
SAFE REINFORCEMENT LEARNING

A Dissertation Presented

by

PHILIP S. THOMAS

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2015

College of Information and Computer Sciences

c© Copyright by Philip S. Thomas 2015

All Rights Reserved

SAFE REINFORCEMENT LEARNING

A Dissertation Presented

by

PHILIP S. THOMAS

Approved as to style and content by:

Andrew G. Barto, Chair

Sridhar Mahadevan, Member

Shlomo Zilberstein, Member

Weibo Gong, Member

James Allan, Chair
College of Information and Computer Sciences

ABSTRACT

SAFE REINFORCEMENT LEARNING

SEPTEMBER 2015

PHILIP S. THOMAS

B.Sc., CASE WESTERN RESERVE UNIVERSITY

M.Sc., CASE WESTERN RESERVE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

This dissertation proposes and presents solutions to two new problems that fall

within the broad scope of reinforcement learning (RL) research. The first problem,

high confidence off-policy evaluation (HCOPE), requires an algorithm to use historical

data from one or more behavior policies to compute a high confidence lower bound on

the performance of an evaluation policy. This allows us to, for the first time, provide

the user of any RL algorithm with confidence that a newly proposed policy (which

has never actually been used) will perform well.

The second problem is to construct what we call a safe reinforcement learning

algorithm—an algorithm that searches for new and improved policies, while ensuring

that the probability that a “bad” policy is proposed is low. Importantly, the user of

the RL algorithm may tune the meaning of “bad” (in terms of a desired performance

baseline) and how low the probability of a bad policy being deployed should be, in

order to capture the level of risk that is acceptable for the application at hand.

iv

We show empirically that our solutions to these two critical problems require sur-

prisingly little data, making them practical for real problems. While our methods

allow us to, for the first time, produce convincing statistical guarantees about the

performance of a policy without requiring its execution, the primary contribution of

this dissertation is not the methods that we propose. The primary contribution of

this dissertation is a compelling argument that these two problems, HCOPE and safe

reinforcement learning, which at first may seem out of reach, are actually tractable.

We hope that this will inspire researchers to propose their own methods, which im-

prove upon our own, and that the development of increasingly data-efficient safe rein-

forcement learning algorithms will catalyze the widespread adoption of reinforcement

learning algorithms for suitable real-world problems.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Contributions . 2
1.2 Layout . 3

2. BACKGROUND AND RELATED WORK . 5

2.1 Notation . 5
2.2 Environments of Interest . 6
2.3 Partially Observable Markov Decision Processes (POMDPs) and

Markov Decision Processes (MDPs) . 6
2.4 Limitations of the POMDP Framework . 14
2.5 Gridworld . 15
2.6 Related Work . 18

2.6.1 Control Theoretic Approaches . 18
2.6.2 Constraints on Policy Space . 19
2.6.3 Unintended Consequences of Goal-Directed Behavior 20
2.6.4 Probably Approximately Correct (PAC) Algorithms 21

3. IMPORTANCE SAMPLING FOR OFF-POLICY
EVALUATION . 22

3.1 Background . 24

3.1.1 Almost Sure Convergence . 24
3.1.2 Unbiased and Consistent Estimators . 25

vi

3.1.3 Laws of Large Numbers . 27

3.2 Problem Description . 28
3.3 Lemmas and Corollaries . 30
3.4 Overview of Importance Sampling Approaches . 33
3.5 Importance Sampling (IS) . 34

3.5.1 Upper and Lower Bounds on the IS Estimator 38
3.5.2 Consistency of IS Estimator . 39
3.5.3 Example: Gridworld . 40

3.6 Per-Decision Importance Sampling . 42

3.6.1 Upper and Lower Bounds on the PDIS Estimator 44
3.6.2 Consistency of PDIS Estimator . 45
3.6.3 Example: Gridworld . 46

3.7 Normalized Per-Decision Importance Sampling (NPDIS)
Estimator . 47

3.7.1 Upper and Lower Bounds on the NPDIS Estimator 50
3.7.2 Consistency of NPDIS Estimator . 50
3.7.3 Example: Gridworld . 51

3.8 Weighted Importance Sampling (WIS) Estimator . 52
3.9 Weighted Per-Decision Importance Sampling (WPDIS) Estimator 56
3.10 Consistent Weighted Per-Decision Importance Sampling (CWPDIS)

Estimator . 57
3.11 Deterministic Behavior Policies . 61
3.12 Empirical Comparison . 64
3.13 Discussion and Conclusion . 75

4. HIGH CONFIDENCE OFF-POLICY EVALUATION 77

4.1 Problem Description . 79
4.2 Related Work . 81

4.2.1 Off-Policy Evaluation . 81
4.2.2 Other Methods for High-Confidence Off-Policy Evaluation 82
4.2.3 Finite-Sample Bounds for Off-Policy Evaluation 83

4.3 Exact Concentration Inequalities . 85
4.4 Approximate Concentration Inequalities . 92
4.5 Pseudocode for Exact and Approximate Concentration

Inequalities . 97
4.6 Approach . 100

vii

4.7 Using Clipped Importance Weights . 104
4.8 A New Concentration Inequality . 105
4.9 Pseudocode . 112

4.9.1 Other Uses of the CUT Inequality . 113
4.9.2 High Confidence Upper Bounds . 114

4.10 Experiments . 115

4.10.1 Gridworld . 116
4.10.2 Mountain Car . 128
4.10.3 Digital Marketing Domain . 131
4.10.4 Risk Quantification Plot . 134

4.11 Discussion and Conclusions . 138

5. SAFE POLICY IMPROVEMENT . 141

5.1 Problem Description . 142
5.2 Related Work . 145
5.3 Predicting Lower Bounds . 147
5.4 Safe Policy Improvement (SPI) . 150

5.4.1 Testing Safety of Multiple Policies . 150
5.4.2 Algorithm . 152

5.5 Multiple Policy Improvements: Daedalus . 157
5.6 Experiments . 161
5.7 Discussion and Conclusions . 167

6. CONCLUSION AND FUTURE WORK . 169

6.1 Future Work . 171

BIBLIOGRAPHY . 175

viii

LIST OF TABLES

Table Page

3.1 Summary of properties of the importance sampling methods that we
discuss. 34

4.1 Summary of properties of the exact and approximate concentration
inequalities discussed in this dissertation. 96

4.2 The combinations of † and ‡ that we include in our plots. The first
column corresponds to the label in the legends of future plots.
The second and third columns are the importance sampling and
concentration inequality methods that are used. The four column
specified whether or not the method is an exact or approximate
HCOPE method. 115

ix

LIST OF FIGURES

Figure Page

2.1 Diagram of how the agent and environment interact. 7

2.2 Graphical depiction of the gridworld. Each square is a possible
observation, and the initial and terminal positions are marked.
The reward for entering each state is −1 except for when the
agent enters the positions that are otherwise labeled. The colors
represent positions that result in larger and smaller than normal
rewards. 16

3.1 Empirical estimate of the return distributions of the behavior (left)
and evaluation (right) policies for the gridworld. These estimates
were formed by sampling 500,000 on-policy trajectories and
plotting a histogram of their returns. The problem that we are
faced with is to estimate the expected value of the random
variable on the right given samples of the random variable on the
left. 35

3.2 Empirical distribution of importance weighted returns when
evaluating the evaluation policy for the gridworld using 500,000
trajectories from the behavior policy. The plot on the right is
zoomed in to provide more detail around the region containing
most of the probability mass. The first column is cut off by the
limit of the vertical axis—it dwarfs the others with a value of
357,160. 40

3.3 Empirical distribution of PDIS estimators when evaluating the
evaluation policy for the gridworld using 500,000 trajectories from
the behavior policy. The plot on the right is zoomed in to provide
more detail around the region containing most of the probability
mass. The tallest column is not cut off in this plot and has a
value of 57,167. 47

x

3.4 Empirical distribution of NPDIS estimators when evaluating the
evaluation policy for the gridworld using 500,000 trajectories from
the behavior policy. The plot on the right is zoomed in to provide
more detail around the region containing most of the probability
mass. The first column is cut off by the limit of the vertical
axis—it dwarfs the others with a value of 212,131. 52

3.5 Expected return (left vertical axis) and expected unnormalized return
(right vertical axis) for each of the five policies that we consider.
These values were computed for each policy as the average
(on-policy) sample return from 100,000 trajectories. We treat
these values as ground truth (standard error bars are too small to
be visible). 66

3.6 Behavior policy = π1 and evaluation policy = π1. 67

3.7 Behavior policy = π1 and evaluation policy = π2. 67

3.8 Behavior policy = π2 and evaluation policy = π3. 68

3.9 Behavior policy = π3 and evaluation policy = π4. 68

3.10 Actual estimates from the IS and NPDIS estimators using πb = π3
and πe = π4. 70

3.11 Actual estimates from the PDIS, WIS, and CWPDIS estimators
using πb = π3 and πe = π4. 72

3.12 Behavior policy = π4 and evaluation policy = π5. 72

3.13 Behavior policy = π2 and evaluation policy = π1. 73

3.14 Behavior policy = π3 and evaluation policy = π2. 73

3.15 Behavior policy = π4 and evaluation policy = π3. 74

3.16 Behavior policy = π5 and evaluation policy = π4. 75

xi

3.17 Decision diagram for deciding which importance sampling variant to
use. The recommended method is presented in a gray-filled box in
bold. The other applicable methods are listed in order of
preference thereunder (in italics). The top node corresponds to
whether or not an unbiased estimator is required. The second
level nodes, “normalized discounted return,” correspond to
whether R is defined to be the normalized discounted return (see
(2.5)). The decision nodes labeled “Assumption 1” are asking
whether Assumption 1 holds. Even if it does not, you may select
the answer “yes” if you are not concerned with error introduced
by this false assumption. The “HCOPE” decision node denotes
whether or not the estimator will be used for HCOPE (the topic
of the next chapter). If it will be, then the estimator should be
lower bounded by a number close to ρ(πe) (which is not the case
with PDIS). The dotted red paths are the two that will be used in
the subsequent chapters—they use CWPDIS when unbiased
estimates are not required and NPDIS when they are. 76

4.1 Empirical error rates when estimating a 95% confidence lower-bound
on the mean of a gamma distribution (shape parameter k = 2 and
scale parameter θ = 50) using TT, BCa, and also the two exact
concentration inequalities (AM and CUT) that are applicable to
random variables with no upper bound (they both perform
identically in this plot, and so are represented by a single line,
labeled as “CI”). The gamma distribution used has a heavy
upper-tail similar to that of importance weighted returns. The
logarithmically scaled horizontal axis is the number of samples
used to compute the lower bound (from 5 to 2000) and the
vertical axis is the mean empirical error rate over 1,000,000 trials.
This error rate is the number of times the lower bound on the
mean was greater than the true mean, divided by the number of
samples. The error bars show the sample standard deviation.
Note that CI is overly conservative, with zero error in all the trials
(it is on the x-axis). The t-test is initially conservative, but
approaches the allowed 5% error rate as the number of samples
increases. BCa has an error rate above 5%, but remains close to
5% throughout most of the plot. 96

xii

4.2 This figure uses samples from the gamma distribution with shape
parameter k = 2 and scale parameter θ = 50, which has a true
mean of 100. The plot shows the 95% confidence lower bound on
the mean produced by the CUT inequality using n samples for
various c (specified on the horizontal axis). For readers without
color, notice that the thinner curves correspond to larger n.
Notice the logarithmic scale of the horizontal axis. For any n, an
optimal value of c is one that causes the curve to take its largest
value. 110

