantic model of languages is a straightfor­
ward task, especially for domain-specific languages, because
they are supposed to ease the generation of a part of the overall
domain model.

Step 2: Define Meta-model Integration Scheme

After parsing the scripts and populating their semantic
models, they should be integrated based on the system meta­
model. We need a unified way of describing relationships
between their meta-models to be able to automatically in­
tegrate the models of different scripts. Model elements that
refer to elements of other models are supposed to extend a
specially provided EObject of EMF, called Reference. For
example, in our case study, the f.tflow flow elements that refer
to f.tpl module elements should extend Reference element.
This way, we can have an integrated meta-model, generated
automatically from individual meta-models.

Step 3: Describing Rules

Once we have an integrated meta-model that specifies the
structure of a system, the constraints that it imposes, the
rules on its elements and relationships among them can be

microPL : microModule* -> '(MODULE LIST microModule*);
microModule : 'module' n=ID , { , fieldDecl* methodDecl* , } , -> '(MICROMODULE $n '(FIELDS fieldDecl*) '(METHODS methodDecl*»;

fieldDecl : 'var' n=ID -> '(FIELD $n);
methodDecl : 'fun' n=ID , (, params* ') ' , { , body ' } ' -> '(METHOD $n '(PARAMS params*) '(EXPRESSIONS body»;

params : n=ID -> '(PARAM $n);

body : statement*;
statement : conditional I repetitive I assignment I returnSts I , { , statement* ' }';
conditional : 'if' 1 (' condExpr ')' statement 'else' statement;
repetitive : 'do' '(' condExpr ')' statement;

assignment : ID '=' expr;
returnSts : 'return' expr;
condExpr : expr '==' expr;

expr : ID I ID '(' ID* ')' I DIGIT l ID ' + ' ID l ID '-' ID I n=ID '.' ID '(' expr. ')' -> '(DEPENDENCY $n);

Fig. 5. J.1-pi grammar

pavaFlow : pFlow* -> '(FLOW LIST pFlow*);

pFlow : 'flow' n=ID '(' m=ID ')' , { , page* , } , -> '(FLOW $n '(MODULENAME $m) '(PAGES page*»;

page : 'page' '(' n=ID ')' , { , elem* ' } ' -> '(PAGE $n '(ELEMENTS elem*» ;

elem : input -> '(INPUT input*) I output -> '(OUTPUT output*) I button -> '(BUTTON button*);

input : 'input' n=ID -> '($n);

output 'output' n=ID '($n);
button : 'button' n=ID -> '($n);

Fig. 6. J.1-floW grammar

, ,
v v

��
��

1
��

..

Rules

..

Meta·model

Integration

rt
Conformance

Checker

Fig. 7. Confonnance checking process

expressed in OCL. For instance, one rule on the described
meta-model for our example case can be derived from the
fact that user interface pages in a flow are referred to by
their ID attribute, so they need to have a unique ID. This
rule can be specified in OCL as: "context Page inv:

Page. allInstances () -> isunique (id)". The
rule specification is described in more details in Section V.

B. Phase 2: Rule Checking

After building the infrastructure, the tool can be used to
inspect the source code to check if it follows the specified
rules. This checking is done in three steps, as illustrated in
Fig. 7.

Step 1: Building Models for Each Artifact

In the first step, the appropriate parser for each input script

will be called independently. Assuming that we have scripts
shown in Fig. 2 and Fig. 3, J..lpl parser will interpret the scripts
of this language and the associated J..lflow parser will parse
J..lflow source files. As explained before, the output of these
parsers is an AST. Thereafter, another programs that take these
ASTs will be called to generate the semantic model of scripts.
After executing the associated programs we have models of
each individual language.

Step 2: Integrating Models

The second step deals with integrating the generated models.
The code for linking the objects will be generated in accor­
dance with the association between the reference elements in
the languages' models. After populating the object models of
the entire scripts, the linking code is executed.

Step 3: Checking Rules

In this step, the rules will be examined on the generated
object model of the code base. For parsing and evaluation of
the OCL constraints and queries, we use MDT-OCL plug-in
of Model Development Tools (MDT) [12].

V. SPECIFY ING RULES

In this section, we present some examples to illustrate
the use of OCL for specifying rules. Based on the level of
abstraction of the rules, they are divided into the following
three categories.

A. Architectural Rules

A typical example of architectural rules is the specification
of allowed dependencies between layers. Following this, we
consider a rule that states that "Data layer should not be
dependent on the VI layer". The mapping of layers to J..lpl

modules is specified as follows:

l) Controller modules are those associated with the flow dec­
laration, ii) UI layer is the collection of controller modules,
iil) Data access modules are those that are directly dependent
on the DB module, iv) Data layer is the collection of data
access modules plus the DB module. We assume that DB is
the only module that accesses the database directly.

