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In this supplemental document we prove the various prop-
erties and theorems referenced earlier (particularly those in
Table 1).

Property 1. If F ∩H ⊆ G then Eg[IS(Xn)] = θ.

Proof.

Eg[IS(Xn)]
(a)
=Eg

[
f(X)

g(X)
h(X)

]
=

∫
G

g(x)
f(x)

g(x)
h(x) dx

(b)
=

∫
F∩H

f(x)h(x) dx = Ef [h(X)] = θ,

where (a) holds because IS(Xn) is the mean of n indepen-
dent and identically distributed random variables, and (b)
holds because ∀x ∈ G \ (F ∩H), f(x) = 0. �

We now provide a proof of Theorem 1, which states that
if C = G, then US(Xn) = IS(Xn).

Proof. In this setting, c =
∫
G
g(x) dx = 1 and since every

Xi must be within C, k(Xn) = n. So,

US(Xn) =
c

k(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

=
1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi). �

We now provide a proof of Theorem 2, which states
that if we replace c with an empirical estimate, ĉ(Xn) :=
n−1k(Xn), then US(Xn) = IS(Xn).

Proof. Using the empirical estimate, ĉ(Xn), in place of c
within US we have:

US(Xn) =
ĉ(Xn)

k(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

=
k(Xn)

nk(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

=
1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

= IS(Xn). �

Theorem 3. If F ∩H ⊆ G and κ ∈ N>0, then

Eg[US(Xn)|k(Xn) = κ] = θ.

Proof. Let Prg(X ∈ C) denote the probability that a sam-
ple, X , from the sampling distribution is in C.

Eg[ US(Xn)|k(Xn) = κ]

=Eg

[
c

κ

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣k(Xn) = κ

]
(a)
=Eg

[
c

κ

κ∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣∀i ∈ {1, . . . , κ}, Xi ∈ C

]
(b)
=Eg

[
c
f(X)

g(X)
h(X)

∣∣∣∣X ∈ C]
(c)
=

∫
C

g(x)

Prg(X ∈ C)
c
f(x)

g(x)
h(x) dx

(d)
=

∫
C

g(x)

c
c
f(x)

g(x)
h(x) dx

=

∫
C

f(x)h(x) dx

(e)
=Ef [h(X)],

where (a) holds because f(Xi) = 0 for all but κ of the
terms in the summation, and so (by re-ordering the Xi so
that these κ terms have indices 1, . . . , κ) we need only sum
to κ rather than n, (b) holds because the summation is over
κ independent and identically distributed random variables,
(c) holds by the definition of conditional expectations, (d)
holds because Prg(X ∈ C) = c, and (e) holds because
F ∩H ⊆ C. �

Theorem 4. If F ∩H ⊆ G then

Eg[US(Xn)|k(Xn) > 0] = θ.

Proof.

Eg[ US(Xn)|k(Xn) > 0]

=

n∑
κ=1

Pr(k(Xn) = κ|k(Xn) > 0)

Pr(k(Xn) > 0)
Eg[US(Xn)|k(Xn) = κ]

(a)
=

n∑
κ=1

Pr(k(Xn) = κ|k(Xn) > 0)

Pr(k(Xn) > 0)
θ

=θ

n∑
κ=1

Pr(k(Xn) = κ|k(Xn) > 0)

Pr(k(Xn) > 0)

=θ,

where (a) holds because, by Theorem 3,
E[US(Xn)|k(Xn) = κ] = θ. �

Theorem 5. If F ∩H ⊆ G and κ ∈ N>0, then

Eg[IS(Xn)|k(Xn) = κ]− θ =
( κ
cn
− 1
)
θ. (4)

Proof. Following roughly the same steps as used to prove



Theorem 3 we have that:

Eg[ IS(Xn)|k(Xn) = κ]

=Eg

[
1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣k(Xn) = κ

]

=Eg

[
1

n

κ∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣∀i ∈ {1, . . . , κ}, Xi ∈ C

]

=Eg

[
κ

n

f(X1)

g(X1)
h(X1)

∣∣∣∣X1 ∈ C
]

=

∫
C

g(x)

c

κ

n

f(x)

g(x)
h(x) dx

=
κ

cn
Ef [h(X)]

=
κ

cn
θ,

and so (4) follows. �

Theorem 6. If F ∩H ⊆ G then

Eg[IS(Xn)|k(Xn) > 0] =
1

1− (1− c)n
θ.