4.3 Lower bounds on ρ(π2) using trajectories from π3. 118

4.4 Lower bounds on ρ(π3) using trajectories from π2. 119

4.5 Lower bounds on ρ(π5) using trajectories from π4. 120

4.6 Lower bounds on ρ(π2) using trajectories from π3. 121

4.7 Lower bounds on ρ(π3) using trajectories from π4. 122

4.8 Empirical error rate when using πb = π1 and πe = π2. 124

4.9 Empirical error rate when using πb = π2 and πe = π3. 125

4.10 Empirical error rate when using πb = π4 and πe = π5. 125

4.11 Empirical error rate and empirical severe error rate when using
πb = π3 and πe = π2. 126

4.12 Empirical error rate and empirical severe error rate when using
πb = π4 and πe = π3. 127

4.13 Graphical depiction of the mountain car domain. 129

4.14 Exact and approximate HCOPE results on the mountain car
domain. 130

4.15 Empirical error rates on the mountain car domain. 131

4.16 Exact and approximate HCOPE results on the digital marketing
domain. 135

4.17 Empirical error rates on the digital marketing domain. 136

xiii

4.18 Risk quantification plot for the digital marketing domain, generated
using HCOPENPDIS

CUT with 100,000 trajectories. The 95% confidence
lower bound on ρ(πe) is 0.00447. The vertical red line at 0.00432
denotes the observed CTR of πb, and the vertical green line at
0.00484 denotes the prediction from CWPDIS of the CTR of
πe. 136

4.19 Figure 4.18, modified to also show the “true” CTR of πe (the vertical
blue at 0.004957). 137

4.20 Decision diagram for deciding which variant of HCOPE to use. The
recommended method is presented in a gray-filled box in bold.
The top node corresponds to whether or not an exact HCOPE
method is required (yes) or whether an approximate HCOPE
method is acceptable (no). The second level nodes, “normalized
discounted return,” correspond to whether R is defined to be the
normalized discounted return (see (2.5)). The decision nodes
labeled ? denote the question: “Is it acceptable if the approximate
HCOPE method returns lower bounds on
max{ρ(πe),max{ρ(πi)}nDi=1}?” That is, if the performance of the
evaluation policy is worse than that of the best behavior policy, is
it acceptable if the lower bounds produced by the approximate
HCOPE method are lower bounds on the performance of the best
behavior policy? If BCa is too computationally expensive (even
using smaller values of B in the BCa pseudocode), then BCa can
be replaced with TT in this diagram. The dotted red paths are
the two that will be used in the next chapter—we will use
CWPDIS with BCa for approximate HCOPE and NPDIS with
the CUT inequality for exact HCOPE. 140

xiv

5.1 This diagram depicts influences as Daedalus2†,?‡ runs. The line
numbers that each part of the diagram corresponds to are
provided at the bottom of the figure. First the initial policy, π∗0, is
used to generate sets of trajectories, D1

train and D1
test, where

superscripts denote the iteration. Next D1
train is used to select the

candidate policy, π1
c . Next, π1

c is tested for safety using the
trajectories in D1

test (this safety test occurs within line 8 of
Algorithm 5.7, on line 2 of SPI†,?‡). The result of the safety test
influences which policy, π∗1, will be executed next—it will either
be π∗0 or π1

c , depending on the outcome of the safety test within
SPI†,?‡ . The policy π∗1 is then used to produce D2

train and D2
test as

before. Next, both D1
train and D2

train are used to select the next
candidate policy, π2

c . This policy is then tested for safety using
the trajectories in D1

test and D2
test. The result of this test

influences which policy, π∗2, will be executed next, and the process
continues. Notice that D1

test is used when testing π2
c for safety (as

indicated by the dashed blue line) even though it also influences
π2
c (as indicated by the dotted red path). This is akin to

performing an experiment, using the collected data (D1
test) to

select a hypothesis (π2
c is safe), and then using that same data to

test the hypothesis. Daedalus†,?‡ does not have this problem
because the dashed blue line is not present. 160

5.2 Performance of SPI†,?‡ on the simplified gridworld domain, where
† = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and
? ∈ {None, k-fold}. 163

5.3 Performance of SPI†,?‡ on the mountain car domain, where
† = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and
? ∈ {None, k-fold}. 163

5.4 Performance of SPI†,?‡ on the digital marketing domain, where
† = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and
? ∈ {None, k-fold}. Due to runtime limitations, this plot was only
averaged over 10 trials and the variants that use k-fold
cross-validation were not run for n > 30,000. 164

5.5 Performance of Daedalus2†,?‡ on the simplified gridworld domain,
where † = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa,
and ? ∈ {None, k-fold}. 165

5.6 Performance of Daedalus2†,?‡ on the mountain car domain, where
† = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and
? ∈ {None, k-fold}. 165

xv

5.7 Performance of Daedalus2†,?‡ on the digital marketing domain,
where † = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa,
and ? ∈ {None, k-fold}. Due to runtime limitations, this plot was
only averaged over 10 trials. 166

xvi

CHAPTER 1

INTRODUCTION

As our ability to construct intelligent machines improves, so too must our ability

to ensure that they are safe. Advances in artificial intelligence over the past few

decades have resulted in an abundance of proposed and real applications that are

both increasingly beneficial and risky. Consider, for example, self driving cars (Kim

et al., 2013), machines that guide medical policy and practice (Thapa et al., 2005),

and general purpose robotic workers (Haddadin et al., 2011), all of which have the

potential to revolutionize our lives for the better. The large positive impacts of these

applications comes with an increased necessity for safety measures since the failure

of any of these intelligent systems could be catastrophic.

This dissertation focuses on constructing safe intelligent machines that learn how

to make sequences of decisions that result in desirable outcomes. For example, the

decisions could encode how much energy to give to a motor in a robot at each moment

to keep the robot balanced (Kuindersma et al., 2013), the sequence of interventions

that best control the spread of forest fires (Houtman et al., 2013), or how much of a

drug to give patients to optimize their prognosis (Moore et al., 2010). Reinforcement

learning (RL) research (Sutton and Barto, 1998) studies such (safe or unsafe) intel-

ligent decision-making machines, called agents, which learn from their experiences.

This dissertation focuses on RL applications where some decision-making mecha-

nism, called a policy, is already in use. This policy makes decisions, and the outcomes

of those decisions are observed and recorded. RL algorithms can analyze this histor-

ical data to propose a new policy that may be better than the policy currently being

1

used. In order to define what makes an RL algorithm safe in this context, consider

a motivating example: optimization of a policy for the treatment of a disease that

is sometimes terminal. Doctors currently implement a closed-loop treatment policy

when they decide how to treat a patient. Analysis of data from previous cases could

be used to propose a new and improved treatment policy. In this example, what

would make a policy “safe” to deploy? We contend that the new policy should be

deemed safe if and only if it is guaranteed with high confidence to be at least as

“good” as the current policy, where the definition of “good” will be formalized later.

This definition of safety extends beyond this one example to any other application

where some policy is currently being used and the deployment of a worse policy

could be costly or dangerous. For the remainder of this dissertation, unless otherwise

specified, we call an RL method safe if it guarantees with high confidence

that every change that it makes to the decision-making mechanism (policy)

will be an improvement.

There are many other notions of safety in RL research. For example, even though

our methods give probabilistic guarantees that a new policy is an improvement over

the current policy, how can we ensure that our formal definition of what makes a policy

“good” does not result in an “improved” policy that has less desirable behavior? We

discuss this and other notions of safety in Section 2.6.

1.1 Contributions

This dissertation has three chapters that contain contributions: Chapters 3, 4,

and 5. The primary contributions of Chapter 3 are the derivation of the consistent

weighted per-decision importance sampling (CWPDIS) estimator for off-policy evalu-

ation, and proofs that several similar estimators are strongly consistent estimators of

the performance of the evaluation policy even if there are multiple behavior policies

(but if an additional restriction is satisfied).

2

The primary contributions of Chapter 4 are the formalization of the exact and

approximate HCOPE problems, the construction of exact and approximate HCOPE

methods, and the derivation of a concentration inequality, called the collapsed upper

tail (CUT) inequality, that is particularly well suited to HCOPE.

The primary contributions of Chapter 5 are the definition of safe reinforcement

learning algorithms, and the construction of the first safe batch and incremental

reinforcement learning algorithms.

1.2 Layout

The remainder of this dissertation is structured as follows:

• Chapter 2 (Background and Related Work): This chapter provides background

information that is relevant to all subsequent chapters, and a review of work

that is related to the overarching concept of ensuring safety in reinforcement

learning research.

• Chapter 3 (Importance Sampling for Off-Policy Evaluation): This chapter dis-

cusses different estimators of the performance of an evaluation policy using

historical data from one or more behavior policies. This is the most techni-

cal chapter, and although the methods it derives improve the performance of

subsequent algorithms, the subsequent chapters remain coherent if this chap-

ter is skipped (if the reader is familiar with ordinary importance sampling for

reinforcement learning).

• Chapter 4 (High Confidence Off-Policy Evaluation, HCOPE): This chapter

presents and proposes a solution to the HCOPE problem, and is the heart

of this dissertation.

• Chapter 5 (Safe Policy Improvement): This chapter formalizes the notion of safe

reinforcement learning and proposes batch and incremental safe reinforcement

3

learning algorithms. These algorithms build upon the foundation laid in the

previous chapter.

• Chapter 6 (Conclusion and Future Work): This brief chapter summarizes the

work and proposes avenues for future work.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents background and discussion of related work that is relevant

to all of the chapters of this dissertation and its overarching message of safety in RL.

Several later chapters contain additional specialized background and related work

sections.

2.1 Notation

The notation is this dissertation is standardized as follows. Sets are written in

calligraphic capital letters, e.g., X . Elements of sets are lowercase letters that are

typically similar to the set they belong to, e.g., x ∈ X . We write {x ∈ X : A(x)}

to denote the set of elements in X that satisfy some Boolean statement A(x). When

it is inconvenient to specify the set X (but its definition is clear), we sometimes use

the shorthand {x : A(x)}. If X ⊆ Z and Y ⊆ Z, then we write X \ Y to denote

{z ∈ Z : z ∈ X , z 6∈ Y}, where we use a comma to denote the Boolean operator and.

We also write {Xi}ni=1 to denote the set {X1, . . . , Xn}.

Whereas we use brackets to denote a set, we use parentheses to denote ordered

collections of objects (sequences or tuples). For example, (x, y) is the ordered pair

with the first element equal to x and the second element equal to y. We write (Xi)
n
i=1

to denote (X1, . . . , Xn).

Random variables are denoted by capital letters, e.g., X, and their instantiations

by lowercase letters, e.g., x. We denote by supp p the support of a probability mass

function p, i.e., {x : p(x) 6= 0}.

5

Also, in some cases we write
∑

x∈X . . . to denote the sum where x takes every

value in the set X . However, we also sometimes use the shorthand
∑

x to denote the

same thing when the set X is clear from context but inconvenient to specify.

Lastly, we use A := B to denote that A is defined to be equal to B. If an equation

is too long for one line we split it across two lines. We use × to denote that scalar

multiplication has been split across two lines.

2.2 Environments of Interest

In this section we discuss our decision to model the environment as a partially

observable Markov decision process (POMDP) rather than as a Markov decision pro-

cess (MDP), even though we are primarily interested in MDPs. Both MDPs and

POMDPs are defined formally in the following section (Section 2.3).

Real world problems that are not MDPs are often shoehorned into the MDP

formulation (by ignoring partial observability and non-Markovian dynamics) to allow

for the application of methods designed for MDPs (Thomas, 2009, pages 26–27).

When presenting safe algorithms, if we adopt the MDP formulation, this could be a

source of error that is not accounted for by our analysis. Even though we are primarily

interested in problems that approximately fit the MDP framework, we must therefore

derive our methods and analyze them using the more general POMDP formulation.

This shows that our methods, which are intended for MDPs, are valid even when the

real problem being solved does not precisely fit the definition of an MDP, but does

fit the more general POMDP formulation.

2.3 Partially Observable Markov Decision Processes (POMDPs)

and Markov Decision Processes (MDPs)

We are interested in sequential decision problems : problems where an agent must

optimize a sequence of decisions that it makes. A diagram of this paradigm is provided

6

in Figure 2.1. In this diagram the agent is the machine or algorithm that we design,

the environment is the subset of the universe that is relevant to the agent, and the

sensor is a mechanism that allows the agent to measure properties of the environment.

