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Abstract
In this paper we present a new way of predicting
the performance of a reinforcement learning pol-
icy given historical data that may have been gen-
erated by a different policy. The ability to evalu-
ate a policy from historical data is important for
applications where the deployment of a bad pol-
icy can be dangerous or costly. We show em-
pirically that our algorithm produces estimates
that often have orders of magnitude lower mean
squared error than existing methods—it makes
more efficient use of the available data. Our new
estimator is based on two advances: an exten-
sion of the doubly robust estimator (Jiang & Li,
2015), and a new way to mix between model
based and importance sampling based estimates.

1. Introduction
The ability to predict the performance of a policy with-
out actually having to use it is crucial to the responsible
use of reinforcement learning algorithms. Consider the
setting where the user of a reinforcement learning algo-
rithm has already deployed some policy, e.g., for determin-
ing which advertisement to show a user visiting a website
(Theocharous et al., 2015), for determining which medical
treatment to suggest for a patient (Thapa et al., 2005), or for
suggesting a personalized curriculum for a student (Mandel
et al., 2014). In these examples, using a bad policy can be
costly or dangerous, so it is important that the user of a re-
inforcement learning algorithm be able to predict how well
a new policy will perform without having to deploy it.

In this paper we propose a new algorithm for tackling this
performance prediction problem, which is called the off-
policy policy evaluation (OPE) problem. The primary ob-
jective in OPE problems is to produce estimates that mini-
mize some notion of error. We select mean squared error, a
popular notion of error for estimators, as our loss function.
This is in line with previous works that all use (root) mean
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squared error when empirically validating their methods
(Precup et al., 2000; Dudı́k et al., 2011; Mahmood et al.,
2014; Thomas, 2015b; Jiang & Li, 2015).

Given this goal, an estimator should be strongly
consistent—its mean squared error should converge almost
surely to zero as the amount of available data increases.1 In
this paper we introduce a new strongly consistent estima-
tor, MAGIC, that directly optimizes mean squared error.
Our empirical results show that MAGIC can produce esti-
mates with orders of magnitude lower mean squared error
than the estimates produced by existing algorithms.

Our new algorithm comes from the synthesis of two new
ideas. The first is an extension of the recently proposed
doubly robust (DR) OPE algorithm (Jiang & Li, 2015).
We present a novel derivation of the DR algorithm that re-
moves the assumption that the horizon is finite and known.
We also give conditions under which the DR estimator is
strongly consistent. We then show how we can reduce the
variance of the DR estimator by introducing a small amount
of bias—an effective trade-off when minimizing the mean
squared error of the estimates. We call our extension of the
DR estimator the weighted doubly robust (WDR) estimator.

Our second major contribution is a new estimator, which
we call the blending IS and model (BIM) estimator, that
combines two different OPE estimators not just by select-
ing between them, but by blending them together in a way
that minimizes the mean squared error. The combination
of these two contributions results in a particularly power-
ful new OPE algorithm that we call the model and guided
importance sampling combined (MAGIC) estimator, which
uses BIM to combine a purely model-based estimator with
WDR. In our simulations, MAGIC has the best general per-
formance, often exhibiting orders of magnitude lower mean
squared error than prior state-of-the-art estimators.

The research reported here was supported by a NSF CA-
REER grant 1350984 and by the Institute of Education Sciences,
U.S. Department of Education, through Grant R305A130215 to
Carnegie Mellon University. The opinions expressed are those of
the authors and do not represent views of the Institute or the U.S.
Department of Education.

1In Appendix A we define strong consistency and present
Lemma 3, which elucidates its connection to mean squared error.
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2. Notation
We assume that the reader is familiar with reinforcement
learning (Sutton & Barto, 1998) and adopt notational stan-
dard MDPNv1 for Markov decision processes (Thomas,
2015a, MDPs). Although our results carry over to the set-
ting where the states, actions, and rewards are continuous
random variables with density functions, for simplicity, our
notation assumes that the state, action, and reward sets are
finite. Let H := (S0, A0, R0, S1, . . . ) be a trajectory,and
g(H) :=

∑∞
t=0 γ

tRt denote the return of a trajectory. We
assume that Rt ∈ [rmin, rmax] for (possibly unknown) finite
constants rmin and rmax. Let γ ∈ [0, 1] for the finite-horizon
setting and γ ∈ [0, 1) for the indefinite and infinite horizon
settings so that g(H) is bounded. We use the discounted
objective function, v(π) := E[g(H)|H ∼ π], where H ∼
π denotes that H was generated using the policy π. We use
superscripts to denote which trajectory a term comes from,
e.g., SHt . Let vπ and qπ be the state value function and
state-action value function for policy π—for all (π, s, a) ∈
Π × S × A, let vπ(s) := E [

∑∞
t=0 γ

tRt|S0 = s, π] and
qπ(s, a) := E [

∑∞
t=0 γ

tRt|S0 = s,A0 = a, π]. Notice
that v without a superscript denotes the objective function,
while vπ denotes a value function, and that the two are re-
lated: v(π) =

∑
s∈S Pr(S0 = s)vπ(s).

Let historical data, D, be a set of n ∈ N>0 trajectories and
the known policies, called behavior policies, that were used
to generate them: D := {(Hi, πi)}ni=1, where Hi ∼ πi.
When we write Hi, we always mean that Hi ∼ πi. Let
ρt(H,πe, πb) :=

∏t
i=0 πe

(
AHi
∣∣SHi ) /πb (AHi ∣∣SHi ) , be an

importance weight, which is the probability of the first t
steps of H under the evaluation policy, πe, divided by its
probability under the behavior policy, πb (Precup et al.,
2000, Section 2). We write ρit and ρt as shorthand for
ρt(Hi, πe, πi) and ρt(H,πe, πb). Let ρi−1 := 1 for all i.
One of the primary challenges will be to combat the high
variance and large range of the importance weights, ρt.

Let r̂π(s, a, t) ∈ [rmodel
min , rmodel

max ] denote an approximate
model’s prediction of Rt if S0 = s, A0 = a, and
the policy π is used to generate actions, A1, A2, . . . ,
where rmodel

min and rmodel
max are finite constants. Let

r̂π(s, t) :=
∑
a∈A π(a|s)r̂π(s, a, t), be a prediction of

Rt if S0 = s and the policy π is used to generate ac-
tions A0, A1, . . . . Let v̂π(s) :=

∑∞
t=0 γ

tr̂π(s, t) and
q̂π(s, a) :=

∑∞
t=0 γ

tr̂π(s, a, t) be the model’s estimates
of vπ(s) and qπ(s, a). We assume that r̂π(

∞
s , a, t) = 0 for

all (π, a, t) ∈ Π × A × N≥0, where
∞
s is the terminal ab-

sorbing state. Although better models will tend to improve
our estimates, we make no assumptions about the veracity
of the approximate model’s predictions.

3. Off-Policy Policy Evaluation (OPE)
The problem of off-policy policy evaluation (OPE) is de-
fined as follows. We are given an evaluation policy,
πe, historical data, D, and an approximate model. Our
goal is to produce an estimator, v̂(D), of v(πe) that has
low mean squared error (MSE): MSE(v̂(D), v(πe)) :=

E
[
(v̂(D)− v(πe))

2
]
.We use capital letters to denote ran-

dom variables, and so the random terms in expected values
are always the capitalized letters (e.g. D is a random vari-
able). We assume that the process producing states, ac-
tions, and rewards is an MDP with unknown initial state
distribution, transition function, and reward function. We
assume that the evaluation policy, πe, the behavior poli-
cies, πi, i ∈ {1, . . . , n}, and the discount parameter, γ, are
known. For a review of OPE methods, see the works of
Precup et al. (2000) or Thomas (2015b, Chapter 3). More
recent methods can be found in the works of Jiang & Li
(2015) and Mandel et al. (2016).

4. Doubly Robust (DR) Estimator
The doubly robust (DR) estimator (Jiang & Li, 2015) is a
new unbiased estimator of v(πe) that achieves promising
empirical and theoretical results by leveraging an approx-
imate model of an MDP to decrease the variance of the
unbiased estimates produced by ordinary importance sam-
pling (Precup et al., 2000). It is doubly robust in that it
will provide “good” estimates if either 1) the model is ac-
curate or 2) the behavior policies are known. By “good”
it is meant that if the former does not hold then the esti-
mator will remain unbiased (although it might have high
variance and thus high mean squared error), and if the lat-
ter does not hold then if the model has low error the doubly
robust estimator will also tend to have low error. Doubly
robust estimators were introduced and remain popular in
the statistics community (Rotnitzky & Robins, 1995).

The work that introduced the DR estimator for MDPs
(Jiang & Li, 2015) derived it as a generalization of a dou-
bly robust estimator for bandits (Dudı́k et al., 2011). This
may be why the DR estimator was derived only for the fi-
nite horizon setting where the horizon is known (every tra-
jectory must terminate within L < ∞ time steps, and L
must be known). It also resulted in a recursive definition of
the DR estimator that can be difficult to interpret. In Ap-
pendix B we instead derive the DR estimator for MDPs as
an application of control variates. Our new derivation holds
without assumptions on the horizon and gives the intuitive
non-recursive definition, where wit = ρit/n:
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DR(D) :=

n∑
i=1

∞∑
t=0

γtwitR
Hi
t (1)

−
n∑
i=1

∞∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
.

In Appendix B we show that this definition is equivalent
to that of Jiang & Li (2015) when the horizon is finite and
known, and we provide several new theoretical results per-
taining to the DR estimator. Specifically, we give condi-
tions for DR to be an unbiased estimator without assump-
tions on the horizon, and we give the first proofs that it is a
strongly consistent estimator. Although these are important
properties to establish, we relegate them to an appendix due
to space limitations.

The non-recursive definition of the DR estimator presented
in (1) also reveals the close relationship of the DR esti-
mator to advantage sum estimators. Advantage sum esti-
mators were introduced as a way to lower the variance of
on-policy Monte Carlo performance estimates for a setting
that is a generalization of the (partially observable) MDP
setting (Zinkevich et al., 2006; White & Bowling, 2009).
The DR estimator for the on-policy setting can be found
in the work of Zinkevich et al. (2006, Equation 8). One
may therefore view the DR estimator (Jiang & Li, 2015)
as the extension of the advantage sum estimator (Zinkevich
et al., 2006) to the off-policy setting or as the extension
of the doubly robust estimator for bandits (Dudı́k et al.,
2011) to the sequential setting. We are therefore not the
first to show that the DR estimator can be viewed as an
application of control variates, since White (2009) and Ve-
ness et al. (2011, Section 3.1) point out that the advantage
sum estimator is an application of control variates. Still,
our derivation in Appendix B of the DR estimator is novel.

The DR estimator is not purely model based, since it uses
importance weights. However, it is also not a model-free
importance sampling method, since it uses an approximate
model to decrease the variance of its estimates. We there-
fore refer to it as a guided importance sampling method,
since the approximate model is used to guide, but not com-
pletely replace, the importance sampling estimates.

5. Weighted Doubly Robust (WDR) Estimator
Empirical and theoretical results show that the DR estima-
tor developed by Jiang & Li (2015) can significantly re-
duce the variance of ordinary importance sampling without
introducing bias. The fact that it does not introduce bias
is important when the estimator is used to produce con-
fidence bounds on v(πe) (Thomas, 2015b). However, in
practice these confidence bounds often require an imprac-

tical amount of data before they are tight enough to be use-
ful, and so approximate confidence bounds (e.g., bootstrap
confidence bounds) are used instead (Theocharous et al.,
2015). When using these approximate confidence bounds,
the strict requirement that an OPE estimator be an unbiased
estimator of v(πe) is not necessary. Furthermore, some-
times the goal of OPE is not to produce confidence bounds,
but to produce the best possible estimate of v(πe), in or-
der to determine whether πe should be used instead of the
current behavior policy or as an internal mechanism in a
policy search algorithm (Levine & Koltun, 2013). In these
cases, the “best” estimator is typically defined as the one
that has the lowest mean squared error (MSE), even if it is
not well suited to creating confidence bounds. For exam-
ple, in their experiments, Precup et al. (2000), Dudı́k et al.
(2011), Mahmood et al. (2014), Thomas (2015b), and Jiang
& Li (2015) all use the MSE when evaluating methods.

Although unbiasedness might seem like a desirable prop-
erty of an estimator, when the goal is to minimize MSE,
it often is not. In general, the MSE of an estimator, θ̂,
of a statistic, θ, can be decomposed into its variance and
its squared bias: MSE(θ̂, θ) = E[(θ − θ̂)2] = Var(θ̂) +

Bias(θ̂)2, where Bias(θ̂) := E[θ̂] − θ. The optimal esti-
mator in terms of MSE is typically one that balances this
bias-variance trade-off, not one with zero bias. Therefore,
in the context of minimizing MSE, strong asymptotic con-
sistency, which requires the MSE of an estimator to almost
surely converge to zero as the amount of available data in-
creases, is a more desirable property than unbiasedness.

In this section we propose a new OPE estimator that we call
the weighted doubly robust (WDR) estimator. The WDR
estimator comes from applying a simple well-known exten-
sion to importance sampling estimators to the DR estima-
tor to produce a new guided importance sampling method.
This extension does not directly optimize the bias-variance
trade-off, but it does tend to significantly better balance it
while maintaining asymptotic consistency. More specif-
ically, WDR is based on weighted importance sampling
(Powell & Swann, 1966) as opposed to ordinary impor-
tance sampling (Hammersley & Handscomb, 1964). For
further discussion of the benefits of weighted importance
sampling over ordinary importance sampling, see the work
of Thomas (2015b, Section 3.8). Weighted importance
sampling has been used before for OPE (Precup et al.,
2000), but not with the DR estimator.

We define the WDR estimator as the DR estimator in
(1), except where wit := ρit/

∑n
j=1 ρ

j
t .

2 Intuitively it is

2Just as DR-v2 extends the DR estimator (Jiang & Li, 2015,
Section 4.4), one can create the WDR-v2 estimator by replacing
q̂πe(St, At) with r̂πe(St, At, 0)+γv̂πe(St+1) in (1). For the do-
mains presented here, these variants did not outperform the origi-
nal DR and WDR estimators.
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clear that this estimator is asymptotically correct because
E[ρjt ] = 1, and so by the law of large numbers the denom-
inator of wit will converge to n. Although WDR is not an
unbiased estimator of v(πe), its bias follows a pattern that
is both predictable and also sometimes desirable. When
there is only a single trajectory, i.e., n = 1, WDR(D) is
an unbiased estimator of the performance of the behavior
policy, since w1

t = 1 for all t. If there is a single behavior
policy, πb, as the number of trajectories increases, the ex-
pected value of WDR(D) shifts from v(πb) towards v(πe).

In Appendix C we establish two different sets of assump-
tions that are sufficient to show that WDR is a strongly con-
sistent estimator of v(πe).

6. Empirical Studies (WDR)
In order to both show the empirical benefits of WDR over
existing importance sampling estimators and better moti-
vate our second major contribution, we present an em-
pirical comparison of different OPE methods.3 We com-
pare to a broad sampling of model-free importance sam-
pling estimators, definitions of which can be found in the
work of Thomas (2015b, Chapter 3): importance sampling
(IS), per-decision importance sampling (PDIS), weighted
importance sampling (WIS), and consistent weighted per-
decision importance sampling (CWPDIS). We also com-
pare to the guided importance sampling doubly robust (DR)
estimator (Jiang & Li, 2015).

Lastly, we compare to the approximate model (AM) es-
timator, which uses all of the available data to construct
an approximate model of the MDP.4 The performance of
the evaluation policy on the approximate model is typically
easy to compute and can be used as an estimate of v(πe).
For example, in our experiments the approximate model
maintains an estimate, d̂0, of the initial state distribution,
and so we define AM :=

∑
s∈S d̂0(s)v̂πe(s). Notice that

unlike the importance sampling based methods, AM does
not include any importance weights (ρt terms).

Here we provide an overview the results detailed in Ap-
pendix D. We used three domains: 1) a 4×4 gridworld pre-
viously constructed specifically for evaluating OPE meth-
ods (Thomas, 2015b, Section 2.5); 2) ModelFail, a par-
tially observable, deterministic, 4-state domain with hori-
zon L = 2 and in which 3 of the states are aliased (ap-
pear identical to the agent), which means that the agent’s
observations are not Markovian and thus that the approxi-

3The raw data for all experiments in this paper is provided in
the supplemental spreadsheet.

4This model-based estimator has been called the direct method
in previous work (Dudı́k et al., 2011), however, in other previous
work direct methods are model-free while indirect methods are
model-based (Sutton & Barto, 1998, Section 9.2).

mate (MDP) model is incorrect, even asymptotically; and
3) ModelWin, a stochastic 4-state MDP withL = 20, where
the model that we use can perfectly represent the true MDP.

