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Abstract

Importance sampling is often used in machine learning when
training and testing data come from different distributions.
In this paper we propose a new variant of importance sam-
pling that can reduce the variance of importance sampling-
based estimates by orders of magnitude when the supports
of the training and testing distributions differ. After motivat-
ing and presenting our new importance sampling estimator,
we provide a detailed theoretical analysis that characterizes
both its bias and variance relative to the ordinary importance
sampling estimator (in various settings, which include cases
where ordinary importance sampling is biased, while our new
estimator is not, and vice versa). We conclude with an exam-
ple of how our new importance sampling estimator can be
used to improve estimates of how well a new treatment pol-
icy for diabetes will work for an individual, using only data
from when the individual used a previous treatment policy.

Introduction
A key challenge in artificial intelligence is to estimate the
expectation of a random variable. Instances of this problem
arise in areas ranging from planning and decision making
(e.g., estimating the expected sum of rewards produced by
a policy for decision making under uncertainty) to proba-
bilistic inference. Although the estimation of an expected
value is straightforward if we can generate many indepen-
dent and identically distributed (i.i.d.) samples from the rel-
evant probability distribution (which we refer to as the tar-
get distribution), we may not have generative access to the
target distribution. Instead, we might only have data from a
different distribution that we call the sampling distribution.

For example, in off-policy evaluation for reinforcement
learning, the goal is to estimate the expected sum of rewards
that a decision policy will produce, given only data gathered
using some other policy. Similarly, in supervised learning,
we may wish to predict the performance of a regressor or
classifier if it were to be applied to data that comes from
a distribution that differs from the distribution of the avail-
able data (e.g., we might predict the accuracy of a classifier
for hand-written letters given that observed letter frequen-
cies come from English, using a corpus of labeled letters
collected from German documents).
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More precisely, we consider the problem of estimating
θ := E[h(X)], where h is a real-valued function and the
expectation is over the random variable X , which is a sam-
ple from the target distribution. As input we assume ac-
cess to n i.i.d. samples from a sampling distribution that is
different from the target distribution. A classical approach
to this problem is to use importance sampling (IS), which
reweights the observed samples to account for the difference
between the target and sampling distributions (Kahn, 1955).
Importance sampling produces an unbiased but often high-
variance estimate of θ.

We introduce importance sampling with unequal support
(US)—a simple new importance sampling estimator that can
drastically reduce the variance of importance sampling when
the supports of the sampling and target distributions differ.
This setting with unequal support can occur, for example,
in our earlier example where German documents might in-
clude symbols like ß, that the classifier will not encounter.
US essentially performs importance sampling only on the
data that falls within the support of the target distribution,
and then scales this estimate by a constant that reflects the
relative support of the target and sampling distributions.

US typically has lower variance than ordinary importance
sampling (sometimes by orders of magnitude), and is unbi-
ased in the important setting where at least one sample falls
within the support of the target distribution. If no samples
do, then none of the available data could have been gen-
erated by the target distribution, and so it is unclear what
would make for a reasonable estimate. Furthermore, the con-
ditionally unbiased nature of US is sufficient to allow for
its use with concentration inequalities like Hoeffding’s in-
equality to construct confidence bounds on θ. By contrast,
weighted importance sampling (Rubinstein, 1981) is another
variant of importance sampling that can reduce variance, but
which introduces bias that makes it incompatible with Ho-
effding’s inequality.

Problem Setting and Importance Sampling
Let f and g be probability density functions (PDFs) for two
distributions that we call the target distribution and sam-
pling distribution, respectively. Let h : R → R be called
the evaluation function. Let θ := Ef [h(X)], where Ef de-
notes the expected value given that f is the PDF of the ran-
dom variable(s) in the expectation (in this case, just X). Let



F := {x ∈ R : f(x) 6= 0}, G := {x ∈ R : g(x) 6= 0}, and
H := {x ∈ R : h(x) 6= 0} be the supports of the target and
sampling distributions, and the evaluation function, respec-
tively. In this paper we will discuss techniques for estimating
θ given n ∈ N>0 i.i.d. samples, Xn := {X1, . . . , Xn}, from
the sampling distribution, and we focus on the setting where
F ∩H ⊂ G—where the joint support of F and H is a strict
subset of the support of G.

The importance sampling estimator,

IS(Xn) := t+
1

n

n∑
i=1

f(Xi)

g(Xi)
(h(Xi)− t), (1)

is a widely used estimator of θ, where t = 0 (we con-
sider non-zero values of t later). If F ∩ H ⊆ G, then
IS(Xn) is a consistent and unbiased estimator of θ. That is,
IS(Xn)

a.s.−→ θ and Eg[IS(Xn)] = θ (we review this latter
result in Property 1 in the supplemental document).

A control variate is a constant, t ∈ R, that is subtracted
from each h(Xi) and then added back to the final esti-
mate, as in (1) (Hammersley, 1960; Hammersley and Hand-
scomb, 1964). Although control variates, t(Xi), that de-
pend on the sample, Xi, can be beneficial, for our later pur-
poses we only consider constant control variates. Intuitively,
including a constant control variate equates to estimating
θ′ := Ef [h

′(X)] using importance sampling without a con-
trol variate, where h′(x) = h(x) − t, and then adding t to
the resulting estimate to get an estimate of θ.

Later we show that the variance of importance sampling
increases with θ2, and so applying importance sampling to
h results in higher variance than applying importance sam-
pling to h′ with t ≈ θ, since then θ′ ≈ 0. That is, by in-
ducing a kind of normalization, a control variate can reduce
the variance of estimates without introducing bias—a prop-
erty that has made the inclusion of control variates a pop-
ular topic in some recent works using importance sampling
(Dudı́k et al., 2011; Jiang and Li, 2016; Thomas and Brun-
skill, 2016). Although later we discuss control variates more,
for simplicity our derivations focus on importance sampling
estimators without control variates. There are also other ex-
tensions of the importance sampling estimator that can re-
duce variance—notably the weighted importance sampling
estimator, which we compare to later, and which can pro-
vide large reductions of variance and mean squared error,
but which introduces bias.