Agent
(π)

Environment
(T)

Action, a

Sensor
(Ω)

State, s

Observation, o

Reward, r

Figure 2.1. Diagram of how the agent and environment interact.

The process begins when the agent makes an observation, o, about the state, s,

of the environment using some sort of sensor. The workings of this sensor will later

be described using the symbol Ω. For example, this observation could be a force

reading and image from a force sensor and camera on a robot, or the description of

the symptoms of a patient as reported by a doctor or nurse. The agent then makes

a decision about which action, a, to select (e.g., what ability of the robot to execute

next, or what treatment to recommend for the patient). Later we will use the symbol

π to denote the agent’s mechanism for making this decision. The action causes the

environment to transition to some new state according to dynamics that we will later

associate with the symbol T . This transition also results in a scalar reward, r, that

is some measure of how “good” the current state of the environment is.

This process repeats some finite number of times, after which it terminates. We

call the sequence of states, observations, actions, and rewards that result from re-

peated interaction of the agent with the environment a trajectory. The agent’s goal

is to determine how to select actions so as to maximize the expected total reward on

any future trajectories.

7

We formalize this notion of a sequential decision problem as a partially observable

Markov decision process (POMDP). Let t denote the iteration or time step, which

begins with t = 1. Formally, we define a POMDP to be a tuple (S,A,O, T, dS1 ,Ω,R),

where:

1. S is the finite set of possible states that the environment can be in, and is called

the state set. We write s to denote an element of S and St to denote the state

that occurs at time t, which is a random variable. The agent is not provided

with S (it does not know what states are possible a priori), nor is it provided

with St.

2. A is the finite set of actions that the agent can select from, and is called the

action set. We write a to denote an element of A and At to denote the action

that occurs at time t, which is a random variable. We assume that the agent is

provided with A (it knows what actions are possible a priori) and it is aware

of which action, At, it has chosen at each time step.

3. O is the finite set of possible observations that the agent can make about the

environment, and is called the observation set. We write o to denote an element

of O and Ot to denote the observation that occurs at time t, which is a random

variable. The agent is provided with O and also observes Ot.

4. We write Ht to denote the complete history of states, observations, actions, and

scalar rewards up until (and including) time t:

Ht := (S1, O1, A1, R1, S2, O2, A2, R2, . . . , St, Ot, At, Rt).

Let Ht be the set of all possible histories of length t. For brevity we also define

Ξt to be the data at time t:

Ξt := (St, Ot, At, Rt), (2.1)

8

so that Ht = (Ξi)
t
i=1. We write ξt := (st, ot, at, rt) to denote a sample of Ξt

and ht := (si, oi, ai, ri)
t
i=1 = (ξi)

t
i=1 to denote a sample of Ht. So, whenever

ht is defined in an equation, we have implicitly defined si, oi, ai, and ri for all

1 ≤ i ≤ t. Also, to simplify later math, we define H0 := ∅.

5. R is called the reward function, and it governs how the bounded scalar reward,

Rt ∈ [rlb, rub], is produced at time t.1 Here we introduce the first Markov

assumption—the reward at time t, Rt, depends only on St, Ot, At, and St+1:

Pr
(
Rt=rt

∣∣∣Ht−1 =ht−1, St=st, Ot=ot, At=at, St+1 =st+1

)
= Pr

(
Rt=rt

∣∣∣St=st, Ot=ot, At=at, St+1 =st+1

)
,

for all t ≥ 1, rt, ht−1, st, ot, at, and st+1. Furthermore, the distribution over Rt

is independent of the time, t, given St, Ot, At, and St+1, i.e., for all t ≥ 1 and

t̂ ≥ 1,

Pr
(
Rt=r

∣∣∣St=s,Ot=o,At=a, St+1 =s′
)

= Pr
(
Rt̂=r

∣∣∣St̂=s,Ot̂=o, At̂=a, St̂+1 =s′
)
,

for all r, s, o, a, and s′. So, we define R to be

R(r|s, o, a, s′) := Pr
(
Rt = r

∣∣∣St = s,Ot = o, At = a, St+1 = s′
)
,

for all s, o, a, r, s′ and any any t ≥ 1. The agent is provided with the reward

signal, Rt.

1Notice that we have broken our notational convention by using a calligraphic letter, R, to denote
a function rather than a set—this is to differentiate the reward function (which is traditionally
denoted by the letter R) from the rewards, Rt.

9

6. We call T the transition function since it governs how the environment tran-

sitions between states. Here we introduce another Markov assumption: the

distribution over St+1 depends only on St and At, i.e.,

Pr
(
St+1 =st+1

∣∣∣Ht=ht

)
= Pr

(
St+1 =st+1

∣∣∣St = st, At = at

)
,

for all t ≥ 1, st+1, and ht (recall that st and at are specified by ht). Furthermore,

the transition probabilities are independent of the time, t. So, for any t ≥ 1

and t̂ ≥ 1:

Pr
(
St+1 =s′

∣∣∣St = s, At = a
)

= Pr
(
St̂+1 =s′

∣∣∣St̂ = s, At̂ = a
)
,

for all s, a, and s′. So, we define T (s′|s, a) to be the probability of the environ-

ment entering state s′ if action a is taken in state s:

T (s′|s, a) := Pr
(
St+1 = s′

∣∣∣St = s, At = a
)
,

for all t ≥ 1, s, a, and s′. The agent is not provided with T—it can only learn

about T from its experiences.

7. We call dS1 the initial state distribution since it is the distribution over S1:

dS1(s) = Pr(S1 = s). Like T , dS1 is not provided to the agent—the agent can

only learn about dS1 from its experiences.

8. We call Ω the observation function since it governs how the sensor produces ob-

servations. We introduce yet another Markov assumption: that the observation

at time t depends only on the state at time t, i.e.,

Pr
(
Ot = ot

∣∣∣Ht−1 = ht−1, St = st

)
= Pr

(
Ot = ot

∣∣∣St = st

)
,

10

for all t ≥ 1, ht−1, st, and ot. We also assume that the observations do not

depend directly on the time step t. So, for any t ≥ 1 and t̂ ≥ 1 we have

Pr
(
Ot = o

∣∣∣St = s
)

= Pr
(
Ot̂ = o

∣∣∣St̂ = s
)
,

for all o and s. So, we define Ω(o|s) to be the probability that the sensor

produces observation o when the agent is in state s. That is, for any t ≥ 1

Ω(o|s) := Pr
(
Ot = o

∣∣∣St = s
)
.

The agent is not provided with Ω.

Markov decision processes (MDPs) are POMDPs with the additional requirement

that the agent can observe the full state. Formally, this means that O = S and

Ot = St always.

For simplicity, we have formalized POMDPs using finite state, action, and obser-

vation sets. However, the analyses and methods in this dissertation extend to the

settings where these sets are countably or uncountably infinite and where the prob-

ability distributions thereover may or may not have probability density functions

(Thomas et al., 2015b).

The agent’s mechanism for selecting actions is called the policy, and is typically

denoted by π. Here we introduce our final Markov assumption—that the policy is

memoryless and stationary. We call the policy memoryless because the action at time

t depends only on the observation at time t:

Pr
(
At = at

∣∣∣Ht−1 = ht−1, St = st, Ot = ot

)
= Pr

(
At = at

∣∣∣St = st, Ot = ot

)
,

for all t ≥ 1, ht−1, st, ot, and at. Memoryless policies for POMDPs are sometimes also

referred to as state-free policies (Kaelbling et al., 1996, Sections 7.1 and 7.2). Our

11

use of memoryless policies places the onus of state estimation on the mechanism, Ω,

which produces observations. That is, any inference about the true underlying state

should be performed by the mechanism, Ω, that produces the observations, since the

distribution over At depends only on Ot. We call the policy stationary because the

action probabilities are independent of the time step, t, given Ot, i.e., for all t ≥ 1

and t̂ ≥ 1:

Pr
(
At = a

∣∣∣St = s,Ot = o
)

= Pr
(
At̂ = a

∣∣∣St̂ = s,Ot̂ = o
)
,

for all s, o, and a. Let π(·|o) denote the conditional distribution over the action set

given that the agent last observed o. That is, for any t ≥ 1,

π(a|o) := Pr
(
At = a

∣∣∣Ot = o
)
.

A parameterized policy, πθ, is a policy that is parameterized by a parameter vector,

θ, containing nθ real-valued parameters: θ ∈ Rnθ . As θ changes, so to does the

distribution over actions chosen by the agent. We write Π to denote the set of all

possible policies.

There are at most L actions taken by the agent before the process terminates.

Each such sequence of L interactions between the agent and environment from t = 1

to L is called an episode. We call the history of an entire episode, HL, a trajectory.

When the process terminates, the agent enters a special state,
∞
s, called the absorbing

state. The absorbing state only has a single admissible action (so every policy is the

same in the absorbing state), it always transitions to itself, and transitioning to it

always produces a reward of zero. So, once the agent enters the absorbing state there

are no more decisions to be made or rewards to be obtained. By padding episodes

with absorbing states, we may sum from t = 1 to L for all trajectories when working

with St, Ot, At, or Rt.

12

Since each policy produces a distribution over histories, we will abuse notation

and sometimes treat π as a distribution over histories so that we can write Ht ∼ π to

denote that the history through time t, Ht, was sampled by executing the policy π

on the POMDP. We also write suppt π to denote the set of histories of length t that

have non-zero probability of occuring when using the policy π, i.e., suppt π := {ht :

Pr(Ht = ht|π) 6= 0}.

We write G(HL) ∈ [0, 1] to denote some quantification of how good the trajectory

HL is, and we call G(HL) the return of trajectory HL. Notice that this differs from

the standard definition in RL literature, which does not require the return to be nor-

malized to the range [0, 1]. After each episode completes, the agent is provided with

G(HL). Although our algorithms and analyses are agnostic to the precise definition

of G(HL), in our experiments we use the standard normalized discounted return:

G(HL) ∝
L∑
t=1

γt−1Rt, (2.2)

where γ ∈ [0, 1] is a parameter that discounts rewards based on how late in the

trajectory they occur. Notice the ∝ in (2.2), which denotes that the discounted sum

of rewards must be normalized to ensure that G(HL) ∈ [0, 1]. If no domain specific

knowledge about the possible magnitude of the discounted sum of rewards is available,

then G(HL) can be normalized as follows. Notice that

Gub :=

rub

1−γL
1−γ if γ < 1

Lrub otherwise,

(2.3)

and

Glb :=

rlb

1−γL
1−γ if γ < 1

Lrlb otherwise,

(2.4)

13

are upper and lower bounds on
∑L

t=1 γ
t−1Rt. We can therefore write (2.2) without

the ∝ as:

G(HL) :=

(∑T
t=1 γ

t−1Rt

)
−Glb

Gub −Glb

. (2.5)

The agent’s goal is to find, over the course of multiple episodes, a policy that results

in it obtaining the largest returns possible, on average. This notion is formalized by

the agent’s objective function ρ : Π→ R, which gives the expected return when using

the specified policy:

ρ(π) := E [G(HL)|HL ∼ π] ∈ [0, 1].

2.4 Limitations of the POMDP Framework

The POMDP framework as we have defined it suffers from two primary draw-

backs. First, we have adopted the finite horizon setting by requiring all trajectories

to terminate within L time steps. This precludes indefinite horizon environments

where the length of each episode is unbounded (but not infinite) and infinite horizon

environments where episodes never terminate.

Second, we have made an implicit stationarity assumption: the POMDP does not

change between episodes. That is, S,A,O, T, dS1 ,Ω, and R are the same for every

episode. This means that the POMDP cannot account for changes in the system that

occur across episodes. This assumption means that our safety guarantees will not

account for some real factors. For example:

1. Consider the optimization of a controller for a robot. If data were collected

in the past and used on a robot after it has suffered from additional wear, the

dynamics of the robot may have changed, and this change will not be accounted

for in our analysis.

2. Consider the optimization of a system that suggests medical treatments. If

historical data were collected prior to the mutation of some bacteria to become

14

resistant to a specific treatment, our approach will be overly optimistic about

the performance of that treatment (since our approach uses the past data).