In our simulations, WDR dominated the other importance
sampling and guided importance sampling estimators (but
not AM). Not only did WDR always achieve the lowest
mean squared error of these estimators, but no other sin-
gle (guided) importance sampling estimator was able to al-
ways achieve mean squared errors within an order of mag-
nitude of WDR’s (e.g., Figure 1a). Note that, as expected,
WDR significantly outperforms AM on the ModelFail do-
main. However, AM significantly outperforms WDR on
the ModelWin domain, which was designed so that the
model quickly converges to the true MDP.

One might wonder why DR and WDR can do worse than
AM even though they incorporate the approximate model.
Although this question has been discussed before by Jiang
& Li (2015, Section 4.2), we review it here. Notice that we
can write the DR and WDR estimators as:

WDR(D) :=
1

n

n∑
i=1

v̂πe(SHi0 )︸ ︷︷ ︸
(a)

(2)

+

n∑
i=1

∞∑
t=0

γtwit

[
RHit − q̂

πe
(
SHit , AHit

)
+ γv̂πe

(
SHit+1

)
︸ ︷︷ ︸

(b)

]
.

If the approximate model is perfect, then (a) is both a low
variance and unbiased estimator of v(πe). If the approx-
imate model is perfect and Rt and St+1 are deterministic
functions of St and At, then (b) is zero, and so the sec-
ond term is always zero and WDR is an excellent estimator.
However, ifRt or St+1 is not a deterministic function of St
and At—if the state transitions or rewards are stochastic—
then (b) is not necessarily zero. If the importance weights,
wit, have high variance, then even slightly non-zero values
of (b) can result in high mean squared error.

In summary, while WDR tends to outperform the other im-
portance sampling estimators, sometimes AM can produce
estimates with much lower MSE. This trend is also visible
in the results of Jiang & Li (2015), where AM performs bet-
ter than DR. Ideally we would like an estimator that com-
bines WDR and AM or switches between them to always
achieve the performance of the better estimator. In the fol-
lowing sections we show how this can be done.

7. Blending IS and Model (BIM) Estimator
In this section we show how two OPE estimators can be
merged into a single estimator that exhibits the desirable
properties of both. Before doing so, we establish some ter-
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Figure 1: Empirical results for three different experimental setups. All plots in this paper have the same format: they
show the mean squared error of different estimators as n, the number of episodes in D, increases. Both axes always use a
logarithmic scale and standard error bars are included from 128 trials. All plots use the following legend:
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minology. We divide OPE estimators into three classes.
The first class we call importance sampling estimators.
We define this class to include all estimators that, when
L is finite, are defined using all of the importance weights
ρ0, ρ1, . . . , ρL−1. Notice that this includes IS, PDIS, WIS,
CWPDIS, DR, and WDR. The second class we call purely
model-based estimators. We define this class to include all
estimators that do not contain any ρt terms for t ≥ 0. The
only purely model-based estimator in this paper is AM. Fi-
nally, we call the third class partial importance sampling
estimators. These estimators are those that do not fall into
either of the other two classes—estimators that use impor-
tance weights, ρt, but only for t < L−1. We will introduce
one such estimator later in this section.

We contend that importance sampling estimators and
purely model-based estimators are two extremes on a spec-
trum of estimators. Importance sampling estimators tend
to be strongly consistent. That is, as more historical data
becomes available, their estimates become increasingly ac-
curate. However, their use of importance weights means
that they all (including DR and WDR) also can have high
variance relative to purely model-based estimators. This is
evident in the results on the ModelWin domain.

On the other end of the spectrum, purely model-based es-
timators like AM are often not strongly consistent. If the
approximate model uses function approximation or if there
is some partial observability, then the approximate model
may not converge to the true MDP. So, as more historical
data becomes available, the estimates of AM may converge
to a value other than v(πe). Thus, purely model-based es-
timators tend to have high bias, even asymptotically, as ev-
idenced by the AM curve in Figure 1b. However, purely
model-based methods also tend to have low variance be-
cause they do not contain any ρt terms.

Between these two extremes lies a range of partial im-
portance sampling estimators. Estimators that are close
to the purely model-based estimators use ρt terms only
for small t, while estimators that are close to importance
sampling estimators use ρt terms with large t approach-
ing L − 1. Before formally defining one such partial

importance sampling estimator, we present a few addi-
tional definitions. First, let IS[0:j](D) denote an estimate
of E[

∑j
t=0 γ

tRt|H ∼ πe], constructed from D using an
importance sampling method like PDIS or WDR, which
uses importance weights up to and including ρj . Similarly,
let AM[j:∞](D) denote a primarily model-based prediction
from D of E[

∑∞
t=j γ

tRt|H ∼ πe] that may not use ρt
terms with t ≥ j.

We can now define a partial importance sampling estima-
tor that we call the off-policy j-step return, g(j)(D), which
uses an importance sampling based method to predict the
outcome of using πe up until Rj is generated, and the ap-
proximate model estimator to predict the outcomes there-
after. That is, let j denote the length of the j-step return
and for all j ∈ N≥−1, let5

g(j)(D) := IS[0:j](D) + AM[j+1:∞](D)

g(∞)(D) := lim
j→∞

g(j)(D). (3)

Notice that g(−1)(D) is a purely model-based estimator,
g(∞)(D) is an importance sampling estimator, and the
other off-policy j-step returns are partial importance sam-
pling estimators that blend between these two extremes.
When j is small, the off-policy j-step return is similar to
AM, using importance sampling to predict only a few early
rewards. When j is large, it uses importance sampling to
predict most of the rewards and the model only for rewards
at the end of a trajectory. So, as j increases we expect the
variance of the return to increase, but the bias to decrease.

We propose a new estimator, which we call the blending
IS and model (BIM) estimator, that leverages this spec-
trum of estimators to blend together the IS and AM esti-
mators in a way that minimizes MSE. It does this by com-
puting a weighted average of the different length returns:
BIM(D) := xᵀg(D), where x := (x−1, x0, x1, . . . )

ᵀ is an
infinite-dimensional weight vector and g(D) is an infinite-

5If prior knowledge about d0 is available, then one might con-
sider adding g(−2)(D) to denote the model’s prediction of v(πe),
which might differ from g(−1)(D).
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dimensional vector of different length returns, g(D) :=
(g(−1)(D), g(0)(D), . . . , )ᵀ. The remaining question is
then: how should we select the weights, x?

A similar question has been studied before in reinforce-
ment learning research when deciding how to weight j-
step returns (not off-policy), as reviewed by Sutton & Barto
(1998, Section 7.2). The most common solution, a com-
plex return called the λ-return, uses x−1 = 0 and xj =
(1− λ)λj for all other j. The λ-return is the foundation of
the entire TD(λ) family of algorithms, which includes the
original linear-time algorithm (Sutton, 1988), least-squares
formulations (Bradtke & Barto, 1996; Mahmood et al.,
2014), methods for adapting λ (Downey & Sanner, 2010),
true-online methods (van Hasselt et al., 2014), and the re-
cent emphatic methods (Mahmood et al., 2015).

Recent work has suggested that the λ-return could be
replaced by more statistically principled complex re-
turns like the γ-return (Konidaris et al., 2011) or Ω-
return (Thomas et al., 2015). For the finite-horizon set-
ting and for j ∈ {0, . . . , L − 1} the γ-return uses
xj := (

∑j
i=0 γ

2i))−1/
∑L−1

ĵ=0
(
∑ĵ
i=0 γ

2i)−1, and the Ω-

return uses xj =
∑L−1
i=0 Ω−1

n (j, i)/
∑L−1

ĵ,i=0
Ω−1
n (ĵ, i),

where Ωn is the L×L covariance matrix where Ωn(i, j) =
Cov(g(i)(D), g(j)(D)), and where both the γ and Ω-
returns use xj = 0 for j 6∈ {0, . . . , L− 1}.

The advantage of the γ-return over the λ-return is that it
uses a more accurate model of how variance increases with
the length of a return, which also eliminates the λ hyper-
parameter used by the λ-return. The advantages of the Ω-
return over the γ-return are that it both uses a yet more-
accurate estimate of how variance grows with the length
of the return, which is computed from historical data, and
that it better accounts for the fact that different length re-
turns are not independent, i.e., g(i)(D) and g(j)(D) are not
independent even if i 6= j.

However, none of these weighting schemes are sufficient
for our needs because they do not cause BIM to necessarily
be a strongly consistent estimator.6 This is likely because
they were all designed for the setting where only one tra-
jectory is available, i.e., n = 1, while strong consistency is
a property that deals with performance as n→∞. Further-
more, they were designed for on-policy policy evaluation.

We therefore propose a new weighting scheme (a
new complex return for multiple trajectories) that di-
rectly optimizes our primary objective: the mean
squared error. This new weighting scheme is x? :=
arg minx∈R∞ MSE(xᵀg(D), v(πe)). Unfortunately, we
typically cannot compute x?, because we do not know

6The λ-return with λ = 1 is defined to be g(∞)(D) and is
consistent, but it does not mix the two OPE methods at all.

MSE(xᵀg(D), v(πe)) for any x. Instead, we pro-
pose estimating x? by minimizing an approximation of
MSE(xᵀg(D), v(πe)). First, dealing with an infinite num-
ber of different return lengths is challenging. To avoid this,
we propose only using a subset of the returns, {g(j)(D)},
for j ∈ J , where |J | < ∞. For all j 6∈ J , we assign
xj = 0. We suggest including −1 and∞ in J .

To simplify later notation, let gJ (D) ∈ R|J | be the ele-
ments of g(D) whose indexes are in J—the returns that
will not necessarily be given weights of zero. Also let Jj
denote the jth element in J . We can then estimate x? by:

x̂? ∈ arg min
x∈R|J |

MSE(xᵀgJ (D), v(πe)),

where our estimate of x?j is zero if j 6∈ J and our estimate
of x?Jj is x̂?j for j ∈ {1, . . . , |J |}.

Next, to avoid searching all of R|J | and also to serve as a
form of regularization on x̂?, we limit the set of x that we
consider to the |J |-simplex, i.e., we require xj ≥ 0 for all
j ∈ {1, . . . , |J |} and

∑|J |
j=1 xj = 1. We write ∆|J | to

denote this set of weight vectors—the |J |-simplex.

Using the bias-variance decomposition of MSE, we have:

x̂? ∈ arg min
x∈∆|J |

Bias(xᵀgJ (D))2 + Var(xᵀgJ (D))

= arg min
x∈∆|J |

xᵀ[Ωn + bnb
ᵀ
n]x,

where n remains the number of trajectories in D, Ωn
is the |J | × |J | covariance matrix where Ωn(i, j) =
Cov(g(Ji)(D),g(Jj)(D)) and bn is the |J |-dimensional
vector with bn(j) = E[g(Jj)(D)] − v(πe) for all j ∈
{1, . . . , |J |}.7 This simplifies the problem of estimating
the MSE for all possible x into estimating two terms: the
bias vector, bn, and the covariance matrix, Ωn.

Let b̂n and Ω̂n be the estimates of bn and Ωn when there
are n trajectories in D. The exact scheme used to esti-
mate bn and Ωn depends on the definitions of IS[0:j](D)

and AM[j:∞](D). In general, both terms are easier to es-
timate for unweighted importance sampling estimators like
PDIS and DR than for weighted estimators like CWPDIS
or WDR.

To make the dependence of BIM on the estimates of Ωn
and bn explicit, and to summarize the approximations we
have made, we redefine the BIM estimator as:

BIM(D, Ω̂n, b̂n) := (x̂?)ᵀgJ (D),

where x̂? ∈ arg minx∈∆|J | xᵀ[Ω̂n + b̂nb̂
ᵀ
n]x.

7Since bn (similarly, Ωn) already has a subscript, we write
bn(j) to denote the j th element of bn.
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Before continuing, we establish an assumption that will be
useful here and later: that the importance weights, ρit, are
bounded above by a finite constant, β ∈ R (they are always
bounded below by zero). This assumption is trivially satis-
fied in the common setting where the horizon is finite and
the state and action sets are finite. Although Assumption 1
requires β to exist, none of our results depend on how large
β is. So, in the non-finite state, action, and horizon settings
one may ensure that evaluation policies are only considered
if they satisfy Assumption 1 for some arbitrarily large β.
Assumption 1 (Bounded importance weight). There ex-
ists a constant β < ∞ such that for all (t, i) ∈ N≥0 ×
{1, . . . , n}, ρit ≤ β surely.

We now show that if at least one of the returns included
in J is a strongly consistent estimator of v(πe), Assump-
tion 1 holds, β ∈ R, and if the estimates of bn and Ωn
are themselves strongly consistent, then BIM is a strongly
consistent estimator of v(πe).
Theorem 1. If Assumption 1 holds, there exists at least
one j ∈ J such that g(j)(D) is a strongly consistent esti-
mator of v(πe), b̂n − bn

a.s.−→ 0, and Ω̂n −Ωn
a.s.−→ 0, then

BIM(D, Ω̂n, b̂n)
a.s.−→ v(πe). Proof See Appendix E.

8. Model and Guided Importance Sampling
Combined (MAGIC) Estimator

In this section we propose using the BIM estimator with
WDR as the importance sampling estimator, and show how
bn and Ωn can be approximated in this setting. The result-
ing estimator combines purely model based estimates with
the estimates of the guided importance sampling algorithm
WDR, and so we call it the model and guided importance
sampling combining (MAGIC) estimator.

Although the derivation of how to properly define
IS[0:j](D) and AM[j:∞](D) in order to blend WDR with
the approximate model is less obvious than one might ex-
pect and therefore an important technical detail, we relegate
it to Appendix F due to space restrictions. The resulting
definition of an off-policy j-step return is

g(j)(D) :=

n∑
i=1

g
(j)
i (D), (4)

where

g
(j)
i (D) :=

j∑
t=0

γtwitR
Hi
t︸ ︷︷ ︸

(a)

+ γj+1wij v̂
πe(SHij+1)︸ ︷︷ ︸

(b)

−
j∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
︸ ︷︷ ︸

(c)

.

where (c) is the combined control variate for both the im-
portance sampling based term, (a), and the model-based
term, (b), and where we use WDR’s definition of wit. An-
other viable definition of g(j)(D) is given in Appendix F.1.

Consider the entries in Ωn:

Cov
(
g(j)(D), g(k)(D)

)
= Cov

(
n∑
i=1

g
(j)
i (D),

n∑
i=1

g
(k)
i (D)

)
.

Notice that g(j)
i (D) really is a function of all of D, not

just Hi, since wit = ρit/
∑n
j=1 ρ

j
t . This means that, al-

though the terms in the sum,
∑n
i=1 g

(j)
i (D), are identically

distributed, they are not independent, due to their shared
reliance on D. However, the g(j)

i (D) terms become less
dependent as n → ∞ because the only dependence of
g

(j)
i (D) on trajectories other than Hi comes from the de-

nominator of wit, which converges almost surely to n.

We therefore propose approximating Ωn using the sam-
ple covariance matrix that results from the assumption that
g

(j)
i (D) and g(k)

i (D) are independent for j 6= k. That is,
let ḡ(Jj)

i (D) := 1
n

∑n
i=1 g

(Jj)
i (D) and

Ω̂n(j, k) :=
n

n− 1

n∑
i=1

(
g

(Jj)
i (D)− ḡ(Jj)

i (D)
)

(5)

×
(
g

(Jk)
i (D)− ḡ(Jk)

i (D)
)
.

Estimating the bias vector, bn, is challenging because it has
a strong dependence on the value that we wish we knew,
v(πe). We cannot use AM’s estimate as a stand-in for
v(πe) because it would cause us to assume that AM’s great-
est weakness—its high bias—is negligible. We cannot use
WDR’s estimate (or any other importance sampling estima-
tor’s estimate) because our estimate of bn would then con-
flate the high variance of importance sampling estimates
with the bias that we wish to estimate.

