

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Learning to Rank Entities for Set Expansion from Unstructured Data

Puxuan Yu, Razieh Rahimi, Zhiqi Huang, and James Allan Center for Intelligent Information Retrieval University of Massachusetts Amherst

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Task Definition

- Set expansion
 - Extract <u>sibling entities</u> to user-given entities
 - Dates back to "Google Sets" (user-oriented)
 - also, QA, query suggestion, ...
- Restricted setting: corpus-based set expansion
 - Extract sibling entities from plain text, no access to KB at inference time
 - Applicable to more downstream tasks
 - relation extraction, taxonomy construction, knowledge base completion, ...

"Major league sports teams in Massachusetts"

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Task Definition

- Restricted setting: corpus-based set expansion
 - Example use case: knowledge base completion (KBC)

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Challenges & Contributions

- We aim to train a **neural model** for set expansion
 - Training data (set labels): a series of entity sets that are also in the corpus
 - Developed a toolkit (DBpedia-sets) to build labelled sets from corpus via knowledge base at training time
 - Entity features from raw corpus: unigrams / skip-grams / embeddings
 - Empirical analysis of unigram vs skip-gram
 - Unigram + linearly mapped embeddings
 - Modeling and learnable parameters
 - Query-candidate interactions / query length-agnostic / generalizability

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Training data: DBpedia-sets

Steps:

- 1. Identify entity mentions (entity linking)
- 2. Collect entity statistics
- 3. Filter entity sets

An example statistical filter: "find all entity sets containing 10 to 100 entities, where at least 90% of the entities appear at least 10 times in the corpus"

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Training data: DBpedia-sets

Advantages:

- Entity sets are topically diverse
- Sets are of high quality
- Mined sets are dependent on corpus
 - In contrast, INEX Entity track and DBPedia-Entity-V2 are not quite usable
 - Hard for training and evaluation!

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Entity features

- Combination of lexical features and distributed representations (embeddings) [1]
- Unigram PPMI:
 - Each dimension corresponds to a word in corpus

$$S_{ij} = \max(\text{PMI}(e_i, u_j), 0),$$

$$\text{PMI}(e, u) = \log \frac{P(e, u)}{P(e)P(u)} = \log \frac{\text{freq}(e, u)|\text{corpus}|}{\text{freq}(e)\text{freq}(u)}$$

- Entity embeddings: No graph embeddings! (no access to KB at inference time)
 - Treat entity as word, and get its word2vec/GloVe embeddings [1]
 - Or use contextualized representations (e.g., BERT)

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Entity features

- BERT for set expansion [2]
 - One-instance: average of embeddings of entity tokens in a sentence
 - Corpus-wise: average of all one-instance embeddings in the corpus
- No finetuning performed. Acquire embeddings from BERT directly.
- Linear mapping of entity embeddings is a "hacky" way of finetuning BERT! (Later)

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Neural model

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Neural model

Structure of Deep Sets [3], figure from the NIPS presentation

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Experiments

- Setup:
 - Re-ranking top-100 candidates
 - List-wise loss: Listnet
- Candidate generation: best unsupervised approach (recall) on each corpus
- A non-neural supervised approach: AdaRank
 - Cannot do padding, have to train a model for each query length
 - No linear mapping of entity embeddings
- Metrics: MAP and P@20

College of Information & Computer Sciences

Center for Intelligent Information Retrieval

- uni: using only unigram features
- emb: using only embedding features
- cmb: combing features from uni and emb
- nt: without entity embedding linear transformation