Proof. Recall from Property 1 that Eg[IS(Xn)] = θ. By
marginalizing over whether or not k(Xn) > 0, we also have
that:

Eg[IS(Xn)] =Pr(k(Xn) > 0)Eg[IS(Xn)|k(Xn) > 0]

+ Pr(k(Xn) = 0)Eg[IS(Xn)|k(Xn) = 0].

So,

Eg[ IS(Xn)|k(Xn) > 0]

=
θ − Pr(k(Xn) = 0)Eg[IS(Xn)|k(Xn) = 0]

Pr(k(Xn) > 0)

(a)
=

θ

1− (1− c)n
,

where (a) holds because Eg[IS(Xn)|k(Xn) = 0] = 0 and
Pr(k(Xn) > 0) = 1−Pr(k(Xn) = 0) = 1− (1− c)n. �

Theorem 7. If F ∩H ⊆ G, then

Eg[US(Xn)] = (1− (1− c)n)θ.

Proof.

Eg[ US(Xn)]

=Pr(k(Xn) > 0)︸ ︷︷ ︸
=1−(1−c)n

Eg[US(Xn)|k(Xn) > 0]︸ ︷︷ ︸
=θ, by Theorem 4

+ Pr(k(Xn) = 0)Eg[US(Xn)|k(Xn) = 0]︸ ︷︷ ︸
=0

=(1− (1− c)n)θ. �

Before continuing, recall the following property (which
we prove for completeness):

Property 2. Let X1, . . . , Xn be n independent and iden-
tically distributed random variables, each with finite mean
and variance. Then,

E

( 1

n

n∑
i=1

Xi

)2
 =

1

n
Var (X1) +E [X1]

2
.

Proof. Recall that

Var

(
1

n

n∑
i=1

Xi

)
= E

[(
1

n

n∑
i=1

Xi

)2]
−E

[
1

n

n∑
i=1

Xi

]2
.

So, by rearranging terms:

E

[(
1

n

n∑
i=1

Xi

)2]
=

1

n2
Var

(
n∑
i=1

Xi

)
+

1

n2
E

[
n∑
i=1

Xi

]2
.

Since the Xi are independent and identically distributed, we
therefore have that:

E

( 1

n

n∑
i=1

Xi

)2
 =

1

n2
nVar (X1) +

1

n2
n2E [X1]

2

=
1

n
Var (X1) +E [X1]

2
.

�

Theorem 8. If F ∩H ⊆ G then

Varg(US(Xn)|k(Xn > 0)) =c2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
.

Proof.

Varg(US(Xn)|k(Xn) > 0)

=Eg[US(Xn)
2|k(Xn) > 0]−Eg[US(Xn)|k(Xn) > 0]2

=Eg[US(Xn)
2|k(Xn) > 0]− θ2

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)
Eg[US(Xn)

2|k(Xn) = κ]

)
− θ2.

(5)

We will write y to denote a vector in Rn, the ele-
ments of which are y1, . . . , yn ∈ R. We also write yi:j
to denote the ith through jth entries of y, i.e., yi:j :=
[yi, yi+1, . . . , yj−1, yj ]. Let Gnκ = {y ∈ Gn : k(y) = κ}
be the set of all possible tuples of n samples where exactly
κ are in C. We also overload the definition of g by defin-
ing g(y) :=

∏n
i=1 g(yi). Using this notation, we have that

(where . . . are used to denote that a long line is split across
multiple lines via scalar multiplication):



Eg[ US(Xn)
2|k(Xn) = κ]

=

∫
Gnκ

g(y)

Pr(k(Xn) = κ)
US(y)2 dy

(a)
=

(
n
κ

)
Pr(k(Xn) = κ)

∫
Cκ

∫
(G\C)n−κ

g(y)US(y)2 dy1:κ dyκ+1:n

(b)
=

(
n
κ

)
Pr(k(Xn) = κ)

∫
Cκ

∫
(G\C)n−κ

g(y1:κ)g(yκ+1:n) . . .