When n, the number of trajectories in D, is small, variance
tends to be the root cause of high MSE. We therefore pro-
pose using an estimate of bn that is initially conservative—
initially it underestimates the bias—but which becomes
correct as n increases. Let CI(g(∞)(D), δ) be a 1−δ confi-
dence interval on the expected value of the random variable
g(∞)(D) = WDR(D). Intuitively, as n increases we ex-
pect that this confidence interval will converge to g(∞)(D),
which in turn converges to v(πe). So, we estimate bn(j),
the bias of the off-policy j-step return, by its distance from
the 10% confidence interval. That is, we estimate bn(j) as

b̂n(j) := dist
(
g(Jj)(D),CI(g(∞)(D), 0.1)

)
,

where dist(y,Z) is the distance between y ∈ R and the set
Z ⊆ R, i.e., dist(y,Z) := minz∈Z |y − z|. We use both
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Figure 2: Empirical comparison of MAGIC to other estimators using the legend from Figure 1. All plots use the following
legend (although only Figure 2d includes MAGIC-B):
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the percentile bootstrap method (Efron & Tibshirani, 1993)
and Chernoff-Hoeffding’s inequality to construct the con-
fidence interval, and use whichever is tighter. Although in
practice the Chernoff-Hoeffding interval is almost always
the looser of the two, and so it need not actually be com-
puted, its inclusion simplifies our proofs.

High-level pseudocode suitable for understanding MAGIC
is provided in Algorithm 1, while detailed pseudocode suit-
able for implementations is provided in Appendix G. Recall
that J should include −1 and∞.

Algorithm 1 MAGIC(D)

1: Input: Historical data,D, evaluation policy, πe, an ap-
proximate model, and a set of return-lengths, J .

2: Compute |J | × |J | matrix Ω̂n according to (5).
3: Compute a 90% confidence interval, [l, u], on

WDR(D) using the percentile bootstrap method.
4: Compute |J | × 1 vector b̂n, where b̂n(j) =

dist(g(Jj)(D), [l, u]).
5: x← arg minx∈∆|J | xᵀ[Ω̂n + b̂nb̂

ᵀ
n]x

6: return xᵀgJ (D)

In Theorem 2 we establish conditions under which the
MAGIC estimator is a strongly consistent estimator of
v(πe). When these conditions are not satisfied, it does not
mean that the result does not hold or that the MAGIC esti-
mator will perform poorly—it merely means that the theo-
retical results are not guaranteed by our proofs. Theorem 2
uses a new assumption, Assumption 2, which ensures that
all trajectories of interest when evaluating πe will be pro-
duced by all of the behavior policies. This is a standard
assumption in OPE and typically precludes the use of de-
terministic behavior policies.8

Assumption 2 (Absolute continuity). For all (s, a, i) ∈
S ×A× {1, . . . , n}, if πi(a|s) = 0 then πe(a|s) = 0.

Theorem 2 (MAGIC - strongly consistent). If Assumptions
1 and 2 hold and ∞ ∈ J , then MAGIC(D)

a.s.−→ v(πe).
Proof See Appendix H.

8Assumption 2 could be replaced with a less-restrictive as-
sumption like that used by Thomas (2015b, Section 3.5). We use
Assumption 2 because it allows for simplified proofs.

9. Empirical Studies (MAGIC)
Appendix I provides detailed experiments using MAGIC.
In this section we provide an overview of these results.
The first three plots in Figure 2 correspond to those in Fig-
ure 1, but include MAGIC. In general MAGIC does very
well, tracking or exceeding the best performance of WDR
and AM. However, in Figure 2c MAGIC does not perfectly
track AM. The scale is logarithmic, so the difference be-
tween MAGIC and AM is small in comparison to the ben-
efit of MAGIC over WDR. We hypothesize that the reason
MAGIC does not match AM may be due to error in our
estimates of Ωn and bn.

Figure 2d is for Hybrid, a domain that consists of concate-
nating ModelFail with ModelWin. This means that early
in the trajectories there is partial observability, but later the
state is fully observable. This might occur in education do-
mains (initial uncertainty over a student’s knowledge) or
robotics (positional uncertainty before localizing). In such
a setting, MAGIC outperforms all other estimators, even
AM and WDR, by automatically leveraging WDR for the
parts of trajectories where partial observability causes the
model to be inaccurate, and AM for the parts of trajecto-
ries where the model is accurate. To emphasize this, we
include MAGIC-B (B for binary) where J = {−1,∞}, so
that BIM can only blend AM and WDR by placing weights
on them. The poor performance of MAGIC-B in Figures
2c and 2d supports our use of off-policy j-step returns.

10. Conclusion
We have proposed several new OPE estimators and showed
empirically that they outperform existing estimators. While
previous OPE estimators that use importance sampling of-
ten failed to outperform the approximate model estimator
(which does not use importance sampling), our new estima-
tors often do, frequently by orders of magnitude. In cases
where the approximate model estimator remains the best
estimator, one of our new estimators, MAGIC, performs
similarly. In other cases, MAGIC meets or exceeds the per-
formance of state-of-the-art prior estimators. We present
some potential avenues of future work in Appendix J.
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Z. Offline policy evaluation across representations with
applications to educational games. In Proceedings of the
13th International Conference on Autonomous Agents
and Multiagent Systems, 2014.

Mandel, T., Liu, Y., Brunskill, E., and Popović, Z. Offline
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A. Preliminaries
In this section we present additional notation, definitions,
properties, (known) theorems, corollaries, and lemmas that
are useful when we prove theorems later.

Let Ht := (S0, A0, R0, S1, . . . , St−1, At−1, Rt−1, St) be
the first t transitions in the episode H . We call Ht a par-
tial trajectory of length t. Notice that we use subscripts
on trajectories to denote the trajectory’s index in D and su-
perscripts to denote partial trajectories—Ht

i is the first t
transitions of the ith trajectory in D. Let Ht be the set of
all possible partial trajectories of length t.

For all (π, s) ∈ Π × S , let supps(π) be the set of actions
that have non-zero probability when the policy π is used
to select an action in state s, i.e., supps(π) := {a ∈ A :
π(a|s) 6= 0}. Similarly, let supp(π, t) := {ht ∈ Ht :
Pr(Ht = ht|π) 6= 0}.

Later we will need to bound terms like ρitR
i
t for some

t and i. Notice that even if ρit < β, it is possible for
ρitR

i
t > βrmax if rmax is negative, since ρit could be zero.

Additionally, sometimes we may deal with rmax terms and
other times rmodel

max . To avoid explicitly handling these cases,
we will bound terms using loose bounds that depend on a
new term: r?max := max{|rmin|, |rmax|, |rmodel

min |, |rmodel
max |}.

Definition 1 (Almost Sure Convergence). A sequence of
random variables, (Xn)∞n=1, converges almost surely to the
random variable X if

Pr
(

lim
n→∞

Xn = X
)

= 1.

We write Xn
a.s.−→ X to denote that the sequence (Xn)∞n=1

convergences almost surely to X .

Definition 2. Let θ be a real number and (θ̂n)∞n=1 be an in-
finite sequence of random variables. We call θ̂n a (strongly)
consistent estimator of θ if and only if θ̂n

a.s.−→ θ.

Notice that an estimator being unbiased does not mean that
it is also strongly consistent—estimators can be any combi-
nation of biased/unbiased and consistent/inconsistent. Next
we present several known properties of almost sure conver-
gence (Mittelhammer, 1996, Section 5.5).

Property 1. [Continuous mapping theorem] Xn
a.s.−→ X

implies that f(Xn)
a.s.−→ f(X) for every continuous func-

tion f .

Property 2. Let Xn and Yn be sequences of random vari-
ables and X and Y be random variables. If Xn

a.s.−→ X ,
Yn

a.s.−→ Y , and if Pr(Y = 0) = 0, then Xn
Yn

a.s.−→ X
Y .

Property 3. If {Xi
n}mi=1 are m <∞ sequences of random

variables such that Xi
n

a.s.−→ Xi for all i ∈ {1, . . . ,m},
then

∑m
i=1X

i
n

a.s.−→
∑m
i=1X

i.

We will require an additional property of almost sure con-
vergence that is similar to Property 3, but which allows for
the sum over a countably infinite number of sequences of
random variables, i.e., m = ∞. In order to establish this
property we begin with Lebesgue’s dominated convergence
theorem:

Theorem 3 (Lebesgue’s Dominated Convergence Theo-
rem). Let (fn)∞n=1 be a sequence of integrable functions
that converges almost everywhere to a real-valued measur-
able function f . If there exists an integrable function9 g
such that |fn| ≤ g for all n, then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof. See the work of (Bartle, 2014, Theorem 5.6).

Next we use Lebesgue’s dominated convergence theorem
to show conditions under which we can reverse the order
of a limit and an infinite summation:

Lemma 1. Let {xin}∞i=0 be a countably infinite num-
ber of real-valued sequences indexed by i, such that
limn→∞ xin = xi for all i ∈ N≥0. If there exists a function
g : N≥0 → R such that |xin| ≤ g(i) for all n ∈ N>0 and
i ∈ N≥0, and

∑∞
i=0 g(i) <∞, then

lim
n→∞

∞∑
i=0

xin =

∞∑
i=0

lim
n→∞

xin.

Proof. We apply Lebesgue’s dominated convergence the-
orem (Theorem 3), where for all (n, i) ∈ N>0 × N≥0,
fn(i) = Xi

n, f(i) = xi, and µ is the counting measure
on the measure space (N≥0,P(N≥0)), where P(N≥0) is
the power set of N≥0.

We can now establish our desired property about almost
sure convergence:

Property 4. Let {Xi
n}∞i=0 be a countably infinite number

of sequences of random variables such thatXi
n

a.s.−→ Xi for
all i ∈ N≥0. If there exists a function g : N≥0 → R such
that |Xi

n| ≤ g(i) surely for all (n, i) ∈ N>0 × N≥0, and∑∞
i=0 g(i) <∞, then

∑∞
i=0X

i
n

a.s.−→
∑∞
i=0X

i.
9To conform to standard notations elsewhere, here we reuse

the symbol g, which was previously used to denote the return of
a trajectory, g(H). The two uses of g are sufficiently dissimilar
that this reuse should not cause confusion.
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Proof.

Pr

(
lim
n→∞

∞∑
i=0

Xi
n =

∞∑
i=0

Xi

)

(a)
≥Pr


∞⋂
i=0

(
lim
n→∞

Xi
n = Xi

)⋂(
∞∑
i=0

lim
n→∞

Xi
n =

∞∑
i=0

Xi

)
︸ ︷︷ ︸

(b)



(c)
≥Pr


∞⋂
i=0

(
lim
n→∞

Xi
n = Xi

)⋂(
∞⋂
i=0

(
lim
n→∞

Xi
n = Xi

))
︸ ︷︷ ︸

(d)



= Pr

(
∞⋂
i=0

(
lim
n→∞

Xi
n = Xi

))

=1− Pr


∞⋃
i=0

(
lim
n→∞

Xi
n 6= Xi

)
︸ ︷︷ ︸

(e)


=1,

where (a) comes from Lemma 1 which ensures that

∞⋂
i=0

(
lim
n→∞

Xi
n = Xi

)
=⇒

(
lim
n→∞

∞∑
i=0

Xi
n =

∞∑
i=0

lim
n→∞

Xi
n

)
,

(c) holds because (d) =⇒ (b), and (e) has zero measure
because it is the countable union of zero measure sets by
the assumption that Xi

n
a.s.−→ Xi for all i ∈ N≥0.

Next we show that if a sequence of random variables, Xn,
converges almost surely to a random variable, X , then the
expected value of Xn converges to the expected value of
X .
Lemma 2. If (Xi)

∞
i=1 is a sequence of uniformly bounded

real-valued random variables and if Xn
a.s.−→ X , then

limn→∞E[Xn] = E[X].

Proof. Let Xn (for all n) and X be random variables on
the probability space (Ω,Σ, P ) and let A = {ω ∈ Ω :
limn→∞Xn = X}. Then:

lim
n→∞

E [Xn] = lim
n→∞

∫
Ω

XndP

(a)
=

∫
Ω

lim
n→∞

XndP

=

∫
A

lim
n→∞

XndP︸ ︷︷ ︸
(b)

+

∫
Ω\A

lim
n→∞

XndP︸ ︷︷ ︸
(c)

,

where (a) comes from the bounded convergence theorem.
For term (b), notice that for all ω ∈ A, limn→∞Xn = X .
For term (c), notice that by the assumption thatXn

a.s.−→ X ,
we have that Ω \ A has measure zero. So:

lim
n→∞

E [Xn] =

∫
A
XdP

=

∫
A
XdP +

∫
Ω\A

XdP

=E[X].

Next we present a lemma that relates almost sure conver-
gence of estimators to mean squared error. Let θ̂ be an
estimator of θ. Recall that:

MSE(θ̂, θ) := E
[
(θ̂ − θ)2

]
.

We show that a sequence, (Xn)∞n=1 converges almost
surely to X if and only if limn→∞MSE(Xn, X) = 0.

Lemma 3. If (Xi)
∞
i=1 is a sequence of uniformly bounded

real-valued random variables, then Xn
a.s.−→ X if and only

if limn→∞MSE(Xn, X) = 0.

Proof. We show each direction separately. First we show
that Xn

a.s.−→ X implies limn→∞MSE(Xn, X) = 0.

MSE(Xn, X) =E[(Xn −X)2]

=E[Yn],

where Yn := (Xn − X)2. By the continuous mapping
theorem we have that Yn

a.s.−→ (X − X)2 = 0. So, by
Lemma 2 (applied to E[Yn]) we have that

lim
n→∞

MSE(Xn, X) =E[0]

=0.

Next we show the other direction: that
limn→∞MSE(Xn, X) = 0 implies Xn

a.s.−→ X . Let
X and all Xn be random variables on the probability space
(Ω,Σ, P ), A = {ω ∈ Ω : limn→∞MSE(Xn, X) = 0},
and B = {ω ∈ A : limn→∞Xn 6= X}. If
limn→∞MSE(Xn, X) = 0, then by the definition of
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MSE we have that:

0 = lim
n→∞

∫
Ω

(Xn −X)
2 dP

(a)
=

∫
Ω

(
lim
n→∞

Xn −X
)2

dP

=

∫
B

(
lim
n→∞

Xn −X
)2

dP︸ ︷︷ ︸
(b)

+

∫
A\B

(
lim
n→∞

Xn −X
)2

dP︸ ︷︷ ︸
(c)

+

∫
Ω\A

(
lim
n→∞

Xn −X
)2

dP︸ ︷︷ ︸
(d)

,

where we get (a) by using the bounded convergence the-
orem to pass the limit inside the integral and the fact that
(Xn − X)2 is a continuous function of Xn to then move
the limit to the Xn term. Notice that (b), (c), and (d) are
all positive, and so they must all be zero for the equal-
ity with zero to hold. We have that (d) is necessarily
zero due to the definition of A and our assumption that
limn→∞MSE(Xn, X) = 0. Similarly, (c) is zero because,
from the definition of B, A \ B causes limn→∞Xn = X .
However, in (b), by the definition of B, limn→∞Xn−X is
non-zero, and so for the equality with zero to hold, B must
have measure zero. That is, Pr(limn→∞Xn 6= X) = 0,
and thus Pr(limn→∞Xn = X) = 1.

Next we show that if two sequences of random variables
converge to the same random variable, then any sequence
of random variables bounded between the two sequences
must also converge to the same random variable.

Lemma 4. If Xn
a.s.−→ X , Zn

a.s.−→ X , and for all n, Xn ≤
Yn ≤ Zn, then Yn

a.s.−→ X .

Proof.

Pr
(

lim
n→∞

Yn = X
)

= Pr
((

lim
n→∞

Yn ≤ X
)

(6)⋂(
lim
n→∞

Yn ≥ X
))

Since

Pr
(

lim
n→∞

Yn ≥ X
)
≥Pr

(
lim
n→∞

Xn ≥ X
)

≥Pr
(

lim
n→∞

Xn = X
)

=1,

and

Pr
(

lim
n→∞

Yn ≤ X
)
≥Pr

(
lim
n→∞

Zn ≤ X
)

≥Pr
(

lim
n→∞

Zn = X
)

=1,

we have that (6) is the probability of the joint occurance of
two probability one events, and so

Pr
(

lim
n→∞

Yn = X
)

= 1.

Next we show that if the difference between two sequences
converges almost surely to zero, then we can substitute one
sequence for the other as an input to a continuous function
without changing the almost sure convergence properties
of the function:

Lemma 5. If f is a continuous function, f(Xn)
a.s.−→ X ,

and Yn −Xn
a.s.−→ 0, then f(Yn)

a.s.−→ X .

Proof.

Pr
(

lim
n→∞

f(Yn) = X
)

= Pr
(

lim
n→∞

f(Yn −Xn +Xn) = X
)

(a)
= Pr

(
f
(

lim
n→∞

Yn −Xn +Xn
)

= X
)

(b)
≥Pr

((
lim
n→∞

Yn −Xn = 0
)

⋂(
f
(

lim
n→∞

Xn
)

= X
))

= Pr

((
lim
n→∞

Yn −Xn = 0
)

⋂(
lim
n→∞

f(Xn) = X
))

(c)
=1,

where (a) holds because f is a continuous function, and
where (b) holds because it gives sufficient conditions for
the event in the line above to hold, and (c) holds because
under our assumptions the two events both occur with prob-
ability one. So we can conclude that f(Yn)

a.s.−→ X .

