Supplemental Document

In this supplemental document we prove the various properties and theorems referenced earlier (particularly those in Table 1).

Property 1. If $F \cap H \subseteq G$ then $\mathbf{E}_{g}\left[\mathrm{IS}\left(\mathbf{X}_{n}\right)\right]=\theta$.

Proof.

$$
\begin{aligned}
\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)\right] & \stackrel{(\text { a) }}{=} \mathbf{E}_{g}\left[\frac{f(X)}{g(X)} h(X)\right]=\int_{G} g(x) \frac{f(x)}{g(x)} h(x) \mathrm{d} x \\
& \stackrel{(\text { bb }}{=} \int_{F \cap H} f(x) h(x) \mathrm{d} x
\end{aligned}=\mathbf{E}_{f}[h(X)]=\theta,
$$

where (a) holds because $\operatorname{IS}\left(\mathbf{X}_{n}\right)$ is the mean of n independent and identically distributed random variables, and (b) holds because $\forall x \in G \backslash(F \cap H), f(x)=0$.

We now provide a proof of Theorem 1, which states that if $C=G$, then $\operatorname{US}\left(\mathbf{X}_{n}\right)=\operatorname{IS}\left(\mathbf{X}_{n}\right)$.

Proof. In this setting, $c=\int_{G} g(x) \mathrm{d} x=1$ and since every X_{i} must be within $C, k\left(\mathbf{X}_{n}\right)=n$. So,

$$
\begin{aligned}
\mathrm{US}\left(\mathbf{X}_{n}\right) & =\frac{c}{k\left(\mathbf{X}_{n}\right)} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right)
\end{aligned}
$$

We now provide a proof of Theorem 2, which states that if we replace c with an empirical estimate, $\hat{c}\left(\mathbf{X}_{n}\right):=$ $n^{-1} k\left(\mathbf{X}_{n}\right)$, then $\operatorname{US}\left(\mathbf{X}_{n}\right)=\operatorname{IS}\left(\mathbf{X}_{n}\right)$.

Proof. Using the empirical estimate, $\hat{c}\left(\mathbf{X}_{n}\right)$, in place of c within US we have:

$$
\begin{aligned}
\mathrm{US}\left(\mathbf{X}_{n}\right) & =\frac{\hat{c}\left(\mathbf{X}_{n}\right)}{k\left(\mathbf{X}_{n}\right)} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \\
& =\frac{k\left(\mathbf{X}_{n}\right)}{n k\left(\mathbf{X}_{n}\right)} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \\
& =\operatorname{IS}\left(\mathbf{X}_{n}\right) .
\end{aligned}
$$

Theorem 3. If $F \cap H \subseteq G$ and $\kappa \in \mathbb{N}_{>0}$, then

$$
\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]=\theta
$$

Proof. Let $\operatorname{Pr}_{g}(X \in C)$ denote the probability that a sample, X, from the sampling distribution is in C.

$$
\begin{aligned}
& \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& =\mathbf{E}_{g}\left[\left.\frac{c}{\kappa} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \right\rvert\, k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& \stackrel{(\text { (a) }}{=} \mathbf{E}_{g}\left[\left.\frac{c}{\kappa} \sum_{i=1}^{\kappa} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \right\rvert\, \forall i \in\{1, \ldots, \kappa\}, X_{i} \in C\right] \\
& \stackrel{(\text { (b) }}{=} \mathbf{E}_{g}\left[\left.c \frac{f(X)}{g(X)} h(X) \right\rvert\, X \in C\right] \\
& \stackrel{\text { (c) }}{=} \int_{C} \frac{g(x)}{\operatorname{Pr}_{g}(X \in C)} c \frac{f(x)}{g(x)} h(x) \mathrm{d} x \\
& \stackrel{\text { (d) }}{=} \int_{C} \frac{g(x)}{c} c \frac{f(x)}{g(x)} h(x) \mathrm{d} x \\
& =\int_{C} f(x) h(x) \mathrm{d} x \\
& \stackrel{\text { (e) }}{=} \mathbf{E}_{f}[h(X)]
\end{aligned}
$$

where (a) holds because $f\left(X_{i}\right)=0$ for all but κ of the terms in the summation, and so (by re-ordering the X_{i} so that these κ terms have indices $1, \ldots, \kappa$) we need only sum to κ rather than n, (b) holds because the summation is over κ independent and identically distributed random variables, (c) holds by the definition of conditional expectations, (d) holds because $\operatorname{Pr}_{g}(X \in C)=c$, and (e) holds because $F \cap H \subseteq C$.