US(y1:κ)
2 dy1:κ dyκ+1:n

=

(
n
κ

)(
n
κ

)
cκ(1− c)n−κ

∫
Cκ
g(y1:κ)US(y1:κ)

2 dy1:κ . . .∫
(G\C)n−κ

g(yκ+1:n) dyκ+1:n︸ ︷︷ ︸
=(1−c)n−κ

=

(
n
κ

)
(1− c)n−k(

n
κ

)
cκ(1− c)n−κ

∫
Cκ
g(y1:κ)

(
c

κ

κ∑
i=1

f(yi)

g(yi)
h(yi)

)2

dy1:κ

=
c2

cκ

∫
Cκ
g(y1:κ)

(
1

κ

κ∑
i=1

f(yi)

g(yi)
h(yi)

)2

dy1:κ

(c)
=c2

∫
Cκ

g(y1:κ)

Pr(k(Xκ) = κ)

(
1

κ

κ∑
i=1

f(yi)

g(yi)
h(yi)

)2

dy1:κ

=c2Eg

[(
1

κ

κ∑
i=1

f(Xi)

g(Xi)
h(Xi)

)2∣∣∣∣∣Xκ ∈ Cκ
]

(d)
=c2

(
1

κ
v +E

[
f(X)

g(X)
h(X)

∣∣∣∣X ∼ g,X ∈ C]2
)

=c2
(
1

κ
v +

(∫
C

g(x)

c

f(x)

g(x)
h(x) dx

)2
)

=
c2

κ
v + θ2, (6)

where (a) comes from 1) the fact that there are
(
n
κ

)
ways

of ordering n elements such that κ are in C and n − κ
are in G \ C, and 2) the fact that US does not depend on
the order of its inputs, (b) comes from 1) the property that
US(y) does not change if additional samples are appended
to y that are not in C and 2) the fact that g(y) can be de-
composed into g(y1:κ)g(yκ+1:n) since it represents the joint
probability density function for n independent and identi-
cally distributed random variables, (c) comes from the fact
that Pr(k(Xκ) = κ) = cκ, and (d) comes from Property 2.

Combining (5) with (6) we have that

Varg(US(Xn)|k(Xn) > 0)

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

(
c2

κ
v + θ2

))
− θ2

=c2v

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

1

κ

)

+ θ2

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

)
︸ ︷︷ ︸

=1

−θ2

=c2v

n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

1

κ

=c2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
. �

Theorem 9. If F ∩H ⊆ G then

Varg(IS(Xn)|k(Xn > 0)) = v
c

nρ
+ θ2

cρ(n− 1) + ρ− cn
cnρ2

.

Proof. At a high level, this proof is similar to the proof
of Theorem 8, but uses the property that IS(Xn) =
k(Xn)
cn US(Xn).

Varg(IS(Xn)|k(Xn) > 0)

=Eg[IS(Xn)
2|k(Xn) > 0]−Eg[IS(Xn)|k(Xn) > 0]2

(a)
=Eg[IS(Xn)

2|k(Xn) > 0]−
(

θ

1− (1− c)n

)2

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)
Eg[IS(Xn)

2|k(Xn) = κ]

)

−
(

θ

1− (1− c)n

)2

, (7)

where (a) comes from Theorem 6.
Also,

Eg[ IS(Xn)
2|k(Xn) = κ]

(a)
=Eg

[(
k(Xn)

cn
US(Xn)

)2
∣∣∣∣∣k(Xn) = κ

]

=
κ2

c2n2
Eg[US(Xn)

2|k(Xn) = κ]
(b)
=

κ2

c2n2

(
c2

κ
v + θ2

)
,(8)

where (a) holds because IS(Xn) =
k(Xn)
cn US(Xn) and (b)

follows from (6). Using the shorthand, ρ := Pr(k(Xn) >
0) = 1 − (1 − c)n and by combining (7) with (8) we have



that:

Varg(IS(Xn)|k(Xn) > 0)

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

κ2

c2n2

(
c2

κ
v + θ2

))

−
(

θ

1− (1− c)n

)2

=
v

n2ρ

(
n∑
κ=1

Pr(k(Xn) = κ)κ

)
︸ ︷︷ ︸

=EB(n,c)[κ]=nc

+
θ2

c2n2ρ

(
n∑
κ=1

Pr(k(Xn) = κ)κ2

)
︸ ︷︷ ︸
=EB(n,c)[κ2]=nc((n−1)c+1)

−
(
θ

ρ

)2

=v
c

nρ
+
θ2((n− 1)c+ 1)

cnρ
− θ2

ρ2

=v
c

nρ
+ θ2

cρ(n− 1) + ρ− cn
cnρ2

. �

Theorem 10. If F ∩H ⊆ G then

Varg(US(Xn)) = ρc2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
+θ2ρ(1−ρ).

