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Abstract
In machine learning, learning often corresponds
to changing the parameters of a parameterized
function. A learning rule is an algorithm or math-
ematical expression that specifies precisely how
the parameters should be changed. When creating
a machine learning system, we must make two
decisions: what representation should be used
(i.e., what parameterized function should be used)
and what learning rule should be used to search
through the resulting set of representable func-
tions. In this paper we focus on gradient-like
learning rules, wherein these two decisions are
coupled in a subtle (and often unintentional) way.
That is, using the same learning rule with two dif-
ferent representations that can represent the same
sets of functions can result in two different out-
comes. After arguing that this coupling is undesir-
able, particularly when using neural networks, we
present a method for partially decoupling these
two decisions for a broad class of gradient-like
learning rules that span unsupervised learning,
reinforcement learning, and supervised learning.

1. Introduction
Consider two challenges at the foundation of machine learn-
ing (ML) research and practice: representation selection
and learning rule selection. Representation selection is the
decision of how knowledge should be represented within an
ML system. Learning rule selection is the decision of which
algorithm should be used to modify the system’s stored
knowledge. These two challenges are central to most ML
systems, including unsupervised, supervised, and reinforce-
ment learning systems.

Representation and learning rule selection are intertwined—
a learning rule can work well with some representations and
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work poorly with, or be incompatible with, others. Although
this intertwining is unavoidable and is likely desirable, it
can have unintended and undesirable effects. To see this, we
split representation selection into two components: deciding
what the system should be able to represent (e.g., normal
distributions) and how the system will represent it (e.g., by
storing the mean and standard deviation or variance). The
intertwining of the learning rule with the decision of what
the system should be able to represent is often considered
by the designer of an ML system. However, the intertwining
of the learning rule with the decision of how the system will
represent knowledge is not necessarily desirable, is often
overlooked, and can have significant ramifications.

Consider an example, which we adapt from an example
presented by Amari (1985), where part of an ML sys-
tem approximates an unknown distribution that generated
some observed data, X1, X2, . . . , Xn, where each Xi ∈ R.
We might decide that the system will estimate the distri-
bution using a normal distribution (what the system can
represent) and that the normal distribution will be repre-
sented by storing its mean, µ, and standard deviation, σ
(how the system represents it). We might then decide to
find the model, (µ, σ), that maximizes the log-likelihood:
L(µ, σ|X1, . . . , Xn) = ln (Pr (X1, . . . , Xn|µ, σ)) . To
maximize the log-likelihood, we might decide to use the
gradient ascent learning rule with step size α := .001/n,
resulting in the updates: µi+1 = µi + α

σ2
i

∑n
j=1(Xj − µi),

and σi+1 = σi − αn
σi

+ α
σ3
i

∑n
j=1(Xj − µi)2.

Clearly in this setting the decision to model the distribution
that generated the data using a normal distribution will im-
pact the behavior of the resulting system, and this decision
would likely be carefully considered. Less obviously, our
decision to parameterize normal distributions using µ and
σ will also impact the behavior of the system. If we chose
to parameterize normal distributions using the variance, σ2

rather than the standard deviation, σ, our same learning
rule would produce a different sequence of normal distri-
butions. In general, if we represent normal distributions
with two parameters, µ and σk, the resulting gradient ascent
updates are: µi+1 = µi + α/(σki )

2
k

∑n
j=1(Xj − µi), and

σki+1 = σki − αn
kσk

i

+ α
k (σki )−

k+2
k

∑n
j=1(Xj − µi)2. Figure

1 shows the results of applying this algorithm to a fixed data
set using various k. Notice that different choices of how
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Figure 1: We generated a data set containing 100,000
samples from N (3, 9)—the normal distribution with mean
3 and variance 9. Each curve shows the sequence of
normal distributions produced by using gradient descent,
θi+1 ← θi − α∇L(θi) (using abbreviated notation for L),
to maximize the log-likelihood of a parameterized normal
distribution for 200,000 iterations and starting fromN (2, 4).
The normal distributions are parameterized by µ, their mean,
and σk, a power of their standard deviation. Each curve
therefore corresponds to using a different (but equally repre-
sentative) representation, but the same learning rule.

to represent normal distributions result in wildly different
outcomes. A poor choice can result in a sequence of normal
distributions that takes a circuitous path to the maximum
likelihood distribution and produces poorly scaled updates.
As a result, a poor choice of how to represent normal distri-
butions can result in the likelihood of the model increasing
slowly (notice that using σ4, the model failed to approach
the maximum log-likelihood model.

In this case, and many others, the underlying cause of the in-
tertwining of the learning rule with the choice of how to rep-
resent knowledge stems from an implicit assumption hidden
within the learning rule (stochastic gradient descent in this
case). This implicit assumption is that distances between
different parameter vectors, θ, should be measured using
Euclidean distance. In Appendix A we review where this
implicit assumption is made. In our example, θ = [µ, σk]ᵀ,
and the distance between θ = [µ, σk]ᵀ and θ′ = [µ′, σ′k]ᵀ—
the distance between N (µ, σ2) and N (µ′, σ′2)—is:

dist(θ, θ′) =
√

(µ′ − µ)2 + (σ′k − σk)2.

Notice that this definition of distance is dependent on k,
or, more generally, on how the parameter vector encodes
knowledge. In this case, large k (e.g., k = 4) result in small
changes to σ incurring large amounts of distance relative to
similar changes to µ (given that σ > 1). As a result, using
large k results in a sequence of normal distributions that
focuses on changing the mean first, since changes to µ incur
less distance than changes to σ. Similarly, small k results
in a sequence of normal distributions that over-emphasizes

adjusting the variance of the normal distribution.

Sometimes it is easy to control how knowledge is repre-
sented, like when deciding how to represent normal distri-
butions in our example, and it may also be easy to select a
representation such that Euclidean distance in the parame-
ters is reasonable (e.g., using σ or σ2, but not σ20). However,
in other cases it may not be clear how to define θ so that
it can represent what we want while simultaneously ensur-
ing that Euclidean distance between parameter vectors is a
reasonable notion of distance.

This is particularly true when using deep artificial neural
networks (ANNs), where the parameter vector, θ, corre-
sponds to the weights of the ANN. If a weight near the
output layer has a bigger impact on the function represented
by the ANN than a weight in an early layer, then using
Euclidean distance between weight vectors θ and θ′ to mea-
sure the distance between the functions represented by an
ANN with weights θ and θ′ will place undue emphasis on
weights near the output layer. For ANNs, this symptom of
the underlying problem is called the problem of vanishing
gradients (Hochreiter, 1998).

In this paper we study the intertwining of the decision of
which learning rule to use and how knowledge should be rep-
resented, extending works by Amari (1985), Kakade (2002),
and Bagnell & Schneider (2003). A common misconception
is that the topic of this paper is representation selection or
learning rule selection—it is neither. This paper is about the
coupling of these two problems when using gradient-like
learning rules, why it is undesirable, and how these two
problems can be partially decoupled.

More specifically, for a broad class of gradient-like learning
rules, which subsumes gradient, stochastic gradient, and
accelerated gradient methods as well as temporal-difference
methods (Sutton, 1988), we present a method for modify-
ing the learning rule to use an explicit definition of how
distances should be measured during learning rather than
requiring the use of Euclidean distance between parameter
vectors. Importantly, this method is not a learning rule itself,
but rather a method that other researchers can use to enhance
the learning rules that they design.

We begin by defining different forms of covariance, which
capture different levels with which a learning rule can be
independent of the choice of how knowledge will be rep-
resented. We then propose a method for converting any
learning rule from within a broad class of gradient-like
learning rules into a first-order covariant learning rule—the
weakest form of decoupling—and show how this method
can be approximated without increasing the computational
complexity of the learning rule. Our method is closely re-
lated to natural gradient methods (Amari, 1998)—it extends
them to a more general class of learning rules. We also
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discuss why a second-order covariant learning rule would
be desirable before presenting results that suggest there may
not exist any practical second-order covariant learning rules.