An Illustrative Example
In this section we present an example that highlights the pe-
culiar behavior of the IS estimator when F ∩ H 6= G. The
illustrative example, depicted in Figure 1, is defined as fol-
lows. Let g(x) = 0.5 if x ∈ [0, 2] and g(x) = 0 otherwise,
and let f(x) = 1 if x ∈ [0, 1] and f(x) = 0 otherwise. So,
F = [0, 1] and G = [0, 2]. Let h(x) = 1 if x ∈ [0, 1] and
h(x) = 0 otherwise, so that H = [0, 1]. Notice that θ = 1.

Since the sampling and target distributions are both uni-
form, an obvious estimator of θ (if f and g are known but h
is not) would be the average of the points that fall within F .
Let (#Xi ∈ F ) denote the number of samples in Xn that
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Figure 1: Depiction of the illustrative example. The evalua-
tion function is not shown because h = f and H = F .

are in F . Formally, the obvious estimator is

θ̂ :=
1

(#Xi ∈ F )

n∑
i=1

1F (Xi)h(Xi),

where 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.
Given our knowledge of h, it is straightforward to show that
this estimator is equal to 1 if (#Xi ∈ F ) > 0 and is un-
defined otherwise—it is exactly correct (has zero bias and
variance) as long as at least one sample falls within F . If no
samples fall within F , then we have only observed data that
will never occur under the target distribution, and so we have
no useful information about θ. In this case, we might define
our obvious estimator to return an arbitrary value, e.g., zero.

Perhaps surprisingly, the importance sampling estimator
does not degenerate to this obvious estimator:

IS(Xn) =
1

n

n∑
i=1

1F (Xi)2h(Xi) =
2(#Xi ∈ F )

n
.

Since Eg[(#Xi ∈ F )/n] = 1/2, this estimate is correct
in expectation, but does not have zero variance given that
at least one sample falls within F . If more than 1/2 of the
samples fall within F , this estimate will be an over-estimate
of θ, and if fewer than 1/2 of the samples fall within F ,
this estimate will be an under-estimate. Although correct on
average, the importance sampling estimator has unnecessary
additional variance relative to the obvious estimator.

Importance Sampling with Unequal Support
We propose a new importance sampling estimator, impor-
tance sampling with unequal support (ISUS, or US for
brevity), that does degenerate to the obvious estimator for
our illustrative example. Intuitively, US prunes from Xn the
samples that are outside F (or more generally, outside some
set C, that we define later) to construct a new data set, X′n,
that has fewer samples. This new data set can be viewed
as (#Xi ∈ F ) i.i.d. samples from a different sampling
distribution—a distribution with PDF g′, which is simply g,
but truncated to only have support on F and re-normalized to
integrate to one. US then applies ordinary importance sam-
pling to this new data set.

For generality, we allow US to prune from Xn all of the
points that are not in a set, C, which can be defined many
different ways, including C := F (as in our previous exam-
ple). Our only requirement is that F ∩H ⊆ C ⊆ G. In order



to compute US, we must compute a value,

c :=

∫
C

g(x) dx,

which is the probability that a sample from the sampling
distribution will be in C. In general, C should be chosen
to be as small as possible while still ensuring that both 1)
F ∩H ⊆ C ⊆ G (so that informative samples are not dis-
carded) and 2) c can be computed. Ideally, we would select
C = F ∩H , however in some cases c cannot be computed
for this value of C. For example, in our later experiments we
consider a problem where h and H are not known, but F is,
and so we can compute c using C = F , but not C = F ∩H .

Let k(Xn) :=
∑n
i=1 1C(Xi) be the number of Xi that

are in C. The US estimator is then defined as:

US(Xn) :=
c

k(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi), (2)

if k(Xn) > 0, and US(Xn) := 0 if k(Xn) = 0. This is
equivalent to applying importance sampling to the pruned
data set, X′n, since then g′(x) = g(x)/c for x ∈ C. Also,
in (2) we sum over all n samples rather than just the k(Xn)
samples in C because f(Xi)h(Xi) = 0 for all Xi not in C.

Although we analyze the US estimator as defined in (2), it
can be generalized to use measure theoretic probability and
to incorporate a control variate. In this more general setting,
f and g are probability measures, f is absolutely continu-
ous with respect to g, t(Xi) denotes a real-valued sample-
dependent control variate, and

US(Xn) :=
g(C)

k(Xn)

(
n∑
i=1

df

dg
(Xi)

(
h(Xi)− t(Xi)

))
− Eg [t(X)].

Theoretical Analysis of US
We begin with two simple theorems that elucidate the rela-
tionship between IS and US. The proofs of both theorems
are straightforward, but deferred to the supplemental docu-
ment. First, Theorem 1 shows that, when C = G, US de-
generates to IS. One case where C = G is when the support
of the target distribution and evaluation function are both
equal to the support of the sampling distribution, i.e., when
F = H = G, and so C = G necessarily.
Theorem 1. If C = G, then US(Xn) = IS(Xn).

Theorem 2 shows that, if we replace c in the definition of
US with an empirical estimate, ĉ(Xn) := k(Xn)/n, then
US and IS are equivalent. This provides some intuition for
why US tends to outperform IS when C ⊂ G—IS is US,
but using an empirical estimate of c (the probability that a
sample falls within C), in place of its known value.
Theorem 2. If we replace c with an empirical estimate,
ĉ(Xn) := k(Xn)/n, then US(Xn) = IS(Xn).

In Table 1 we summarize more theoretical results that
clarify the differences between IS and US in several settings.
The first setting (denoted by a † in Table 1) is the standard
setting where we consider the ordinary expected value and
variance of the two estimators. The second setting (denoted
by a ‡ in Table 1) conditions on the event that at least one
sample falls withinC, that is, the event that k(Xn) > 0. This

is a reasonable setting to consider if one takes the view that
no estimate should be returned if all of the samples are out-
side C. That is, if the pruned data set, X′n, is empty, then no
estimate should be produced or considered (just as IS does
not produce an estimate when n = 0—when there are no
samples at all). Finally, the third setting (denoted by a ? in
Table 1) conditions on the event that k(Xn) = κ—that a
specific constant number of the n samples are in C.