Proof.

Varg(US(Xn)) = Eg[US(Xn)
2]−Eg[US(Xn)]

2

(a)
=Eg[US(Xn)

2]− ρ2θ2

=

(
n∑
κ=0

Pr(k(Xn) = κ)Eg[US(Xn)
2|k(Xn) = κ]

)
− ρ2θ2

=Pr(k(Xn) = 0)Eg[US(Xn)
2|k(Xn) = 0]︸ ︷︷ ︸
=0

+

(
n∑
κ=1

Pr(k(Xn) = κ)Eg[US(Xn)
2|k(Xn) = κ]

)

− ρ2θ2

(b)
=ρ

(
n∑
κ=1

Pr(k(Xn) = κ)

ρ

(
c2

κ
v + θ2

))
− ρ2θ2

=ρc2v

(
n∑
κ=1

Pr(k(Xn) = κ)

ρ

1

κ

)

+ ρθ2

(
n∑
κ=1

Pr(k(Xn) = κ)

ρ

)
︸ ︷︷ ︸

=1

−ρ2θ2

=ρc2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
+ θ2ρ(1− ρ),

where (a) comes from Theorem 7, (b) comes from (6) and
from multiplying one term by ρ/ρ = 1.

Theorem 11. If F ∩H ⊆ G then

Varg(IS(Xn)) =
1

n

(
cv + θ2

(
1

c
− 1

))
.

Proof.

Varg(IS(Xn))
(a)
=

1

n
Varg(IS(X))

=
1

n

(
Eg[IS(X)2]−Eg[IS(X)]2

)
(b)
=
1

n

(
Eg[IS(X)2]− θ2

)
=
1

n

(
Pr(X ∈ C|X ∼ g)Eg[IS(X)2|X ∈ C]

+ Pr(X 6∈ C|X ∼ g)Eg[IS(X)2|X 6∈ C]︸ ︷︷ ︸
=0

−θ2
)

=
1

n

(
cEg[IS(X)2|X ∈ C]− θ2

)
(c)
=
1

n

(
c

(
v +

θ2

c2

)
− θ2

)

=
1

n

(
cv + θ2

(
1

c
− 1

))
,

where (a) holds because IS(Xn) is the sum of n independent
and identically distributed random variables, (b) comes from
Property 1, and (c) comes from applying (8) with n = 1 and
κ = 1. �

Property 3. cρ(n− 1) + ρ− cn ≥ 0,

Proof. Recall that ρ := 1− (1− c)n, so we have that:
cρ(n− 1) + ρ− cn = c(1− (1− c)n)(n− 1) + 1− (1− c)n − cn

=(cn− c)(1− (1− c)n) + 1− (1− c)n − cn
=cn− cn(1− c)n − c+ c(1− c)n + 1− (1− c)n − cn
=(1− c)n(−cn+ c− 1)− c+ 1. (9)

We will show by induction that (9) is non-negative for all
n ≥ 1. First, notice that for the base case where n = 1, (9)
is equal to zero. For the inductive step we will show that (9)
is non-negative for n+1 given that it is non-negative for n.

(1− c)n+1(−c(n+ 1) + c− 1)− c+ 1

=(1− c)(1− c)n(−cn+ c− 1)− (1− c)n+1c

+ (−c+ 1)(1− c+ c)

=(1− c)
(
(1− c)n(−cn+ c− 1)− c+ 1

)
︸ ︷︷ ︸

(a)

− (1− c)n+1c+ c(1− c),
where (a) is positive by the inductive hypothesis, and so we
need only show that −(1− c)n+1c+ c(1− c) ≥ 0. Since

−(1− c)n+1c+ c(1− c) =c
(
(1− c)− (1− c)n+1

)
,

and 1−c ≥ (1−c)n+1 because c ∈ (0, 1], we conclude. �
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