Theorem 4. If $F \cap H \subseteq G$ then

$$
\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right]=\theta
$$

Proof.

$$
\begin{aligned}
& \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right] \\
& =\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa \mid k\left(\mathbf{X}_{n}\right)>0\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& \stackrel{(\text { a) }}{=} \sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa \mid k\left(\mathbf{X}_{n}\right)>0\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \theta \\
& =\theta \sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa \mid k\left(\mathbf{X}_{n}\right)>0\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \\
& =\theta,
\end{aligned}
$$

where (a) holds because, by Theorem 3, $\mathbf{E}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]=\theta$.

Theorem 5. If $F \cap H \subseteq G$ and $\kappa \in \mathbb{N}_{>0}$, then

$$
\begin{equation*}
\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]-\theta=\left(\frac{\kappa}{c n}-1\right) \theta \tag{4}
\end{equation*}
$$

Proof. Following roughly the same steps as used to prove

Theorem 3 we have that:

$$
\begin{aligned}
\mathbf{E}_{g} & {\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=\kappa\right] } \\
& =\mathbf{E}_{g}\left[\left.\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \right\rvert\, k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& =\mathbf{E}_{g}\left[\left.\frac{1}{n} \sum_{i=1}^{\kappa} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right) \right\rvert\, \forall i \in\{1, \ldots, \kappa\}, X_{i} \in C\right] \\
& =\mathbf{E}_{g}\left[\left.\frac{\kappa}{n} \frac{f\left(X_{1}\right)}{g\left(X_{1}\right)} h\left(X_{1}\right) \right\rvert\, X_{1} \in C\right] \\
& =\int_{C} \frac{g(x)}{c} \frac{\kappa}{n} \frac{f(x)}{g(x)} h(x) \mathrm{d} x \\
& =\frac{\kappa}{c n} \mathbf{E}_{f}[h(X)] \\
& =\frac{\kappa}{c n} \theta,
\end{aligned}
$$

and so (4) follows.
Theorem 6. If $F \cap H \subseteq G$ then

$$
\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right]=\frac{1}{1-(1-c)^{n}} \theta
$$

Proof. Recall from Property 1 that $\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)\right]=\theta$. By marginalizing over whether or not $k\left(\mathbf{X}_{n}\right)>0$, we also have that:

$$
\begin{aligned}
\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)\right]= & \operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right) \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right] \\
& +\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=0\right) \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=0\right]
\end{aligned}
$$

So,

$$
\begin{aligned}
& \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right] \\
& =\frac{\theta-\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=0\right) \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=0\right]}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \\
& \stackrel{\text { (a) }}{=} \frac{\theta}{1-(1-c)^{n}},
\end{aligned}
$$

where (a) holds because $\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=0\right]=0$ and $\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)=1-\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=0\right)=1-(1-c)^{n}$.

Theorem 7. If $F \cap H \subseteq G$, then

$$
\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)\right]=\left(1-(1-c)^{n}\right) \theta
$$

Proof.

$$
\begin{aligned}
\mathbf{E}_{g} & {\left[\mathrm{US}\left(\mathbf{X}_{n}\right)\right] } \\
= & \underbrace{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)}_{=1-(1-c)^{n}} \underbrace{\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right]}_{=\theta, \text { by Theorem } 4} \\
& +\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=0\right) \underbrace{\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)=0\right]}_{=0} \\
= & \left(1-(1-c)^{n}\right) \theta .
\end{aligned}
$$

Before continuing, recall the following property (which we prove for completeness):

Property 2. Let X_{1}, \ldots, X_{n} be n independent and identically distributed random variables, each with finite mean and variance. Then,

$$
\mathbf{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]=\frac{1}{n} \operatorname{Var}\left(X_{1}\right)+\mathbf{E}\left[X_{1}\right]^{2}
$$

Proof. Recall that

$$
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\mathbf{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]-\mathbf{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]^{2} .
$$

So, by rearranging terms:

$$
\mathbf{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)+\frac{1}{n^{2}} \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]^{2} .
$$