Table 1 and the theorems that it references use additional
symbols that we review here. Let ρ := Pr(k(Xn) > 0) =
1− (1− c)n be the probability that at least one of n samples
is in C. Let Varg(·) denote the variance given that the ran-
dom variables within the parenthesis are sampled from the
distribution with PDF g. Let

v := Varg

(
f(X)

g(X)
h(X)

∣∣∣∣X ∈ C)
be the conditional variance of the importance sampling esti-
mate when using a single sample and given that the sample
is inC. LetB(n, c) denote the binomial distribution with pa-
rameters n and c and let EB(n,c) denote the expected value
given that κ ∼ B(n, c).

Although the proofs of the claims in Table 1 are some
of the primary contributions of this work, we defer them
to the supplemental document because they are straightfor-
ward (though lengthy) and do not provide further insights
into the results. The primary result of Table 1 is that US is
unbiased and often has lower variance in the key setting of
interest: when at least one sample is in the support of the
target distribution—when k(Xn) > 0. We find this setting
compelling because, when no samples are in F , little can be
inferred about Ef [h(X)].

In this setting (denoted by ‡ in Table 1) US is an unbiased
estimator, while IS is not (although the bias of IS does go
to zero as n → ∞).1 To understand the source of this bias,
consider the bias of IS given that k(Xn) = κ—the ? setting
in Table 1. In this case, Eg[IS(Xn)] =

κ
cnθ. Recall that IS

uses an empirical estimate of c, i.e., ĉ ≈ κ
n (as discussed

in Theorem 2). When this estimate is correct, terms in κ
cnθ

cancel, making IS unbiased. Thus, the bias of IS when con-
ditioning on the event that k(Xn) > 0 stems from IS’s use
of an estimate of c.

Next we discuss the variance of the two estimators given
that at least one sample falls within C, i.e., in the ‡ set-
ting. First consider how the variances of IS and US change
as c → 0—that is, as the differences between the sup-
ports of the sampling and target distributions increases.
Specifically, let ci := 1

i for i ∈ N>0. We then have
that: Var(IS(Xn)|k(Xn) > 0, ci) ≥ civ

nρ = v
nρi ≥

v
ni ,

since ρ ∈ (0, 1], and Var(US(Xn)|k(Xn) > 0, ci) =
(v/i2)EB(n,c)[1/κ|κ > 0] ≤ v/i2, since EB(n,c)[κ

−1|κ >
0] ≤ 1. Thus, as i → ∞ (as c → 0 logarithmically), and

1If we do not condition on the event that k(Xn) > 0, then US is
a biased estimator of θ. This is because it is unclear how to define
US(Xn) when k(Xn) = 0, and we chose (arbitrarily) to define
it to be 0. However, the bias of US(Xn) in this setting converges
quickly to zero, since ρ (the probability that no samples fall within
C) converges quickly to one as n→∞.



Eg[·] † Eg[·] ‡ Eg[·] ? Variance† Variance‡ Strongly Consistent

IS
θ

(Property 1)

1
ρ
θ

(Theorem 6)

κ
cn
θ

(Theorem 5)
1
n

(
cv + θ2

(
1
c
− 1
))

(Theorem 11)
v c
nρ

+ θ2 cρ(n−1)+ρ−cn
cnρ2

(Theorem 9)
Yes († and ‡)

US
ρθ

(Theorem 7)
θ

(Theorem 4)
θ

(Theorem 3)

ρc2vEB(n,c)[κ
−1|κ > 0]

+θ2ρ(1− ρ)
(Theorem 10)

c2vEB(n,c)

[
κ−1

∣∣κ > 0
]

(Theorem 8) Yes († and ‡)

Table 1: Theoretical properties of IS and US estimators. † = given no conditions. ‡ = conditioned on the event that k(Xn) >
0—that at least one sample is in C. ? = conditioned on the event that k(Xn) = κ—that exactly κ of n samples are in C. All
theorems require the assumption that F ∩H ⊆ G. The consistency results follow immediately from the fact that the biases and
variances all converge to zero as n→∞ (Thomas and Brunskill, 2016, Lemma 3).

given some fixed n and v, the variance of US goes to zero
much faster than the variance of IS. The variance of US (as
a function of i) converges to zero linearly (or faster) with a
rate of at most 1 while the variance of IS converges to zero
sublinearly (at best, logarithmically).

Next note that the variance of US in this setting is inde-
pendent of θ2, but the variance of IS increases with θ2 (see
Property 3 in the supplemental document, applied to The-
orem 9). To ameliorate this issue, a control variate, t, can
be used to center the data so that θ ≈ 0. However, since
θ is not known a priori, selecting t = θ is not practical.
The term that scales with θ2 in the variance of IS given that
k(Xn) > 0 therefore means that the variance of IS depends
on the quality of the control variate—poor control variates
can cause IS to have high variance. By contrast, the variance
of US in this setting does not have a term that scales with θ2,
and so the quality of the control variate is less important.2

There is a rare case when IS can have a lower variance
than US. First, we assume that the control variate is perfect
so that θ = 0 (which, as discussed before, is impractical)
and consider the term that scales with v. From this term, it
is clear that US will have lower variance than IS if:

c2EB(n,c)[κ
−1|κ > 0] ≤ c

nρ
. (3)

Notice that this inequality depends only on n and c, which
must both be known in order to implement US, and so we
can test a priori whether US will have lower variance than
IS. That is, if (3) holds, then US will have lower variance
than IS, given that k(Xn) > 0. However, if (3) does not
hold, it does not mean that IS will have lower variance than
US unless the perfect (typically unknown) control variate is
used so that θ = 0.

Application to Illustrative Example
Because neither method is always superior, here we consider
the application of IS and US to the illustrative example to
see when each method works best, and by how much. We
consider the setting where C = F , but modify the example
slightly. First, although the target distribution is always uni-
form, we allow for its support to be scaled. Specifically, we
define the support of f to be [0, Fmax], where Fmax ∈ (0, 2].
When Fmax is small, it corresponds to significant differences
in support, while large Fmax correspond to small differences

2The quality of the control variate can still impact the variance
of estimates though, since it can change v.