We conclude with examples of how some existing learning
rules can be converted into first-order covariant learning
rules and discuss some of the subtleties and surprising prop-
erties of our method (including that using estimates of the
Fisher information matrix results in a covariant learning
rule). For compelling empirical evidence supporting our
proposed approach, notice that the recently proposed zap
Q-learning algorithm (Devraj & Meyn, 2017) and similar
natural temporal difference learning algorithm (Dabney
& Thomas, 2014), both of which are closely related to the
least squares policy evaluation algorithm (Bertsekas & Ioffe,
1996; Bertsekas, 2009) and fixed point Kalman filter algo-
rithm for reinforcement learning (Choi & Van Roy, 2006),
can be immediately obtained by applying our method to the
well-known temporal difference learning learning algorithm
(Sutton & Barto, 1998). Thus, instead of serving as base-
lines with which to compare our approach, the performances
of these algorithms show that our framework can produce
algorithms that scale to challenging problems.

2. Notation and Definitions
Let a parameter vector, θ, be a vector that captures the
current knowledge of an ML system. Let Θ ⊆ Rn be the
set of all possible values for θ. We restrict our discussion to
ML systems that use a parameter vector to parameterize a
function. Intuitively, a parameterized function is a function
that, for each possible parameter vector, θ ∈ Θ, produces a
mapping from elements of some set, X , to elements of Rk.
More formally, f : X × Θ → Rk so that f(x, θ) denotes
the parameterized function evaluated at x ∈ X using the
parameter vector θ ∈ Θ. For example, in a regression
system f(x, θ) might be an estimate of f?(x) for some
target function f? : X → Rk and all x ∈ X . Similarly, in
a reinforcement learning system f(x, θ) might be a scalar
estimate of the value, qπ(x), of a state-action pair, x, under
policy, π. Let P be the set of all parameterized functions.

Importantly, we further restrict our discussion to systems
where the parameterized function is inC1: we only consider
parameterized functions, f , such that for all x ∈ X and
θ ∈ Θ, ∂f

∂θ (x, θ) exists. Although this assumption rules
out some artificial intelligence and ML systems, like ones
that use STRIPS (Fikes & Nilsson, 1971) or ID3 (Quinlan,
1986), it applies to many systems like those that use linear
estimators or ANNs.

Learning is the iterative search for parameter vectors that
cause f(·, θ) to achieve some desirable property, start-
ing from some set of initial parameter vectors, θ0 :=
(θ1

0, θ
2
0, . . . , θ

ι
0) ∈ Θι, where ι ∈ N≥0 denotes the num-

ber of initial parameter vectors required by the learning
rule. Although ι = 1 for most learning rules, like gradient
descent, some learning rules (like the accelerated gradient
methods discussed later) require multiple initial parameter
vectors.

Let (Ω,Σ, p) be a probability space that captures all sources
of randomness that occur during the learning process. In-
tuitively, each outcome, ω ∈ Ω, is a seed for the ran-
dom number generator used by both the ML system and
the environment with which it interacts. A learning rule,
l, is a sequence of functions, l := (li)

∞
i=1 where each

li : P × Θι × Ω → Θ such that li(f, θ0, ω) denotes the
parameter vector at the ith iteration when learning rule l is
used with the parameterized function f , the initial parameter
vectors are θ0 ∈ Θι, and all randomness is captured by the
outcome ω ∈ Ω. To simplify notation for the base cases in
recursive expressions, when i ≤ 0 let li(f, θ0, ω) := θ1−i

0 .

For example, consider the learning rule, l, for stochastic
gradient descent when minimizing the expected squared
error between f(·, θ) and a target function, f? : X → R:

li+1(f, θ0, ω)

=li(f, θ0, ω)− αi
(
f?(Xi(ω))− f(Xi(ω), li(f, θ0, ω))

)

× ∂f

∂li(f, θ0, ω)
(Xi(ω), li(f, θ0, ω)),

where × denotes scalar multiplication split across multiple
lines, Xi : Ω→ X is the input to f? used during the ith iter-
ation, which is a random variable, and (αi)

∞
i=1 is a sequence

of positive real-valued step sizes. To obtain a more familiar
notation, let θi := li(f, θ0, ω), which gives the definition:
θi+1 = θi−αi

(
f?(Xi(ω))−f(Xi(ω), θi)

)
∂f
∂θi

(Xi(ω), θi).

Intuitively, we say that a parameterized function, g, is con-
gruent to a parameterized function, f , if g can represent
everything that f can, and there is a smooth mapping from
parameters for f to congruent parameters for g. More for-
mally:
Definition 1 (Congruent Representations). Let g : X×Ψ→
Rk and f : X ×Θ→ Rk be two parameterized functions,
where Ψ ⊆ Rm and Θ ⊆ Rn. We say that g is congruent to
f if there exists a function ψ : Θ→ Ψ, called a submersion,
such that f(x, θ) = g(x, ψ(θ)) for all x ∈ X and θ ∈ Θ,
∂ψ
∂θ (θ) is full rank for all θ ∈ Θ, and m ≤ n.

Hereafter we reserve the symbols f , g, ψ, Θ, and Ψ to
represent a parameterized function, g : X ×Ψ→ Rk, that
is congruent to a parameterized function, f : X ×Θ→ Rk,
with submersion ψ, and we reserve the symbols n and m for
the dimensions of Θ and Ψ, respectively. Also, notice that
the congruency of functions is not symmetric. For example,
if g(x, θ) = θ and f(x, θ) = eθ, where θ ∈ R, then g is
congruent to f , but f is not congruent to g.
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We can now state some earlier concepts more formally. The
question of what an ML system should be able to represent
is the question of what functions should be representable
by the parameterized function that is used. The question
of how an ML system should represent knowledge is the
question of which parameterized function to use from a set
of mutually congruent parameterized functions.

Intuitively, our goal is to ensure that a learning rule will
produce the same sequence of functions regardless of which
parameterized function is selected from a set of mutually
congruent parameterized functions. Learning rules with this
property are sometimes called invariant to reparameteriza-
tion, since they do not change their behavior if the parame-
terized function that they use is parameterized in a different
way. They are also sometimes called covariant, perhaps
in reference to covariant transformations in physics. This
usage of the word covariant has been attributed (MacKay,
1996) to Knuth (1968). To maintain consistency with prior
work in machine learning (MacKay, 1996; Amari, 1998;
Amari & Douglas, 1998; Kakade, 2002; Bagnell & Schnei-
der, 2003; Peters & Schaal, 2008; Dabney & Thomas, 2014;
Thomas et al., 2016), and for brevity, we adopt the latter
terminology. Formally, we define a covariant learning rule
as follows, where ψ(θ0) := (ψ(θ1

0), ψ(θ2
0), . . . , ψ(θι0)):

Definition 2 (Covariant Learning Rule). A learning rule, l,
is a covariant learning rule if for all parameterized func-
tions, f , all parameterized functions g that are congruent
to f , all i ∈ N>0, all ω ∈ Ω, all θ0 ∈ Θι, and all x ∈ X ,
f(x, li(f, θ0, ω)) = g(x, li(g, ψ(θ0), ω)).

Although covariant learning rules exist, they tend to be com-
putationally impractical and are therefore rarely used. In-
stead of requiring a learning rule to produce the exact same
sequence of functions, (f(·, li(f, θ0, ω)))∞i=1 regardless of
the parameterized function that is used, we can require a
learning rule to produce a sequence of functions that, at
each iteration, changes the parameter vector in a direction
that is locally independent of the parameterization. More
specifically, we define a j-order covariant learning rule to
be a learning rule that ensures that a j-order Taylor approxi-
mation of f(·, li(f, θ0, ω)), centered around li−1(f, θ0, ω),
is independent of f :

Definition 3 (j-Order Covariant Learning Rule With Re-
spect to a Set, G). A learning rule, l, is a j-order covariant
learning rule with respect to a set G ⊆ P if for all parame-
terized functions, f ∈ P , all g ∈ G that are congruent to f ,
all i ∈ N>0, all ω ∈ Ω, all θ0 ∈ Θι, and all x ∈ X ,

τj(f(x, ·),li−1(f, θ0, ω), li(f, θ0, ω))

=τj (g(x, ·), ψ(li−1(f, θ0, ω)), li(g, ψ(θ0), ω)) ,

where τj(h, y, y′) denotes the j-order Taylor approximation
of h(y′) centered around h(y).