Next we review two standard forms of the strong law of
large numbers.

Theorem 4 (Khintchine Strong Law of Large Numbers).
Let {Xi}∞i=1 be independent and identically distributed
random variables. Then ( 1

n

∑n
i=1Xi)

∞
n=1 is a sequence of

random variables that converges almost surely to E[X1].
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Proof. See the work of Sen & Singer (1993, Theorem
2.3.13).

Theorem 5 (Kolmogorov Strong Law of Large Numbers).
Let {Xi}∞i=1 be independent (not necessarily identically
distributed) random variables. If all Xi have the same
mean and bounded variance (i.e., there is a finite con-
stant b such that for all i ≥ 1, Var(Xi) ≤ b), then
( 1
n

∑n
i=1Xi)

∞
n=1 is a sequence of random variables that

converges almost surely to E[X1].

Proof. See the work of Sen & Singer (1993, Theorem
2.3.10 with Proposition 2.3.10).

In Corollary 1 we present a simple extension of Kol-
mogorov’s strong law of large numbers that we often still
refer to as Kolmogorov’s strong law of large numbers:

Corollary 1. Let {Xi}∞i=1 be independent (not necessarily
identically distributed) random variables. If all Xi have
the same mean and are uniformly bounded by a finite con-
stant b, then ( 1

n

∑n
i=1Xi)

∞
n=1 is a sequence of random

variables that converges almost surely to E[X1].

Proof. For all i ∈ N>0 we have that |Xi| ≤ b surely, so
from Popoviciu’s inequality, Var(Xi) ≤ b2, and so we can
apply Theorem 5.

We now turn to results that are more specific to reinforce-
ment learning and off-policy policy evaluation. Lemma 6
establishes a relationship between the expected values of
r̂πe(s, i) and r̂πe(s,A, i) for all i ifA is generated by some
policy π.

Lemma 6. Let (πe, π) ∈ Π2, where (π(a|s) = 0) =⇒
(πe(a|s) = 0) for all (a, s) ∈ A × S . Then for all (s, i) ∈
S × N≥0,

r̂πe(s, i) = E

[
πe(A|s)
π(A|s)

r̂πe(s,A, i)

∣∣∣∣A ∼ π] .

Proof. First, recall from the definition of r̂π(s, t) that for

all (s, i) ∈ S × {1, . . . , n}:

r̂πe(s, i) :=
∑
a∈A

πe(a|s)r̂πe(s, a, i)

=
∑

a∈supps(πe)

πe(a|s)r̂πe(s, a, i)

(a)
=

∑
a∈supps(π)

πe(a|s)r̂πe(s, a, i)

=
∑

a∈supps(π)

π(a|s)
π(a|s)

πe(a|s)r̂πe(s, a, i)

=
∑

a∈supps(π)

π(a|s)πe(a|s)
π(a|s)

r̂πe(s, a, i)

=E

[
πe(A|s)
π(A|s)

r̂πe(s,A, i)

∣∣∣∣A ∼ π] .
where (a) holds by the assumption that (π(a|s) = 0) =⇒
(πe(a|s) = 0) for all (a, s) ∈ A× S .

Corollary 2 extends Lemma 6 to show a relationship be-
tween v̂πe (s) and the expected value of q̂πe (s,A, i) if A is
generated by some policy π:

Corollary 2. Let (πe, π) ∈ Π2, where (π(a|s) = 0) =⇒
(πe(a|s) = 0) for all (a, s) ∈ A× S . Then for all s ∈ S,

v̂πe(s) = E

[
πe(A|s)
π(A|s)

q̂πe (s,A)

∣∣∣∣A ∼ π] .
Proof. We have from Lemma 6 that for all i ∈ N≥0,

r̂πe(s, i) = E

[
πe(A|s)
π(A|s)

r̂πe(s,A, i)

∣∣∣∣A ∼ π] .
Summing both sides over t and multiplying by γt we have
that:
∞∑
t=0

γtr̂πe(s, t)︸ ︷︷ ︸
=v̂πe (s)

=

∞∑
t=0

γtE

[
πe(A|s)
π(A|s)

r̂πe(s,A, t)

∣∣∣∣A ∼ π]

v̂πe(s) =E

[
πe(A|s)
π(A|s)

∞∑
t=0

γtr̂πe(s,A, t)︸ ︷︷ ︸
=q̂πe (s,A)

∣∣∣∣∣A ∼ π
]

=E

[
πe(A|s)
π(A|s)

q̂πe (s,A)

∣∣∣∣A ∼ π] .

Before presenting the next theorem, notice that we can ex-
press the DR estimator, (1), as DR(D) = 1

n

∑n
i=1 DRi(D)
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if

DRi(D) :=

∞∑
t=0

γtρitR
Hi
t

−
∞∑
t=0

γt
(
ρitq̂

πe
(
SHit , AHit

)
− ρit−1v̂

πe
(
SHit

))
.

Lemma 7 gives conditions under which the DR estimator
is an unbiased estimator of v(πe) when using only one tra-
jectory. This lemma is the bulk of the proof that the full
DR estimator is unbiased—we have placed it in a separate
lemma because it is also a useful result when showing that
the DR estimator is strongly consistent.
Lemma 7. If Assumption 2 holds then E[DRi(D)] =
v(πe) for all i ∈ {1, . . . , n}.

Proof. Recall that

DRi(D) :=

∞∑
t=0

γtρitR
Hi
t

−
∞∑
t=0

γt
(
ρitq̂

πe
(
SHit , AHit

)
− ρit−1v̂

πe
(
SHit

))
.

First, notice that
∑∞
t=0 γ

tρHit RHit is the per-decision im-
portance sampling (PDIS) estimator, which is known to
be an unbiased estimator of v(πe) (Precup et al., 2000;
Thomas, 2015b). So, we need only show that the remain-
ing terms in the definition of DRi(D) have expected value
zero, i.e., that

E

[
∞∑
t=0

γtρitq̂
πe
(
SHit , AHit

)]
= E

[
∞∑
t=0

γtρit−1v̂
πe
(
SHit

)]
.

By Corollary 2 (which requires Assumption 2) we have that

E

[ ∞∑
t=0

γtρit−1v̂
πe
(
SHit

)]

=E

[ ∞∑
t=0

γtρit−1

πe

(
AHit |S

Hi
t

)
πi

(
AHit |S

Hi
t

) q̂πe (SHit , AHit

)]

=E

[ ∞∑
t=0

γtρitq̂
πe
(
SHit , AHit

)]
.

For completeness, next we show formally the obvious re-
sult that Assumption 2 implies that partial trajectories that
occur under the evaluation policy must occur under the be-
havior policy.

Lemma 8. Assumption 2 implies that if Pr(Ht=ht|πi) =
0, then Pr(Ht = ht|πe) = 0 for all i ∈ {1, . . . , n},
ht := (s0, a0, r0, s1, . . . , st−1, at−1, rt−1, st) ∈ Ht, and
0 ≤ t <∞.

Proof. If t = 0 then ht = (s0), which does not depend
on the policy, so clearly if Pr(H0 = h0|πi) = 0 then
Pr(H0 = h0|πe) = 0. Hereafter we assume 1 ≤ t < ∞.
Notice that for any π ∈ Π,

Pr(Ht=ht|π)

(a)
= Pr(S0 =s0) Pr(A0 =a0|S0 = s0, π)

×
( t−1∏
i=1

Pr(Si=si|Si−1 = si−1, Ai−1 = ai−1)

× Pr(Ri−1 =ri−1|Si−1 =si−1, Ai−1 =ai−1, Si=si)

× Pr(Ai=ai|Si=si, π)
)

× Pr(St=st|St−1 = st−1, At−1 = at−1)

× Pr(Rt−1 = rt−1|St−1 = st−1, At−1 = at−1, St = st)

(b)
=d0(s0)π(a0|s0)P (st|st−1, at−1)R(rt−1|st−1, at−1, st)

×
t−1∏
i=1

P (si|si−1ai−1)R(ri−1|si−1, ai−1, si)π(ai|si).

where (a) comes from repeated application of the rule that,
for any random variables X and Y , Pr(X = x, Y = y) =
Pr(X =x) Pr(Y = y|X =x) and the Markov property for
state transitions, actions, and rewards, and (b) comes from
the definitions of d0, π,R and P in MDPNv1.

So, if Pr(Ht = ht|πi) = 0, then one of the terms in the
product above (using πi for π) must be zero. If that term
is not a πi term, then it also shows up in Pr(Ht = ht|πe),
and so Pr(Ht = ht|πe) = 0. If the term is a πi term, then
by Assumption 2, the corresponding πe term must also be
zero, and so Pr(Ht = ht|πi) = 0.

Next, recall the known result that the ratio of partial trajec-
tory probabilities under two different policies can be writ-
ten in terms of the two policies:

Lemma 9. Let πe and πb be any two policies and t ∈ N>0.
Let ht be any history of length t that has non-zero proba-
bility under πb, i.e., Pr(Ht=ht|πb) 6= 0. Then

Pr(Ht=ht|πe)
Pr(Ht=ht|πb)

=

t−1∏
i=0

πe (ai|si)
πb (ai|si)

.

Proof. See the works of (Precup et al., 2000) or (Thomas,
2015b, Lemma 1).

Next we establish Lemma 10, which states that we can use
importance sampling to generate unbiased estimates of any
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function of partial trajectories in D. Recall that whenever
we writeHi (orHt

i ) we always mean a trajectory generated
by πi, so Hi ∼ πi.
Lemma 10. If Assumption 2 holds, then for all (t, i) ∈
N≥−1 × {1, . . . , n}:

E[ρitf(Ht+1
i )] = E[f(Ht+1)|Ht+1 ∼ πe],

for any real-valued function f .

Proof. If t = −1 then Ht−1 = (S0), which does not de-
pend on the policy, so the result is immediate. If t ≥ 0:

E[ρitf(Ht+1
i )] =E

 t∏
j=0

πe
(
AHij |S

Hi
j

)
πi
(
AHij |S

Hi
j

) f(Ht+1
i )


(a)
=E

[
Pr
(
Ht+1
i = ht+1

i

∣∣πe)
Pr
(
Ht+1
i = ht+1

i

∣∣πi) f(Ht+1
i )

]
=
∑

supp(πi,t+1)

Pr
(
Ht+1 = ht+1

∣∣πi)
×

Pr
(
Ht+1 = ht+1

∣∣πe)
Pr (Ht+1 = ht+1|πi)

f(Ht+1)

=
∑

supp(πi,t+1)

Pr
(
Ht+1 = ht+1

∣∣πe) f(Ht+1)

(b)
=
∑

supp(πe,t+1)

Pr
(
Ht+1 = ht+1

∣∣πe) f(Ht+1)

=E[f(Ht+1)|Ht+1 ∼ πe],

where (a) comes from Lemma 9 and (b) comes from
Lemma 8, which requires Assumption 2.

We can use Lemma 10 to show the well-known result that
the expected value of an importance weight is one:

Lemma 11. For all πi and t ∈ N≥−1, if Assumption 2
holds, then E[ρit] = 1.

Proof. This follows from Lemma 10 with f(Ht+1) := 1.

Next we establish a lemma that will be crucial to showing
that the WDR estimator is strongly consistent. This lemma
uses Assumptions 3 and 4, which are defined in Appendix
B.3 and Appendix C respectively.

Lemma 12. For all t ∈ N≥0, let ft : Ht+1 → R. If
Assumption 2 holds, ft = 0 for all t ∈ N≥L, and either:

• Case 1: Assumptions 3 and 4 hold.

or
• Case 2: Assumption 1 holds and there is a finite
fmax such that for all t ∈ N≥0 and ht+1 ∈ Ht+1,
|ft(ht+1)| < fmax.

then
∞∑
t=0

γt
n∑
i=1

ρit∑n
j=1 ρ

j
t

ft(H
t+1
i ) (7)

a.s.−→ E

[ ∞∑
t=0

γtft(H
t+1)

∣∣∣∣∣H ∼ πe
]
.

Proof. Let

Xt
n :=

n∑
i=1

ρit∑n
j=1 ρ

j
t

γtft(H
t+1
i ),

so that the left side of (7) can be written as
∑∞
t=0X

t
n. First

we multiply the numerator and denominator of Xt
n by 1

n to
get:

Xt
n =

1
n

∑n
i=1 γ

tρitft(H
t+1
i )

1
n

∑n
i=1 ρ

i
t

. (8)

We will show that the numerator of (8) converges almost
surely to the desired value:

1

n

n∑
i=1

ρitγ
tft(H

t+1
i )

a.s.−→ E[γtft(H
t+1)|Ht+1 ∼ πe].

(9)
By Lemma 10, which relies on Assumption 2, we have that
E[ρitγ

tft(H
t+1
i )] = E[γtft(H

t+1)|Ht+1 ∼ πe]. Con-
sider the two cases from the statement of the lemma:

1. Case 1: Ht+1
i is independent and identically dis-

tributed for all i, so ρitγ
tft(H

t+1
i ) is also indepen-

dent and identically distributed for all i. Therefore by
Khintchine’s strong law of large numbers, Theorem 4,
we have (9).

2. Case 2: Ht+1
i are not necessarily identically dis-

tributed since there may be multiple behavior policies,
so we cannot directly apply Khintchine’s strong law
of large numbers. Instead notice that ρit is bounded
by β due to Assumption 1, and so |ρitγtft(Ht+1

i )| ≤
βγtfmax. So, we can apply Kolmogorov’s strong law
of large numbers, Corollary 1, to get (9).

Next we show that the denominator of (8) converges almost
surely to one:

1

n

n∑
i=1

ρit
a.s.−→ 1. (10)

By Lemma 11, which relies on Assumption 2, we have that
E[ρit] = 1. Again consider the two possible settings:

1. Case 1: Ht+1
i is independent and identically dis-

tributed for all i, so ρit is also independent and iden-
tically distributed for all i. Therefore by Khintchine’s
strong law of large numbers we have (10).

2. Case 2: Since ρit ≤ β, we can apply Kolmogorov’s
strong law of large numbers to get (10).
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By applying Property 2 to (9) and (10) we have that for all
t, Xt

n
a.s.−→ E

[
γtft(H

t+1)
∣∣Ht+1 ∼ πe

]
. So,

1. Case 1: Since Xt
n = 0 for t ≥ L and by Property 3,

∞∑
t=0

Xt
n =

L−1∑
t=0

Xt
n

a.s.−→E

[
L−1∑
t=0

γtft(H
t+1)

∣∣∣∣∣Ht+1 ∼ πe

]

=E

[ ∞∑
t=0

γtft(H
t+1)

∣∣∣∣∣H ∼ πe
]
.

2. Case 2: In order to apply Property 4 we must show
that there exists a function g : N≥0 → R such that∑∞
t=0 g(t) < ∞ and for all n ∈ N>0 and t ∈ N≥0,

|Xt
n| ≤ g(t). The following definition of g satisfies

these requirements:

g(t) :=

{
γtfmax if t < L,

0 otherwise.

That is,

∞∑
t=0

g(t) ≤

{
fmax
1−γ if γ < 1,

Lfmax otherwise,

<∞,

since we have assumed that γ can only be 1 in the
finite-horizon setting, where L 6= ∞. Also, |Xt

n| =
0 = g(t) by definition if t ≥ L and if t < L then:

|Xt
n| :=

∣∣∣∣∣
n∑
i=1

ρit∑n
j=1 ρ

j
t

γtft(H
t+1
i )

∣∣∣∣∣
≤γtfmax

n∑
i=1

ρit∑n
j=1 ρ

j
t

=γtfmax

=g(t).

So, by Property 4, we have (7).

Finally, we establish an extension of Lemma 12 that will
facilitate its use with sequences that are not quite in the
form that it is defined for:

Lemma 13. For all t ∈ N≥0, let ft : Ht → R. If Assump-
tion 2 holds, ft = 0 for all t ∈ N≥L, and either:

• Case 1: Assumptions 3 and 4 hold.
or

• Case 2: Assumption 1 holds and there is a finite fmax

such that for all t ∈ N≥0 and ht ∈ Ht, |ft(ht)| <
fmax.

then

∞∑
t=0

γt
n∑
i=1

ρit−1∑n
j=1 ρ

j
t−1

ft(H
t
i )

a.s.−→ E

[
∞∑
t=0

γtft(H
t)

∣∣∣∣∣H ∼ πe
]
.