(when Fmax = 2, C = F = G and so the two estimators are
equivalent). We also modify h to allow for various values of
θ. Specifically, we define h(x) = −1 + θ if x < Fmax/2
and h(x) = 1 + θ if x ≥ Fmax/2. Notice that, although we
defined h in terms of θ, θ remains Ef [h(X)], and also that
using this definition of h and θ = 0 is an instance that is
particularly favorable to IS.

For this example, it is straightforward to verify that v =
4/F 2

max for any definition of θ, and c = Fmax/2. Given these
two values (and θ), we can compute the bias and variance of
each estimator. The biases and variances of the two estima-
tors for various settings are depicted in Figure 2. Notice that
US is always competitive with IS, although the reverse is
not true. Particularly, when Fmax is small (so that c is small),
or when θ is large, US can have orders of magnitude lower
variance than IS. Also, as n increases, the two estimators
become increasingly similar, since the empirical estimate of
c used by IS becomes increasingly accurate, although US is
still vastly superior to IS even when n is large if c is cor-
respondingly small. This matches our theoretical analysis
from the previous section: we expect US to perform better
when c is small (by our convergence rate analysis) or when
θ2 is large (due to US’s lesser dependence on the quality of
the control variate), and we expect the two estimators to be-
come increasingly similar as n → ∞ (because ĉ becomes
increasingly similar to c).

Notice also that gains are not only obtained when c is
so small relative to n that no samples are expected to fall
within C (a relatively uninteresting setting). For example,
the right-most plot in Figure 2 shows that with Fmax = 0.5,
where Pr(k(Xn) > 0) = ρ = 1 − 1

250 ≈ 1, the MSE of
US is approximately 0.086, while the MSE of IS is approx-
imately 6.08—US is has roughly 1/70 the MSE of IS (1/8
the RMSE).

Perhaps surprisingly, there are cases where IS has lower
variance than US (even when both are unbiased, since θ =
0). For example, consider the plot with θ = 0 and n = 10,
and the position on the horizontal axis that corresponds to
Fmax = 1.0. This is one case where IS is marginally better
than US (it has lower variance in both settings, and neither
estimator is biased). Intuitively, the IS estimator includes the
points outside the support of F , although they have associ-
ated values, h(Xi) = 0, which pulls the importance sam-
pling estimate towards zero. In this case, when θ = 0, this
extra pull towards zero happens to be beneficial. However,
to remain unbiased given the pull towards zero, IS also in-
creases the magnitudes of the weights associated with points



θ = 0 θ = 1 θ = 10

n = 10

n = 50

Figure 2: The variances of IS and US across various settings of n and θ (denoted along the left and top). At a glance, notice that
the red and green curves (US) tend to be below the black curves (IS), particularly when considering the logarithmic scale of
the vertical axes. The dotted lines show the variance conditioned on the event that k(Xn) > 0. The green line shows the mean
squared error of the US estimator (without any conditions), which shows that the variance reduction of US is not completely
offset by increased bias (compare the solid black and green curves). When θ = 0 the green line obscures the solid red line. The
plot on the right shows a zoomed-in view of the θ = 10, n = 50 plot without the logarithmic vertical axis.

in F , which incurs additional variance. When Fmax is small
enough, this additional variance outweighs the variance re-
duction that results from the extra pull towards zero, and so
US is again superior. This intuition is supported by the fact
that in Figure 2 IS does not outperform US for small Fmax
or θ ≥ 1, since then a pull towards zero is detrimental.

Finally, we consider the use of IS and US to create high-
confidence upper and lower bounds on θ using a concen-
tration inequality (Massart, 2007) like Hoeffding’s inequal-
ity (Hoeffding, 1963). If b denotes the range of the function
f(x)h(x)/g(x), for x ∈ G, then using Hoeffding’s inequal-
ity, we have that IS(Xn)− b

√
ln(1/δ)/(2n) is a 1− δ con-

fidence lower bound on θ. Similarly, we can use US with
Hoeffding’s inequality to create a 1 − δ confidence lower
bound: US(Xn) − cb

√
ln(1/δ)/(2k(Xn)), since the range

of the k(Xn) i.i.d. random variables averaged by US(Xn)
is cb. Notice that, if k(Xn) = 0, then this second estima-
tor is undefined (one might define the lower bound to be a
known lower bound on θ in this setting). Although we ex-
pect that k(Xn) ≈ cn, the resulting c in the denominator of
the US-based bound is within the square root, while the c in
the numerator is not, and so the bound constructed using US
should tend to be tighter when c is small.

Application to Diabetes Treatment
We applied US and IS to the problem of predicting the ef-
fectiveness of altering the treatment policy for a particular
person with type 1 diabetes. That is, we would like to use
prior data from when the individual was treated with one
treatment policy to estimate how well a related policy would
work. The treatment policy is parameterized by two num-

bers, CR and CF, and dictates how much insulin a person
should inject prior to eating a meal in order to keep his or
her blood glucose close to optimum levels. CR and CF are
typically specified by a diabetologist and tweaked during
follow-up visits every 3–6 months. If follow-up visits are not
an option, recent research has suggested using reinforcement
learning algorithms to tune CR and CF (Bastani, 2014).

Here we focus on a sub-problem of improving CR and
CF—using data collected from an initial range of admissi-
ble values of CR and CF to predict how well a new range of
values for CR and CF would perform. When collecting data,
CR and CF are drawn uniformly from an initial admissible
range, and then used for one day (which we view as one
episode of a Markov decision process). The performance
during each day is measured using an objective function
similar to the reward function proposed by Bastani (2014),
which measures the deviation of blood glucose from opti-
mum levels, with larger penalties for low blood glucose lev-
els. We refer to the measure of how good the outcome was
from one day as the return associated with that day, with
larger values being better. Using approximately 30 days of
data, our goal is to estimate the expected return if a different
distribution of CR and CF were to be used.