Notice that a covariant learning rule is not necessarily j-
order covariant for any j, nor does j-order covariance imply
(j − k)-order covariance for any k > 0. Also, although
j-order covariance captures different levels of covariance, it
is limited to learning rules of the form θi = θi−1 + αi∆i,
where ∆i ∈ Rn is the update direction at step i. That is: it is
restricted to updates that take a step from the previous param-
eters, θi−1. Some learning rules, like accelerated gradient
methods (Nesterov, 1983), take steps from some other point:
θi = βi + αi∆i, where βi might be some combination of
previous parameter vectors, like βi = γθi−1 + (1− γ)θi−2,
where γ ∈ [0, 1]. To provide an achievable form of covari-
ance for these updates, we require them to be equivalent
under a j-order Taylor approximation centered around βi.
This leads to the more general definition of j-order covari-
ance:

Definition 4 (j-Order Covariant Learning Rule with Re-
spect to a Sequence and Set). Let β1, β2, . . . be a sequence
of random variables where each βi : Ω→ Rn. A learning
rule, l, is a j-order covariant learning rule with respect to
the sequence (βi(ω))∞i=1 and a set, G ⊆ P , if for all param-
eterized functions, f ∈ P , all g ∈ G that are congruent to
f , all i ∈ N>0, all ω ∈ Ω, all θ0 ∈ Θι, and all x ∈ X ,

τj(f(x, ·), βi(ω), li(f, θ0, ω))

= τj (g(x, ·), ψ(βi(ω)), li(g, ψ(θ0), ω)) .

This is not consistent with previous definitions of a covariant
learning rule (Bagnell & Schneider, 2003; Peters & Schaal,
2008; Dabney & Thomas, 2014; Thomas et al., 2016)—what
these previous authors called “covariant” learning rules we
call “first-order covariant”. We adopt our alternate definition
because later we discuss higher orders of covariance. Also,
hereafter, for brevity, we write βi as shorthand for βi(ω).

Furthermore, previous works refer to covariant updates with-
out specifying the set, G, that the covariance is with respect
to—we make this set explicit. As an example, Thomas et al.
(2016) provide a proof of first-order covariance for a spe-
cific learning rule that requires the implicit assumption that
G only includes g with positive definite energetic informa-
tion matrices. Similarly, Amari (1985, page 16) restricts f
and g to parameterized discrete probability distributions for
which the Fisher information matrix is positive definite (it
is in general only guaranteed to be positive semi-definite).
We make these restrictions on g explicit in the definition of
j-order covariant learning rules. Notice that the strength of
the j-order covariance property scales not just with j, but
also with the size of G.

Lastly, let F be a σ-algebra on X so that (X ,F) is a mea-
surable space. Also, recall that RX denotes the set of all
functions fromX to R. LetF⊗F denote the tensor-product
σ-algebra on the product space, X × X .
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3. How to Make a Learning Rule First-Order
Covariant

In Theorem 1, presented later in this section, we show how
a broad class of gradient-like learning rules can be trans-
formed into first-order covariant learning rules. Intuitively,
the ∂f(x, θ)/∂θ terms within a learning rule make the im-
plicit assumption that distances between parameterized func-
tions, f(·, θ) and f(·, θ′), should be measured using Eu-
clidean distance between their parameter vectors. This im-
plicit assumption has been described previously (Amari,
1998). In Appendix A we review exactly where this implicit
assumption is made. We propose replacing the ∂f(x, θ)/∂θ
terms within a learning rule with terms that respect a user-
defined distance. Furthermore, we allow different distance
measures over functions to be used when replacing each
∂f(x, θ)/∂θ term in a learning rule.

Theorem 1 is related to natural gradient methods (Amari,
1998). Amari (1998) argued that, if 1) the goal is to min-
imize a loss function, L : Rn → R, 2) the arguments
(inputs) of L lie on a Riemannian manifold characterized
by the positive-definite metric tensor G : Θ→ Rn×n, and
3) one plans to use a gradient descent algorithm of the form
θi+1 ← θi − αi∇L(θi), then one should instead use the
natural gradient update θi+1 ← θi − αG(θi)

−1∇L(θi).1

Theorem 1 does not require any of these three assumptions,
although it also holds given these assumptions. Instead of
these assumptions, our result relies on an assumption that
the learning rule is gradient-like (which is formally defined
later), which allows for updates like the temporal-difference
learning update that is not the gradient of a function (Sutton,
1988), the use of stochastic gradient estimates, and accel-
erated gradient methods (Nesterov, 1983) that are more
sophisticated than ordinary gradient methods.

Thomas (2014b) generalized the natural gradient to allow
the parameters of L to lie on a semi-Riemannian manifold
and established sufficient conditions for the convergence of
natural gradient descent (which differ from those of ordinary
gradient descent), but did not establish covariance properties.
Intuitively, one can view our approach as replacing gradi-
ent terms, ∂f(x, θ)/∂θ, within a gradient-like learning rule,
with (generalized) natural gradients, G(θ)+∂f(x, θ)/∂θ,
where G(θ) is automatically derived from a user-provided
notion of the distance between parameterized functions. Un-
like Amari’s original natural gradient method, the gradient
terms that we replace with natural gradient terms are not
the gradients of a loss function, but rather terms within a
learning rule. In Appendix A we show how theG(θ) that we
use can be derived from the provided distance measure and

1For discussion of the relationship between natural gradients,
Newton’s method, approximate second-order methods, and other
optimization methods, see, for example, the works of Pascanu &
Bengio (2013); Martens (2014); Furmston et al. (2016).

review Amari’s argument for why using G(θ)+∂f(·, θ)/∂θ
terms in place of ∂f(x, θ)/∂θ terms corresponds to using
the provided distance function rather than Euclidean dis-
tance (where G(θ)+ denotes the Moore-Penrose pseudoin-
verse ofG(θ)). Due to the strong influence natural gradients
had on our approach, we refer to the learning rule, l̃, pro-
duced by applying our method to a learning rule l, as a
naturalized version of l. Also, the naturalized version of
gradient descent will be Amari’s natural gradient algorithm.

The set of gradient-like learning rules that we consider in-
cludes learning rules that start from the previous weights,
θi−1, and then move in a direction δ ∂f∂θi (x, θi−1) for some
x, where δ ∈ R is a scalar error term that dictates
whether f(x, θi−1) should be increased or decreased. We
also include learning rules that consider how to change
f(x, θi−1) for more than one x (e.g., when using mini-
batches), by allowing learning rules that move in a direction∑
j δj

∂f
∂θi−1

(xj , θi−1), where δj is the error term associated
with xj . We further generalize this by 1) integrating over the
xj that are included, where the integral is with respect to a
signed measure that captures the error term, 2) allowing for
the partial derivatives of f to be taken at βi, 3) allowing the
update to start from a point that is more general than θi−1,
and 4) by allowing for stochastic gradient updates, where
the xj that are updated, and their associated errors, depend
on ω. Formally we define this set of gradient-like learning
rules as those that satisfy the following assumption:
Assumption 1. The learning rule, l, can be written as:

li+1(f, θ0, ω) = l′i(f, θ0, ω) +

∫
X

∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·),

where l′ is a first-order covariant learning rule with respect
to a set G and sequence (βi)

∞
i=1 and for all i ∈ N>0, µi :

RX × Ω×X → R is a signed measure on (X ,F).