(11)

Proof. By removing the first term of the sum and shifting
the variable that the sum uses by one, we can rewrite the
left side of (11) as

1

n

n∑
i=1

f0(H0
i ) +

∞∑
t=0

γt
n∑
i=1

ρit∑n
j=1 ρ

j
t

γft+1(Ht+1
i ).

We have that

1

n

n∑
i=1

f0(H0
i )

a.s.−→ E[f0(H0)], (12)

by Khintchine’s strong law of large numbers in Case 1, and
Kolmogorov’s strong law of large numbers in Case 2 (since
f0 is bounded). Also, by Lemma 12 (where the definition
of ft+1 in this lemma is used for ft in our application of
Lemma 12) we have that

∞∑
t=0

γt
n∑
i=1

ρit∑n
j=1 ρ

j
t

γft+1(Ht+1
i )

a.s.−→ E

[ ∞∑
t=0

γt+1ft+1(Ht+1)

∣∣∣∣∣H ∼ πe
]
. (13)

So by applying Property 3 to (12) and (13) we have:

1

n

n∑
i=1

f0(H0
i ) +

∞∑
t=0

γt
n∑
i=1

ρit∑n
j=1 ρ

j
t

γft+1(Ht+1
i )

a.s.−→E[f0(H0)] + E

[ ∞∑
t=0

γt+1ft+1(Ht+1)

∣∣∣∣∣H ∼ πe
]

=

0∑
t=0

E[γtft(H
t)] + E

[ ∞∑
t=1

γtft(H
t)

∣∣∣∣∣H ∼ πe
]

=E

[ ∞∑
t=0

γtft(H
t)

∣∣∣∣∣H ∼ πe
]
.

B. Doubly Robust Derivation and Proofs
In this appendix we provide an alternate derivation of the
DR estimator using control variates. The idea behind con-
trol variates is as follows. Suppose that we would like to
estimate θ := E[X] given a sample of X . The obvious es-
timator would be θ̂1 := X . However, if we have a sample
of another random variable, Y , with known expected value,
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E[Y ], then the estimator θ̂2 := X − Y + E[Y ] may have
lower variance. Specifically, while Var(θ̂1) = Var(X), we
have that Var(θ̂2) = Var(X)+Var(Y )−2 Cov(X,Y ). So,
θ̂2 has lower variance than θ̂1 if 2 Cov(X,Y ) > Var(Y ).
Often Y is referred to as the control variate. Notice that the
optimal control variate is Y := X , since then Var(θ̂2) = 0.
Furthermore, notice that θ̂2 remains an unbiased estimator
of θ as long as the expected value of Y exists—E[θ̂2] =
E[X − Y + E[Y ]] = E[X]−E[Y ] + E[Y ] = E[X] = θ.
Control variates have been used before in reinforcement
learning to reduce the variance of policy gradient estimates
(Bhatnagar et al., 2009), where the control variate was re-
ferred to as a baseline.

Recall that we have defined the DR estimator in (1) as

DR(D) :=

n∑
i=1

∞∑
t=0

γtwitR
Hi
t︸ ︷︷ ︸

X

−
n∑
i=1

∞∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
︸ ︷︷ ︸

Y

.

In this definition theX term is the per-decision importance
sampling (PDIS) estimator, which is known to be an un-
biased and strongly consistent estimator of v(πe) (Precup
et al., 2000; Thomas, 2015b). Also, the control variate,
Y , is mean zero, i.e., E[Y ] = 0. To see why this control
variate is reasonable, notice that all of the terms that are
multiplied by γtwit approximately cancel:

q̂πe
(
SHit , AHit

)
≈ RHit + γv̂πe

(
SHit+1

)
.

So, Y is a decent approximation of X , and therefore
DR(D) will have low variance.

Our derivation of the control variate used by the DR es-
timator is based on an alternate view of control variates.
If we do not know the expected value of the control vari-
ate, Y , but we have another random variable, Z, such that
E[Z] = E[Y ], then we can use the unbiased estimator
θ̂3 = X − Y + Z. The variance of this estimator is given
by Var(θ̂3) = Var(X) + Var(Y −Z)−2 Cov(X,Y −Z).
So, if Y ≈ X and Z has low variance, then this estimator
may have lower variance than θ1. Technically, this is an
ordinary application of control variates using Y −Z as the
mean-zero control variate. We derive DR using this alter-
nate view.

We begin with the per-decision importance sampling
(PDIS) estimator, which is known to be an unbiased and
strongly consistent estimator of v(πe) (Precup et al., 2000;

Thomas, 2015b). The PDIS estimator is given by:

PDIS(D) :=
1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit .

In order to reduce the variance of this estimator we will
subtract a control variate that we expect to be highly cor-
related with the PDIS estimator, and then add back in the
expected value of the control variate:

1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit︸ ︷︷ ︸

PDIS estimator,X

− 1

n

n∑
i=1

∞∑
t=0

ρitγ
tr̂πe(SHit , AHit , 0)︸ ︷︷ ︸

control variate, Y

+E

[
1

n

n∑
i=1

∞∑
t=0

ρitγ
tr̂πe(SHit , AHit , 0)

]
︸ ︷︷ ︸

E[control variate]=E[Y ]

. (14)

Here we expect the control variate to be similar to the PDIS
estimator if the model’s reward predictions are accurate,
i.e., if RHit ≈ r̂πe(S

Hi
t , AHit , 0).

If it could be used, (14) would be an extremely low-
variance estimator of v(πe) since X − Y would usually be
near-zero and E[Y ] is a constant that is near v(πe). How-
ever, E[control variate] is not known, and so we cannot use
(14) directly. Although estimating E[Y ] is nearly as hard
as estimating v(πe), it is marginally easier. It is easier be-
cause v(πe) uses the unknown transition and reward func-
tions of the MDP to produce the distribution of rewards at
each time step, while E[Y ] uses the known approximate
model’s transition and reward function for the last transi-
tion before each reward occurs. We can therefore estimate
E[Y ] using an unbiased estimator that typically has lower
variance than the control variate. In the alternate view of
control variates this new term will be Z:

1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit︸ ︷︷ ︸

PDIS estimator,X

− 1

n

n∑
i=1

∞∑
t=0

ρitγ
tr̂πe

(
SHit , AHit , 0

)
︸ ︷︷ ︸

control variate, Y

+
1

n

n∑
i=1

∞∑
t=0

ρit−1γ
tr̂πe

(
SHit , 0

)
︸ ︷︷ ︸

Z

. (15)

Here we expect the Z term to have lower variance than the
Y term because for each i and t it only depends on actions
AHi1 , . . . , AHit−1 and not AHit . This is reflected in its use of
ρit−1 rather than ρit. Before continuing our derivation we
verify that E[Y ] = E[Z] if Assumption 2 holds:
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E[Z] =E

[
1

n

n∑
i=1

∞∑
t=0

ρit−1γ
tr̂πe

(
SHit , 0

)]

(a)
=E

 1

n

n∑
i=1

∞∑
t=0

ρit−1γ
t
πe
(
AHit |S

Hi
t

)
πi
(
AHit |S

Hi
t

) r̂πe (SHit , AHit , 0
)

=E

[
1

n

n∑
i=1

∞∑
t=0

ρitγ
tr̂πe

(
SHit , AHit , 0

)]
=E[Y ],

where (a) comes from Lemma 6.

So far, in (15), we have introduced a control variate into
PDIS that we expect might reduce the variance of the es-
timator a little without introducing bias. However, it will
still have high variance because Z is a high-variance esti-
mator of E[Y ]. To overcome this, we can introduce another
control variate into Z to make it a lower-variance estimator
of E[Y ]. So, we introduce another control variate:

1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit︸ ︷︷ ︸

X

− 1

n

n∑
i=1

∞∑
t=0

ρitγ
tr̂πe

(
SHit , AHit , 0

)
︸ ︷︷ ︸

Y

+
1

n

n∑
i=1

∞∑
t=0

ρit−1γ
tr̂πe

(
SHit , 0

)
︸ ︷︷ ︸

Z

− 1

n

n∑
i=1

∞∑
t=0

ρit−1γ
tr̂πe

(
SHit−1, A

Hi
t−1, 1

)
︸ ︷︷ ︸

new control variate,Y ′

+
1

n

n∑
i=1

∞∑
t=0

ρit−2γ
tr̂πe

(
SHit−1, 1

)
︸ ︷︷ ︸

Z′

.

Here E[Z ′] = E[Y ′] (although we omit to proof of this
claim), Y ′ is similar to Z and so it serves as a good control
variate therefor, and Z ′ will usually have lower variance
than Y ′ because it uses ρit−2 rather than ρit−1. However,
now Z ′ is a high-variance estimator of E[Y ′]. We therefore
introduce a control variate for Z ′, and this process repeats.
This process of introducing control variates eventually ter-
minates when the new control variate is not random. The
resulting estimator is (we call this estimator DR(D) be-

cause we will show that it is equivalent to (1)):

DR(D) =
1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit (16)

− 1

n

n∑
i=1

∞∑
t=0

γt
t∑

τ=0

ρiτ r̂
πe
(
SHiτ , AHiτ , t− τ

)
+

1

n

n∑
i=1

∞∑
t=0

γt
t∑

τ=0

ρiτ−1r̂
πe
(
SHiτ , t− τ

)
.

Next we will combine the r̂ terms into v̂ and q̂ terms to get
a more succinct expression. To this end, we will use the
property that

∑∞
i=0

∑i
j=0 f(i, j) =

∑∞
j=0

∑∞
i=j f(i, j) to

change the order of the sums over t and τ . We also split γt

into γτγt−τ :

DR(D) =
1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit

− 1

n

n∑
i=1

∞∑
τ=0

ρiτγ
τ
∞∑
t=τ

γt−τ r̂πe
(
SHiτ , AHiτ , t− τ

)

+
1

n

n∑
i=1

∞∑
τ=0

ρiτ−1γ
τ
∞∑
t=τ

γt−τ r̂πe
(
SHiτ , t− τ

)
.

Next we perform a change of variable using j = t − τ to
replace t:

DR(D) =
1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit

− 1

n

n∑
i=1

∞∑
τ=0

ρiτγ
τ
∞∑
j=0

γj r̂πe
(
SHiτ , AHiτ , j

)
+

1

n

n∑
i=1

∞∑
τ=0

ρiτ−1γ
τ
∞∑
j=0

γj r̂πe
(
SHiτ , j

)
=

1

n

n∑
i=1

∞∑
t=0

ρitγ
tRHit

− 1

n

n∑
i=1

∞∑
τ=0

ρiτγ
τ q̂πe

(
SHiτ , AHiτ

)
+

1

n

n∑
i=1

∞∑
τ=0

ρiτ−1γ
τ v̂πe

(
SHiτ

)
.

Replacing the variable τ with t and using wit =
ρit
n we get
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that:

DR(D) =

n∑
i=1

∞∑
t=0

γtwitR
Hi
t

−
n∑
i=1

∞∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
,

which is (1).

The original derivation of the DR estimator (Jiang & Li,
2015) required the horizon to be finite and known. Our
derivation makes neither of these assumptions. That is, it
allows for infinite or indefinite horizons and for finite hori-
zons where the horizon is not known. If the horizon, L,
is finite and known, then one should ensure that the model
uses all of the available information, including the known
horizon and time step. In the next section we show that if L
is finite and known, then our non-recursive definition of the
DR estimator is equivalent to the recursive form of (Jiang
& Li, 2015).

B.1. Equivalence of DR Definitions

In this section we show that our non-recursive definition of
the DR estimator is equivalent to the recursive definition
provided by Jiang & Li (2015) when the horizon is finite
and known.

Theorem 6. (1) is equivalent to the DR estimator pre-
sented by Jiang & Li (2015) if the finite horizon, L, of the
MDP is known.

Proof. Jiang & Li (2015) define the DR estimator for a sin-
gle trajectory (i.e., n = 1) as the last element, XL, of a se-
quence, (Xi)

L
i=0. This sequence is defined by the following

recurrence relation. LetX0 := 0 and for all k ∈ {1, . . . , L}
let

Xk :=v̂πe (SL−k) +
πe (AL−k|SL−k)

π1 (AL−k|SL−k)

(
RL−k + γXk−1

− q̂πe (SL−k, AL−k)

)
.

As in the definition of DR(D) in (1), Jiang & Li (2015)
define the DR estimator for multiple trajectories to be the
average of the estimator for each trajectory individually.
So, to show that their recursive definition and our definition
are equivalent, we need only show that they are equivalent
when there is a single trajectory.

Since hereafter in this proof we deal with only a single tra-
jectory, we drop the superscripts that we use to specify the

trajectory, i.e., we write ρt rather than ρ1
t . Also let πb := π1

denote the single behavior policy. For further brevity, let

πeb(t) :=
πe (At|St)
πb (At|St)

.

First, notice that we can rewrite (1) for the single-trajectory
finite-horizon setting as:

DR(D) =

L−1∑
t=0

γtρtRt −
L−1∑
t=0

γtρtq̂
πe (St, At)

+

L−1∑
t=0

γtρt−1v̂
πe (St)) , (17)

since SL is surely the absorbing state and so Rt,
q̂πe (St, At), and v̂πe (St) are all zero for t ≥ L. To
verify that this definition is equivalent to XL, we will de-
fine another sequence, (Yi)

L
i=1, such that Xi = Yi for all

i ∈ {1, . . . , L} and such that YL = DR(D) trivially.

Let

Yk :=

∑L−1
t=L−k γ

t

[
ρt (Rt − q̂πe (St, At)) + ρt−1v̂

πe (St)

]
γL−kρL−k−1

.

Notice that YL is identical to (17) since γL−LρL−L−1 = 1.
So, all that remains is to show that Yk = Xk for all k ∈
{1, . . . , L}. We will show this using a proof by induction.

For the base case, k = 1, it is straightforward to verify that
X1 = Y1. For the inductive step we assume the inductive
hypothesis that Xk−1 = Yk−1 and show that then Xk =
Yk:

Xk :=v̂πe (SL−k) + πeb(L− k)

(
RL−k + γXk−1

− q̂πe (SL−k, AL−k)

)

=v̂πe (SL−k) + πeb(L− k)

(
RL−k + γYk−1

− q̂πe (SL−k, AL−k)

)
.

Substituting in the definition of Yk−1 and performing alge-
braic manipulations we have that:

Xk =v̂πe (SL−k) + πeb(L− k)RL−k +
πeb(L− k)

γL−kρL−k

×
L−1∑

t=L−k+1

γt
[
ρt (Rt − q̂πe (St, At)) + ρt−1v̂

πe (St)

]

− πeb(L− k)q̂πe (SL−k, AL−k) ,
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where× denotes that a line was split into multiple lines (we
do not use cross-products anywhere in this paper). Since

πeb(L− k)

ρL−k
=

1

ρL−k−1
,

and by reordering terms, we have that

Xk =πeb(L− k)(RL−k − q̂πe (SL−k, AL−k)) + v̂πe (SL−k)

+

∑L−1
t=L−k+1 γ

t

[
ρt (Rt − q̂πe (St, At)) + ρt−1v̂

πe (St)

]
γL−kρL−k−1

.

Adding one more element to the summation so that it starts
at t = L − k, and then explicitly subtracting off this addi-
tional term we have that:

Xk =πeb(L− k)(RL−k − q̂πe (SL−k, AL−k)) + v̂πe (SL−k)

+

∑L−1
t=L−k γ

t

[
ρt (Rt − q̂πe (St, At)) + ρt−1v̂

πe (St)

]
γL−kρL−k−1

− γL−k

γL−kρL−k−1

[
ρL−k (RL−k − q̂πe (SL−k, AL−k))

+ ρL−k−1v̂
πe (SL−k)

]
.

Canceling several γ and ρ terms, we have that:

Xk =

∑L−1
t=L−k γ

t

[
ρt (Rt − q̂πe (St, At)) + ρt−1v̂

πe (St)

]
γL−kρL−k−1

=Yk.

B.2. DR is Unbiased

While Jiang & Li (2015) showed that the DR estimator
(with finite horizon) is an unbiased estimator of v(πe), in
this section we show that the DR estimator (without as-
sumptions about the horizon) is an unbiased estimator of
v(πe).

Theorem 7 (DR – unbiased estimator). If Assumption 2
holds, then E[DR(D)] = v(πe).

Proof. This result was shown previously for the known fi-
nite horizon setting (Jiang & Li, 2015), but has not been
shown before for the other settings. Because we will use
some steps of this proof in later proofs, the majority of this
proof is relegated to a lemma.

E [DR(D)] =E

[
1

n

n∑
i=1

DRi(D)

]
(a)
=

1

n

n∑
i=1

v(πe)

=v(πe),

where (a) comes from Lemma 7.