Intuitively, a stationarity assumption of some sort is necessary. Our methods

use the data that have been collected in the past to determine how to act in the

future. Without some assumption that the future will resemble the past, the data

that have been collected cannot be used to inform future decisions. Such assumptions

of stationarity, although varying in their restrictiveness, are therefore common across

all of machine learning research.

2.5 Gridworld

To ground the subsequent theoretical discussion, we present an example POMDP

that we refer to throughout our derivations. Since this example will assist with our

presentation, it is meant to be representative of many properties common to real

world POMDPs, even though it is not an impressive or motivating example. We call

this POMDP the gridworld, and it is depicted in Figure 2.2. In the gridworld the

agent resides on a 4 × 4 grid, and the agent correctly observes its position. So, the

observation set is O = {1, 2, 3, 4} × {1, 2, 3, 4} ∪
{
∞
s
}

. Let (x, y) ∈ O denote the

Cartesian coordinates of the agent, with x denoting its horizontal position (larger x

move the agent to the right) and y denoting its vertical position (larger y move the

agent down). The agent always begins in the top left position, (1, 1). The agent

has four available actions: A = {up, down, left, right}, which deterministically move

the agent one square along the grid in the specified direction. So, if the agent is in

position (2, 2) and it selects the action At = down, then it will move to the position

(2, 3) with probability one. If the agent selects an action that would cause it to move

outside of the grid, then the agent stays in the same position.

Each episode terminates if the agent reaches the bottom right position, (4, 4), or if

100 time steps have passed, i.e., L = 100. So, while St =
∞
s if t > L, it can occur that

15

(1,1)
Initial

(2,1) (3,1) (4,1)

(1,2) (2,2)
𝑅𝑡 = −10

(3,2) (4,2)

(1,3) (2,3) (3,3) (4,3)

(1,4) (2,4)
𝑅𝑡 = 1

(3,4) (4,4)
Terminal

𝑅𝑡 = 10

Figure 2.2. Graphical depiction of the gridworld. Each square is a possible observa-
tion, and the initial and terminal positions are marked. The reward for entering each
state is −1 except for when the agent enters the positions that are otherwise labeled.
The colors represent positions that result in larger and smaller than normal rewards.

SL 6=
∞
s if the agent does not reach the bottom right corner before time runs out. In

order for the transition function to cause a transition to the absorbing state after 100

time steps, the underlying state includes an encoding of the current time step, which

is unobserved to the agent. So, S =

{1, 2, 3, 4} × {1, 2, 3, 4}︸ ︷︷ ︸
position

×{1, . . . , 100}︸ ︷︷ ︸
time

∪{∞s}.

The state St = (x, y, t) encodes the position of the agent and the current time step,

t, unless St =
∞
s.

The reward for each transition depends only on the position that the agent enters.

A reward of −1 is given for entering any position except for three. Entering the

position (2, 2) causes a large penalty of Rt = −10, which the agent should attempt

to avoid. Entering the position (2, 4) causes a small positive reward of Rt = 1, and

so the agent should tend towards this position. Entering the terminal position (4, 4),

provides a large reward of Rt = 10. Notice that rewards are provided based on

the state that is entered, regardless of where it was entered from. For example, the

16

transition from (2, 2) to any adjacent position results in a reward of Rt = −1 while

the transition to (2, 2) from any position results in a reward of Rt = −10.

For this POMDP and all others in this dissertation, we select γ = 1 and use the

normalized discounted return defined in (2.5) for G(HL). Although we do not use

γ (we set it to one), we include it in our derivations in case a reader is faced with

an application where the use of γ < 1 is desired. For normalization, rlb = −10 and

rub = 10. Also, the smallest possible return is bounded below by Glb = −10L (the

worst state happens at every step) and the largest possible return is bounded above

by Gub = 1(L − 1) + 10 (the small positive reward happens at every step except for

the last, where the large reward just prior to terminating is received). Notice that

these bounds are loose—we could use more knowledge about the domain to tighten

them. We use loose bounds for this example since tight bounds may, in the absence

of domain-specific knowledge, not be available for many real world applications.

Notice also that the optimal policy is not deterministic. Ideally, the agent would

select the “down” action three times to move to (1, 4), followed by the “right” action

once to move to (2, 4). It would then select the action “down” repeatedly, causing

it to remain in the same position and collect several +1 rewards. When t = 98 and

t = 99 the agent would select the action to move right so that it reaches the terminal

position, (4, 4) just in time to receive the +10 reward before the trajectory terminates

due to time running out. However, since the agent must select its actions without

observing the time step, it cannot implement this deterministic policy.

So, any optimal policy (which does not depend on the unobserved time step) must

be stochastic. It causes movement to (2, 4), where it chooses randomly (with some

probability) between the “down” and “right” actions. Once it reaches (3, 4), it then

deterministically moves to (4, 4) causing the episode to terminate. The challenging

question is to determine what the action probabilities in (2, 4) should be for an optimal

policy. If the probability of “down” is too small, then the agent will not remain in

17

that position very long in most trajectories. If it is too large, then the agent will

rarely collect the reward of +10 in position (4, 4) before the time limit runs out.

When we represent policies for the gridworld, we use tabular softmax action se-

lection (Sutton and Barto, 1998).

2.6 Related Work

As evidenced by a recent open letter, organized by the Future Life Institute and

signed by many prominent artificial intelligence researchers (Future Life Institute,

2015), ensuring safety is an important current issue across artificial intelligence re-

search. The type of safe algorithms presented in this dissertation are a small part of

this larger effort to ensure safety in artificial intelligence research. This section re-

views some other approaches to ensuring different types of safety in sequential decision

problems (a review of safety related work in other branches of artificial intelligence is

beyond the scope of this work).

2.6.1 Control Theoretic Approaches

Like RL research, control theoretic research focuses on how to select actions to

control a system. Control research, including optimal control (Bertsekas, 1976, Bert-

sekas and Shreve, 2007, Khalil, 2001, Lubin and Athans, 1996, Stengel, 1986), adaptive

control (Ioannou, 2012), and particularly robust control (Zhou et al., 1995), deals with

constructing controllers (policies) that ensure various forms of optimality and safety,

ranging from guaranteed stability of a system to guarantees that regions of the state

space will never be visited.

The distinction between control theoretic research and reinforcement learning re-

search is tenuous. However, control theoretic methods typically assume that a sig-

nificant amount is known about the transition function, e.g., that the transitions

are described by a differential equation or that an approximation to the transition

18

function is provided and the error in the approximation bounded. By contrast, the

methods proposed in this dissertation assume that little is known about the transition

function and do not attempt to model it.

This is both a benefit and a hindrance. It means that the methods we propose

are applicable to a broader class of problems, including ones that include interactions

with humans that would be challenging to model (e.g., the digital marketing example

discussed later). However, if information about the transition function is known, then

control theoretic approaches that leverage this knowledge may require less historical

data to find good policies while enforcing various safety guarantees (Akametalu et al.,

2014, Kretchmar et al., 2001, Perkins and Barto, 2003).

2.6.2 Constraints on Policy Space

Another form of safety that can be ensured is that the policy will never enter a

dangerous region of policy space. Consider, for example, a control problem where the

policy is represented as a proportional-integral-derivative (PID) controller with gains

(policy parameters) θ. PID controllers are the most widely used control algorithms

in industry, and have been studied in depth (Åström and Hägglund, 1995, O’Dwyer,

2003). Techniques exist for determining the set of stable gains (non-dangerous policy

parameters) when an approximate model of the system is available—see for example

the work of Söylemez et al. (2003). An RL algorithm should search the space of

policy parameters, θ, for those that optimize ρ(πθ) while ensuring that the policy

parameters never enter the dangerous region of policy space—that the gains of the

PID controller remain within the stable region. Although such policy search methods

have been investigated (Bhatnagar et al., 2009, Thomas et al., 2013), like the control-

theoretic approaches, they require an approximate model of the system in order to

be applicable (to determine the safe region of policy space).

19

2.6.3 Unintended Consequences of Goal-Directed Behavior

In his 1964 book, Norbert Wiener gave early warnings regarding intelligent ma-

chines (Wiener, 1964, page 59):

[...] if it grants you anything at all it grants you what you ask for, not
what you should have asked for or what you intend.

and (Wiener, 1964, page 63):

A goal-seeking mechanism will not necessarily seek our goals unless
we design it for that purpose, and in that design we must foresee all steps
of the process for which it is designed, [...]. The penalties for errors of
foresight, great as they are now, will be enormously increased as autom-
atization comes into its full use.

Nick Bostrom recently echoed these warnings that what seems like a reasonable goal

for an agent can result in undesirable behavior that was not anticipated by the person

or mechanism that originally specified the goal (Bostrom, 2014).

In the context of RL, the creator of the agent must select the definition of rewards

so as to cause the agent to produce desirable behavior. However, as emphasized by

Wiener, for complicated tasks it can be challenging to design a single scalar reward

signal that will result in the desired behavior. Often the reward function is tweaked

over several trials to find one that results in the desired behavior. Researchers have

shown that often the most obvious reward function for a problem is not the most

appropriate (Singh et al., 2009, Sorg et al., 2010).

This results in a safety concern—even if the intelligent machine correctly optimizes

the specified objective function (in RL, the expected return), the designer of the

objective function may not foresee undesirable ways that the objective function can

be optimized until after the agent has produced undesirable behavior. Although this

problem has been noticed, we are not aware of any existing literature that suggests a

specific solution other than optimizing the reward function by trial and error (Niekum

et al., 2010).

20

2.6.4 Probably Approximately Correct (PAC) Algorithms

This dissertation focuses on potential applications where the deployment of a

single bad policy can be costly or dangerous, and so guarantees about the performance

of each new policy are required before the policy can be used. Other research has

focused on RL algorithms that have various guarantees about their convergence. Here

we review one such effort that can be thought of as providing a safety guarantee.

An RL algorithm is called probably approximately correct in Markov decision pro-

cesses (PAC-MDP, or PAC) if it guarantees that its expected return is within ε of

optimal with probability 1 − δ after a fixed number of time steps that is less than

some polynomial function of |S|, |A|, 1/ε, 1/δ, and 1/(1 − γ). The polynomial func-

tion that specifies the number of samples needed by the algorithm is called its sample

complexity (Kakade, 2003). There are many PAC RL algorithms and lower bounds

on the sample complexity of an arbitrary RL algorithm (Auer et al., 2010, Brunskill

and Li, 2014, Guo and Brunskill, 2015, Strehl and Littman, 2005, 2008, Strehl et al.,

2009, 2006, Szita and Szepesvári, 2010).

The primary drawback of PAC RL algorithms, which precludes their practical use

for ensuring safety, is that the number of samples (time steps) required to ensure that

the policy’s expected return is within ε of optimal with probability 1 − δ is usually

prohibitively large. For example, a recent PAC RL algorithm requires approximately

1017 time steps to guarantee that the policy for a gridworld similar to the one we

described in Section 2.5 is probably approximately correct (Lattimore and Hutter,

2012). By comparison, our methods will provide a high confidence improvement to

the policy after approximately 103 time steps.

21

CHAPTER 3

IMPORTANCE SAMPLING FOR OFF-POLICY
EVALUATION

This chapter contains many technical details that can be skipped if the reader is

familiar with Section 3.5 (Section 3.5.2 can also be skipped). Although this chapter

presents other variants of importance sampling and provides theoretical analyses, the

remainder of this dissertation could in principle use ordinary importance sampling,

and the crucial properties of all of the variants of importance sampling are discussed

in Section 3.5.

This chapter presents mechanisms for off-policy evaluation—estimating the per-

formance of one policy, called the evaluation policy, using historical data (trajectories)

from previous policies, called the behavior policies. Although this chapter does not

provide confidence bounds for the estimates produced by its methods, it will serve as

the foundation for the remainder of this dissertation.