Notice that l′i(f, θ0, ω) := βi is a first order covariant learn-
ing rule with respect to (βi)

∞
i=1, and that this definition of l′

will be the most common.

As an example, consider the temporal difference learn-
ing rule (Sutton, 1988) for making f approximate a func-
tion called a state-value function, and which has the form:
θt+1 ← θt +α(Rt + γf(St+1, θt)− f(St, θt))

∂f
∂θi

(St, θi),
where St and Rt are random variables called the state
and reward at time t, and α is a small positive step size
(Sutton & Barto, 1998). This learning rule satisfies As-
sumption 1, where 1) t ← i, 2) lt+1(f, θ0, ω) ← θt+1,
3) l′t(f, θ0, ω) ← θt, 4) each x ∈ X is a state-reward-
state tuple, i.e., x = (s, a, s′), 5) f((s, a, s′), θ) does
not depend on a and s′, and so we write f(s, θ), and
6) the signed measure µt(f(·, θt), ω, ·) places a mass of
αt(Rt + γf(St+1, θt)− f(St, θt)) on x = (St, Rt, St+1),
where St and Rt are shorthand for St(ω) and Rt(ω).

As mentioned earlier, our method allows the designer of an
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algorithm to select an implicit distance over parameter space
that is used by the resulting naturalized learning rule. More
precisely, this “distance" may not satisfy the requirements
of a measure, and so technically it is a dissimilarity function,
not a distance measure. To define a notion of distance,
the designer of a learning rule should select a sequence of
functions, p1, p2, . . . , such that each pi : RX × Ω × X ×
(F ⊗F)→ R is a set of signed measures on (X ×X ,F ⊗
F). During the ith update, the gradient term ∂f

∂βi
(·, βi) will

be replaced with a generalized natural gradient term that
measures the dissimilarity between θ and θ + ∆ as:

√
1

2

∫
X2

(f(x, θ)− f(x, θ+∆))(f(y, θ)−f(y, θ + ∆)pi(f(·, βi), ω, dx, dy).

(1)

Thus, the choice of pi should capture the desired notion of
distance. Often (but not always) pi(f(·, βi), ω, ·, ·) will be
a joint probability measure over random variables that are
always equal, and will also be a probability mass function
(or probability density function), in which case (writing
pi(x) for pi(f(·, βi), ω, x, x)) we can write the notion of
distance as:

dist(θ, θ + ∆) =

√
1

2

∑
x∈X

pi(x)(f(x, θ)− f(x, θ + ∆))2

=

√
1

2
E
[
(f(X, θ)− f(X, θ + ∆))2],

where X ∼ pi. This makes it clear that our notion of
distance between f(·, θ) and f(·, θ + ∆) is related to the
expected squared difference between their values given that
the inputs, x, are sampled from some distribution, pi(·),
which is chosen by the designer of the algorithm.

Consider again the temporal difference learning example
from before, where x = (s, r, s′). In this case, we might
define pt to encode the distribution over states, rewards,
and next-states that occur under the policy being evaluated
by the temporal difference algorithm. This would cause
dist(θ, θ + ∆) to be the square root of half the expected
squared difference between state-value estimates when us-
ing θ and θ + ∆, and where the expected value assumes
that states and rewards come from the on-policy distribution
over states and rewards (Sutton & Barto, 2018).

We are now ready to present our main theorem, which takes
a learning rule, l, and transforms it into a new learning rule,
l̃, that is first-order covariant.
Theorem 1. If a learning rule, l, satisfies Assumption 1,
then for any sequence of pi, the learning rule l̃ defined by:

l̃i(f, θ0, ω) = l
′
i(f, θ0, ω) +

∫
X
G
·
i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·),

G
z
i (f, βi) :=

∫
X2

∂f

∂βi
(x, βi)

(
∂f

∂βi
(y, βi)

)ᵀ
pi(f(·, βi), ω, z, dx, dy),

(2)

is a first-order covariant learning rule with respect to
(βi)

∞
i=1 and G, where G is the set of parameterized func-

tions, g ⊆ P such that Gzi (g, ψ(βi)) is full rank for all

z ∈ supp(µi(f(·, βi), ω, ·)).
Proof. See Appendix B.

Theorem 1 produces the following “naturalized” form for
our temporal difference learning example:

θt+1←θt+αtG+
t (Rt+γf(St+1, θt)−f(St, θt))

∂f

∂θi
(St, θi),

where Gt = E
[
∂f
∂θt

(S, θt)
(
∂f
∂θt

(S, θt)
)ᵀ]

, where S is a
state sampled from the distribution over states that occurs
when running the policy being evaluated (averaged over all
time steps—not for the time step t specifically). This algo-
rithm is similar to the natural temporal difference learning
algorithm (Dabney & Thomas, 2014), which can be derived
by defining pt to include a temporal difference error term.

4. Direct Estimation of the Update
In cases where Gxi (f, βi) is not sparse, l̃ can have high
computational complexity—O(n3) for naïve implementa-
tions. In this section we show that in some cases l̃ can be
estimated directly without even requiring the estimation of
the n × n matrix Gxi (f, βi). Whereas Theorem 1 was in-
spired by Amari’s work with natural gradients, the linear
time approximation presented here generalizes the works
of Kakade (2002) and Bhatnagar et al. (2009), which show
that the natural policy gradient in reinforcement learning
can be estimated in linear time by using compatible function
approximation (Sutton et al., 2000).

In this section we assume that k = 1 so that f(x, θ) ∈ R.
Let 1̂ : X × Rn be a parameterized function defined by
1̂(x,w) := wᵀ ∂f

∂βi
(x, βi).

Theorem 2. If

w? ∈ arg min
w∈Rn

∫
X

(
1− 1̂(·, w)

)2
dµi(f(·, βi), ω, ·),

eitherGxi (f, βi) =
∫
X

∂f
∂βi

(·, βi) ∂f∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·),

or Gxi (f, βi) = ∂f
∂βi

(x, βi)
∂f
∂βi

(x, βi)
ᵀ, and Gxi (f, βi) is

full rank for all βi and the single f that is being used,
then the learning rule, l̃, in Theorem 1 can be written as
l̃i(f, θ0, ω) = l′i(f, θ0, ω) + w?.
Proof. See Appendix C.

Intuitively, Theorem 2 says that if w? ∈ R are parameters
for 1̂ that minimize the average difference between 1̂(x,w)
and 1, weighted by the signed measure µi, then l̃ takes a
step in the direction w? from βi. If w? can be efficiently
estimated, then it may be more computationally efficient
to estimate w? than it is to estimate Gxi and compute the
product of its pseudoinverse with ∂f(x, βi)/∂βi.

For example, in the context of natural policy gradient meth-
ods for reinforcement learning, Bhatnagar et al. (2009)
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suggest using a two-timescale approach to simultane-
ously estimate w? using stochastic gradient descent on∫
X
(
1− 1̂(·, w)

)2
dµi(f(·, βi), ω, ·) and update the param-

eters θ in the direction w?. This approach results in compu-
tational complexity O(n) per time step, since the stochastic
gradient update for estimating w? takes O(n) time. Dabney
& Thomas (2014) also show how a variant of temporal dif-
ference learning, called residual gradient (Baird, 1995), has
a naturalized form that allows for this linear-time approx-
imation. However, notice that methods of this form only
approximate a first-order covariant learning rule, because
an estimate of w? is used instead of w?.

5. The Non-Existence of Second-Order
Covariant Learning Rules

While investigating the proper use of Amari’s natural gra-
dient methods for policy search in reinforcement learning,
Bagnell & Schneider (2003), noticed that a natural gradi-
ent method (using the Fisher information matrix for G(θ),
which results in a first-order covariant update with respect to
the set of parameterized probability distributions that have
positive definite Fisher information matrices) did not act in
a covariant way in practice. They concluded that this was
due to their use of large step sizes, since first-order covariant
learning rules will only behave in a covariant manner for
step sizes that are sufficiently small for the first-order Taylor
approximation to be accurate. This raises the question: can
one develop a second-order covariant learning rule? If such
a learning rule existed, then it might behave in a covariant
manner when using larger step sizes.