We consider a specific in silico person—a person sim-
ulated using a metabolic simulator. We used the subject
“Adult#003” in the Type 1 Diabetes Metabolic Simulator
(T1DMS) (Dalla Man et al., 2014)—a simulator that has
been approved by the US Food and Drug Administration as a
substitute for animal trials in pre-clinical testing of treatment
policies for type 1 diabetes. During each day, the subject is
given three or four meals of randomized sizes at randomized



Figure 3: The first and second plots show an estimate of the expected return for various CR and CF, from two different angles
(the second is a side-view of the first). The second plot also includes blue points depicting the Monte Carlo returns observed
from using different values of CR and CF for a day—notice the high variance. The two plots on the right depict the bias,
variance, and MSE of IS, US, and WIS (without any conditioning) for various values of c and both without (third plot) and
with (fourth plot) a control variate. The curves for US are largely obscured by the corresponding curves for WIS. Notice that
the variance of IS approaches 0.06, which is enormous given that the difference between the best and worst CR and CF pairs
possible under the sampling policy is approximately 0.06.

times, similar to the experimental setup proposed by Bastani
(2014). As a result of this randomness, and the stochastic na-
ture of the T1DMS model, applying the same values of CR
and CF can produce different returns if used for multiple
days. After analyzing the performance of many CR and CF
pairs, we selected an initial range that results in good per-
formance: CR ∈ [8.5, 11] and CF ∈ [10, 15]. Using a large
number of samples, we computed a Monte Carlo estimate of
the expected return if different CR and CF values are used
for a single day—this estimate is depicted in Figure 3.

As described by Bastani (2014), when the value of CR
is set appropriately, performance is robust to changes in
CF. We therefore focus on possible changes to CR. Specif-
ically, we consider new treatment policies where CF re-
mains sampled from the uniform distribution over [10, 15],
but where CR is sampled from the truncated normal distribu-
tion over [CRmin, 11], with mean 11 and standard deviation
11 − CRmin. This distribution places the largest probability
densities at the upper end of the range of CR, which favors
better policies. As CRmin increases towards 11, the support
of the sampling distribution and target distribution become
increasingly different (c = (11 − CRmin)/2.5) and the ex-
pected return increases.

For each value of CRmin (each of which corresponds to
a value of c), we performed 2,433 trials, each of which in-
volved generating the returns from 30 days, where the values
of CR and CF used for each day were sampled uniformly
from CR ∈ [8.5, 11] and CF ∈ [10, 15], and then using
IS, US, and weighted importance sampling (WIS) to esti-
mate the expected return if CR and CF were sampled from
the target distribution (the truncated Gaussian parameterized
by CRmin). Figure 3 displays the bias, variance and mean
squared error (MSE) of these 2,433 estimates, using an esti-
mate of ground truth computed using Monte Carlo sampling.
Figure 3 also shows the impact of providing a constant con-
trol variate to all the estimators: the chosen control variate
was the expected return under the sampling distribution.

Notice that we see the same trend as in the illustrative
example—for small c (the best treatment policies, which
have small ranges of CR), US significantly outperforms IS.

Furthermore, when a decent control variate is not used, the
benefits of US are increased, even when controlling for the
resulting bias by measuring the mean squared error. We also
computed the biases and variances given that k(Xn) > 0,
and observed similar results (not shown), which favored US
slightly more. Notice that WIS and US perform very simi-
larly. Indeed, if the sampling and target distributions are both
uniform, it is straightforward to verify that WIS and US are
equivalent. In other experiments (not shown) we found that
WIS yields lower variance than US when the target distribu-
tion is modified to be even less like the uniform distribution.

However, it is often important to be able to produce con-
fidence intervals around estimates (especially when data is
limited), and since WIS is biased, it cannot be used with
standard concentration inequalities. We used Hoeffding’s in-
equality to compute a 90% confidence interval around the
estimates produced by IS and US (without control variates
and with CRmin = 10.375, so that c = 1/4) using various
numbers of samples (days of data). The mean confidence in-
tervals are depicted in Figure 4, which also shows a Monte
Carlo estimate of θ, as well as deterministic domain-specific
upper and lower bounds on h(X) (denoted by “h range” in
the legend). If k(Xn) = 0, then US is not defined, and so the
confidence intervals shown for US are averaged only over
the instances where k(Xn) > 0. To show how often US re-
turns a solution, Figure 4 also shows ρ—the probability that
US will produce a confidence bound—using the right verti-
cal axis for scale.

US produces a much tighter confidence interval than IS
in all cases. Furthermore, the setting where US often does
not return a bound corresponds to the setting where IS pro-
duces a confidence interval that is outside the deterministic
bound on h(X)—a trivial confidence interval. In additional
experiments (not shown) we defined the bounds to be trun-
cated to always be within the deterministic bounds on h(X)
and define the bound produced using US to be conservative
(equal to the deterministic bounds) when k(Xn) = 0. In this
experiment we saw similar results—the confidence intervals
produced using US were much tighter than those using IS.



Figure 4: Confidence bounds using IS and US.

Should One Use US or WIS in Practice?
The results presented in the previous section might raise the
question: when should one use US rather than WIS? Pre-
viously we hinted at the problem with WIS: it is a biased
estimator. Here we discuss why this theoretical property has
important practical ramifications that rule out the use of WIS
(but not US) for many high-risk problems.

First we list the troublesome theoretical properties of the
WIS estimator, which are discussed in the work of Thomas
(2015, Section 3.8). When there is only a single sample, i.e.,
when n = 1, WIS is an unbiased estimator of Eg[h(X)].
As n increases, the expected value of the WIS estimator
shifts towards the target value, θ = Ef [h(X)]. If the sam-
ples that are likely under g are extremely unlikely under f ,
then the shift of the expected value of the WIS estimator
from Eg[h(X)] to Ef [h(X)] can be exceedingly slow.

Consider what this would mean for our diabetes experi-
ment. Here the behavior policy (sampling distribution) is a
relatively decent policy that we might be considering chang-
ing. The evaluation policy (target distribution) might be a
new treatment policy that is both dangerously worse than
the behavior policy and quite different from the behavior
policy. To determine whether the evaluation policy should
be deployed, we might rely on high-confidence guarantees,
as has been suggested for similar problems (Thomas et al.,
2015a). That is, we might use Hoeffding’s inequality to con-
struct a high-confidence lower-bound on the expected value
of the WIS estimator, and then require this bound to be not
far below the performance of the behavior policy.