We present six methods, importance sampling (IS), per-decision importance sam-

pling (PDIS), normalized per-decision importance sampling (NPDIS), weighted impor-

tance sampling (WIS), weighted per-decision importance sampling (WPDIS), and con-

sistent weighted per-decision importance sampling (CWPDIS). Of these, only NPDIS

and CWPDIS are novel contributions. However, it is important that we can precisely

specify the different properties of each of these approaches—particularly whether they

are unbiased and/or consistent estimators.

22

It is well known that IS and PDIS are unbiased estimators and that IS, PDIS, and

WIS are consistent estimators if using historical data from a single behavior policy

(Powell and Swann, 1966, Precup, 2000, Rubinstein and Kroese, 2007). However, we

are not aware of any previous proofs that they are consistent if, as we propose in later

chapters, many behavior policies are used. In this chapter we therefore provide proofs

that each of these approaches is consistent even if multiple behavior policies are used

(these proofs require an additional technical assumption that is discussed later).

We also propose NPDIS, which is a variant of PDIS that will be better suited

to our later uses. We show that it is unbiased and consistent. We then show that

WPDIS is not a consistent estimator as claimed in the literature (Precup, 2000),

and derive CWPDIS, which we show is a consistent alternative to WPDIS. Lastly,

we show that even if a behavior policy is deterministic, IS and NPDIS will produce

useful estimates of the performance of the evaluation policy.

The contributions of this chapter are:

1. Derivation of the NPDIS estimator, which is a variant of PDIS that is better

suited to our later uses.

2. Proof that the WPDIS estimator is not a consistent estimator, despite claims

otherwise.

3. Derivation of the CWPDIS estimator, an alternative to WPDIS that is consis-

tent.

4. Proofs that IS, PDIS, NPDIS, WIS, and CWPDIS are consistent even if there

are multiple behavior policies (as long as the probability of each action is either

zero or bounded away from zero for every behavior policy).

5. Proofs that the expected values of the IS and NPDIS estimators are never larger

than the true performance of the evaluation policy, regardless of the support of

the evaluation and behavior policies.

23

3.1 Background

This section provides a review of what it means for a sequence to converge almost

surely and what it means for estimators to be unbiased and consistent. It also provides

two forms of the law of large numbers that can be used to show that an estimator is

consistent.

3.1.1 Almost Sure Convergence

Definition 1 (Almost Sure Convergence). A sequence of random variables, (Xi)
∞
i=1,

converges almost surely to the random variable X if for all ε > 0

Pr
(

lim
n→∞

Xn = X
)

= 1.

We write Xi
a.s.−→ X to denote that (Xi)

∞
i=1 convergences almost surely to X. For

brevity, we often say that Xi (rather than (Xi)
∞
i=1) converges almost surely to X. A

few properties of almost sure convergence that we will use are:

Property 1. Xi
a.s.−→ X implies that f(Xi)

a.s.−→ f(X) for every continuous function

f (Jiang, 2010, Section 2.8, Exercise 14).

Property 2. If Xi
a.s.−→ X and Yi

a.s.−→ Y , where X and Y are real numbers (not

random variables), and Y 6= 0, then Xi
Yi

a.s.−→ X
Y

.

Proof.

Pr

(
lim
n→∞

Xn

Yn
=
X

Y

)
≥Pr

((
lim
n→∞

Xn = X
)
,
(

lim
n→∞

Yn = Y
))

≥1− Pr
(

lim
n→∞

Xn 6= X
)
− Pr

(
lim
n→∞

Yn 6= Y
)

=1.

�

24

Property 3. If {Xj
i }mj=1 are m <∞ sequences of random variables such that Xj

i
a.s.−→

Xj for all j ∈ {1, . . . ,m}, where Xj is a random variable, then
∑m

j=1 X
j
i

a.s.−→∑m
j=1 X

j.

Proof.

Pr

(
lim
n→∞

m∑
j=1

Xj
n =

m∑
j=1

Xj

)
≥Pr

(
m⋂
j=1

lim
n→∞

Xj
n = Xj

)

≥1−
m∑
j=1

Pr
(

lim
n→∞

Xj
n 6= Xj

)
=1.

�

3.1.2 Unbiased and Consistent Estimators

In the subsequent sections we present different estimators of ρ(π) and we discuss

whether or not they are unbiased and/or consistent. In this section we review these

two properties. The notation of this section is independent of the remainder of this

dissertation in order to allow for the use of common notation when defining unbiased

and consistent estimators (e.g., here θ is a real number unrelated to the parameters

of a policy).

Definition 2. Let θ be a real number and θ̂ be a random variable. We call θ̂ an

unbiased estimator of θ if and only if

E
[
θ̂
]

= θ.

Definition 3. Let θ be a real number and (θ̂n)∞n=1 be an infinite sequence of random

variables. We call θ̂n, a (strongly) consistent estimator of θ if and only if θ̂n
a.s.−→ θ.

25

To help understand the notation in Definition 3, consider a simple example. Let

{Xi}∞i=1 be identically distributed random variables and θ = E[X1] be their expected

value. Then θ̂n := 1
n

∑n
i=1Xi is an unbiased estimator of θ for any n ≥ 1. Also, θ̂n is

a consistent estimator of θ. Notice that we specified the values of n when saying that

θ̂n is unbiased, but not when saying that θ̂n is consistent. This is because each single

estimator is called unbiased while consistency is a property of the entire sequence of

estimators. When we say that θ̂n is a consistent estimator, we do not specify n and

are implicitly talking about the entire sequence (θ̂n)∞n=1.

Notice that estimators can be any combination of biased/unbiased and consis-

tent/inconsistent. Below we provide four specific examples:

• Unbiased and consistent: The sample mean of n samples from a normal dis-

tribution is an unbiased and consistent estimator of the mean of the normal

distribution.

• Unbiased and inconsistent: The first of n samples from a normal distribution is

an unbiased estimator of the mean of the normal distribution, however it is not a

consistent estimator of the mean of the normal distribution. It is not consistent

because it only uses the first sample, so as n→∞, it does not converge almost

surely to the true mean.

• Biased and consistent: If {Xi}ni=1 are samples from a normal distribution, then

1
n

+ 1
n

∑n
i=1Xi is a biased but consistent estimator of the mean of the normal

distribution. It is biased because, for any finite n, its expected value is θ+ 1
n
6= θ.

It is consistent because as n→∞ the 1
n

term goes to zero.

• Biased and inconsistent: If {Xi}ni=1 are samples from a normal distribution,

then 3 + 1
n

∑n
i=1Xi is a biased and inconsistent estimator of θ.

26

3.1.3 Laws of Large Numbers

We present two versions of the strong law of large numbers. The first, the Khint-

chine strong law of large numbers, applies to random variables that are identically

distributed, but which may have infinite variance. The second, the Kolmogorov strong

law of large numbers, applies to random variables that are not necessarily identically

distributed, but which have finite variances. The forms that we present for these

two laws are simplified special cases of the more general theorems provided in the

references.

Theorem 1 (Khintchine Strong Law of Large Numbers). Let {Xi}∞i=1 be independent

and identically distributed random variables. Then (1
n

∑n
i=1 Xi)

∞
n=1 is a sequence of

random variables that converges almost surely to E[X1], i.e., 1
n

∑n
i=1Xi

a.s.−→ E[X1].

Proof. See the work of Sen and Singer (1993, Theorem 2.3.13). �

Theorem 2 (Kolmogorov Strong Law of Large Numbers). Let {Xi}∞i=1 be independent

(not necessarily identically distributed) random variables. If all Xi have the same

mean and bounded variance (i.e., there is a finite constant b such that for all i ≥ 1,

Var(Xi) ≤ b), then (1
n

∑n
i=1Xi)

∞
n=1 is a sequence of random variables that converges

almost surely to E[X1], i.e., 1
n

∑n
i=1Xi

a.s.−→ E[X1]

Proof. See the work of Sen and Singer (1993, Theorem 2.3.10 with Proposition

2.3.10). �

These two laws can be used to show that different estimators are consistent. We

present two corollaries that will assist in these proofs. The first, Corollary 1, applies

when the random variables are identically distributed. The second, Corollary 2,

applies when the random variables are not necessarily identically distributed, but

have bounded variance.

Corollary 1. Let {Xi}∞i=1 be independent and identically distributed random variables

with the same mean, µ. Then 1
n

∑n
i=1 Xi is a consistent estimator of µ.

27

Proof. By the Khintchine strong law of large numbers we have that 1
n

∑n
i=1Xi

a.s.−→ µ,

and thus that 1
n

∑n
i=1Xi is a consistent estimator of µ. �

Corollary 2. Let {Xi}∞i=1 be independent random variables with the same mean,

µ, and bounded variance (i.e., there is a finite constant b such that for all i ≥ 1,

Var(Xi) ≤ b). Then 1
n

∑n
i=1 Xi is a consistent estimator of µ.

Proof. By the Kolmogorov strong law of large numbers we have that 1
n

∑n
i=1Xi

a.s.−→ µ,

and thus that 1
n

∑n
i=1Xi is a consistent estimator of µ. �

3.2 Problem Description

We assume that we are given a data set, D, that consists of nD trajectories,

{H i
L}

nD
i=1, each labeled by the policy that generated it, {πi}nDi=1, i.e.,

D =
{(
H i
L, πi

)
: i ∈ {1, . . . , nD}, H i

L ∼ πi
}
. (3.1)

Note that {πi}nDi=1 are behavior policies—those that generated the batch of data (tra-

jectories). Finally, we denote by πe the evaluation policy—the newly proposed policy

that should be evaluated using the data set D. Although some trajectories in D may

have been generated using the evaluation policy, we are particularly interested in the

setting where some or all of the behavior policies are different from the evaluation

policy. Our goal is to present a mechanism that takes as input a single trajectory,

HL, and the policy, πb that generated it (or a batch of trajectories and the policies

that generated them, D) and outputs an estimate of ρ(πe).

We will sometimes have equations that deal with multiple trajectories from D.

We use an index in the exponent of a symbol to denote the trajectory that it came

from. For example, Sit denotes the random variable for the state that occurs at time

t in the ith trajectory in D.

28

Initially we will include the following assumption, which is discussed in detail in

Section 3.11.

Assumption 1. If πe(a|o) 6= 0 then πi(a|o) 6= 0 for all i ∈ {1, . . . , n}, a ∈ A, and

o ∈ O.

Corollary 3. For all t ≥ 1, if Assumption 1 holds and Pr(Ht=ht|πe) = 0, then for

all i ∈ {1, . . . , nD}, ht, and t ≥ 1, we have that Pr(Ht=ht|πi) = 0.

Proof. Notice that

Pr(Ht=ht|π)
(a)
= Pr(S1 =s1) Pr(O1 =o1|S1 =s1) Pr(A1 =a1|S1 =s1, O1 =o1)

×
t∏
i=2

(
Pr(Ri−1 =ri−1|Hi−2 =hi−2, Si−1 =si−1, Oi−1 =oi−1, Ai−1 =ai−1, Si=si)

× Pr(Si=si|Hi−1 =hi−1) Pr(Oi=oi|Hi−1 =Hi−1, Si=si)

× Pr(Ai=ai|Hi−1 =hi−1, Si=si, Oi=oi)
)

(b)
= Pr(S1 =s1) Pr(O1 =o1|S1 =s1) Pr(A1 =a1|O1 =o1)

×
t∏
i=2

(
Pr(Ri−1 =ri−1|Si−1 =si−1, Ai−1 =ai−1, Si=si)

× Pr(Si=si|Si−1 = si−1, Ai−1 = ai−1) Pr(Oi=oi|Si=si)

× Pr(Ai=ai|Oi=oi)
)

(c)
= dS1(s1)Ω(o1|s1)π(a1|o1)

×
t∏
i=2

R(ri−1|si−1, oi−1, ai−1)T (si|si−1, ai−1)Ω(oi|si)π(ai|oi). (3.2)

where (a) comes from repeated application of the rule that, for any random variables

X and Y , Pr(X=x, Y =y) = Pr(X=x) Pr(Y =y|X=x) (b) comes from the Markov

assumptions in the definition of a POMDP, and (c) comes from the definitions of

dS1 ,Ω, π, R and T .