Although we set out to construct a second-order covariant
learning rule, we were unable to find any for non-degenerate
G, other than the trivial learning rule li(f, θ0, ω) := βi. In
Theorem 3 we give a one dimensional (i.e., n = m = k =
1) example of a reasonable class of G for which no second-
order covariant learning rules exist. We conjecture that no
second order learning rules exist for a far broader class of
similar G. We say that two functions, ρ and %, both with
domain X , are collinear if there exists a constant γ ∈ R
such that for all x ∈ X , ρ(x) = γ%(x).

Theorem 3 (Nonexistence of Nontrivial Second-Order
Covariant Learning Rules). Every learning rule, l, that
is second-order covariant with respect to any sequence,
(βi)

∞
i=1, and a set, G, must use the trivial update,

li(f, θ0, ω) := βi for all parameterized functions, f , where
1) n = k = 1, 2) both g(x, θ) := f(x, ln(θ)) and
h(x, θ) := f(x, ln(θ)/2) are in G and are congruent to
f and 3) both ∂g

∂θ (·, βi) and ∂2g
∂θ2 (·, βi) are not collinear and

∂h
∂θ (·, βi) and ∂2h

∂θ2 (·, βi) are not collinear.
Proof. See Appendix D.

6. Discussion and Conclusion
First, notice that Theorem 1 generalizes several existing
results. If P contains parameterized log probability dis-
tributions, then p can be chosen to make G·i(f, βi) be the
Fisher information matrix or energetic information matrix
of f(·, βi). In these cases, the set, G, that the naturalized
algorithms are covariant with respect to includes all parame-
terized probability distributions with positive definite Fisher
information matrices and energetic information matrices.

Furthermore, Theorem 1 allows for the naturalization of
a broad class of learning rules. For example, accelerated
gradient methods (Nesterov, 1983) use updates of the form:

βi = li−1(f, θ0, ω) +
i− 1

i+ 1
(li−1(f, θ0, ω)− li−2(f, θ0, ω)) ,

li = βi − αi−1

∫
X

∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·),

which can be transformed into a first-order covariant learn-
ing rule with respect to (βi)

∞
i=1 and G using Theorem 1.

The resulting naturalized accelerated gradient update is:
li = βi − αi−1

∫
X G

·
i(f, βi)

+ ∂f
∂βi

(·, βi) dµi(f(·, βi), ω, ·).

As shown throughout this paper, temporal difference algo-
rithms also can be transformed into first order covariant
learning rules. Dabney & Thomas (2014) presented such a
naturalized temporal difference algorithm and showed that
it produces state of the art performance on several classical
benchmark problems. Devraj & Meyn (2017) showed that
a variant of this algorithm, which they call zap Q-learning,
produces state of the art performance on modern deep rein-
forcement learning benchmark problems. As yet another ex-
ample of the strong performance of naturalized algorithms,
since most discounted episodic policy gradient algorithms
have been shown to not be gradient (or stochastic gradi-
ent) algorithms (Thomas, 2014a), natural policy gradient
methods (Peters & Schaal, 2008) are also examples of the
application of Theorem 1 to non-gradient learning rules.

Notice that the user of Theorem 1 is free to select what
constitutes f in an algorithm. For example, one might select
f to be the probability density function (PDF) for a normal
distribution in the example from the introduction, or one
might select f to be the natural logarithm of the PDF for
a normal distribution (this latter choice can make Gxi the
Fisher information matrix).

Perhaps one of the most important properties of Theorem 1
is that pi(f, θ0, ω, z, E,E

′) can have support only over
some fixed small number of samples, s > n. This means
that one can, for example, use a data-based estimate of the
Fisher information matrix (constructed from s samples),
and the resulting update will be first-order covariant. The
catch here is that G will be small for small s (e.g., if s < n,
then G will likely be empty). However, as s grows, G will
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(a) (b) (c)

(d) (e) (f)

Figure 2: Reproduction of Figure 1 using naturalized gradient descent algorithms and with the legend suppressed. Each
plot uses a fixed step size for all k, but step sizes vary between plots. (a)-(e) use the update θi+1 = θi − αG(θi)

−1∇L(θi),
each with different G(θi), but the same (precisely estimated) ∇L(θi). (a) Where f(x, θ) is the log-probability of x and
pi(f, θ0, ω, x, x) = f(x, θi) so that G(θ) is the Fisher information matrix of f(, ·, βi). The Fisher information matrix was
estimated from 1,000 samples of x. Thus, G(θ) = (1/1000)

∑1000
j=1 (∂ ln(Pr(Xj |θ))/∂θ)(∂ ln(Pr(Xj |θ))/∂θ)ᵀ, where

here Pr denotes probability density. This shows that ordinary natural gradient descent using the Fisher information matrix
exhibits covariant behavior for this problem. (b) The same as (a), except where f(x, θ) is the probability of x, and so
G(θ) = (1/1000)

∑1000
j=1 (∂ Pr(Xj |θ)/∂θ)(∂ Pr(Xj |θ)/∂θ)ᵀ. This shows that covariant behavior persists when changing

the Fisher information matrix to be different (not include the log term). (c) the same as (b), but using only 100 samples to
estimate G(θ) (the sum over j stops at 100). This shows that using a crude empirical estimate of the Fisher information
matrix (without the log terms) maintains covariant behavior. (d) Same as (b), but using just 5 samples to estimate G(θ) (the
sum over j stops at 5). This shows that using extremely low quality estimates of the Fisher information matrix (without the
log terms) still shifts the algorithm’s behavior towards covariant behavior (it is first-order covariant, but with respect to a set,
G, that may be small or empty). (e) The same as (b), but where the x used to estimate G(θ) were sampled from a continuous
uniform distribution, pi, rather than from f(·, βi). This shows that estimating the Fisher information matrix using samples
from a distribution other than the one being parameterized still results in covariant behavior, as suggested by our theoretical
results. (f) The same setup as (a), but using the linear-time direct estimation technique from Theorem 2.

include more and more parameterizations of probability
distributions until, in the limit as s → ∞, G is the set of
parameterized probability distributions whose Fisher infor-
mation matrix is positive definite (the same G used implicitly
in conventional covariance proofs (Amari, 1985)).

Importantly, notice that pi(f, θ0, ω, z, E,E
′) can be unre-

lated to µi(f, θ0, ω, E). This means, for example, that one
can estimate the Fisher information matrix associated with
one parameterized probability distribution using samples
from a different distribution, and the resulting learning rule
will be first-order covariant. This can be useful for ap-
plications where sampling from f(·, θ) is expensive—for
example in policy gradient applications where sampling
states from the stationary distribution under a parameterized
stochastic policy is expensive relative to sampling states
from a uniform distribution. We empirically validated these

various properties by applying various naturalized algo-
rithms to the illustrative example from the introduction.
The results, which support the theoretical discussion, are
presented in Figure 2.

In summary, we have presented a method for converting a
broad class of gradient-like learning rules into first-order
covariant learning rules. This method, which we refer to
as the naturalization of a learning rule, extends work on
natural gradient methods beyond gradient descent, and en-
sures covariance for metric tensors, Gxi , that generalize the
Fisher information matrix and energetic information matrix,
without sacrificing covariance. We also showed how the
updates produced by naturalized learning rules can be di-
rectly estimated, in some cases in linear time. Finally, we
presented initial findings that suggest that there may not
exist any practical second-order covariant learning rules.
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A. Derivation of Metric Tensor and Update Direction
In this appendix we provide intuition for what l̃ does relative to l, and show how Gxi encodes the dissimilarity function in (1).
We begin by considering the stochastic gradient descent learning rule as an example to understand what the ∂f(·, βi)/∂βi
terms in a learning rule do, and how they should be changed to decouple the decisions of which learning rule to use and
which parameterized function to use. For simplicity, in this appendix we consider the setting where βi := θi−1 and we use
the shorthand θi := li(f, θ0, ω). Also, recall that in all appendices we use the shorthands: d := dx,θ0,ωi , and Gxi := Gxi .