Since the X_{i} are independent and identically distributed, we therefore have that:

$$
\begin{aligned}
\mathbf{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right] & =\frac{1}{n^{2}} n \operatorname{Var}\left(X_{1}\right)+\frac{1}{n^{2}} n^{2} \mathbf{E}\left[X_{1}\right]^{2} \\
& =\frac{1}{n} \operatorname{Var}\left(X_{1}\right)+\mathbf{E}\left[X_{1}\right]^{2}
\end{aligned}
$$

Theorem 8. If $F \cap H \subseteq G$ then

$$
\operatorname{Var}_{g}\left(\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}>0\right)\right)=c^{2} v \mathbf{E}_{B(n, c)}\left[\left.\frac{1}{\kappa} \right\rvert\, \kappa>0\right]
$$

Proof.

$$
\begin{align*}
& \operatorname{Var}_{g}\left(\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right) \\
& \quad=\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)>0\right]-\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right]^{2} \\
& \quad=\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)>0\right]-\theta^{2} \\
& \quad=\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]\right)-\theta^{2} . \tag{5}
\end{align*}
$$

We will write \mathbf{y} to denote a vector in \mathbb{R}^{n}, the elements of which are $y_{1}, \ldots, y_{n} \in \mathbb{R}$. We also write $\mathbf{y}_{i: j}$ to denote the $i^{\text {th }}$ through $j^{\text {th }}$ entries of \mathbf{y}, i.e., $\mathbf{y}_{i: j}:=$ $\left[y_{i}, y_{i+1}, \ldots, y_{j-1}, y_{j}\right]$. Let $G_{\kappa}^{n}=\left\{\mathbf{y} \in G^{n}: k(\mathbf{y})=\kappa\right\}$ be the set of all possible tuples of n samples where exactly κ are in C. We also overload the definition of g by defining $g(\mathbf{y}):=\prod_{i=1}^{n} g\left(y_{i}\right)$. Using this notation, we have that (where . . . are used to denote that a long line is split across multiple lines via scalar multiplication):

$$
\begin{align*}
& \mathbf{E}_{g}\left[\operatorname{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& =\int_{G_{\kappa}^{n}} \frac{g(\mathbf{y})}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)} \mathrm{US}(\mathbf{y})^{2} \mathrm{~d} \mathbf{y} \\
& \stackrel{(\text { a) }}{=} \frac{\binom{n}{\kappa}}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)} \int_{C^{\kappa}} \int_{(G \backslash C)^{n-\kappa}} g(\mathbf{y}) \mathrm{US}(\mathbf{y})^{2} \mathrm{~d} \mathbf{y}_{1: \kappa} \mathrm{d} \mathbf{y}_{\kappa+1: n} \\
& \stackrel{\text { (b) }}{=} \frac{\binom{n}{\kappa}}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)} \int_{C^{\kappa}} \int_{(G \backslash C)^{n-\kappa}} g\left(\mathbf{y}_{1: \kappa}\right) g\left(\mathbf{y}_{\kappa+1: n}\right) \ldots \\
& \operatorname{US}\left(\mathbf{y}_{1: \kappa}\right)^{2} \mathrm{~d}_{\mathbf{y}_{1: \kappa}} \mathrm{d}_{\kappa+1: n} \\
& =\frac{\binom{n}{\kappa}}{\binom{n}{\kappa} c^{\kappa}(1-c)^{n-\kappa}} \int_{C^{\kappa}} g\left(\mathbf{y}_{1: \kappa}\right) \operatorname{US}\left(\mathbf{y}_{1: \kappa}\right)^{2} \mathrm{~d} \mathbf{y}_{1: \kappa} \ldots \\
& \underbrace{\int_{(G \backslash C)^{n-\kappa}} g\left(\mathbf{y}_{\kappa+1: n}\right) \mathrm{d} \mathbf{y}_{\kappa+1: n}}_{=(1-c)^{n-\kappa}} \\
& =\frac{\binom{n}{\kappa}(1-c)^{n-k}}{\binom{n}{\kappa} c^{\kappa}(1-c)^{n-\kappa}} \int_{C^{\kappa}} g\left(\mathbf{y}_{1: \kappa}\right)\left(\frac{c}{\kappa} \sum_{i=1}^{\kappa} \frac{f\left(y_{i}\right)}{g\left(y_{i}\right)} h\left(y_{i}\right)\right)^{2} \mathrm{~d} \mathbf{y}_{1: \kappa} \\
& =\frac{c^{2}}{c^{\kappa}} \int_{C^{\kappa}} g\left(\mathbf{y}_{1: \kappa}\right)\left(\frac{1}{\kappa} \sum_{i=1}^{\kappa} \frac{f\left(y_{i}\right)}{g\left(y_{i}\right)} h\left(y_{i}\right)\right)^{2} \mathrm{~d} \mathbf{y}_{1: \kappa} \\
& \stackrel{(\mathrm{c})}{=} c^{2} \int_{C^{\kappa}} \frac{g\left(\mathbf{y}_{1: \kappa}\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{\kappa}\right)=\kappa\right)}\left(\frac{1}{\kappa} \sum_{i=1}^{\kappa} \frac{f\left(y_{i}\right)}{g\left(y_{i}\right)} h\left(y_{i}\right)\right)^{2} \mathrm{~d} \mathbf{y}_{1: \kappa} \\
& =c^{2} \mathbf{E}_{g}\left[\left.\left(\frac{1}{\kappa} \sum_{i=1}^{\kappa} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)} h\left(X_{i}\right)\right)^{2} \right\rvert\, \mathbf{X}_{\kappa} \in C^{\kappa}\right] \\
& \stackrel{(\mathrm{d})}{=} c^{2}\left(\frac{1}{\kappa} v+\mathbf{E}\left[\left.\frac{f(X)}{g(X)} h(X) \right\rvert\, X \sim g, X \in C\right]^{2}\right) \\
& =c^{2}\left(\frac{1}{\kappa} v+\left(\int_{C} \frac{g(x)}{c} \frac{f(x)}{g(x)} h(x) \mathrm{d} x\right)^{2}\right)=\frac{c^{2}}{\kappa} v+\theta^{2}, \tag{6}
\end{align*}
$$