B.3. Conditions for Consistency of DR

In this section we show that the DR estimator is a strongly
consistent estimator of v(πe) given mild technical assump-
tions and that there is only one behavior policy (Theorem 8)
or that the importance weights are bounded (Theorem 9).

Assumption 3 (Single behavior policy). For all (i, j) ∈
{1, . . . , n}2, πi = πj .

Theorem 8 (DR – strongly consistent estimator for one
behavior policy). If Assumptions 2 and 3 hold then
DR(D)

a.s.−→ v(πe).

Proof. This proof is a relatively straightforward applica-
tion of the law of large numbers.

We have from Lemma 7 that E[DRi(D)] = v(πe) for all
i ∈ {1, . . . , n}. By Assumption 3, {DRi(D)}ni=1 is a set of
n independent and identically distributed random variables
(sinceHi ∼ π1 for all i, and DRi(D) only depends onHi).
We can therefore conclude by Khintchine’s strong law of
large numbers, Theorem 4, that DR(D)

a.s.−→ v(πe).

Theorem 9 (DR – strongly consistent estimator for many
behavior policies). If Assumptions 1 and 2 hold then
DR(D)

a.s.−→ v(πe).

Proof. We have from Lemma 7 that E[DRi(D)] = v(πe)
for all i ∈ {1, . . . , n}. However, {DRi(D)}ni=1 is a set
of n independent but not necessarily identically distributed
random variables, so we cannot apply Khintchine’s strong
law of large numbers. Instead, we will apply Kolmogorov’s
strong law of large numbers, which requires each random
variable, DRi(D), to be bounded.
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We have that:

DRi(D) =

∞∑
t=0

γtρitR
Hi
t −

∞∑
t=0

γtρitq̂
πe
(
SHit , AHit

)
+

∞∑
t=0

γtρit−1v̂
πe
(
SHit

)
=

∞∑
t=0

γtρitR
Hi
t

−
∞∑
t=0

γtρit

∞∑
τ=0

γτ r̂πe
(
SHit , AHit , τ

)
︸ ︷︷ ︸

=:q̂πe
(
S
Hi
t ,A

Hi
t

)

+

∞∑
t=0

γtρit−1

∞∑
τ=0

γτ r̂πe
(
SHit , τ

)
︸ ︷︷ ︸

=:v̂πe
(
S
Hi
t

)
.

So,

|DRi(D)| ≤3βr?max

L∑
t=0

γt
L∑
τ=0

γτ

<∞,

since either L <∞ or γ ∈ [0, 1). So, DRi(D) is bounded
above and below and thus we can apply Kolmogorov’s
strong law of large numbers (Corollary 1) to conclude that
DR(D)

a.s.−→ v(πe).

C. Weighted Doubly Robust Proofs
In this appendix we establish two different sets of condi-
tions under which the WDR estimator is a strongly con-
sistent estimator of v(πe). We begin a new assumption:
Assumption 4 requires the horizon, L, to be finite, but not
necessarily known.

Assumption 4. L is finite.

We are now ready to present Theorems 10 and 11, which
provide two different sets of assumptions that are sufficient
to ensure that the WDR estimator is strongly consistent.
The first, Theorem 10 requires that the support of the eval-
uation policy is a subset of the support of every behavior
policy (Assumption 2), that there to be a single behavior
policy (Assumption 3), and that the horizon is finite (As-
sumption 4). Although our proof of Theorem 10 does re-
quire Assumption 4, it is not clear to us whether there exists
a proof without this assumption.

Theorem 10 (WDR – strongly consistent estimator for one
behavior policy, finite horizon). If Assumptions 2, 3, and 4
hold then WDR(D)

a.s.−→ v(πe).

Proof. First, notice that we can rewrite the WDR estimator
as:

WDR(D) :=

∞∑
t=0

γt
n∑
i=1

ρit∑n
j=1 ρ

j
t

RHit︸ ︷︷ ︸
=:CWPDIS(D)

(18)

−
∞∑
t=0

γt
n∑
i=1

ρit∑n
j=1 ρ

j
t

q̂πe
(
SHit , AHit

)
︸ ︷︷ ︸

=:Xn

+

∞∑
t=0

γt
n∑
i=1

ρit−1∑n
j=1 ρ

j
t−1

v̂πe
(
SHit

)
︸ ︷︷ ︸

=:Yn

.

We have from Lemma 12 that

CWPDIS(D)
a.s.−→E

[ ∞∑
t=0

γtRHt |H ∼ πe

]
=v(πe), (19)

which has been shown before (Thomas, 2015b, Theorem
13). Also by Lemma 12 we have that

Xn
a.s.−→ E

[ ∞∑
t=0

γtq̂πe
(
SHt , A

H
t

) ∣∣∣H ∼ πe], (20)

and by Lemma 13 we have that

Yn
a.s.−→E

[ ∞∑
t=0

γtv̂πe
(
SHt

) ∣∣∣H ∼ πe]
=E
[ ∞∑
t=0

γt
∞∑
j=0

γj r̂πe
(
SHt , j

)
︸ ︷︷ ︸

=v̂πe(SHt )

∣∣∣H ∼ πe]

=E
[ ∞∑
t=0

γt
∞∑
j=0

γj
∑
a∈A

πe
(
a|SHt

)
r̂πe
(
SHt , a, j

)
︸ ︷︷ ︸

=r̂πe(SHt ,j)

∣∣∣H ∼ πe]

=E
[ ∞∑
t=0

γt
∞∑
j=0

γj r̂πe
(
SHt , A

H
t , j

)
︸ ︷︷ ︸

=q̂πe (SHt ,A
H
t )

∣∣∣H ∼ πe]

=E
[ ∞∑
t=0

γtq̂πe
(
SHt , A

H
t

) ∣∣∣H ∼ πe]. (21)

So, by applying Property 3 to (19), (20), and (21) we have
that WDR(D)

a.s.−→ v(πe).

The second set of conditions that ensure that WDR is
strongly consistent is provided in Theorem 11, which re-
quires the importance weights to be bounded (Assump-
tion 1) and the support of the evaluation policy to be a sub-
set of the support of every behavior policy (Assumption 2).
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Notice that if the sets of states and actions are finite and
the horizon is finite, then Assumption 1 holds, and so The-
orem 11 means that WDR will be strongly consistent given
only Assumption 2.

Theorem 11 (WDR – strongly consistent estimator for
many behavior policies). If Assumptions 1 and 2 hold then
WDR(D)

a.s.−→ v(πe).

Proof. Recall that WDR can be defined as in (18). First
we apply Lemma 12 to the CWPDIS(D) term, which uses
ft(H

t+1
i ) = RHit , which is bounded since |RHit | ≤ r?max.

The result of Lemma 12 is that

CWPDIS(D)
a.s.−→E

[ ∞∑
t=0

γtRHt |H ∼ πe

]
=v(πe). (22)

Next we apply Lemma 12 to the Xn term, which uses
ft(H

t+1
i ) = q̂πe

(
SHit , AHit

)
, which is bounded since

∣∣∣q̂πe (SHit , AHit

)∣∣∣ ≤ { r?max
1−γ if L =∞
Lrmax otherwise.

The result of applying Lemma 12 to Xn is that

Xn
a.s.−→ E

[ ∞∑
t=0

γtq̂πe
(
SHt , A

H
t

) ∣∣∣H ∼ πe]. (23)

Lastly, we apply Lemma 13 to the Yn term, which uses
ft(H

t
i ) = v̂πe

(
SHit

)
, which is bounded since

∣∣∣v̂πe (SHit )∣∣∣ ≤
{

r?max
(1−γ) if L =∞
Lr?max otherwise.

The result of applying Lemma 13 to Yn is that

Yn
a.s.−→E

[ ∞∑
t=0

γtv̂πe
(
SHt

) ∣∣∣H ∼ πe]
(a)
=E
[ ∞∑
t=0

γtq̂πe
(
SHt , A

H
t

) ∣∣∣H ∼ πe], (24)

where (a) comes from the same derivation that was used in
(21). So, by applying Property 3 to (22), (23), and (24) we
have that WDR(D)

a.s.−→ v(πe).

D. Extended Empirical Studies (WDR)
In this section we provide a detailed description of our ex-
periments comparing the WDR estimator to various im-
portance sampling estimators (IS, PDIS, WIS, CWPDIS),

as well as DR and AM. We performed experiments using
three domains: ModelFail, ModelWin, and a gridworld.
We will describe each domain, then describe the experi-
mental setup, and then present empirical results. All three
domains have a finite horizon and use γ = 1.0.

D.1. The ModelFail Domain

The ModelFail domain was constructed so that the model
would fail to converge to the true MDP. One way that this
can happen is if the model uses function approximation, so
that it cannot represent the true MDP. Another way that this
can happen is if there is some partial observability, which is
common in real applications. We therefore construct a do-
main where the true underlying MDP has three states (plus
the terminal absorbing state), but where the agent cannot
tell the difference between any of the states.

The MDP used by ModelFail is depicted in Figure 3. Al-
though the MDP has three states (denoted by circles) plus
the terminal absorbing state (denoted by the double-circle),
the agent does not observe which state it is in—it only sees
a single state. The agent begins in the left-most state, where
it has two actions available. The first action always takes it
to the upper state, while the second always takes in to the
lower state. In both cases, the agent receives no reward.

At time t = 1, the agent is always in the upper or lower
state (although it cannot tell the difference between them
and the initial state), and it must select between two possi-
ble actions. Both actions always have the same effect—the
agent transitions to the terminal absorbing state. However,
if the agent was in the upper state, R1 = 1, whileR1 = −1
if the agent was in the lower state. The horizon is L = 2

since S2 =
∞
s always.
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1

start

1

1
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Figure 3: ModelFail MDP.

The behavior policy selects a1 with probability ap-
proximately 0.88 and a2 with probability approximately
0.12 (these probabilities were chosen arbitrarily by us-
ing weights of 1 and −1 with softmax action selection,
and were not optimized). The evaluation policy does the
opposite—it selects a1 with probability approximately 0.12
and a2 with probability approximately 0.88.

Consider what happens when we try to model this MDP
based on the observations produced by running the be-
havior policy to produce an infinite number of trajectories
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(without trying to infer anything about the true underlying
structure of the MDP). Recall that we observe only a sin-
gle state. First consider the transition dynamics: half of
the time either action causes a transition back to the single
state, while half of the time the agent transitions to the ab-
sorbing state. Next consider the rewards: half of the time
the agent receives no reward, with probability 0.88/2 it re-
ceives a reward of 1, and with probability 0.12/2 it receives
a reward of −1, and these rewards appear completely un-
correlated with the action that was selected (since non-zero
rewards occur at time t = 1 and A1 has no bearing on re-
wards or state transitions). So, from the model’s point of
view, the actions have no impact on state transitions or re-
wards, and so every policy is equally good and will produce
an expected return of 0.38, while in reality an optimal pol-
icy will produce an expected return of 0.5 and a pessimal
policy will produce an expected return of −0.5.

We provided the model with the true horizon, L = 2, so
that its predictions of Rt are zero for t ≥ 2.

D.2. The ModelWin Domain

This domain was constructed so that the approximate
model of the MDP would quickly converge to the true
MDP, while importance sampling based approaches like
DR and WDR would continue to have high variance. Re-
call from our discussion in Section 6 that DR and WDR
will be equal to a simple model-based approach if the ap-
proximate MDP is perfect and state transition and rewards
are deterministic. To avoid this, the ModelWin domain has
stochastic state transitions that cause the (b) term in (2) to
not necessarily be zero.

The ModelWin MDP is depicted in Figure 4. Unlike the
ModelFail domain, the agent observes the true underlying
states of the ModelWin MDP, of which there are three, plus
a terminal absorbing state (not pictured). The agent always
begins in s1, where it must select between two actions. The
first action, a1, causes the agent to transition to s2 with
probability 0.4 and s3 with probability 0.6. The second ac-
tion, a2, does the opposite: the agent transitions to s2 with
probability 0.6 and s3 with probability 0.4. If the agent
transitions to s2, then it receives a reward of 1, and if it
transitions to s3 it receives a reward of −1. In states s2 and
s3, the agent has two possible actions, but both always pro-
duce a reward of zero and a deterministic transition back to
s1. The horizon is set to L = 20, so, S20 =

∞
s always.10

To see why DR and WDR struggle on this domain, con-
sider what happens if the approximate model is perfect and
the agent takes action a1 in state s1. In our discussion of

10Technically, implementing the horizon of L = 20 requires
the states to be augmented to include the current time step so that
state transitions are Markovian. The approximate model is pro-
vided with the time step and the horizon.
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Figure 4: ModelWin MDP.

(2) we concluded that DR and WDR will perform well if
R1 = qπe(s1, a1) − γv̂πe(S′), where S′ is the state that
the agent transitions to after taking action a1 in state s1,
which is a random variable. Consider the two values that
the right side can take, depending on whether S′ = s2

or S′ = s3. It can be either q̂πe(s1, a1) − γv̂πe(s2) or
q̂πe(s1, a1) − γv̂πe(s3). Since v̂πe(s2) = v̂πe(s3), these
two statements are equal—the prediction of R1 will be the
same regardless of whether the agent transitions to s2 or
s3, and so its prediction must sometimes be wrong (since
the rewards differ depending on whether the agent transi-
tions to s2 or s3). So, term (b) in (2) will not be zero—the
control variate used by DR and WDR does not perfectly
cancel with the PDIS (or CWPDIS) term. If wit is large,
then this will produce high variance. In order to make wit
large, we need only make the horizon long and the behavior
and evaluation policies dissimilar.

The behavior and evaluation policies both select actions
uniformly randomly in states s2 and s3. However, in s1 the
behavior policy takes action a1 with probability approxi-
mately 0.73 and action a2 with probability approximately
0.27, while the evaluation policy does the opposite—it
takes action a1 with probability approximately 0.27 and
action a2 with probability approximately 0.73 (these prob-
abilities come from using softmax action selection with
weights of 1 and 0).

As in the ModelFail domain, for the ModelWin domain we
provided the approximate model with the true horizon of
the MDP, L = 20, so that its predictions of Rt were zero
for t ≥ 20.

D.3. The Gridworld Domain

The third domain that we used was the gridworld domain
developed by Thomas (2015b, Section 2.5) for evaluating
OPE algorithms. It is a 4 × 4 gridworld with four actions,
L = 100, and deterministic transition and reward func-
tions. This domain was developed specifically for evalu-
ating different OPE methods. Thomas (2015b) proposed
five policies, π1, . . . , π5, that can serve as the behavior and
evaluation policies.
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Although this setup was developed for evaluating OPE
methods, it was not developed with DR and WDR in mind
(since they were introduced later). Specifically, its use of
deterministic state-transition and reward functions means
that when the model is accurate, AM, DR, and WDR will
all perform similarly (due the the (b) term in (2) being near-
zero).

We therefore performed experiments with two variants of
this gridworld. In the first variant the approximate model
was provided with the horizon, L = 100. However, in the
second variant we introduced some partial observability by
providing the model with the incorrect horizon: L = 101.
This has a significant impact for value predictions close to
the end of a trajectory because the model incorrectly pre-
dicts when the rewards will necessarily be zero. We write
Gridworld-TH and Gridworld-FH to denote the gridworld
where the agent is provided with the true horizon and false
horizon, respectively.

D.4. Experimental Setup

For each domain we generated n trajectories (for various
n) and computed the sample mean squared error between
the predictions of the various OPE methods and the true
performance of the evaluation policy (estimated using a
large number of on-policy Monte-Carlo rollouts). For each
value of n and each OPE algorithm, we performed this ex-
periment 128 times and report the average sample mean
squared error over these 128 trials. All plots include stan-
dard error bars and use logarithmic scales for both the hor-
izontal and vertical axes.

Perhaps surprisingly, it is not obvious how to fairly com-
pare the different OPE algorithms. Clearly IS, PDIS, WIS,
and CWPDIS should use all of the trajectories in D, since
they do not require an approximate model. Similarly, AM
should use all of the data to construct an approximate
model. However, how should the available data be split for
DR, WDR, and the MAGIC estimators? We believe that
there are at least three reasonable answers:

1. DR, WDR, and MAGIC should be provided with ad-
ditional trajectories not available to IS, PDIS, WIS,
and CWPDIS, and these trajectories should be used to
construct an approximate model. This setup would
emulate the setting where prior domain knowledge
(not necessarily trajectories) can be used to construct
an approximate model, which IS, PDIS, WIS, and
CWPDIS ignore.