The stochastic gradient descent update to make f approximate some target function, f?, can be written as:

θi = θi−1 + αi

(
f?(Xi−1(ω))− f(Xi−1(ω), θi−1)

)
︸ ︷︷ ︸

=:δi−1

∂f

∂θi−1
(Xi−1(ω), θi−1), (3)

where Xi−1 : Ω→ X is a random variable, and where (αi)
∞
i=1 is a sequence of small positive real-valued step sizes. For

brevity, hereafter we write Xi−1 as shorthand for Xi−1(ω). In (3) the δi−1 term is an error term. If δi−1 is positive, it means
that θi should be selected to make f(Xi−1, θi) larger than f(Xi−1, θi−1). Similarly, if δi−1 is negative, then it means that
θi should be selected to make f(Xi−1, θi) smaller than f(Xi−1, θi−1). This intuition is accomplished in (3) by multiplying
δi−1 by ∂f

∂θi−1
(Xi−1, θi−1), which is a direction of change to θi−1 that increases the value of f(Xi−1, θi−1).

However, there are many directions, ∆i−1, of change to the parameters, θi−1, that would cause f(Xi−1, θi−1) to increase.
In general, we could change the learning rule to be:

θi = θi−1 + δi−1∆i−1,

for any ∆i−1 such that (for infinitesimal αi) f(Xi−1, θi−1 + αi∆i−1) ≥ f(Xi−1, θi−1). However, some directions, ∆i−1,
are “better” than others. The error term, δi−1, describes whether f(Xi−1, θi−1) should be bigger or smaller, but does
not describe whether f(x, θi−1) should be bigger or smaller for any x 6= Xi−1. Some directions, ∆i−1, might cause
f(Xi−1, θi−1 + αi∆i−1) to increase slowly as αi increases, but f(x, θi−1 + αi∆i−1) to increase or decrease quickly as αi
increases, for some x 6= Xi−1. These ∆i−1 are not desirable because δi−1 does not describe whether f(x, θi−1) should be
bigger or smaller. We desire a direction, ∆i−1, that does the opposite: it should cause f(Xi−1, θi−1 + αi∆i−1) to increase
quickly with αi, and f(x, θi−1 + αi∆i−1) to change slowly with αi for all x 6= Xi−1.

We will focus our attention of the first constraint: we will find a direction, ∆i−1, that causes f(Xi−1, θi−1 + αi∆i−1) to
increase as quickly as possible with αi. That is, we will select ∆i−1 to be a direction (vector of length one) such that for a
step of infinitesimal length, αi, f(Xi−1, θi + αi∆i−1) is maximized. More formally, we will select

∆i−1 := lim
αi→0

arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

f(Xi−1, θi−1 + αi∆i−1)

(a)
= lim
αi→0

arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

∂f

∂θi−1
(Xi−1, θi−1)ᵀ(αi∆i−1) +O(α2

i )

= lim
αi→0

arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

∂f

∂θi−1
(Xi−1, θi−1)ᵀ(αi∆i−1)

= arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

∂f

∂θi−1
(Xi−1, θi−1)ᵀ∆i−1, (4)

where (a) comes from a Taylor expansion. By the method of Lagrange multipliers and the observation that ‖∆‖ = 1 implies
that ‖∆‖2 = 1, we have that any ∆i−1 that satisfies (4) must also satisfy:

0 =
∂

∂∆i−1

(
∂f

∂θi−1
(Xi−1, θi−1)ᵀ∆i−1 − λ

(
‖∆i−1‖2 − 1

))
=

∂

∂∆i−1

(
∂f

∂θi−1
(Xi−1, θi−1)ᵀ∆i−1 − λ

(
∆ᵀ
i−1∆i−1 − 1

))
(5)

=
∂f

∂θi−1
(Xi−1, θi−1)− 2λ∆i−1,



Decoupling Gradient-Like Learning Rules from Representations

and so
∆i−1 =

1

2λ

∂f

∂θi−1
(Xi−1, θi−1),

where λ is a scalar. It is straightforward to verify that this direction is the unique solution, ∆i−1, and not just a critical point
of the Lagrangian. If we ignore the scalar terms (e.g., by viewing them as part of the step size, αi), we have the direction:

∆i−1 =
∂f

∂θi−1
(Xi−1, θi−1), (6)

which is the direction of change to θi−1 used by stochastic gradient descent in (3). It is also the direction of change to θi−1

that is used by non-gradient learning rules, like temporal-difference learning (Sutton, 1988), that use updates of the form:

θi = θi−1 + δi−1∆i−1,

where here δi−1 denotes an error term called the temporal difference error. In general, for learning rules that satisfy
Assumption 1, the ∂f(·, θi−1i)/∂θi−1 terms denote different ∆i−1 terms, evaluated using different x ∈ X .

The problem with learning rules that use (6)—learning rules that satisfy Assumption 1—is that they make an implicit
assumption that the distance between f(Xi−1, θi−1) and f(Xi−1, θi−1+α∆θi) should be measured using Euclidean distance
in the parameters when selecting ∆i−1. That is, they use ‖∆‖2 := ∆ᵀ∆ during the derivation of ∆i−1—specifically to
obtain (5) during the derivation.

The problem with using learning rules that satisfy Assumption 1, which use Euclidean distance in the parameters when
deriving ∆i−1, is that they intertwine the choices of which learning rule to use and which parameterized function to use. To
see how this intertwining occurs, consider a parameterized function, g, that is congruent to f , with submersion ψ. Using f
and Euclidean distance in the parameterization, the squared distance between f(Xi−1, θi−1) and f(Xi−1, θi−1 + ∆)) is
∆ᵀ∆. However, using g and the Euclidean distance in the parameterization, the squared distance between the same two
functions, g(Xi−1, ψ(θi−1)) and g(Xi−1, ψ(θi−1 + ∆)), is

(ψ(θi−1 + ∆)− ψ(θi−1))
ᵀ

(ψ(θi−1 + ∆)− ψ(θi−1)) ,

which is not necessarily the same. These differing notions of distance will result in different solutions to (4), and thus
different update directions. This is reflected by the fact that learning rules that satisfy Assumption 1 are not covariant or
j-order covariant for any j ∈ N>0 and non-degenerate G.

Furthermore, for some parameterizations, Euclidean distance in the parameters may be a poor notion of distance. For
example, in a deep neural network, a weight at an early layer of the network may have little impact on the output of
the network, while a weight near the output of the network might have a large impact. Using Euclidean distance in the
parameters means that small changes to these two weights incur the same amount of distance, and so the direction of steepest
ascent will favor larger changes to the weight later in the network, since small changes thereto can have a bigger influence
on the network’s output. Amari (1998) was the first to suggest that this line of reasoning could explain the tendency of
algorithms for training neural networks to require many iterations of the learning rule to properly set the values of weights
early in the network.

This raises the question: what notion of distance (or more generally, what dissimilarity function) should be used when
computing ∆i−1—the direction of steepest ascent of f(Xi−1, ·) at θi−1? We would like to use (1), so that

‖∆i−1‖2 := dist(θi−1, θi−1 + ∆i−1)2

=
1

2

∫
X 2

(f(x, θi−1)− f(x, θi−1 + ∆i−1))(f(y, θi−1)− f(y, θi−1 + ∆i−1)p(dx, dy),

where p(dx, dy) := pi(f(·, βi), ω, z, dx, dy), where z ∈ X corresponds to z in (2). Although this definition of ‖·‖ is
desirable, it does not ensure that a simple closed form exists for ∆i−1. So, instead we use

‖∆i−1‖2 := τ2
(
dist(θi−1, θi−1 + ·)2, θi−1, θi−1 + ∆i−1

)
.