Because the behavior and evaluation policies are quite
different, the WIS estimator will produce relatively low-
variance estimates centered near the performance of the rea-
sonable behavior policy, rather than estimates centered near
the dangerously poor performance of the evaluation policy.
This means that the lower-bound that we compute will be a
lower bound on the performance of the decent behavior pol-
icy, rather the true poor performance of the evaluation policy.
Moreover, if one uses Student’s t-test or a bootstrap method
to construct the confidence interval, as has been suggested
when using WIS (Thomas et al., 2015b), we might obtain
a very-tight confidence interval around the performance of
the behavior policy. This exemplifies the problem with using
WIS for high-risk problems: the bias of the WIS estimator
can cause us to often erroneously conclude that dangerous
policies are safe to deploy.

Conclusion and Future Work
We have presented a simple new variant of importance sam-
pling, US. Our analytical and empirical results suggest that
US can significantly outperform ordinary importance sam-
pling when the supports of the sampling and target distribu-
tions differ. We also provide an inequality that can be eval-
uated prior to observing any data, and which, if satisfied,
guarantees that US will have lower variance than ordinary
importance sampling. Unlike some other importance sam-
pling estimators that have been developed to reduce vari-
ance (like WIS), US is unbiased given mild conditions that
still permit the easy computation of confidence intervals.
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Supplemental Document
In this supplemental document we prove the various prop-
erties and theorems referenced earlier (particularly those in
Table 1).

Property 1. If F ∩H ⊆ G then Eg[IS(Xn)] = θ.

Proof.

Eg[IS(Xn)]
(a)
=Eg

[
f(X)

g(X)
h(X)

]
=

∫
G

g(x)
f(x)

g(x)
h(x) dx

(b)
=

∫
F∩H

f(x)h(x) dx = Ef [h(X)] = θ,

where (a) holds because IS(Xn) is the mean of n indepen-
dent and identically distributed random variables, and (b)
holds because ∀x ∈ G \ (F ∩H), f(x) = 0. �

We now provide a proof of Theorem 1, which states that
if C = G, then US(Xn) = IS(Xn).

Proof. In this setting, c =
∫
G
g(x) dx = 1 and since every

Xi must be within C, k(Xn) = n. So,

US(Xn) =
c

k(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

=
1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi). �

We now provide a proof of Theorem 2, which states
that if we replace c with an empirical estimate, ĉ(Xn) :=
n−1k(Xn), then US(Xn) = IS(Xn).

Proof. Using the empirical estimate, ĉ(Xn), in place of c
within US we have:

US(Xn) =
ĉ(Xn)

k(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

=
k(Xn)

nk(Xn)

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

=
1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

= IS(Xn). �

Theorem 3. If F ∩H ⊆ G and κ ∈ N>0, then

Eg[US(Xn)|k(Xn) = κ] = θ.

Proof. Let Prg(X ∈ C) denote the probability that a sam-
ple, X , from the sampling distribution is in C.

Eg[ US(Xn)|k(Xn) = κ]

=Eg

[
c

κ

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣k(Xn) = κ

]
(a)
=Eg

[
c

κ

κ∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣∀i ∈ {1, . . . , κ}, Xi ∈ C

]
(b)
=Eg

[
c
f(X)

g(X)
h(X)

∣∣∣∣X ∈ C]
(c)
=

∫
C

g(x)

Prg(X ∈ C)
c
f(x)

g(x)
h(x) dx

(d)
=

∫
C

g(x)

c
c
f(x)

g(x)
h(x) dx

=

∫
C

f(x)h(x) dx

(e)
=Ef [h(X)],

where (a) holds because f(Xi) = 0 for all but κ of the
terms in the summation, and so (by re-ordering the Xi so
that these κ terms have indices 1, . . . , κ) we need only sum
to κ rather than n, (b) holds because the summation is over
κ independent and identically distributed random variables,
(c) holds by the definition of conditional expectations, (d)
holds because Prg(X ∈ C) = c, and (e) holds because
F ∩H ⊆ C. �

Theorem 4. If F ∩H ⊆ G then

Eg[US(Xn)|k(Xn) > 0] = θ.

Proof.

Eg[ US(Xn)|k(Xn) > 0]

=

n∑
κ=1

Pr(k(Xn) = κ|k(Xn) > 0)

Pr(k(Xn) > 0)
Eg[US(Xn)|k(Xn) = κ]

(a)
=

n∑
κ=1

Pr(k(Xn) = κ|k(Xn) > 0)

Pr(k(Xn) > 0)
θ

=θ

n∑
κ=1

Pr(k(Xn) = κ|k(Xn) > 0)

Pr(k(Xn) > 0)

=θ,

where (a) holds because, by Theorem 3,
E[US(Xn)|k(Xn) = κ] = θ. �

Theorem 5. If F ∩H ⊆ G and κ ∈ N>0, then

Eg[IS(Xn)|k(Xn) = κ]− θ =
( κ
cn
− 1
)
θ. (4)

Proof. Following roughly the same steps as used to prove



Theorem 3 we have that:

Eg[ IS(Xn)|k(Xn) = κ]

=Eg

[
1

n

n∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣k(Xn) = κ

]

=Eg

[
1

n

κ∑
i=1

f(Xi)

g(Xi)
h(Xi)

∣∣∣∣∣∀i ∈ {1, . . . , κ}, Xi ∈ C

]

=Eg

[
κ

n

f(X1)

g(X1)
h(X1)

∣∣∣∣X1 ∈ C
]

=

∫
C

g(x)

c

κ

n

f(x)

g(x)
h(x) dx

=
κ

cn
Ef [h(X)]

=
κ

cn
θ,

and so (4) follows. �

Theorem 6. If F ∩H ⊆ G then

Eg[IS(Xn)|k(Xn) > 0] =
1

1− (1− c)n
θ.

Proof. Recall from Property 1 that Eg[IS(Xn)] = θ. By
marginalizing over whether or not k(Xn) > 0, we also have
that:

Eg[IS(Xn)] =Pr(k(Xn) > 0)Eg[IS(Xn)|k(Xn) > 0]

+ Pr(k(Xn) = 0)Eg[IS(Xn)|k(Xn) = 0].