where (a) comes from 1) the fact that there are $\binom{n}{k}$ ways of ordering n elements such that κ are in C and $n-\kappa$ are in $G \backslash C$, and 2) the fact that US does not depend on the order of its inputs, (b) comes from 1) the property that US(\mathbf{y}) does not change if additional samples are appended to \mathbf{y} that are not in C and $\mathbf{2}$) the fact that $g(\mathbf{y})$ can be decomposed into $g\left(\mathbf{y}_{1: \kappa}\right) g\left(\mathbf{y}_{\kappa+1: n}\right)$ since it represents the joint probability density function for n independent and identically distributed random variables, (c) comes from the fact that $\operatorname{Pr}\left(k\left(\mathbf{X}_{\kappa}\right)=\kappa\right)=c^{\kappa}$, and (d) comes from Property 2 .

Combining (5) with (6) we have that

$$
\begin{aligned}
& \operatorname{Var}_{g}\left(\mathrm{US}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right) \\
&=\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)}\left(\frac{c^{2}}{\kappa} v+\theta^{2}\right)\right)-\theta^{2} \\
&= c^{2} v\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \frac{1}{\kappa}\right) \\
&+\theta^{2} \underbrace{\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)}\right)}_{=1}-\theta^{2} \\
&= c^{2} v \sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \frac{1}{\kappa} \\
&= c^{2} v \mathbf{E}_{B(n, c)}\left[\left.\frac{1}{\kappa} \right\rvert\, \kappa>0\right] .
\end{aligned}
$$

Theorem 9. If $F \cap H \subseteq G$ then

$$
\operatorname{Var}_{g}\left(\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}>0\right)\right)=v \frac{c}{n \rho}+\theta^{2} \frac{c \rho(n-1)+\rho-c n}{c n \rho^{2}}
$$

Proof. At a high level, this proof is similar to the proof of Theorem 8, but uses the property that $\operatorname{IS}\left(\mathbf{X}_{n}\right)=$ $\frac{k\left(\mathbf{X}_{n}\right)}{c n} \operatorname{US}\left(\mathbf{X}_{n}\right)$.