Architectural level dependencies result from dependencies
between the implementation artifacts. Therefore, to com­
pute the dependency of architectural elements, like layers,
we need information about the dependencies between im­
plementation level elements belonging to them. The syntax
for expressing dependencies between implementation level
elements like method calls varies among languages. Due
to the purpose of being independent of languages, we as­
sume that the expressions causing dependencies will be
determined from the grammar of the languages. For in­
stance, the format of method call in ILpl is based on the
"expr : ID '. ' ID ' (, expr* ,),,

, grammar rule.
We should notify the model generator to model the dependency
based on this rule, so that we complete it using the tree
construction rule "A (DEPENDENCY $n)" to let the parser
add DEPENDENCY nodes to the AST. The model generator
sets the dependency of model element instances according to
DEPENDENCY nodes.

The above rule imposes a constraint on a collection
of modules that constitute the data layer. Hence, before
expressing the constraint we should define how we obtain
this collection. For this purpose, we use OCL query
expressions. The query that results in the data layer can
be expressed as "MicroModule. allInstances ()

-> select (c: MicroModule l c. depends ->

exists (d: MicroModule I d. name = 'DB'» ".

Then we specify the mentioned constraint on this
group of entities as "context MicroModule inv:

MicroModule. allInstances () ->

collect (depends) -> intersection

(MicroModule. allInstances () ->

select (c: MicroModule I c. flows ->

sizeO >= 1» -> isEmptyO" and we evaluate
the constraint on the result collection of the query.

B. Design Rules

Design rules are mostly derived from design patterns and
they address elements directly realized in the source code.
Some examples of design rules are as follows.

Existence of handler module: each flow of a user inter­
face page defines a module as a handler of users' requests.
The reference to this module is just by its name, so there
is a rule that a module with that name must exist. This
rule can be specified in OCL as: "context Flow inv:

self. moduleName = self. microModule. name".

Existence of a corresponding action handler: when users
make their requests by pushing a button of a page, a method
with the same name as the button in the corresponding module
of the page's flow would be called to handle the request.
Then, the contents of the text boxes, which are defined by the

input keywords, are passed to the related method as input
parameters. This leads to the following rule: "For each button,

there must be a method in the corresponding module, with

the same name, where the number of parameters are equal

to the number of inputs in the page". This constraint can
be explained in OCL as: "context Button inv:

self. page. flow. microModule. methods ->

exist (m I m. name = self. name

and m. inputparameters -> size ()

= self. page . input -> size 0)".
Existence of appropriate attributes to reveal the results:

after the called method finishes execution, the control
should return to the flow, and the result of the action
would be displayed through the output attributes of the
called page. These attributes get their values from the
fields of the corresponding module with the same names.
This behavior results in the addition of another rule: "For

every output in a page, there should exist a variable in

the corresponding module with the same name". This rule
is formalized in OCL as: "context Output inv:

self. page. flow. microModule. field ->

(exist f I f . name = self . name) ".

C. Implementation rules

There are implementation level rules such as naming con­
vention rules and coding policies. To illustrate this, we con­
sider a rule that states: "The name of the input elements of
a page should end with input". This rule can easily be
expressed in OCL using String operations.

VI. RELATED WORK
Reflexion model [9] is an early work on this topic and has

been applied to some recent empirical studies on architecture
conformance checking [13] [14]. In this method, the generated
model of the source code is checked against the architectural
model according to a mapping which is defined by the
architect. Some approaches have refined this model [15] [16],
for instance, by introducing a semi-automatic way to derive
mappings between the source model and the architectural
model through clustering. Reflexion model tool [17] uses an
extractor tool to obtain the source model. Deriving such an
extractor for the systems that are developed using various
languages and may be specific to that system, seems not to
be straightforward; but once we have it, the approach can be
used to validate architectural rules.

Feijs et al. extended relational algebra to Relation Partition
Algebra (RPA) [18] and used it to formulate architectural rules
[19]. The Part-of relations model the hierarchical structure
of a system and call relations express the dependencies be­
tween functions. A lifting operator is defined to find out the
dependencies between software elements at different levels
of software hierarchy using predefined relations. Eichberg
et al. [20] propose an approach based on RPA to define
and continuously check dependencies. Source elements such
as Class, Method, etc. are recognized and represented by
relations. A logic programming language is used to define the

groups of source elements called ensembles and the constraints
on dependencies between them. These two approaches use
relation based representations of the source program. If these
relations can be defined for a multi-language system, the
dependencies will be extracted accordingly. Defining these
relations without the help of an automatic tool is a complicated
task.