If Pr(Ht = ht|πe) = 0, then one of the terms in the product above (using πe for π)

must be zero, which means that one of the terms in the expansion of Pr(Ht = ht|πi)

must also be zero. �

29

3.3 Lemmas and Corollaries

In this section we collect lemmas and corollaries that are used repeatedly through-

out this chapter. First, we show that Pr(HL=hL|πe)/Pr(HL=hL|πb) can be written

in a way that does not depend on the unknown parameters of the POMDP like

the transition function. Although this has been shown before for the MDP setting

(Precup, 2000), we prove it again for completeness.

Lemma 1. Let πe and πb be any two policies and t ≥ 1. Let ht be any history of

length t that has non-zero probability under πb, i.e., Pr(Ht=ht|πb) 6= 0. Then

Pr(Ht=ht|πe)
Pr(Ht=ht|πb)

=
t−1∏
i=1

πe(ai|oi)
πe(ai|oi)

.

Proof. By expanding the probability of a history given a policy, we have from (3.2)
that

Pr(Ht=ht|πe)
Pr(Ht=ht|πb)

=
dS1(s1)Ω(o1|s1)πe(a1|o1)

dS1(s1)Ω(o1|s1)πb(a1|o1)

×
∏t
i=1R(ri−1|si−1, oi−1, ai−1)T (si|si−1, ai−1)Ω(oi|si)πe(ai|oi)∏t
i=1R(ri−1|si−1, oi−1, ai−1)T (si|si−1, ai−1)Ω(oi|si)πb(ai|oi)

=

t∏
i=1

πe(ai|oi)
πb(ai|oi)

.

�

Next we introduce a lemma to show that some expected values that are conditioned

on trajectories coming from a policy can be expressed by conditioning on only the

beginning of the trajectory. Recall that ξt is defined in (2.1).

Lemma 2. Let f : Ht → R. Then

E[f(Ξ1, . . . ,Ξt)|HL ∼ π] = E[f(Ξ1, . . . ,Ξt)|Ht ∼ π].

30

Proof.

E[f(Ξ1, . . . ,Ξt)|HL ∼ π] =
∑
HL

Pr(HL=hL|π)f(ξ1, . . . , ξt)

(a)
=
∑
ξ1,...ξL

Pr(Ξ1 =ξ1, . . . ,ΞL=ξL|π)f(ξ1, . . . , ξt)

(b)
=
∑

ξ1,...,ξL

Pr(Ξ1 =ξ1, . . . ,Ξt=ξt|π)×

Pr(Ξt+1 =ξt+1, . . . ,ΞL=ξL|π, ξ1, . . . , ξt)f(ξ1, . . . , ξt)

(c)
=
∑
ξ1,...,ξt

Pr(Ξ1 =ξ1, . . . ,Ξt=ξt|π)f(ξ1, . . . , ξt)

×
∑

ξt+1,...,ξL

Pr(Ξt+1 =ξt+1, . . . ,ΞL=ξL|ξ1, . . . , ξt)︸ ︷︷ ︸
=1

=
∑
ξ1,...,ξt

Pr(Ξ1 =ξ1, . . . ,Ξt=ξt︸ ︷︷ ︸
⇐⇒Ht=ht

|π)f(ξ1, . . . , ξt)

=
∑
ht

Pr(Ht = ht|π)f(ξ1, . . . , ξt)

=E[f(Ξ1, . . . ,Ξt)|Ht ∼ π],

where (a) comes from the definition ofHL, (b) holds because for any random variables

X and Y , Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y|X = x), and (c) comes from

reordering terms. �

The next lemma establishes that the expected likelihood ratio that will be used

in importance sampling is one.

Lemma 3. Let πe and πb be any policies such that Assumption 1 holds. Then for

any constant integer k ≥ 1,

E

[
k∏
t=1

πe(At|Ot)

πb(At|Ot)

∣∣∣∣∣HL ∼ πb

]
=1.

31

Proof.

E

[
k∏
t=1

πe(At|Ot)

πb(At|Ot)

∣∣∣∣∣HL ∼ πb

]
(a)
=E

[
k∏
t=1

πe(At|Ot)

πb(At|Ot)

∣∣∣∣∣Hk ∼ πb

]
(b)
= E

[
Pr (Hk = hk|πe)
Pr (Hk = hk|πb)

∣∣∣∣Hk ∼ πb

]
=
∑

suppk πb

Pr (Hk = hk|πb)
Pr (Hk = hk|πe)
Pr (Hk = hk|πb)

=
∑

suppk πb

Pr (Hk = hk|πe) (3.3)

(c)
=

∑
suppk πe

Pr (Hk = hk|πe)

=1,

where (a) comes from Lemma 2, (b) comes from Corollary 1, and (c) comes from

Corollary 3, which relies on Assumption 1. �

Similarly, if Assumption 1 does not necessarily hold, then the expected likelihood

ratio is no more than one:

Lemma 4. Let πe and πb be any policies. Then for any constant integer k ≥ 1,

E

[
k∏
t=1

πe(At|Ot)

πb(At|Ot)

∣∣∣∣∣HL ∼ πb

]
≤1.

Proof.

E

[
k∏
t=1

πe(At|Ot)

πb(At|Ot)

∣∣∣∣∣HL ∼ πb

]
(a)
=

∑
suppk πb

Pr (Hk = hk|πe)

(b)

≤
∑

suppk πe

Pr (Hk = hk|πe)

=1,

where (a) comes from (3.3) and (b) holds because probabilities are nonnegative. �

32

3.4 Overview of Importance Sampling Approaches

The following sections present several different forms of importance sampling.

Each can be used to take a trajectory, HL, generated by the behavior policy, πb, or

a set of trajectories and behavior policies, D, and will produce an estimate of the

performance, ρ(πe), of the evaluation policy, πe. These estimates are denoted by

ρ̂†(πe|HL, πb) for a single trajectory and †(πe|D) for a set of trajectories, where † is

replaced by an abbreviation for the name of the specific estimator used, i.e.,

† ∈ {IS, PDIS, NPDIS, WIS, WPDIS, CWPDIS}.

The computation of these estimates will be the first step in our proposed approach to

high confidence off-policy evaluation in the next chapter, and the various properties

of the different estimators will be crucial to understanding when they are and are not

applicable.

Some of the methods in later chapters assume that upper and lower bounds on

ρ̂†(πe|HL, πb) can be computed given πe and πb. The upper bound is denoted by

ρ̂†ub(πe, πb), and the lower bound (when not zero) is ρ̂†lb(πe, πb). The bounds, ρ̂†ub(πe, πb)

and ρ̂†lb(πe, πb), should be the least upper bound and greatest lower bound that are

known for ρ̂†(πe|HL, πb).

Table 3.1 presents a summary of the relevant information about each importance

sampling method that we discuss. The meanings of the columns are:

1. Name: Specifies the name of the estimator (the value of †).

2. Eq.: Gives the equation where the estimator, ρ̂†(πe|HL, πb), is presented. Some

methods are only meant to be applied to batches of trajectories, and so they

have the value “N/A” listed for this column.

33

Name (†) Eq. Batch Eq. Unbiased Consistent ρ̂†lb(πe, πb) ρ̂†ub(πe, πb)

IS (3.6) (3.7) Yes Yes 0 (3.8)

PDIS (3.11) (3.12) Yes Yes (3.15) (3.16)

NPDIS (3.17) (3.18) Yes Yes 0 (3.19)

WIS N/A (3.21) No Yes 0 1

WPDIS N/A (3.25) No No N/A N/A

CWPDIS N/A (3.26) No Yes 0 1

Table 3.1. Summary of properties of the importance sampling methods that we
discuss.

3. Batch Eq.: Gives the equation where the batch version of the estimator is

presented. The batch version can be applied to a set of trajectories rather than

just a single one.

4. Unbiased: Specifies whether the estimator is an unbiased estimator of ρ(πe),

i.e., E
[
ρ̂†(πe|HL, πb)

∣∣HL ∼ πb
]

= ρ(πe).

5. Consistent: Specifies whether the batch estimator, †(πe|D), is a consistent

estimator of ρ(πe). See the relevant sections for descriptions of the requirements

to ensure consistency.

6. ρ̂†lb(πe, πb): Either the equation where the lower bound is specified, or a constant

value if the bound is independent of πe and πb.

7. ρ̂†ub(πe, πb): Either the equation where the upper bound is specified, or a con-

stant value if the bound is independent of πe and πb.

3.5 Importance Sampling (IS)

If the historical data contains only on-policy trajectories—if each trajectory, H i
L,

in D was generated by πi = πe, then G(H i
L) is an unbiased estimator of ρ(πe) for each

i ∈ {1, . . . , nD}. However, the historical data usually contains at least some off-policy

trajectories, which means that πi 6= πe. So, the trajectories that we collected came

34

from a different distribution than they would if they were produced by πe. We require

a method for correcting for this difference in sampling and evaluation distributions

when estimating the expected value of a function (in this case G(HL)).

To visualize this problem, consider Figure 3.1, which depicts the distribution of

returns under an evaluation and behavior policy. In the gridworld problem, the

behavior policy randomly selects actions with equal probability regardless of which

state it is in. This results in an expected return of approximately −72.377, which

means that (after normalizing the expected return) ρ(πb) ≈ 0.836. The evaluation

policy is a significantly better policy, although it is still far from optimal (it learns

to reach the goal while avoiding the large penalty, but it does not remain in the

position (2, 4) very long. Its expected return is approximately −2.219, which means

that ρ(πe) ≈ 0.900.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6
x 10

4

Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92
0

2

4

6

8

10

12

14

16
x 10

4

Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

Figure 3.1. Empirical estimate of the return distributions of the behavior (left) and
evaluation (right) policies for the gridworld. These estimates were formed by sampling
500,000 on-policy trajectories and plotting a histogram of their returns. The problem
that we are faced with is to estimate the expected value of the random variable on
the right given samples of the random variable on the left.

One method for estimating the expected value of a function when samples come

from a distribution that is different from the desired distribution is importance sam-

pling (IS). Let p and q be two distributions (probability mass functions) over some

35

set, X , and let f : X → R. Assume that if q(x) = 0 then f(x)p(x) = 0 (or, more

restrictively, assume that supp p ⊆ supp q). We wish to estimate E[f(X)|X ∼ p],

however, we can only sample x from the sampling distribution, q.

By writing out the definition of expected value and multiplying by 1 = q(x)
q(x)

, it is

straightforward to derive the IS estimator:

E[f(X)|X ∼ p] =
∑

x∈supp p

p(x)f(x)

(a)
=

∑
x∈supp q

p(x)
q(x)

q(x)
f(x)

=
∑

x∈supp q

q(x)
p(x)

q(x)
f(x)

=E

[
p(X)

q(X)
f(X)

∣∣∣∣X ∼ q

]
, (3.4)

where (a) holds because we assumed that if q(x) = 0 then f(x)p(x) = 0.

So, if X ∼ q, then the estimator p(X)
f(X)

f(X) is an unbiased estimator of E[f(X)|X ∼

p]. The ratio, p(X)
q(X)

, is called the importance weight or likelihood ratio. Intuitively, if

a specific x is more likely under the sampling distribution, q, than under the target

distribution, p, then sampling q will generate that x too many times, and so it should

be given a smaller weight to simulate it occurring less frequently. Similarly, if a specific

x is less likely under the sampling distribution, q, than the target distribution, p,

then sampling q will generate that x too few times, and so it should be given a larger

weight when it does occur to simulate it occurring more frequently. This reweighting

is exactly what the importance weight does.

In the context of RL, X will be the set of possible trajectories, HL, p is the

distribution over trajectories when using the evaluation policy, πe, q is the distribution

over trajectories when using some other behavior policy, πb, and f(X) is G(HL). The

assumption that f(x)p(x) = 0 if q(x) = 0 is ensured by Assumption 1.