So,

Eg[ IS(Xn)|k(Xn) > 0]

=
θ − Pr(k(Xn) = 0)Eg[IS(Xn)|k(Xn) = 0]

Pr(k(Xn) > 0)

(a)
=

θ

1− (1− c)n
,

where (a) holds because Eg[IS(Xn)|k(Xn) = 0] = 0 and
Pr(k(Xn) > 0) = 1−Pr(k(Xn) = 0) = 1− (1− c)n. �

Theorem 7. If F ∩H ⊆ G, then

Eg[US(Xn)] = (1− (1− c)n)θ.

Proof.

Eg[ US(Xn)]

=Pr(k(Xn) > 0)︸ ︷︷ ︸
=1−(1−c)n

Eg[US(Xn)|k(Xn) > 0]︸ ︷︷ ︸
=θ, by Theorem 4

+ Pr(k(Xn) = 0)Eg[US(Xn)|k(Xn) = 0]︸ ︷︷ ︸
=0

=(1− (1− c)n)θ. �

Before continuing, recall the following property (which
we prove for completeness):

Property 2. Let X1, . . . , Xn be n independent and iden-
tically distributed random variables, each with finite mean
and variance. Then,

E

( 1

n

n∑
i=1

Xi

)2
 =

1

n
Var (X1) +E [X1]

2
.

Proof. Recall that

Var

(
1

n

n∑
i=1

Xi

)
= E

[(
1

n

n∑
i=1

Xi

)2]
−E

[
1

n

n∑
i=1

Xi

]2
.

So, by rearranging terms:

E

[(
1

n

n∑
i=1

Xi

)2]
=

1

n2
Var

(
n∑
i=1

Xi

)
+

1

n2
E

[
n∑
i=1

Xi

]2
.

Since the Xi are independent and identically distributed, we
therefore have that:

E

( 1

n

n∑
i=1

Xi

)2
 =

1

n2
nVar (X1) +

1

n2
n2E [X1]

2

=
1

n
Var (X1) +E [X1]

2
.

�

Theorem 8. If F ∩H ⊆ G then

Varg(US(Xn)|k(Xn > 0)) =c2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
.

Proof.

Varg(US(Xn)|k(Xn) > 0)

=Eg[US(Xn)
2|k(Xn) > 0]−Eg[US(Xn)|k(Xn) > 0]2

=Eg[US(Xn)
2|k(Xn) > 0]− θ2

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)
Eg[US(Xn)

2|k(Xn) = κ]

)
− θ2.

(5)

We will write y to denote a vector in Rn, the ele-
ments of which are y1, . . . , yn ∈ R. We also write yi:j
to denote the ith through jth entries of y, i.e., yi:j :=
[yi, yi+1, . . . , yj−1, yj ]. Let Gnκ = {y ∈ Gn : k(y) = κ}
be the set of all possible tuples of n samples where exactly
κ are in C. We also overload the definition of g by defin-
ing g(y) :=

∏n
i=1 g(yi). Using this notation, we have that

(where . . . are used to denote that a long line is split across
multiple lines via scalar multiplication):



Eg[ US(Xn)
2|k(Xn) = κ]

=

∫
Gnκ

g(y)

Pr(k(Xn) = κ)
US(y)2 dy

(a)
=

(
n
κ

)
Pr(k(Xn) = κ)

∫
Cκ

∫
(G\C)n−κ

g(y)US(y)2 dy1:κ dyκ+1:n

(b)
=

(
n
κ

)
Pr(k(Xn) = κ)

∫
Cκ

∫
(G\C)n−κ

g(y1:κ)g(yκ+1:n) . . .

US(y1:κ)
2 dy1:κ dyκ+1:n

=

(
n
κ

)(
n
κ

)
cκ(1− c)n−κ

∫
Cκ
g(y1:κ)US(y1:κ)

2 dy1:κ . . .∫
(G\C)n−κ

g(yκ+1:n) dyκ+1:n︸ ︷︷ ︸
=(1−c)n−κ

=

(
n
κ

)
(1− c)n−k(

n
κ

)
cκ(1− c)n−κ

∫
Cκ
g(y1:κ)

(
c

κ

κ∑
i=1

f(yi)

g(yi)
h(yi)

)2

dy1:κ

=
c2

cκ

∫
Cκ
g(y1:κ)

(
1

κ

κ∑
i=1

f(yi)

g(yi)
h(yi)

)2

dy1:κ

(c)
=c2

∫
Cκ

g(y1:κ)

Pr(k(Xκ) = κ)

(
1

κ

κ∑
i=1

f(yi)

g(yi)
h(yi)

)2

dy1:κ

=c2Eg

[(
1

κ

κ∑
i=1

f(Xi)

g(Xi)
h(Xi)

)2∣∣∣∣∣Xκ ∈ Cκ
]

(d)
=c2

(
1

κ
v +E

[
f(X)

g(X)
h(X)

∣∣∣∣X ∼ g,X ∈ C]2
)

=c2
(
1

κ
v +

(∫
C

g(x)

c

f(x)

g(x)
h(x) dx

)2
)

=
c2

κ
v + θ2, (6)

where (a) comes from 1) the fact that there are
(
n
κ

)
ways

of ordering n elements such that κ are in C and n − κ
are in G \ C, and 2) the fact that US does not depend on
the order of its inputs, (b) comes from 1) the property that
US(y) does not change if additional samples are appended
to y that are not in C and 2) the fact that g(y) can be de-
composed into g(y1:κ)g(yκ+1:n) since it represents the joint
probability density function for n independent and identi-
cally distributed random variables, (c) comes from the fact
that Pr(k(Xκ) = κ) = cκ, and (d) comes from Property 2.

Combining (5) with (6) we have that

Varg(US(Xn)|k(Xn) > 0)

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

(
c2

κ
v + θ2

))
− θ2

=c2v

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

1

κ

)

+ θ2

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

)
︸ ︷︷ ︸

=1

−θ2

=c2v

n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

1

κ

=c2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
. �

Theorem 9. If F ∩H ⊆ G then

Varg(IS(Xn)|k(Xn > 0)) = v
c

nρ
+ θ2

cρ(n− 1) + ρ− cn
cnρ2

.