	Dataset	AP89 (34.8M tokens)						WaPo (395M tokens)						Wiki (928M tokens)					
	Metrics MAP@10		00	P@20			MAP@100			P@20			MAP@100			P@20			
	Query length	3	4	5	3	4	5	3	4	5	3	4	5	3	4	5	3	4	5
	GloVe	.110	.123	.128	.101	.108	.104	.167	.179	.183	.161	.160	.157	.231	.250	.259	.214	.216	.210
	BERT	<u>.262</u>	<u>.270</u>	.267	.227	<u>.212</u>	.208	.235	.234	<u>.239</u>	<u>.211</u>	.203	<u>.196</u>	.180	.186	.187	.174	.169	.161
	SetExpan	.154	.153	.153	.120	.121	.119	.171	.172	.165	.172	.168	.162	.220	.217	.217	.201	. 195	.188
	CaSE-skip	.174	.183	.183	.148	.147	.143	.206	.196	.196	.205	.188	.184	.249	.248	.248	.227	.216	.205
	CaSE-uni	.168	.181	.179	.152	.153	.146	.204	.195	.195	.200	.185	.180	<u>.254</u>	.253	.254	.231	.219	<u>.208</u>
	AdaRank-uni	.223	.245	.256	.217	$.220^{\dagger}$	$.217^\dagger$.238	.240	$.247^\dagger$	$.226^{\dagger}$	$.223^{\dagger}$	$.218^{\dagger}$.213	$.264^\dagger$	$.267^{\dagger}$.206	$.237^{\dagger}$	$.230^{\dagger}$
	AdaRank-emb	.227	.245	.259	.217	.210	.203	.235	.232	.238	.211	.202	.197	.260	.273†	$.282^{\dagger}$.239†	.237†	$.232^{\dagger}$
	AdaRank-cmb	.227	.246	.256	.218	$.220^{\dagger}$.215	.238	$.242^\dagger$	$.247^\dagger$	$.226^{\dagger}$	$.225^{\dagger}$	$.219^{\dagger}$.259	$.270^{\dagger}$	$.280^{\dagger}$.239†	$.236^{\dagger}$	$.230^{\dagger}$
	NESE-uni	.241	.252	.256	.230	$.227^{\dagger}$	$.220^{\dagger}$.242	$.246^{\dagger}$	$.248^{\dagger}$	$.232^{\dagger}$	$.228^{\dagger}$	$.218^{\dagger}$.249	$.264^{\dagger}$	$.268^{\dagger}$.240†	$.237^{\dagger}$	$.231^{\dagger}$
	NESE-emb-nt	.236	.250	.261	.207	.200	.201	.225	.230	.236	.202	.197	.193	.261	$.273^{\dagger}$	$.281^\dagger$.239†	$.238^{\dagger}$	$.230^{\dagger}$
>	NESE-emb	.206	.206	.212	.192	.182	.178	.217	.217	.222	.201	.196	.192	.217	.228	.235	.213	.210	.203
	NESE-nt	.244	.253	$.277^{\dagger}$.231	.226	$.224^\dagger$	$.246^{\dagger}$	$.248^\dagger$	$.266^{\dagger}$	$.234^\dagger$	$.229^{\dagger}$	$.224^\dagger$.260	$.270^{\dagger}$	$.281^{\dagger}$.239†	$.240^{\dagger}$	$.232^{\dagger}$
	NESE	.273†	.283†	.291†	.240 [†]	$.237^{\dagger}$.231†	. 264 †	. 268 †	$.282^{\dagger}$. 253 †	$.247^{\dagger}$. 240 †	.272†	. 288 †	.293†	.252†	. 246 †	. 239 †
	Δ	+4.2%	+4.8%	+9.0%	+5.7%	+11.8%	+11.1%	+12.3%	+14.5%	+18.0%	+19.9%	+21.7%	+22.4%	+7.1%	+12.8%	+15.4%	+9.1%	+ 12.3%	+14.9%

Experiments

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Generalizability

- Models trained on DBpedia-sets data perform well on DBpedia-sets test data (\checkmark)
- Models trained on DBpedia-sets data perform well on non-KB entities
 - Use noun phrases as approximation to entity mentions
 - They also have context features and entity embeddings (compatible w/ our model!)
 - Hard to evaluate: same entity have different surface names
 - Tottenham Hotspur F.C.: "Tottenham Hotspur", "Tottenham", "the spurs",
 - We adopt small-scale human evaluation

Sets	NBA	teams	TV ch	nannels	European capitals			
Query	q1	q2	q3	q4	q5	q6		
GloVe	.625	.673	.059	.125	.050	.313		
CaSE-uni	.656	.647	.178	.254	.524	.454		
NESE	.733	.733	.254	.313	.551	.524		

13

Side Experiments: list-wise learning to rank

• Relation between "correlation of Listnet loss and MAP" and "ratio of positive docs / entities"

College of Information & Computer Sciences Center for Intelligent Information Retrieval

Summary

- Cast corpus-based set expansion as list-wise learning-to-rank
- Corpus-dependent dataset for training set expansion models
- Linearly mapping entity embeddings + unigram PPMI features bring significant improvement

Future work:

- Better ways of using BERT?
 - Source sentence selection / weighting to generated "query-dependent" contextualized entity embeddings

UMassAmherst Conter for the terms of terms of the terms of the terms of Center for Intelligent Information Retrieval

Puxuan Yu

cs.umass.edu/~pxyu

pxyu@cs.umass.edu