2. DR, WDR, and MAGIC should use all of the available
data, D, to construct an approximate model. They
should then reuse this same data to compute their es-
timates. This approach is reasonable, but the reuse of
data invalidates our theoretical guarantees. Still, em-
pirically we find that this approach causes DR, WDR,

and MAGIC to perform at their best.
3. DR, WDR, and MAGIC should partition D into two

sets. The first set should be used to construct the ap-
proximate model, and the second set should be used to
compute the DR, WDR, and MAGIC estimates using
the approximate model.

Since there is not necessarily a “correct” answer to which
way of performing experiments is best, we show our results
using both the second and third approach. For each domain,
the “full-data” variant uses the second approach while the
“half-data” variant uses the third approach, whereD is par-
titioned into two sets of equal size.

Since all of the domains that we use have finite state and
action sets, we use a simple maximum-likelihood approx-
imate model. That is, we predict that the probability of
transitioning from s to s′ given action a is the number of
times this transition was observed divided by the number
of times action a was taken in state s. If D contains no ex-
amples of action a being taken in state s, then we assume
that taking action a in state s always causes a transition to
the terminal absorbing state.

In this appendix, we present empirical results from four
previous importance sampling methods, definitions of
which can be found in the work of Thomas (2015b, Chap-
ter 3): importance sampling (IS), per-decision importance
sampling (PDIS), weighted importance sampling (WIS),
and consistent weighted per-decision importance sampling
(CWPDIS). We also show results for the guided importance
sampling methods DR and WDR and the purely model-
based method, AM. The legend used by all of the plots in
this appendix is provided in Figure 5.

Figure 5: The legend used by all plots in Appendix D.

D.5. ModelFail Results

Figure 1b in Section 6 depicts the result on the ModelFail
domain in the full-data setting. We reproduce this plot in
Figure 6. Here the weighted importance sampling methods,
WIS and CWPDIS, are obscured by the curve for WDR,
while the unweighted importance sampling methods, IS
and PDIS, are obscured by the curve for DR. Notice that
WDR outperforms AM by orders of magnitude and DR
by approximately an order of magnitude. Also notice that
even though the approximate model is not accurate, which
means that the control variates used by DR and WDR may
be poor, the DR and WDR estimators do not perform worse
than PDIS and CWPDIS, respectively.

In Figure 7 we reproduce this experiment in the half-data
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setting. Since AM does not use any data for importance
sampling, in both settings (half-data and full-data) it is
identical. Similarly, IS, PDIS, WIS, and CWPDIS do not
use an approximate model, so they always use all of the
data and are therefore also identical in both settings. How-
ever, DR and WDR are not the same—they use half of the
data to construct the approximate model and the other half
to compute their estimates. This means that, for DR and
WDR, the approximate model tends to be worse, and the
importance sampling estimate also tends to be worse. As
a result, the DR and WDR curves are shifted up slightly.
Still, the same general trends are evident—WDR outper-
forms AM by orders of magnitude and DR by an order of
magnitude.

D.6. ModelWin Results

Figure 1c in Section 6 depicts the result of running impor-
tance sampling and guided importance sampling methods
as well as the approximate model estimator on the Model-
Win experimental setup in the full-data setting. We repro-
duce this plot in Figure 8. Here AM has approximately an
order of magnitude lower MSE than all of the other meth-
ods, including WDR, and was our motivation for AM and
WDR using BIM.

In Figure 9 we reproduce this experiment in the half-data
setting. As with the ModelWin setup, this only hurts DR
and WDR. When there are few trajectories, it appears to
impact DR more than WDR, although this may be due to
noise (notice the large standard error bars on the DR curve
when n is small.

D.7. Gridworld Results

Figure 1a in Section 6 depicts the results of using the fourth
gridworld policy, π4, as the behavior policy and the fifth,
π5, as the evaluation policy for the Gridworld-FH domain
in the full-data setting. We reproduce it in Figure 10. No-
tice that WDR outperforms all other methods by at least an
order of magnitude.

In Figure 11 we reproduce this experiment in the half-data
setting. As before there is little change, except that the
DR and WDR curves shift up. WDR remains the best-
performing estimator, by approximately an order of mag-
nitude.

Next we reproduced Figures 10 and 11 for Gridworld-TH
as opposed to Gridworld-FH. The results are in Figures 12
and 13 respectively. Notice that, when given the true hori-
zon, AM excels. In the full-data setting DR and WDR both
lie directly on top of the curve for AM. This makes sense
because the transition function and reward function are de-
terministic, and so, given the way that we constructed our
approximate model, both methods degenerate to exactly
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Figure 6: ModelFail, full-data.
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Figure 7: ModelFail, half-data.
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Figure 8: ModelWin, full-data.
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Figure 9: ModelWin, half-data.
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Figure 10: Gridworld-FH, full-data, π4 behavior policy, π5

evaluation policy.
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Figure 11: Gridworld-FH, half-data, π4 behavior policy, π5

evaluation policy.

AM. In the half-data setting DR and WDR lag slightly be-
hind the curve for AM since they can only use half as much
data.

Next we reproduced these four figures using the first grid-
world policy, π1, as the behavior policy and the second, π2,
as the evaluation policy. Whereas π4 and π5 are nearly de-
terministic and produce long trajectories, π1 and π2 are far
from deterministic and tend to produce shorter trajectories.
Notably, the behavior policy, π1, selects actions uniformly
randomly, and so this presents a very different setting for
OPE. The results are provided in Figures 14–17. In this
example, DR and WDR perform similarly—significantly
better than the importance sampling algorithms IS, PDIS,
WIS, and CWPDIS, and marginally better than AM given
enough data. Also, when the true horizon is provided to the
model, DR and WDR again degenerate to AM.

D.8. Summary

The key takeaways from these experiments are that WDR
tends to outperform the other importance sampling estima-
tors, IS, PDIS, WIS, and CWPDIS, as well as the guided
importance sampling method, DR. None of these methods
achieved mean squared errors within an order of magnitude
of WDR’s across all of our experiments. This shows the
power of WDR as a guided importance sampling method.

However, WDR did not always win—in the ModelFail set-
ting, AM outperformed WDR by an order of magnitude.
Similar results have been observed by others. For example,
in the experiments of Jiang & Li (2015), AM tended to out-
perform DR (although they did not compare to WDR, since
it had not yet been introduced). This motivated our intro-
duction of the BIM estimator as a way to blend together
WDR and AM.

Notice that, if the transition function and reward function
are deterministic and there is no partial observability (as
in the gridworld experiments using the true horizon), then,
given the way that we constructed our approximate model,
DR and WDR degenerate to AM. This degeneration (which
is not bad, but suggests that importance sampling methods
are not necessary) would also not occur if the approximate
model used function approximation.

Lastly, notice that DR and WDR performed better in the
full-data setting than in the half-data setting. This suggests
that, in practice, one should use all of the available data
both to produce an approximate model and to compute the
DR and WDR estimates. Even though this violates the as-
sumptions used by our theoretical guarantees, this does not
mean, for example, that MAGIC will not still be a strongly
consistent estimator for the application at hand.
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Figure 12: Gridworld-TH, full-data, π4 behavior policy, π5

evaluation policy.
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Figure 13: Gridworld-TH, half-data, π4 behavior policy, π5

evaluation policy.
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Figure 14: Gridworld-FH, full-data, π1 behavior policy, π2

evaluation policy.
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Figure 15: Gridworld-FH, half-data, π1 behavior policy, π2

evaluation policy.
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Figure 16: Gridworld-TH, full-data, π1 behavior policy, π2

evaluation policy.
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Figure 17: Gridworld-TH, half-data, π1 behavior policy, π2

evaluation policy.
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E. Consistency of BIM
In this appendix we prove Theorem 1, which states that
if Assumption 1 holds, there exists at least one j ∈ J
such that g(j)(D) is a strongly consistent estimator of
v(πe), and b̂n − bn

a.s.−→ 0, and Ω̂n − Ωn
a.s.−→ 0, then

BIM(D, Ω̂n, b̂n)
a.s.−→ v(πe).

We begin by showing that BIM converges almost surely
to v(πe) if it were to use the true Ωn and bn, rather than
estimates thereof. Let j? ∈ J be an index such that
g(j?)(D)

a.s.−→ v(πe), which exists by assumption. Let
y ∈ ∆|J | be the weight vector that places a weight of one
on g(j?)(D) and a weight of zero on the other returns, such
that yᵀgJ (D) = g(j?)(D)

a.s.−→ v(πe). So, by Lemma 3
(which requires that g(j)(D) is uniformly bounded for all
j ∈ J , which holds by Assumption 1 and the fact that re-
wards and reward predictions are bounded), we have that
limn→∞MSE(yᵀg(D), v(πe)) = 0.

Recall that BIM(D,Ωn,bn) uses the weight vector, x? that
minimizes the MSE:

x? ∈ arg min
x∈∆|J |

MSE(xᵀgJ (D),Ωn,bn).

Since y ∈ ∆|J |, we have that for all n

MSE((x?)ᵀgJ (D), v(πe)) ≤ MSE(yᵀgJ (D), v(πe)).

Since limn→∞MSE(yᵀgJ (D), v(πe)) = 0 we have that

lim
n→∞

MSE((x?)ᵀgJ (D), v(πe)) ≤0,

and since MSE is always greater than or equal to zero,
we can replace the ≤ above with an equality. Since
(x?)ᵀgJ (D) = BIM(D,Ωn,bn) this can be rewritten as

lim
n→∞

MSE(BIM(D,Ωn,bn), v(πe)) = 0.

By Lemma 3 we have that this implies that
BIM(D,Ωnbn)

a.s.−→ v(πe).

So far we have shown that BIM, when using the true co-
variance matrix and bias vector, converges almost surely to
v(πe). By Lemma 5 we can therefore conclude that if b̂n−
bn

a.s.−→ 0 and Ω̂n − Ωn
a.s.−→ 0, then BIM(D, Ω̂nb̂n)

a.s.−→
v(πe).

F. Derivation of g(j)(D) using WDR
In this appendix we derive a reasonable definition for
g(j)(D), the off-policy j-step return, when using WDR for
the importance sampling estimator. We assume that the
reader is familiar with our use of control variates in Ap-
pendix B. First, consider what control variate should be
added to the j-step PDIS or CWPDIS estimator:

n∑
i=1

j∑
t=0

γtwitR
Hi
t ,

where the definition of wit determines whether this is PDIS
or CWPDIS. Reproducing our arguments from Appendix
B, we find that a reasonable definition for IS[0:j](D) is sim-
ilar to (16), but with the time index, t, summing only to
t = j and using wit terms rather than ρit terms for general-
ity:

IS[0:j](D) :=

n∑
i=1

j∑
t=0

witγ
tRHit (25)

−
n∑
i=1

j∑
t=0

γt
t∑

τ=0

wiτ r̂
πe
(
SHiτ , AHiτ , t− τ

)

+

n∑
i=1

j∑
t=0

γt
t∑

τ=0

wiτ−1r̂
πe
(
SHiτ , t− τ

)
.

Notice that this definition is not equivalent to what one
would get if (1) were modified only so that the sum goes
from time t = 0 to t = j, since that definition would in-
clude reward predictions beyond Rj in v̂ and q̂ terms. In-
stead, this definition is equivalent to the definition of (1)
if it were applied to a modified MDP where every episode
terminates after Rj is produced.

Next, consider the definition of AM[j:∞](D). We might
use importance sampling to correct for the distribution of
Sj , and the model to predict the remaining rewards:11

AM[j:∞](D) =γj
n∑
i=1

wij−1v̂
πe(SHij ) (26)

=γj
n∑
i=1

wij−1

∞∑
τ=0

γτ r̂πe(SHij , τ).

Notice that AM[j:∞] is not a purely model-based estimator
if j ≥ 0 since it uses importance weights. Furthermore, this
use of importance sampling can result in high variance. To
partially mitigate this variance, we can introduce a control

11This is just one possible definition of AM[j:∞]. We also
experimented with a definition that is purely model based:
AM[j:∞](D) :=

∑
s∈S d̂0(s)

∑∞
t=j γ

tr̂πe(s, t). Since this defi-
nition does not include any importance weights, it does not require
an additional control variate. We found that this variant performed
similarly to the definition that we present.
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variate to get a new definition:

AM[j:∞](D) =γj
n∑
i=1

wij−1

∞∑
τ=0

γτ r̂πe(SHij , τ)

− γj
n∑
i=1

wij−1

∞∑
τ=0

γτ r̂πe(SHij−1, A
Hi
j−1, τ + 1)

+ γj
n∑
i=1

wij−2

∞∑
τ=0

γτ r̂πe(SHij−1, τ + 1).

As in our derivation of the DR estimator in Appendix B, we
can repeat this process by continuing to add control variates
until the control variate is not random to get our final defi-
nition of AM[j:∞](D):

AM[j:∞](D) :=γj
n∑
i=1

wij−1

∞∑
τ=0

γτ r̂πe(SHij , τ)

− γj
j∑

k=1

n∑
i=1

wij−k

∞∑
τ=0

γτ r̂πe(SHij−k, A
Hi
j−k, τ + k)

+ γj
j∑

k=1

n∑
i=1

wij−k−1

∞∑
τ=0

γτ r̂πe(SHij−k, τ + k).

Combining the IS and AM definitions to produce a off-
policy j-step return as defined in (3) we have:

g(j)(D) := IS[0:j](D) + AM[j+1:∞](D)

=

n∑
i=1

j∑
t=0

witγ
tRHit + γj+1

n∑
i=1

wij

∞∑
τ=0

r̂πe(SHij+1, τ)

−
n∑
i=1

j∑
t=0

γt
t∑

τ=0

wiτ r̂
πe
(
SHiτ , AHiτ , t− τ

)
︸ ︷︷ ︸

(a)

+

n∑
i=1

j∑
t=0

γt
t∑

τ=0

wiτ−1r̂
πe
(
SHiτ , t− τ

)
︸ ︷︷ ︸

(b)

− γj+1
j+1∑
k=1

n∑
i=1

wij+1−k

∞∑
τ=0

γτ r̂πe(SHij+1−k, A
Hi
j+1−k, τ + k)︸ ︷︷ ︸

(c)

+ γj+1
j+1∑
k=1

n∑
i=1

wij−k

∞∑
τ=0

γτ r̂πe(SHij+1−k, τ + k)︸ ︷︷ ︸
(d)

.

Notice that the terms (a) and (b) use predictions of rewards
up until and including Rj , while the terms (c) and (d) use
predictions of rewards beginning with Rj+1 and going to
infinity. So, with algebraic manipulations we can combine
(a) and (c) to get

n∑
i=1

j∑
t=0

γtwitq̂
πe
(
SHit , AHit

)
and we can combine (b) and (d) to get:

n∑
i=1

j∑
t=0

γtwit−1v̂
πe
(
SHit

)
.

So, we have that

g(j)(D) :=

n∑
i=1

j∑
t=0

γtwitR
Hi
t +

n∑
i=1

γj+1wij v̂
πe(SHij+1)

−
n∑
i=1

j∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
.

(27)

F.1. Alternate Definition of Off-Policy j-Step Return

We experimented with an alternate definition of the off-
policy j-step return, g(j)(D), for MAGIC. In this alternate
form, the AM component does not use the historical data at
all. This results in a definition of AM[j:∞](D) that, unlike
the definition in (26), does not use any importance weights:

AM[j:∞](D) =
∑
s∈S

d̂0(s)

∞∑
t=0

γj+tr̂πe(s, j + t), (28)

where d̂0 is the approximate model’s estimate of the initial
state distribution. Since this definition of AM does not use
importance weights, it has no need for a control variate. So,
the resulting definition of g(j)(D) is:

g(j)(D) := IS[0:j](D) + AM[j+1:∞](D)

=

n∑
i=1

j∑
t=0

witγ
tRHit (29)

−
n∑
i=1

j∑
t=0

γt
t∑

τ=0

wiτ r̂
πe
(
SHiτ , AHiτ , t− τ

)
+

n∑
i=1

j∑
t=0

γt
t∑

τ=0

wiτ−1r̂
πe
(
SHiτ , t− τ

)
+
∑
s∈S

d̂0(s)

∞∑
t=0

γj+t+1r̂πe(s, j + 1 + t). (30)

Notice that (29) and the following two lines are the IS esti-
mator and its control variate as defined in (25), while (30)
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is the new definition of AM[j+1:∞](D) from (28). Empir-
ically, we found little difference between this definition of
g(j)(D) and the definition in (27), which we use in the main
body of this paper.

G. Pseudocode
Pseudocode for the MAGIC algorithm is provided in Algo-
rithm 2. It takes as inputD, πe, and an approximate model,
all of which are defined in Section 2. It also takes as input
J , which is defined in Section 7, and a positive integer κ,
that we have not defined previously. We use κ to denote
the number of times the bootstrap algorithm should resam-
ple the trajectories. In our experiments we used κ = 200.
In general, it should be made as large as possible given any
runtime constraints. Other literature has suggested that it
should be chosen to be approximately κ = 2000 (Efron &
Tibshirani, 1993; Davison & Hinkley, 1997).