36

So, if HL ∼ πb, Assumption 1 holds, and

ρ̂IS(πe|hL, πb) :=
Pr(HL=hL|πe)
Pr(HL=hL|πb)︸ ︷︷ ︸
importance weight

G(HL)︸ ︷︷ ︸
return

, (3.5)

then ρ̂IS(πe|HL, πb) is an unbiased estimator of ρ(πe) and is called the importance

weighted return. Using Lemma 1, we can simplify (3.5) to get an alternate definition

of the importance weighted return:

ρ̂IS(πe|hL, πb) :=
Pr(HL=hL|πe)
Pr(HL=hL|πb)

G(HL) (3.6)

=
L∏
t=1

πe(at|ot)
πb(at|ot)︸ ︷︷ ︸

importance weight

G(HL)︸ ︷︷ ︸
return

.

Importance sampling has been well known for a long time, and its use for RL in this

form is also not new (Precup, 2000).

Recall that D is a set of nD trajectories and the policies that produced them,

as defined in (5.1). We define the IS estimator for all of D (as opposed to a single

trajectory) to be the mean of the individual IS estimators for each trajectory:

IS(πe|D) :=
1

nD

nD∑
i=1

ρ̂IS(πe|H i
L, πi). (3.7)

Since each ρ̂IS(πe|H i
L, πi) is an unbiased estimator of ρ(πe) if Assumption 1 holds,

IS(πe|D) is also an unbiased estimator of ρ(πe) if Assumption 1 holds:

37

E[IS(πe|D)|H i
L ∼ πi,∀i ∈ {1, . . . , nD}] =E

[
1

nD

nD∑
i=1

ρ̂IS(πe|H i
L, πi)

∣∣∣∣∣H i
L ∼ πi,∀i ∈ {1, . . . , nD}

]

=
1

nD

nD∑
i=1

E
[
ρ̂IS(πe|H i

L, πi)
∣∣H i

L ∼ πi
]

=
1

nD

nD∑
i=1

ρ(πe)

=ρ(πe).

3.5.1 Upper and Lower Bounds on the IS Estimator

Later it will be important that we can provide upper and lower bounds on the

IS estimator, ρ̂IS(πe|H i
L, πi). The importance weights are always nonnegative, i.e., if

HL ∼ πb then
L∏
t=1

πe(At|Ot)

πb(At|Ot)
≥ 0,

for all policies πe and πb. The returns, G(HL) are also always nonnegative since we

assumed that they are normalized to G(HL) ∈ [0, 1]. So, we have a trivial lower

bound, that if HL ∼ πb then

ρ̂IS(πe|HL, πb) =
L∏
t=1

πe(At|Ot)

πb(At|Ot)
G(HL) ≥ 0,

for all policies πe and πb.

Without domain specific knowledge, we usually cannot produce tight upper bounds

on ρ̂IS(πe|H i
L, πi). However, we can always compute an (often loose) upper bound by

assuming that the worst possible ratio of action probabilities occurs at every time

step. That is, if HL ∼ πb then

ρ̂IS
ub(πe, πb) :=

(
max
a,o

πe(a|o)
πb(a|o)

)L
≥ ρ̂IS(πe|HL, πb), (3.8)

38

for all πe, πb, and HL. In all of the experiments in this dissertation, we solve (ap-

proximately) for this global maximum using the black-box optimization algorithm

covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006).1

3.5.2 Consistency of IS Estimator

Our derivation of the IS estimator made it clear that if Assumption 1 holds, then

ρ̂IS(πe|HL, πb) is an unbiased estimator of ρ(πe) if HL ∼ πb and IS(πe|D) is an unbiased

estimator of ρ(πe) regardless of how many trajectories are in D. Here we present two

different sets of assumptions that ensure that the batch IS estimator is consistent.

First we show that the batch IS estimator is consistent if there is only one behavior

policy:

Theorem 3. If Assumption 1 holds and there is only one behavior policy, i.e., πi = πb

for all i, then IS(πe|D) is a consistent estimator of ρ(πe).

Proof. This follows from Corollary 1 since (1) ρ̂IS(πe|H i
L, πb) is an unbiased estimator

of ρ(πe) for all i ∈ {1, . . . , nD} due to Assumption 1 and (2) the random variables

{ρ̂IS(πe|H i
L, πb)}

nD
i=1 are identically distributed since the trajectories are all generated

by the same behavior policy. �

Next we show that the IS estimator is consistent if there are many behavior

policies, all of which are bounded away from being deterministic when the evaluation

policy is not deterministic.

Theorem 4. If Assumption 1 holds and there exists a constant ε > 0 such that

πi(a|o) ≥ ε for all i ∈ {1, . . . , nD} and (a, o) where πe(a|o) 6= 0, then IS(πe|D) is a

consistent estimator of ρ(πe) even if there are multiple behavior policies.

1CMA-ES only produces estimates of the globally optimal value. This can introduce some error
into our analyses, however, as we will see later, this error can only bias our results in favor of the
existing methods that we compete with.

39

Proof. This follows from Corollary 2 since (1) ρ̂IS(πe|H i
L, πb) is an unbiased estimator

of ρ(πe) for all i ∈ {1, . . . , nD} due to Assumption 1 and (2) ρ̂IS(πe|H i
L, πb) ∈

[
0, 1

εL

]
for all i ∈ {1, . . . , nD}, and so ρ̂IS(πe|H i

L, πb) has bounded variance. �

3.5.3 Example: Gridworld

Perhaps the biggest challenge that we must overcome in the following chapter

arises due to the large possible range of the IS estimator and its high variance. To

make this clear, consider the application of IS to the behavior and evaluation policies

from the gridworld. We will use the exact same trajectories that were used to produce

the left plot in Figure 3.1 (the empirical distribution of returns under the behavior

policy) to produce an estimate of the performance of the evaluation policy. That is,

we compute ρ̂IS(πe|H i
L, πi), for each of the 500,000 trajectories (i ∈ {1, . . . , 500,000})

that were generated by the behavior policy. The resulting distribution of the 500,000

estimators, ρ̂IS(πe|HL, πi), is depicted in Figure 3.2.

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Importance Weighted Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Importance Weighted Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

Figure 3.2. Empirical distribution of importance weighted returns when evaluating
the evaluation policy for the gridworld using 500,000 trajectories from the behavior
policy. The plot on the right is zoomed in to provide more detail around the region
containing most of the probability mass. The first column is cut off by the limit of
the vertical axis—it dwarfs the others with a value of 357,160.

The mean importance weighted return (i.e., IS(πe|D)) was 0.900, which is equal

to the true expected performance, ρ(πe), to all three decimal places. The largest

40

observed importance weighted return was 68.261 and the smallest was approximately

0. The first column contains 357,160 samples (it goes off the top of the plot), which

means that approximately 70% of the trajectories resulted in an importance weighted

return that was approximately zero. In practice this means that the IS estimator

is often an underestimate when using only a few trajectories. This is not at odds

with it being an unbiased estimator. Consider what happens when using only a

single trajectory. From Figure 3.2, 70% of the time the importance weighted return

is approximately zero, and so at least 70% of the time it is an underestimate of the

true performance (ρ(πe) ≈ 0.9). However, when it is an overestimate (which is rare),

it is often a significant over-estimate—in one case it was 68.261. This averages out

so that the expected value is the true performance.

The upper bound on ρ̂IS(πe|HL, πb) is ρ̂IS
ub(πe, πb) = 8.889 × 1059. To see where

this upper bound comes from, notice that the behavior policy draws actions from

a uniform distribution, so the denominator of πe(a|o)
πb(a|o)

is always 0.25 (there are four

possible actions). The evaluation policy has some observations for which it almost

deterministically selects a specific action (e.g., when adjacent to the terminal state,

(4, 4), it may know to move to it). This means that there are some observations where

the numerator is near one. Our upper bound assumes that the largest possible ratio,

in this case 1/0.25, always occurs for all L = 100 time steps. So, the upper bound

would be approximately 4100 ≈ 1.6× 1060. The upper bound that we computed was

slightly lower than this, which means that the evaluation policy was never perfectly

deterministic about its actions and so the numerator was slightly smaller than one.

This massive upper bound will cause our approach to high confidence off-policy

evaluation, proposed in the next chapter, to fail when using most existing concentra-

tion inequalities. One approach to improving performance would be to try to find a

tighter upper bound on the importance weighted returns. However, it may not be

possible to improve much upon the upper bound that we proposed. Consider what

41

would happen if the evaluation policy quickly moved the agent to the position (2, 4)

and then deterministically chose the “down” action until time ran out. This would

result in an expected return of approximately 94 (less, depending on how long it

takes the agent to reach (2, 4)), which is nearly optimal, so G(HL) would be close to

one. Also, the trajectory most often produced by the evaluation policy could occur

under the random behavior policy. If it does, the importance weighted return will be

massive since approximately 96 time steps will have the action “down” chosen in the

position (2, 4), which results in an importance weight of approximately 496 for those

transitions (this will be multiplied by the importance weight from the time steps dur-

ing which the agent moved to (2, 4), which might make the importance weight larger

still).

3.6 Per-Decision Importance Sampling

Per-decision importance sampling (PDIS) is an approach specific to sequential

systems like ours. It often has lower variance than the IS estimator, but is still an

unbiased estimator of ρ(πe). PDIS is only applicable for certain definitions of G(HL),

which includes all affine functions of the rewards like the normalized discounted return

defined in (2.5). Intuitively, the PDIS estimator uses a different importance weight

for each reward rather than one importance weight for the entire return.

The PDIS estimator can be derived as follows if G(HL) is the normalized dis-

counted return defined in (2.5):

ρ(πe) =
E
[
γ0R1 + γ1R2 + . . .+ γL−1RL

∣∣HL ∼ πe
]
−Glb

Gub −Glb

=

(∑L
t=1 E [γt−1Rt|HL ∼ πe]

)
−Glb

Gub −Glb

. (3.9)

By Lemma 2 we have that E[γt−1Rt|HL ∼ πe] = E[γt−1Rt|Ht ∼ πe]. This means that

each term only depends on the history up until the relevant reward. So, continuing

42

Equation (3.9), we can use ordinary importance sampling to estimate each expected

value:

ρ(πe) =

(∑L
t=1 E [γt−1Rt|Ht ∼ πe]

)
−Glb

Gub −Glb

=

(∑L
t=1

∑
suppt πe

Pr(Ht=ht|πe)γt−1rt

)
−Glb

Gub −Glb

(a)
=

(∑L
t=1

∑
suppt πb

Pr(Ht = ht|πe)γt−1rt

)
−Glb

Gub −Glb

=

(∑L
t=1

∑
suppt πb

Pr(Ht=ht|πb)
Pr(Ht=ht|πb)

Pr(Ht=ht|πe)γt−1rt

)
−Glb

Gub −Glb

=

(∑L
t=1

∑
suppt πb

Pr(Ht=ht|πe)
Pr(Ht=ht|πb)

Pr(Ht=ht|πb)γt−1rt

)
−Glb

Gub −Glb

(b)
=

(∑L
t=1

∑
suppt πb

(∏t
i=1

πe(ai|oi)
πb(ai|oi)

)
Pr(Ht=ht|πb)γt−1rt

)
−Glb

Gub −Glb

=

(∑L
t=1 E

[
γt−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

∣∣∣Ht ∼ πb

])
−Glb

Gub −Glb

(3.10)

=E

(∑L

t=1 γ
t−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

)
−Glb

Gub −Glb

∣∣∣∣∣∣Ht ∼ πb

 ,
where (a) holds by Assumption 1 due to Corollary 3 and (b) comes from Lemma 1.

We define the PDIS estimator to be:

ρ̂PDIS(πe|HL, πb) :=

(∑L
t=1 γ

t−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

)
−Glb

Gub −Glb

. (3.11)

From its derivation, it is clear that ρ̂PDIS(πe|HL, πb) is an unbiased estimator of ρ(πe)

if Assumption 1 holds and HL ∼ πb. Notice also that PDIS is equivalent to IS if the

rewards are all zero except for the final reward. PDIS was first derived for the MDP

setting by Precup (2000). Here we have extended their result to the full POMDP

setting. Also notice that, while the IS estimator, ρ̂IS(πe|HL, πb), is never negative, the

43

PDIS estimator, ρ̂PDIS(πe|HL, πb), can be negative if any of the individual rewards are

negative.