$$
\begin{align*}
& \operatorname{Var}_{g}\left(\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right) \\
&= \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)>0\right]-\mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right]^{2} \\
& \stackrel{(a)}{=} \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)>0\right]-\left(\frac{\theta}{1-(1-c)^{n}}\right)^{2} \\
&=\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]\right) \\
&-\left(\frac{\theta}{1-(1-c)^{n}}\right)^{2}, \tag{7}
\end{align*}
$$

where (a) comes from Theorem 6.
Also,

$$
\begin{align*}
& \mathbf{E}_{g}\left[\operatorname{IS}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& \stackrel{(\text { a) }}{=} \mathbf{E}_{g}\left[\left.\left(\frac{k\left(\mathbf{X}_{n}\right)}{c n} \operatorname{US}\left(\mathbf{X}_{n}\right)\right)^{2} \right\rvert\, k\left(\mathbf{X}_{n}\right)=\kappa\right] \\
& \quad=\frac{\kappa^{2}}{c^{2} n^{2}} \mathbf{E}_{g}\left[\operatorname{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right] \stackrel{(\text { b) }}{=} \frac{\kappa^{2}}{c^{2} n^{2}}\left(\frac{c^{2}}{\kappa} v+\theta^{2}\right), \tag{8}
\end{align*}
$$

where (a) holds because $\operatorname{IS}\left(\mathbf{X}_{n}\right)=\frac{k\left(\mathbf{X}_{n}\right)}{c n} \operatorname{US}\left(\mathbf{X}_{n}\right)$ and (b) follows from (6). Using the shorthand, $\rho:=\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>\right.$ $0)=1-(1-c)^{n}$ and by combining (7) with (8) we have
that:

$$
\begin{aligned}
& \operatorname{Var}_{g}\left(\operatorname{IS}\left(\mathbf{X}_{n}\right) \mid k\left(\mathbf{X}_{n}\right)>0\right) \\
&=\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)>0\right)} \frac{\kappa^{2}}{c^{2} n^{2}}\left(\frac{c^{2}}{\kappa} v+\theta^{2}\right)\right) \\
&-\left(\frac{\theta}{1-(1-c)^{n}}\right)^{2} \\
&= \frac{v}{n^{2} \rho} \underbrace{\left(\sum_{\kappa=1}^{n} \operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right) \kappa\right)}_{=\mathbf{E}_{B(n, c)}[\kappa]=n c} \\
&+\frac{\theta^{2}}{c^{2} n^{2} \rho} \underbrace{\left(\sum_{\kappa=1}^{n} \operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right) \kappa^{2}\right)}_{=\mathbf{E}_{B(n, c)}\left[\kappa^{2}\right]=n c((n-1) c+1)}-\left(\frac{\theta}{\rho}\right)^{2} \\
&= v \frac{c}{n \rho}+\frac{\theta^{2}((n-1) c+1)}{c n \rho}-\frac{\theta^{2}}{\rho^{2}} \\
&= v \frac{c}{n \rho}+\theta^{2} \frac{c \rho(n-1)+\rho-c n}{c n \rho^{2}} .
\end{aligned}
$$

Theorem 10. If $F \cap H \subseteq G$ then

$$
\operatorname{Var}_{g}\left(\mathrm{US}\left(\mathbf{X}_{n}\right)\right)=\rho c^{2} v \mathbf{E}_{B(n, c)}\left[\left.\frac{1}{\kappa} \right\rvert\, \kappa>0\right]+\theta^{2} \rho(1-\rho)
$$

Proof.

$$
\begin{aligned}
& \operatorname{Var}_{g}\left(\mathrm{US}\left(\mathbf{X}_{n}\right)\right)=\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2}\right]-\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)\right]^{2} \\
& \stackrel{(a)}{=} \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2}\right]-\rho^{2} \theta^{2} \\
&=\left(\sum_{\kappa=0}^{n} \operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right) \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]\right) \\
&-\rho^{2} \theta^{2} \\
&= \operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=0\right) \underbrace{\mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=0\right]}_{=0} \\
&+\left(\sum_{\kappa=1}^{n} \operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right) \mathbf{E}_{g}\left[\mathrm{US}\left(\mathbf{X}_{n}\right)^{2} \mid k\left(\mathbf{X}_{n}\right)=\kappa\right]\right) \\
&-\rho^{2} \theta^{2} \\
&= \rho\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\rho}\left(\frac{c^{2}}{\kappa} v+\theta^{2}\right)\right)-\rho^{2} \theta^{2} \\
&= \rho c^{2} v\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\rho} \frac{1}{\kappa}\right) \\
&+\rho \theta^{2} \underbrace{\left(\sum_{\kappa=1}^{n} \frac{\operatorname{Pr}\left(k\left(\mathbf{X}_{n}\right)=\kappa\right)}{\rho}\right)-\rho^{2} \theta^{2}}_{\kappa=1} \\
&= \rho c^{2} v \mathbf{E}_{B(n, c)}^{\left[\left.\frac{1}{\kappa} \right\rvert\, \kappa>0\right]+\theta^{2} \rho(1-\rho)}
\end{aligned}
$$

where (a) comes from Theorem 7, (b) comes from (6) and from multiplying one term by $\rho / \rho=1$.