Structural Constraint Language (SCL) [21], based on first
order logic, is a language for describing a wide variety of de­
sign intents. A graph model of the source program is traversed
according to quantifiers of SCL expressions to obtain sets of
entities and check constraints against them. So far, it only
supports Java and C++ as the programming language. Kel­
lens [22] used a logic-based language to describe executable
queries on the source code to form logical groups o� source
elements called Intentional Views. To evaluate constramts, sets
resulting from executing multiple queries describing a same
view are matched against each other.

Aspect-Oriented Programming can use static pointcut that
allows declaration of compile-time warning or error messages
which can be used to check architectural rules like structural
dependencies, naming conventions and pattern usage [7].
Checking for structural dependencies is conceivable through
adding aspect code that specifies unintended dependencies in
point cuts and will introduce a compile-time warning or error
message when finding join points that match them.

Dependency Structure Matrix [23], [24] has also been
used to visualize the hierarchical structure and inter-module
dependencies in a scalable way to help architect recognize
unintended dependencies.

ArchJava [25] is an approach that statically enforces archi­
tecture by introducing new types to Java language to denote
architectural elements like component. This way component
and connector view of architecture can be imposed.

In another point of view, our approach is related to works
that investigate an aspect of a software system that is defined
through different languages. The approach proposed in [26�,
supports architecture described in different languages. ThIS
approach is different from ours in the way that we suppose
a unified representation of architecture is provided through
the system meta-model, but the code can be developed in
heterogeneous languages and needs to be abstracted in a
unified way.

Moise et al. [27] propose an approach to discover cross­
language dependencies. This work can be considered as a
method to check the dependencies between the basic elements
in different programming languages (e.g. C and Java); but it
only supports dependencies and does not provide the facility
for description of abstract elements (e.g. layer). So, it should
be extended to be able to extract other necessary information
to support various kinds of architectural rules.

There is a similar approach to our method in the Model
Driven Software Development tool, openArchitectureWare
(oA W) [28]. Although our method follows a model-based
approach, it differs from oA W. oA W is mainly used for code
generation while our method checks compliance of the source

code with the architecture.

VII. CONCLUSION

We proposed a uniform model-based approach to check the
compliance of source code with the architecture by examining
the cross-language conformance rules. Our proposed method
is not bound to a specific language, rather, it can be extended
to adopt any language that is used in developing software.

We have implemented our method in Java and ANTLR,
but the proposed method is more general and is not restricted
to the specific tools used. The approach focuses on struc­
tural constraints imposed by the architecture. Dependencies
between elements are the main subject of structural constraints.
These dependencies between elements in the multi-language
software are of two kinds: inter-dependencies (cross-language
dependencies) and intra-dependencies. Inter-dependencies are
dependencies between elements of different languages and
intra-dependencies refer to dependencies between elements of
a single language. Our approach supports intra-dependenc.ies
that can be specified by the artifacts of the correspondmg
language, while inter-dependencies are supported through in­
tegration of the language models.

Our method is intended to be independent of the language
used in developing software in order to support cross-language
rules. We obtain independence of domain specific languages
in a uniform straightforward way but independence of general­
purpose languages is complicated because of their large-scale
abstract syntax. Once we define the abstract syntax grammar
and the model generator of a language in the way described
in Section IV, they can be reused in any other system that
uses that language. This way, a repository of languages can
be formed. So in the infrastructure building phase, we can
reuse available language definitions.

We proposed a generic approach to be applied on a multi­
language source code; hence we did not focus on providing
high-level primitives on language structures. An example of
such a primitive is a function that investigates source code
and extracts control dependencies between the expressions in
the source code. Our method can be extended with libraries,
each of which provides such facilities for a different language.

In our approach, rules are expressed in OCL, which is a
standard, declarative language. It provides the possibility of
reusing rules at design and implementation levels. Architecture
level rules that include abstract elements (e.g. layer) are depen­
dent on the meta-model and can only be reused along with it.
This way, we can also have a repository of rules that reduces
the cost of defining conformance rules for a project. This is
particularly important in the context of software product lines
in which multiple products share a common architecture.

ACKNOWLEDGMENT

The authors would like to thank Mohammad Javad Izadi
and Mr. Aguile for their helpful comments.

REFERENCES

[1] Spring web flow reference guide, ver. 2.0.8. [Online]. Available:
http://www.springsource.org/webflow

[2] M. Fowler. Language workbenches: The killer-app
for domain specific languages? [Online]. Available:
http://www.martinfowler.com/articles/languageWorkbench.html

[3] Object management group, the model driven architecture resources
page (2003). [Online]. Available: http://www.omg.org/mda

[4] F. Martin, "Who needs an architect?" IEEE Software, vol. 20, no. 5, pp.
11-13, 2003.