That is, we use a second order Taylor approximation of the dissimilarity function, d as our definition of squared distance.
Although this second order Taylor approximation does not result in a definition of squared distance that yields covariant
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updates, Theorem 1 shows that it is sufficient to yield first-order covariant updates. Also, notice that this use a second
order Taylor approximation to a dissimilarity function is not unprecedented: Amari’s natural gradient method using the
Fisher information matrix equates to using a second order Taylor approximation of Kullback–Leibler divergence to measure
squared distances when computing ∆i−1 (Thomas et al., 2016, Appendix A).

The use of a second-order Taylor approximation of dist(θi−1, θi−1 + ·)2 results in a closed form for the ∆i−1 that satisfy
(4) because:

τ2
(
dist(θ, ·)2, θ, θ + ∆

)
= dist(θ, θ)2︸ ︷︷ ︸

=(a)

+

(
∂ dist

∂γ
(α, γ)2

∣∣
α=θ
γ=θ

)ᵀ

︸ ︷︷ ︸
=(b)

∆ +
1

2
∆ᵀ
(
∂2 dist

∂γ2
(α, γ)2

∣∣
α=θ
γ=θ

)
∆

=
1

2
∆ᵀ
(
∂2 dist

∂γ2
(f, α, γ)2

∣∣
α=θ
γ=θ

)
∆,

since it is straightforward to verify that (a) and (b) are both zero.2 Furthermore,(
∂2 dist

∂γ2
(f, α, γ)2

∣∣
α=θ
γ=θ

)
=

∫
X 2

∂f

∂θ
(x, θ)

∂f

∂θ
(y, θ)ᵀp(dx, dy).

So,

τ2
(
dist(θ, ·)2, θ, θ + ∆

)
=∆ᵀ

(∫
X 2

∂f

∂θ
(x, θ)

∂f

∂θ
(y, θ)ᵀp(dx, dy)

)
∆,

and thus
‖∆i−1‖2 := ∆ᵀ

i−1G
x
i (f, θi−1)∆i−1.

Using this squared norm and the method of Lagrange multipliers as before, the solutions to (4) satisfy

0 =
∂

∂∆i−1

(
∂f

∂θi−1
(x, θi−1)ᵀ∆i−1 −

1

2
λ
(
∆ᵀ
i−1G

x
i (f, θi−1)∆i−1 − 1

))
=

∂f

∂θi−1
(x, θi−1)− λGxi (f, θi−1)∆i−1,

and so ∆i−1 = 1
λG

x
i (f, θi−1)+ ∂f

∂θi−1
(x, θi−1), or ignoring the scalar terms as before (by viewing them as part of the step

sizes),

∆i−1 = Gxi (f, θi−1)+ ∂f

∂θi−1
(x, θi−1).

This definition of ∆i−1 is exactly what is used by l̃.

B. Proof of Theorem 1

We begin by establishing properties that we use later. Also, for brevity and to avoid clutter, we use several shorthand
notations in all of the appendices: ∇ψ := ∂ψ

∂βi
(βi), ∇f := ∂f

∂βi
(x, βi), ∇2f := ∂2f

∂β2
i
(x, βi), ∇g := ∂g

∂ψ(βi)
(x, ψ(βi)), and

∇2g := ∂2g
∂ψ(βi)2

(x, ψ(βi)).

Property 1 (Jacobian Property). If f and g are congruent representations, then for all x ∈ X and θ ∈ Rn,

∂f

∂θ
(x, θ) =

(
∂ψ

∂θ
(θ)

)ᵀ
∂g

∂ψ(θ)
(x, ψ(θ)).

Proof.
∂f

∂θ
(x, θ)

(a)
=
∂g

∂θ
(x, ψ(θ)) =

(
∂ψ

∂θ
(θ)

)ᵀ
∂g

∂ψ(θ)
(x, ψ(θ)),

where (a) holds because f(x, θ) = g(x, ψ(θ)) for all x ∈ X and θ ∈ Rn by the assumption that f and g are congruent
representations.

2Notice that here we have switched notation for differentiation. This is because ∂d
∂θi−1

(θi−1, θi−1) is ambiguous since the derivative
is with respect to the second argument of d, not the first.
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Property 2. For all parameterized functions, f ∈ P , all g ∈ P that are congruent to f , all z ∈ X , all θ0 ∈ Θι, all ω ∈ Ω,
and all i ∈ N>0,

Gzi (f, βi) = ∇ψᵀGzi (g, ψ(βi))∇ψ.

Proof.

Gzi (f, βi) :=

∫
X 2

∂f(x, βi)

∂βi

∂f(y, βi)

∂βi

ᵀ

dpi(f(·, βi), ω, z, dx, dy)

(a)
=

∫
X 2

∇ψᵀ ∂g(x, ψ(βi))

∂ψ(βi)

∂g(y, ψ(βi))

∂ψ(βi)

ᵀ

∇ψ dpi(f(·, βi), ω, z, dx, dy)

(b)
=∇ψᵀ

∫
X 2

∂g(x, ψ(βi))

∂ψ(βi)

∂g(y, ψ(βi))

∂ψ(βi)

ᵀ

dpi(g(·, ψ(βi)), ω, z, dx, dy)∇ψ

=∇ψᵀGzi (g, ψ(βi))∇ψ,

where (a) comes from Property 1 and (b) holds because ∇ψ does not depend on x or y and because f(·, βi) = g(·, ψ(βi))
by the assumption that g is congruent to f .

Property 3. If l′ is a first-order covariant update with respect to a sequence (βi)
∞
i=1, then for all i ∈ N>0, θ0 ∈ Θι, and

ω ∈ Ω,
∇gᵀ∇ψ (l′i(f, θ0, ω)− βi) = ∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)).

Proof. We begin by writing out the Taylor expansions in the definition of first-order covariance:

τ1(f(x, ·), βi, l′i(f, θ0, ω)) =τ1(g(x, ·), ψ(βi), l
′
i(g, ψ(θ0), ω))

f(x, βi) +∇fᵀ(l′i(f, θ0, ω)− βi) =g(x, ψ(βi)) +∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi))

∇fᵀ(l′i(f, θ0, ω)− βi)
(a)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi))

∇gᵀ∇ψ (l′i(f, θ0, ω)− βi)
(b)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)),

where (a) comes from the first terms on each side canceling by the definition of ψ and (b) comes from Property 1.

To establish Theorem 1 we show that for all g ∈ G that are congruent to f ,

τ1(f(x, ·), βi, l̃i(f, θ0, ω)) = τ1(g(x, ·), ψ(βi), l̃i(g, ψ(θ0), ω)). (7)

To establish (7), we write out the Taylor expansions, as in the proof of Property 3. This gives an equality which, if satisfied,
implies that l̃ is first-order covariant with respect to (βi)

∞
i=1 and G.

τ1(f(x, ·), βi, l̃i(f, θ0, ω)) =τ1(g(x, ·), ψ(βi), l̃i(g, ψ(θ0), ω))

f(x, βi) +∇fᵀ(l̃i(f, θ0, ω)− βi) =g(x, ψ(βi)) +∇gᵀ(l̃i(g, ψ(θ0), ω)− ψ(βi))

∇fᵀ(l̃i(f, θ0, ω)− βi)
(a)
=∇gᵀ(l̃i(g, ψ(θ0), ω)− ψ(βi))

∇gᵀ∇ψ (l̃i(f, θ0, ω)− βi)
(b)
=∇gᵀ(l̃i(g, ψ(θ0), ω)− ψ(βi)). (8)

We will show that this condition is met.