Line 2 calls for the |J | × |J | matrix, Ω̂n, to be computed
according to (5).

Line 3 specifies that a structure, D, should be created. This
structure will be used to store the bootstrap resamplings,
such that Di is the ith resampling of D. That is, Di is a set
of n trajectories and the behavior policies that generated
them, sampled with replacement from D (this resampling
is done on lines 4–6).

Line 7 calls for the creation of a vector, v, to store the off-
policy j-step return for j = ∞ (recall that this is just the
WDR estimator) for each bootstrap sample, sorted into as-
cending order. Lines 8 and 9 then compute the percentile
bootstrap 10% confidence interval, [l, u], for the mean of
g(∞)(D), which we ensure includes WDR(D). For our
theoretical analysis, we add a line after this that sets

l← max

{
l,WDR(D)− ξ

√
ln(2/δ)

2n

}
(31)

and

u← min

{
l,WDR(D) + ξ

√
ln(2/δ)

2n

}
, (32)

where ξ is a bound on the range of g(i)(D). In practice,
these lines almost never change the values of l and u and
can be ignored.

Lines 10–12 then show how the bias vector can be com-
puted from the already defined terms. Notice that the order
of g(Jj)(D) and l or u does not matter since the bias term
in the decomposition of mean squared error is squared. The
order that we use facilitates a simple consistency proof for
MAGIC. Given that the covariance matrix and bias vec-
tor have been approximated, Line 13 sets x to be the so-

lution of a constrained quadratic program (in our experi-
ments we solved this quadratic program using the Gurobi
library). Finally, line 14 returns the weighted combination
of the different off-policy j-step returns (recall that gJ (D)
is defined in Section 7).

Algorithm 2 MAGIC(D)

1: Input:
• D: Historical data.
• πe: Evaluation policy.
• Approximate model that allows for computation

of r̂πe(s, a, t).
• J : The set of return lengths to consider. The

first element, J1, should be −1 and the last, J|J |,
should be∞.

• κ: The number of bootstrap resamplings.
2: Compute Ω̂n according to (5).
3: Allocate D(·) so that for all i ∈ {1, . . . , κ}, Di can

hold n trajectories.
4: for i = 1 to κ do
5: Load Di with n uniform random samples drawn

from D with replacement.
6: end for
7: v = sort

(
g(∞)(D(·))

)
8: l← min {WDR(D),v (b0.05nc)}
9: u← max {WDR(D),v (d0.95ne)}

10: for j = 1 to |J | do
11:

b̂n(j)←


g(Jj)(D)− u if g(Jj)(D) > u

g(Jj)(D)− l if g(Jj)(D) < l

0 otherwise.

12: end for
13: x← arg minx∈∆|J | xᵀ[Ω̂n + b̂nb̂

ᵀ
n]x

14: return xᵀgJ (D)

H. Consistency of MAGIC
In this section we prove Theorem 2, which states that if As-
sumptions 1 and 2 hold and∞ ∈ J , then MAGIC(D)

a.s.−→
v(πe). This result follows immediately from Theorem 1

if Ω̂n − Ωn
a.s.−→ 0 and b̂n − bn

a.s.−→ 0, since Assump-
tions 1 and 2 are sufficient to ensure that g(∞)(D) =

WDR(D)
a.s.−→ v(πe). In Appendix H.3 we show that

Ω̂n − Ωn
a.s.−→ 0, and then in Appendix H.4 we show that

b̂n − bn
a.s.−→ 0. However, first we establish two useful

properties of the off-policy j-step returns.
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H.1. Convergence of Off-Policy j-Step Return

Recall that the off-policy j-step return used by MAGIC is
given by:

g(j)(D) :=

n∑
i=1

j∑
t=0

γtwitR
Hi
t +

n∑
i=1

γj+1wij v̂
πe(SHij+1)

−
n∑
i=1

j∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
,

which can be written as:

g(j)(D) =

n∑
i=1

j∑
t=0

γtwitX
i
t +

1

n

n∑
i=1

v̂πe(SHi0 ),

where

Xi
t =RHit − q̂πe

(
SHit , AHit

)
+ γv̂πe

(
SHit+1

)
. (33)

Notice that Xi
t is a bounded random variable since rewards

and reward predictions are bounded. So, by Lemma 12 we
have that

n∑
i=1

j∑
t=0

γtwitX
i
t

a.s.−→ E

[
j∑
t=0

γtXt

∣∣∣∣∣H ∼ πe
]
. (34)

Also, since v̂πe(SHi0 ) is bounded, we have from the Kol-
mogorov strong law of large numbers that

1

n

n∑
i=1

v̂πe(SHi0 )
a.s.−→ E[v̂πe(S0)]. (35)

So, (34) and (35) we have from Property 3 that

g(j)(D)
a.s.−→ E

[
v̂πe(SH0 ) +

j∑
t=0

γtXt

∣∣∣∣∣H ∼ πe
]
.

Let cj := E
[
v̂πe(SH0 ) +

∑j
t=0 γ

tXt

∣∣∣H ∼ πe] denote this

constant value that g(j)(D) converges to.

H.2. Convergence of Component of Off-Policy j-Step
Return

Recall from (4) that the off-policy j-step return can be writ-
ten as:

g(j)(D) =

n∑
i=1

g
(j)
i (D),

where

g
(j)
i (D) :=

(
j∑
t=0

γtwitR
Hi
t

)
+ γj+1wij v̂

πe(SHij+1)

−
j∑
t=0

γt
(
witq̂

πe
(
SHit , AHit

)
− wit−1v̂

πe
(
SHit

))
.

here we will show that for any i and j, g(j)
i (D)

a.s.−→ 0.

Notice that g(j)
i (D) can be written as:

g
(j)
i (D) =

j∑
t=0

γt
ρitX

i
t∑n

k=1 ρ
k
t

=

j∑
t=0

γtY it ,

where Xi
t is as defined in (33), and

Y it :=
ρitX

i
t∑n

k=1 ρ
k
t

=
1
nρ

i
tX

i
t

1
n

∑n
k=1 ρ

k
t

Since Xi
t and ρit are bounded, we have that

limn→∞
1
nρ

i
tX

i
t = 0. Also, by Lemma 11 and Kol-

mogorov’s strong law of large numbers, we have that
1
n

∑n
k=1 ρ

k
t

a.s−→ 1. So, Y it
a.s.−→ 0 for all t and i. Further-

more, Y it is bounded since 0 ≤ ρit∑n
k=1 ρ

k
t
≤ 1 and Xi

t is

bounded. So, by Property 4, we have that g(j)
i (D)

a.s.−→ 0.

H.3. Consistency of Ω̂n

Here we establish that Ω̂n − Ωn
a.s.−→ 0. There are two

steps to this result. First we will show that limn→∞Ωn =
0—the true covariance matrix converges to the zero matrix.
We then show that Ω̂n

a.s.−→ 0 as well, which means that
Ω̂n − Ωn

a.s.−→ 0.

Recall from Appendix H.1 that g(j)(D)
a.s.−→ cj . We can

write

Ωn(i, j) =E
[
(g(i)(D)−E[g(i)(D)])(g(j)(D)−E[g(j)(D)])

]
=E[Yn], (36)

where

Yn :=
(
g(i)(D)−E[g(i)(D)]

)(
g(j)(D)−E[g(j)(D)]

)
.

Recall that g(j)(D)
a.s.−→ cj . By Lemma 2 we therefore

have that for all j, limn→∞E[g(j)(D)] = cj . So, by the
continuous mapping theorem,

Yn
a.s.−→(ci − ci)(cj − cj)
=0.

So, by applying Lemma 2 to (36) we have that
limn→∞ Ωn(i, j) = limn→∞E[Yn] = 0.



Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning

Next we show that Ω̂n
a.s.−→ 0. First, recall from Appendix

H.2 that for all j ∈ J and k ∈ {1, . . . , n},

g
(j)
k (D)

a.s.−→ 0.

So, by Property 3 we have that ḡ(j)
k (D)

a.s.−→ 0 as well. So,
g

(j)
k (D) − ḡ

(j)
k (D)

a.s.−→ 0, and so by Property 3 and the
definition of Ω̂n, we have that

Ω̂n(i, j)
a.s.−→ 0

for all (i, j) ∈ J 2.

H.4. Consistency of b̂n

Here we show that b̂n − bn
a.s.−→ 0. We have from the

definitions of b̂n, l, and u that:

b̂n(j)− bn(j) ≤g(Jj)(D)− l −E[g(Jj)(D)] + v(πe)

(37)

and

b̂n(j)− bn(j) ≥g(Jj)(D)− u−E[g(Jj)(D)] + v(πe).
(38)

We will show that both of the right hand sides above con-
verge almost surely to zero, which, by Lemma 4, implies
that b̂n(j)−bn(j) converges almost surely to zero as well.

First consider (37). We have from Appendix H.1 that 1)
g(Jj)(D)

a.s.−→ cJj . So, by Lemma 2 we have that 2)
limn→∞E[g(Jj)(D)] = E[cJj ] = cJj . We also have
that u − l ≤ 1√

n

√
2ξ2 ln(2/δ), by (31) and (32). Since

WDR(D) ∈ [l, u], we have that

|WDR(D)− l| ≤ 1√
n

√
2ξ2 ln(2/δ).

Since ξ is a constant, the right side is a sequence of con-
stants (not random variables) that converges to zero. The
left side is positive and less than the right, and so it too
must converge (surely, not just almost surely) to zero:
limn→∞ |WDR(D)− l| = 0. So,

Pr( lim
n→∞

l = v(πe)) = Pr( lim
n→∞

l + WDR(D)− l = v(πe))

= Pr( lim
n→∞

WDR(D) = v(πe))

=1,

where the last step comes from Theorem 11. This means
that 3) l a.s.−→ v(πe).

Combining 1), 2), and 3), we have that the right side of
(37) converges almost surely to zero. This same argument,
using the upper bound, u, rather than the lower bound, l,
shows that the right side of (38) converges almost surely to
zero as well, and so we can conclude.

I. Extended Empirical Studies (MAGIC)
Here we present detailed results concerning the MAGIC es-
timator. These results will use the same three domains and
two experimental setups (full-data and half-data) that were
introduced in Appendix D, as well as one additional do-
main, which we call the Hybrid domain. We begin by intro-
ducing the Hybrid domain, we then discuss minor changes
to the experimental setup and then present results.

I.1. The Hybrid Domain

The purpose of this domain is to showcase a common prob-
lem type: domains where early in a trajectory there is par-
tial observability, but as time passes within each trajectory,
the partial observability decays. This happens, for exam-
ple, in robotics applications where there may be some un-
certainty about the position or pose of a robot. However,
as the trajectory progresses the robot may be able to better
localize itself, removing or diminishing the uncertainty.

We emulate this setting by concatenating the ModelFail
and ModelWin domains. That is, the agent begins in the
ModelFail domain. Whenever it would transition to the ab-
sorbing state, it instead transitions to the initial state of the
ModelWin domain.

I.2. Experimental Setup

We performed these experiments in the same way as those
in Appendix D, except that we compared different estima-
tors. Specifically, we introduce curves for the MAGIC es-
timator, but remove the curves for the poorly-performing
importance sampling estimators, IS, PDIS, WIS, and CW-
PDIS. So, the plots contain curves for DR, WDR, AM,
and MAGIC. The legend used by all of the plots in this
appendix is provided in Figure 18.0.01

0.1

1

10

100

1000

10000

1 10 100 1,000 10,000 100,000

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

Number of Episodes, n

DR AM WDR MAGIC MAGIC-B

Figure 18: The legend used by all plots in Appendix I.

Also, for the hybrid domain we included a curve for binary
MAGIC (MAGIC-B), which uses J = {−1,∞}. Whereas
MAGIC blends between AM and WDR using off-policy j-
step returns of various lengths, binary MAGIC only places
weights on AM and WDR. Our comparison to MAGIC-
B shows the importance of including the off-policy j-step
returns rather than merely trying to switch between, or di-
rectly weight, AM and WDR.

Lastly, since all of the domains have finite horizons, we
used J = {−1, . . . , L} for MAGIC. This means that it
uses all of the possible off-policy j-step returns.
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I.3. ModelFail Results

Figure 2b in Section 9 depicts the results for the ModelFail
domain in the full-data setting. We reproduce this plot in
Figure 19. In Figure 20 we show the results for ModelFail
in the half-data setting. There is little difference between
the plots—in both cases MAGIC properly tracks WDR, so
that both WDR and MAGIC outperform AM an DR by at
least an order of magnitude for most n.

I.4. ModelWin Results

Figure 2c in Section 9 depicts the results for the ModelWin
domain in the full-data setting. We reproduce this plot in
Figure 21. In Figure 22 we show the results for ModelFail
in the half-data setting. In both cases MAGIC tracks AM,
although it drifts away a little as n increases. This suggests
that there may be room for improvement in our estimates
of Ωn and bn. However, also notice that due to the loga-
rithmic scale, the difference between MAGIC and AM is
small in comparison to the distance between MAGIC and
DR.

I.5. Gridworld Results

Figures 23 through 30 depict the results for the Gridworld-
FH and Gridworld-TH domains in both the full and half-
data settings. The same general trends are visible. First,
WDR tends to outperform DR, sometimes by an order of
magnitude. Also, MAGIC tends to track WDR, since in
these experiments it is usually the best-performing algo-
rithm. Lastly, for the Gridworld-TH, full-data setting, DR,
WDR, and MAGIC all degenerate to AM, while in the
Gridworld-TH, half-data setting they degenerate to approx-
imately AM using half as much data.

I.6. Hybrid Results

Last, but not least, Figures 31 and 32 show the results on
the Hybrid domain in the full-data and half-data settings,
respectively. Notice that in MAGIC significantly outper-
forms all other methods, including WDR and AM. MAGIC
also outperforms MAGIC-B, which shows the importance
of using off-policy j-step returns for various values of j.

I.7. Summary

Overall, MAGIC acts as desired—it tracks WDR or AM,
whichever is better for the application at hand. However,
notice that it does not do this perfectly, particularly when
there is little data available. This is likely because when
there is little data it is difficult to estimate Ωn, and the con-
fidence interval used when estimating bn will be loose. In
some cases, even when there is a large amount of data,
MAGIC struggles to properly track AM. However, this
tends to be when both methods perform well, and may be
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Figure 19: ModelFail, full-data.
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Figure 20: ModelFail, half-data.
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Figure 21: ModelWin, full-data.
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Figure 22: ModelWin, half-data.
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Figure 23: Gridworld-FH, full-data.
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Figure 24: Gridworld-FH, half-data.
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Figure 25: Gridworld-TH, full-data.
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Figure 26: Gridworld-TH, half-data.
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Figure 27: Gridworld-FH, full-data. p1p2
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Figure 28: Gridworld-FH, half-data. p1p2
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Figure 29: Gridworld-TH, full-data. p1p2
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Figure 30: Gridworld-TH, half-data. p1p2
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Figure 31: Hybrid, full-data.
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Figure 32: Hybrid, half-data.



Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning

due to an increased difficulty of determining which method
to favor when they both are improving rapidly with n.

We also showed in Figures 31 and 32 an example where
MAGIC outperformed MAGIC-B by an order of magni-
tude, and all previous methods (including DR) by 2–3 or-
ders of magnitude. This exemplifies 1) the importance
of blending between importance sampling methods and
purely model-based estimators using off-policy j-step re-
turns, as opposed to selecting between or directly weight-
ing WDR and AM and 2) the power of MAGIC relative to
existing estimators.

J. Future Work
Several avenues of future work remain. Good performance
of MAGIC is contingent on our ability to efficiently es-
timate Ωn and bn, and so improved estimators for these
terms could yield even better performance. For instance, if
the sample mean importance weight is near zero, then the
importance sampling estimators have high variance that is
not captured by the sample covariance matrix that we use.

Another possible avenue of future work would be to con-
sider how MAGIC could be applied when our fundamen-
tal assumptions are violated. For example, what should be
done if the transition and reward functions of the MDP are
nonstationary? Can our estimators be extended to the av-
erage reward setting? What should be done if the behavior
policies are not known exactly? If the approximate model
is not provided initially, but constructed from the same data
that is used to produce the DR, WDR, or MAGIC estimates,
will DR, WDR, and MAGIC remain strongly consistent es-
timators? If there are multiple approximate models avail-
able, is there a way to detect which one will work best with
DR, WDR, and MAGIC?