Proof. At a high level, this proof is similar to the proof
of Theorem 8, but uses the property that IS(Xn) =
k(Xn)
cn US(Xn).

Varg(IS(Xn)|k(Xn) > 0)

=Eg[IS(Xn)
2|k(Xn) > 0]−Eg[IS(Xn)|k(Xn) > 0]2

(a)
=Eg[IS(Xn)

2|k(Xn) > 0]−
(

θ

1− (1− c)n

)2

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)
Eg[IS(Xn)

2|k(Xn) = κ]

)

−
(

θ

1− (1− c)n

)2

, (7)

where (a) comes from Theorem 6.
Also,

Eg[ IS(Xn)
2|k(Xn) = κ]

(a)
=Eg

[(
k(Xn)

cn
US(Xn)

)2
∣∣∣∣∣k(Xn) = κ

]

=
κ2

c2n2
Eg[US(Xn)

2|k(Xn) = κ]
(b)
=

κ2

c2n2

(
c2

κ
v + θ2

)
,(8)

where (a) holds because IS(Xn) =
k(Xn)
cn US(Xn) and (b)

follows from (6). Using the shorthand, ρ := Pr(k(Xn) >
0) = 1 − (1 − c)n and by combining (7) with (8) we have



that:

Varg(IS(Xn)|k(Xn) > 0)

=

(
n∑
κ=1

Pr(k(Xn) = κ)

Pr(k(Xn) > 0)

κ2

c2n2

(
c2

κ
v + θ2

))

−
(

θ

1− (1− c)n

)2

=
v

n2ρ

(
n∑
κ=1

Pr(k(Xn) = κ)κ

)
︸ ︷︷ ︸

=EB(n,c)[κ]=nc

+
θ2

c2n2ρ

(
n∑
κ=1

Pr(k(Xn) = κ)κ2

)
︸ ︷︷ ︸
=EB(n,c)[κ2]=nc((n−1)c+1)

−
(
θ

ρ

)2

=v
c

nρ
+
θ2((n− 1)c+ 1)

cnρ
− θ2

ρ2

=v
c

nρ
+ θ2

cρ(n− 1) + ρ− cn
cnρ2

. �

Theorem 10. If F ∩H ⊆ G then

Varg(US(Xn)) = ρc2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
+θ2ρ(1−ρ).

Proof.

Varg(US(Xn)) = Eg[US(Xn)
2]−Eg[US(Xn)]

2

(a)
=Eg[US(Xn)

2]− ρ2θ2

=

(
n∑
κ=0

Pr(k(Xn) = κ)Eg[US(Xn)
2|k(Xn) = κ]

)
− ρ2θ2

=Pr(k(Xn) = 0)Eg[US(Xn)
2|k(Xn) = 0]︸ ︷︷ ︸
=0

+

(
n∑
κ=1

Pr(k(Xn) = κ)Eg[US(Xn)
2|k(Xn) = κ]

)

− ρ2θ2

(b)
=ρ

(
n∑
κ=1

Pr(k(Xn) = κ)

ρ

(
c2

κ
v + θ2

))
− ρ2θ2

=ρc2v

(
n∑
κ=1

Pr(k(Xn) = κ)

ρ

1

κ

)

+ ρθ2

(
n∑
κ=1

Pr(k(Xn) = κ)

ρ

)
︸ ︷︷ ︸

=1

−ρ2θ2

=ρc2vEB(n,c)

[
1

κ

∣∣∣∣κ > 0

]
+ θ2ρ(1− ρ),

where (a) comes from Theorem 7, (b) comes from (6) and
from multiplying one term by ρ/ρ = 1.

Theorem 11. If F ∩H ⊆ G then

Varg(IS(Xn)) =
1

n

(
cv + θ2

(
1

c
− 1

))
.

Proof.

Varg(IS(Xn))
(a)
=

1

n
Varg(IS(X))

=
1

n

(
Eg[IS(X)2]−Eg[IS(X)]2

)
(b)
=
1

n

(
Eg[IS(X)2]− θ2

)
=
1

n

(
Pr(X ∈ C|X ∼ g)Eg[IS(X)2|X ∈ C]

+ Pr(X 6∈ C|X ∼ g)Eg[IS(X)2|X 6∈ C]︸ ︷︷ ︸
=0

−θ2
)

=
1

n

(
cEg[IS(X)2|X ∈ C]− θ2

)
(c)
=
1

n

(
c

(
v +

θ2

c2

)
− θ2

)

=
1

n

(
cv + θ2

(
1

c
− 1

))
,

where (a) holds because IS(Xn) is the sum of n independent
and identically distributed random variables, (b) comes from
Property 1, and (c) comes from applying (8) with n = 1 and
κ = 1. �

Property 3. cρ(n− 1) + ρ− cn ≥ 0,

Proof. Recall that ρ := 1− (1− c)n, so we have that:
cρ(n− 1) + ρ− cn = c(1− (1− c)n)(n− 1) + 1− (1− c)n − cn

=(cn− c)(1− (1− c)n) + 1− (1− c)n − cn
=cn− cn(1− c)n − c+ c(1− c)n + 1− (1− c)n − cn
=(1− c)n(−cn+ c− 1)− c+ 1. (9)

We will show by induction that (9) is non-negative for all
n ≥ 1. First, notice that for the base case where n = 1, (9)
is equal to zero. For the inductive step we will show that (9)
is non-negative for n+1 given that it is non-negative for n.

(1− c)n+1(−c(n+ 1) + c− 1)− c+ 1

=(1− c)(1− c)n(−cn+ c− 1)− (1− c)n+1c

+ (−c+ 1)(1− c+ c)

=(1− c)
(
(1− c)n(−cn+ c− 1)− c+ 1

)
︸ ︷︷ ︸

(a)

− (1− c)n+1c+ c(1− c),
where (a) is positive by the inductive hypothesis, and so we
need only show that −(1− c)n+1c+ c(1− c) ≥ 0. Since

−(1− c)n+1c+ c(1− c) =c
(
(1− c)− (1− c)n+1

)
,

and 1−c ≥ (1−c)n+1 because c ∈ (0, 1], we conclude. �
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