[5] N. Rozanski and E. Woods, Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley
Professional, 2005.

[6] N. Rozanski and Woods, Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley
Professional, 2005.

[7] P. Merson, "Using aspect-oriented programming to enforce architecture,"
Software Engineering Institute, Tech. Rep. CMU/SEI-2007-TN-019,
September 2007.

[8] J. Knodel and D. Popescu, "A comparison of static architecture compli­
ance checking approaches," Software Architecture, Working IEEEIIFIP
Coriference on, vol. 0, p. 12, 2007.

[9] G. C. Murphy, D. Notkin, and K. J. Sullivan, "Software reflexion
models: Bridging the gap between design and implementation," IEEE
Transactions on Software Engineering, vol. 27, no. 4, pp. 364-380, 2001.

[10] M. Volter and T. Stahl, Model-Driven Software Development. Wiley
& Sons, May 2006.

[11] Antlr parser generator. [Online]. Available: http://www.antlr.orgl
[12] Eclipse modeling-mdt. [Online]. Available:

http://www.eclipse.org/modeling/mdtl
[13] J. Knodel, D. Muthig, U. Haury, and G. Meier, "Architecture compliance

checking - experiences from successful technology transfer to industry,"
in CSMR '08: Proceedings of the 2008 12th European Coriference on
Software Maintenance and Reengineering. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 43-52.

[14] J. Rosik, A. Le Gear, J. Buckley, and M. Ali Babar, "An industrial
case study of architecture conformance," in ESEM '08: Proceedings of
the Second ACM-IEEE international symposium on Empirical software
engineering and measurement. New York, NY, USA: ACM, 2008, pp.
80-89.

[15] R. Koschke and D. Simon, "Hierarchical reflexion models," in WCRE
'03: Proceedings of the 10th Working Conference on Reverse Engineer­

ing. Washington, DC, USA: IEEE Computer Society, 2003, p. 36.
[16] A. Christl, R. Koschke, and M.-A. Storey, "Equipping the reflexion

method with automated clustering," Reverse Engineering, Working Con­
ference on, vol. 0, pp. 89-98, 2005.

[17] jrmtool eclipse plug-in. [Online]. Available:
http://jrmtool.sourceforge.netl

[18] 1. M. G. Feijs and R. C. van Ommering, "Relation partition algebra
- mathematical aspects of uses and part-of relations," Sci. Com put.
Program., vol. 33, no. 2, pp. 163-212, 1999.

[19] R. C. van Ommering, R. 1. Krikhaar, and 1. M. G. Feijs, "Languages for
formalizing, visualizing and verifYing software architectures," Com put.
Lang., vol. 27, no. 113, pp. 3-18, 2001.

[20] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, "Defining
and continuous checking of structural program dependencies," in ICSE
'08: Proceedings of the 30th international coriference on Software
engineering. New York, NY, USA: ACM, 2008, pp. 391-400.

[21] D. Hou and H. J. Hoover, "Using sci to specifY and check design intent
in source code," IEEE Transactions on Software Engineering, vol. 32,
no. 6, pp. 404-423, 2006.

[22] A. Kellens, "Maintaining causality between design regularities and
source code," Ph.D. dissertation, V rije Universiteit Brussel, 2007.

[23] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, "Using dependency
models to manage complex software architecture," SIGPLAN Not.,
vol. 40, no. 10, pp. 167-176, 2005.

[24] S. Huynh, Y. Cai, Y. Song, and K. Sullivan, "Automatic modularity con­
formance checking;' in ICSE '08: Proceedings of the 30th international
coriference on Software engineering. New York, NY, USA: ACM, 2008,
pp. 411-420.

[25] J. Aldrich, "Using types to enforce architectural structure," in WICSA
'08: Proceedings of the Seventh Working IEEEIIFIP Conference on

Software Architecture (WICSA 2008). Washington, DC, USA: IEEE
Computer Society, 2008, pp. 211-220.

[26] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani, "Supporting
heterogeneous architecture descriptions in an extensible toolset," in
ICSE '07: Proceedings of the 29th international conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 209-219.

[27] D. 1. Moise and K. Wong, "Extracting and representing cross-language
dependencies in diverse software systems," Reverse Engineering, Work­
ing Coriference on, vol. 0, pp. 209-218, 2005.

[28] "openarchitectureware." [Online]. Available:
http://www.openarchitectureware.orgl