Theorem 11. If $F \cap H \subseteq G$ then

$$
\operatorname{Var}_{g}\left(\operatorname{IS}\left(\mathbf{X}_{n}\right)\right)=\frac{1}{n}\left(c v+\theta^{2}\left(\frac{1}{c}-1\right)\right)
$$

Proof.

$$
\begin{aligned}
& \operatorname{Var}_{g}\left(\operatorname{IS}\left(\mathbf{X}_{n}\right)\right) \stackrel{(a)}{=} \frac{1}{n} \operatorname{Var}_{g}(\operatorname{IS}(X)) \\
&= \frac{1}{n}\left(\mathbf{E}_{g}\left[\operatorname{IS}(X)^{2}\right]-\mathbf{E}_{g}[\operatorname{IS}(X)]^{2}\right) \\
& \stackrel{(\text { b })}{=} \frac{1}{n}\left(\mathbf{E}_{g}\left[\operatorname{IS}(X)^{2}\right]-\theta^{2}\right) \\
&= \frac{1}{n}\left(\operatorname{Pr}(X \in C \mid X \sim g) \mathbf{E}_{g}\left[\operatorname{IS}(X)^{2} \mid X \in C\right]\right. \\
&+\operatorname{Pr}(X \notin C \mid X \sim g) \underbrace{\mathbf{E}_{g}\left[\operatorname{IS}(X)^{2} \mid X \notin C\right]}_{=0}-\theta^{2}) \\
&= \frac{1}{n}\left(c \mathbf{E}_{g}\left[\operatorname{IS}(X)^{2} \mid X \in C\right]-\theta^{2}\right) \\
&= \frac{\text { (c) }}{=} \frac{1}{n}\left(c\left(v+\frac{\theta^{2}}{c^{2}}\right)-\theta^{2}\right) \\
&= \frac{1}{n}\left(c v+\theta^{2}\left(\frac{1}{c}-1\right)\right),
\end{aligned}
$$

where (a) holds because $\operatorname{IS}\left(\mathbf{X}_{n}\right)$ is the sum of n independent and identically distributed random variables, (b) comes from Property 1, and (c) comes from applying (8) with $n=1$ and $\kappa=1$.

Property 3. $c \rho(n-1)+\rho-c n \geq 0$,
Proof. Recall that $\rho:=1-(1-c)^{n}$, so we have that:

$$
\begin{align*}
& c \rho(n-1)+\rho-c n=c\left(1-(1-c)^{n}\right)(n-1)+1-(1-c)^{n}-c n \\
& =(c n-c)\left(1-(1-c)^{n}\right)+1-(1-c)^{n}-c n \\
& =c n-c n(1-c)^{n}-c+c(1-c)^{n}+1-(1-c)^{n}-c n \\
& =(1-c)^{n}(-c n+c-1)-c+1 . \tag{9}
\end{align*}
$$

We will show by induction that (9) is non-negative for all $n \geq 1$. First, notice that for the base case where $n=1$, (9) is equal to zero. For the inductive step we will show that (9) is non-negative for $n+1$ given that it is non-negative for n.

$$
\begin{aligned}
(1-c)^{n+1} & (-c(n+1)+c-1)-c+1 \\
= & (1-c)(1-c)^{n}(-c n+c-1)-(1-c)^{n+1} c \\
& +(-c+1)(1-c+c) \\
= & (1-c) \underbrace{\left((1-c)^{n}(-c n+c-1)-c+1\right)}_{\text {(a) }}
\end{aligned}
$$

$$
-(1-c)^{n+1} c+c(1-c)
$$

where (a) is positive by the inductive hypothesis, and so we need only show that $-(1-c)^{n+1} c+c(1-c) \geq 0$. Since

$$
-(1-c)^{n+1} c+c(1-c)=c\left((1-c)-(1-c)^{n+1}\right)
$$

and $1-c \geq(1-c)^{n+1}$ because $c \in(0,1]$, we conclude.