∇gᵀ∇ψ(l̃i(f, θ0, ω)− βi)
(a)
=∇gᵀ∇ψ

(
l′i(f, θ0, ω)− βi +

∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

)
=∇gᵀ∇ψ (l′i(f, θ0, ω)− βi) +∇gᵀ∇ψ

∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(b)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ

∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(c)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ

∫
X

[∇ψᵀG·i(g, ψ(βi))∇ψ]
+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)j (9)
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where (a) comes from substituting in the definition of l̃i(f, θ1:i, ω), (b) holds by Property 3, and (c) comes from Property 2.
Notice that∇ψᵀ ∈ Rn×m has full column rank (since m ≤ n),∇ψ ∈ Rm×n has full row rank, and rank(Gxi (g, ψ(βi))) =
m by the definition of G in Theorem 1. Thus, by Sylvester’s rank inequality we have that rank(Gxi (g, ψ(βi))∇ψ) ≥
rank(Gxi (g, ψ(βi))) + rank(∇ψ)−m = m+m−m = m. Also, due to its dimensions, rank(Gxi (g, ψ(βi))∇ψ) ≤ m,
and so we can conclude that rank(Gxi (g, ψ(βi))∇ψ) = m. So, ∇ψᵀ has full column rank and Gxi (g, ψ(βi))∇ψ has full
row rank. So, by two applications of the rule that (AB)+ = B+A+ if A has full column rank and B has full row rank
(Greville & Nall, 1966), we have that:

(∇ψᵀG·i(g, ψ(βi))∇ψ)
+

= ∇ψ+G·i(g, ψ(βi))
+(∇ψᵀ)+.

Continuing (9), we therefore have that:

∇gᵀ∇ψ(l̃i(f, θ0, ω)− βi)

=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ
∫
X
∇ψ+G·i(g, ψ(βi))

+(∇ψᵀ)+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ∇ψ+

∫
X
G·i(g, ψ(βi))

+(∇ψᵀ)+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(a1)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+(∇ψᵀ)+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(b)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+(∇ψᵀ)+∇ψᵀ ∂g

∂ψ(βi)
(·, ψ(βi)) dµi(f(·, βi), ω, ·)

(a2)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+ ∂g

∂ψ(βi)
(·, ψ(βi)) dµi(f(·, βi), ω, ·)

(c)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+ ∂g

∂ψ(βi)
(·, ψ(βi)) dµi(g, ψ(θ0), ω, ·)

=∇gᵀ
(
l̃i(g, ψ(θ0), ω)− ψ(βi)

)
, (10)

where (a1) and (a2) hold because∇ψ has linearly independent rows because it is full rank, and has more columns than rows
by the requirement that m ≤ n in the definition of congruent representations, and so∇ψ+ is a right-inverse, (b) holds by
Property 1 and (c) holds because f(·, βi) = g(·, ψ(βi)) by the assumption that g is congruent to f . Notice that (10) is equal
to the right side of (8), and so we conclude.

C. Proof of Theorem 2

Since w? is a critical point:

0 =

∫
X

(1− 1̂(·, w?)) ∂1̂

∂w?
(·, w?) dµi(f(·, βi), ω, ·)

0 =

∫
X

(
1− (w?)ᵀ

∂f

∂βi
(·, βi)

)
∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·).

Rearranging terms, we obtain a new expression that is equal to a term in the learning rule, l:∫
X

∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·) =

∫
X

(
(w?)ᵀ

∂f

∂βi
(·, βi)

)
∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·) (11)

=

∫
X

∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·)w?, (12)

Replacing the left side of (11) in a learning rule, l, that satisfies Assumption 1, with (12), we have that l can be written as:

li(f, θ0, ω) = l′i(f, θ0, ω) +

[∫
X

∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·)

]
w?.

Similarly, l̃ from Theorem 1 can be written as

l̃i(f, θ0, ω) = l′i(f, θ0, ω) +

[∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·)

]
w?. (13)
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Since
Gxi (f, βi) =

∫
X

∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·),

or
Gxi (f, βi) =

∂f

∂βi
(x, βi)

∂f

∂βi
(x, βi)

ᵀ,

and Gxi (f, βi) is full rank, terms in (13) cancel to give:

l̃i(f, θ0, ω) = l′i(f, θ0, ω) + w?.

D. Proof of Theorem 3

We show that every learning rule, l, that is second-order covariant with respect to any sequence, (βi)
∞
i=1, and a set G, must use

the trivial update, li(f, θ0, ω) := βi for all parameterized functions, f , where 1) n = k = 1, 2) both g(x, θ) := f(x, ln(θ))

and h(x, θ) := f(x, ln(θ)/2) are in G and congruent to f and 3) both ∂g
∂θ (·, βi) and ∂2g

∂θ2 (·, βi) are not collinear and ∂h
∂θ (·, βi)

and ∂2h
∂θ2 (·, βi) are not collinear.

To show this result, we will assume that l is a second-order covariant learning rule and will then show that, under these
conditions, li(f, θ0, ω) := βi. Since l is second-order covariant with respect to (βi)

∞
i=1 and G, we have that:

τ2(f(x, ·), βi, li(f, θ0, ω)) = τ2(g(x, ·), ψ(βi), li(g, ψ(θ0), ω)) = τ2(h(x, ·), φ(βi), li(h, φ(θ0), ω)),

and so:

a∇f +
a2

2
∇2f = b∇g +

b2

2
∇2g = c∇h+

c2

2
∇2h, (14)

where a := li(f, θ0, ω) − βi, b := li(g, ψ(θ0), ω) − ψ(βi), c := li(h, φ(θ0), ω) − φ(βi), ∇h := ∂h
∂φ(βi)

(x, φ(βi)), and

∇2h := ∂2h
∂φ(βi)2

(x, φ(βi)).

We will show that, given f and the g and h specified in the theorem, (14) is only satisfied by a = 0, b = 0, and c = 0, which
by the definitions of a, b, and c implies our result. Specifically, let:

g(ψ(θ)) := f(ln(ψ(θ)))

h(φ(θ)) := f

(
1

2
ln(φ(θ))

)
.

So, g and h are congruent to f with submersions ψ(θ) = eθ and φ(θ) = e2θ, respectively. Thus, we have the following:

∇ψ = eβi

∇φ = 2e2βi

∇2ψ = eβi

∇2φ = 4e2βi

∇f = ∇ψ∇g = eβi∇g
∇f = ∇φ∇h = 2e2βi∇h

∇2f = ∇2g∇ψ2 +∇g∇2ψ = e2βi∇2g + eβi∇g
∇2f = ∇2h∇φ2 +∇h∇2φ = 4e4βi∇2h+ 4e2βi∇h.

From (14) we have the requirement that for all x ∈ X :

b∇g +
b2

2
∇2g =a∇f +

a2

2
∇2f

=aeβi∇g +
a2

2

(
e2βi∇2g + eβi∇g

)
=

(
aeβi +

a2

2
eβi

)
∇g +

a2

2
e2βi∇2g. (15)
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Recall that∇g and∇2g (and∇h and ∇2h) are not collinear functions. Thus, the only way for (15) to hold for all x is if

b = aeβi +
a2

2
eβi , (16)

and
b2

2
=
a2

2
e2βi . (17)

Similarly, from (14) we have the requirement that for all x ∈ X :

c∇h+
c2

2
∇2h =a∇f +

a2

2
∇2f

=2ae2βi∇h+
a2

2

(
4e4βi∇2h+ 4e2βi∇h

)
=

(
2ae2βi +

a2

2
4e2βi

)
∇h+ a22e4βi∇2h,

and thus we have that

c = 2ae2βi +
a2

2
4e2βi , (18)

and
c2

2
= a22e4βi . (19)

It is straightforward to verify using a computer algebra system like Wolfram Alpha that the only values for a, b, c that
satisfy (16), (17), (18), and (19) simultaneously occur when a = b = c = 0. Since a = b = c = 0 corresponds to the trivial
learning rule, li(f, θ0, ω) = βi, we conclude.