As with the IS estimator, if we have a set, D, of trajectories and the policies that

generated them, we define the PDIS estimator to be the mean of the individual PDIS

estimators for each trajectory. So, by substituting in the definition of ρ̂PDIS(πe|H i
L, πi)

and reordering terms we have that:2

PDIS(πe|D) :=
1

nD

nD∑
i=1

ρ̂PDIS(πe|H i
L, πi)

=

(
1

Gub −Glb

)

L∑
t=1

γt−1

∑nD
i=1Rt

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)

nD︸ ︷︷ ︸
IS estimate of E[Rt|Ht ∼ πe]

−Glb

 . (3.12)

From (3.12) it clear what PDIS is doing—for each time, t, it uses ordinary importance

sampling to estimate the expected discounted reward at time t. Lastly, notice that

the batch PDIS estimator is an unbiased estimator of ρ(πe) if Assumption 1 holds:

E [PDIS(πe|D)] =E

[
1

nD

nD∑
i=1

ρ̂PDIS(πe|H i
L, πi)

]

=
1

nD

nD∑
i=1

E
[
ρ̂PDIS(πe|H i

L, πi)
]

=
1

nD

nD∑
i=1

ρ(πe)

=ρ(πe). (3.13)

3.6.1 Upper and Lower Bounds on the PDIS Estimator

To bound the PDIS estimator we will assume that the worst possible likelihood

ratio occurs at every time step. Let

2Recall that Aij denotes the jth action in the ith trajectory in D.

44

ς := max
a,o

πe(a|o)
πb(a|o)

, (3.14)

We can then bound the PDIS estimator by

ρ̂PDIS
ub (πe, πb) :=

(
∑L
t=1 γ

t−1rubς
t)−Glb

Gub−Glb
if rub ≥ 0

−Glb

Gub−Glb
otherwise,

(3.15)

and

ρ̂PDIS
lb (πe, πb) :=

(
∑L
t=1 γ

t−1rlbς
t)−Glb

Gub−Glb
if rlb ≤ 0

−Glb

Gub−Glb
otherwise.

(3.16)

3.6.2 Consistency of PDIS Estimator

Our derivation of the PDIS estimator made it clear that ρ̂PDIS(πe|HL, πb) is an

unbiased estimator of ρ(πe) if HL ∼ πb and Assumption 1 holds, and that PDIS(πe|D)

is an unbiased estimator of ρ(πe) regardless of how many trajectories are in D if

Assumption 1 holds. Here we present two different sets of assumptions that ensure

that the batch PDIS estimator is consistent.

First we show that the batch PDIS estimator is consistent if there is only one

behavior policy:

Theorem 5. If Assumption 1 holds and there is only one behavior policy, i.e., πi = πb

for all i, then PDIS(πe|D) is a consistent estimator of ρ(πe).

Proof. This follows from Corollary 1 since (1) ρ̂PDIS(πe|H i
L, πb) is an unbiased estima-

tor of ρ(πe) for all i ∈ {1, . . . , nD} and (2) the random variables {ρ̂PDIS(πe|H i
L, πb)}

nD
i=1

are identically distributed since the trajectories are all generated by the same behavior

policy. �

45

Next we show that the PDIS estimator is consistent if there are many behavior

policies, all of which are bounded away from being deterministic when the evaluation

policy is not deterministic.

Theorem 6. If Assumption 1 holds and there exists a constant ε > 0 such that

πi(a|o) ≥ ε for all i ∈ {1, . . . , nD} and (a, o) where πe(a|o) 6= 0, then PDIS(πe|D) is

a consistent estimator of ρ(πe) even if there are multiple behavior policies.

Proof. This follows from Corollary 2 since (1) ρ̂PDIS(πe|H i
L, πb) is an unbiased esti-

mator of ρ(πe) for all i ∈ {1, . . . , nD} and (2)

ρ̂PDIS(πe|H i
L, πb) ∈

[
min{ 1

εL
rlb, 0} −Glb

Gub −Glb

,
max{0, 1

εL
rub} −Glb

Gub −Glb

]
,

and so ρ̂PDIS(πe|H i
L, πb) has bounded variance. �

3.6.3 Example: Gridworld

Consider the application of PDIS to the behavior and evaluation policies from the

gridworld. We will use the exact same trajectories that were used to produce the left

plot in Figure 3.1 (the empirical distribution of returns under the behavior policy)

to produce an estimate of the performance of the evaluation policy. That is, we

compute ρ̂PDIS(πe|H i
L, πi), for each of the 500,000 trajectories (i ∈ {1, . . . , 500,000})

that were generated by the behavior policy. The resulting distribution of the 500,000

estimators, ρ̂PDIS(πe|HL, πi), is depicted in Figure 3.4.

The mean PDIS estimator (i.e., PDIS(πe|D)) was 0.900, which is equal to the

true expected performance, ρ(πe), to all three decimal places. The largest observed

PDIS estimator was 1.601 and the smallest was approximately 0.800. The upper and

lower bounds on ρ̂PDIS(πe|HL, πb) are ρ̂PDIS
ub (πe, πb) = 1.071× 1058 and ρ̂PDIS

lb (πe, πb) =

−1.071× 1058.

Notice that the distribution of ρ̂PDIS(πe|HL, πb) is much more desirable than the

distribution of ρ̂IS(πe|HL, πb)—it has much less variance. It is also approximately

46

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

1

2

3

4

5

6

x 10
4

Importance Weighted Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95
0

1

2

3

4

5

6

x 10
4

Importance Weighted Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

Figure 3.3. Empirical distribution of PDIS estimators when evaluating the evalua-
tion policy for the gridworld using 500,000 trajectories from the behavior policy. The
plot on the right is zoomed in to provide more detail around the region containing
most of the probability mass. The tallest column is not cut off in this plot and has
a value of 57,167.

symmetric, which means that it does not tend to under or over-estimate ρ(πe) when

using only a few trajectories.

However, PDIS is poorly suited to producing high confidence lower bounds on

ρ(πe). The methods that we will present in the next chapter perform poorly if

ρ̂†lb(πe, πb), the lower bound on ρ̂†(πe|HL, πb), is far away from ρ(πe). The IS estima-

tor’s lower bound was zero, which is much closer to ρ(πe) ∈ [0, 1] than ρ̂PDIS
lb (πe, πb) =

−1.071×1058. In the next section we propose a normalized form of the PDIS estimator

that, like the IS estimator, is lower bounded by zero.

3.7 Normalized Per-Decision Importance Sampling (NPDIS)

Estimator

To make the PDIS estimator more suitable for our use, we must make it so that it

is lower bounded by zero. We achieve this by subtracting rlb from every reward. This

makes the rewards nonnegative. We then correct for the bias that this introduces by

47

adding back rlb

∑L
t=1 γ

t−1 = rlb
γL−1
γ−1

prior to normalization.3 We call this estimator

the normalized per-decision importance sampling (NPDIS) estimator, and it is given

by

ρ̂NPDIS(πe|HL, πb) :=

(∑L
t=1 γ

t−1(Rt − rlb)
∏t

i=1
πe(Ai|Oi)
πb(Ai|Oi)

)
+ rlb

γL−1
γ−1
−Glb

Gub −Glb

, (3.17)

and in batch form:

NPDIS(πe|D) :=
1

nD

nD∑
i=1

ρ̂NPDIS(πe|H i
L, πi), (3.18)

In Theorem 7 we show that ρ̂NPDIS(πe|HL, πb) is an unbiased estimator of ρ(πe)

and in Theorem 8 we show that the batch NPDIS estimator is an unbiased estimator

of ρ(πe) regardless of how many trajectories are in D.

Theorem 7. The NPDIS estimator, ρ̂NPDIS(πe|HL, πb) is an unbiased estimator of

ρ(πe) if Assumption 1 holds and HL ∼ πb.

Proof.

3If γ = 1, then this term should be replaced with Lrlb.

48

E
[
ρ̂NPDIS(πe|HL, πb)

∣∣HL ∼ πb
]

=E

(∑L

t=1 γ
t−1(Rt − rlb)

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

)
+ rlb

γL−1
γ−1 −Glb

Gub −Glb

∣∣∣∣∣∣HL ∼ πb

=E

(∑L

t=1 γ
t−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

)
−
(∑L

t=1 γ
t−1rlb

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

)
+ rlb

γL−1
γ−1 −Glb

Gub −Glb

∣∣∣∣∣∣HL ∼ πb

=
E
[∑L

t=1 γ
t−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

∣∣∣HL ∼ πb
]
− rlb

∑L
t=1 γ

t−1E
[∏t

i=1
πe(Ai|Oi)
πb(Ai|Oi)

∣∣∣HL ∼ πb
]

+ rlb
γL−1
γ−1 −Glb

Gub −Glb

(a)
=

E
[∑L

t=1 γ
t−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

∣∣∣HL ∼ πb
]
− rlb

∑L
t=1 γ

t−1 + rlb
γL−1
γ−1 −Glb

Gub −Glb

=
E
[∑L

t=1 γ
t−1Rt

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

∣∣∣HL ∼ πb
]
−Glb

Gub −Glb

=E
[
ρ̂PDIS(πe|HL, πb)

]
(b)
= ρ(πe),

where (a) uses Lemma 3 (which uses Assumption 1) and (b) uses (3.13) (which also
relies on Assumption 1). �

Theorem 8. The NPDIS batch estimator, NPDIS(πe|D) is an unbiased estimator of

ρ(πe) if Assumption 1 holds.

Proof.

E [NPDIS(πe|D)] =E

[
1

nD

nD∑
i=1

ρ̂NPDIS(πe|H i
L, πi)

]

=
1

nD

nD∑
i=1

E
[
ρ̂NPDIS(πe|H i

L, πi)
]

(a)
=

1

nD

nD∑
i=1

ρ(πe)

=ρ(πe),

where (a) holds by Theorem 7 and Assumption 1. �

49

3.7.1 Upper and Lower Bounds on the NPDIS Estimator

We can bound the NPDIS estimator by

ρ̂NPDIS(πe|HL, πb) ≥ 0.

and

ρ̂NPDIS
ub (πe, πb) :=

(∑L
t=1 γ

t−1(rub − rlb)ς t
)

+ rlb
γL−1
γ−1
−Glb

Gub −Glb

, (3.19)

where ς is defined in (3.14).

3.7.2 Consistency of NPDIS Estimator

We showed that ρ̂NPDIS(πe|HL, πb) is an unbiased estimator of ρ(πe) if HL ∼ πb,

and that NPDIS(πe|D) is an unbiased estimator of ρ(πe) regardless of how many

trajectories are in D. Here we present two different sets of assumptions that ensure

that the batch NPDIS estimator is consistent.

First we show that the batch NPDIS estimator is consistent if there is only one

behavior policy:

Theorem 9. If Assumption 1 holds and there is only one behavior policy, i.e., πi = πb

for all i, then NPDIS(πe|D) is a consistent estimator of ρ(πe).

Proof. This follows from Corollary 1 since (1) ρ̂NPDIS(πe|H i
L, πb) is an unbiased estima-

tor of ρ(πe) for all i ∈ {1, . . . , nD} and (2) the random variables {ρ̂NPDIS(πe|H i
L, πb)}

nD
i=1

are identically distributed since the trajectories are all generated by the same behavior

policy. �

Next we show that the NPDIS estimator is consistent if there are many behavior

policies, all of which are bounded away from being deterministic when the evaluation

policy is not deterministic.

50

Theorem 10. If Assumption 1 holds and there exists a constant ε > 0 such that

πi(a|o) ≥ ε for i ∈ {1, . . . , nD} and (a, o) where πe(a|o) 6= 0, then PDIS(πe|D) is a

consistent estimator of ρ(πe) even if there are multiple behavior policies.

Proof. This follows from Corollary 2 since (1) ρ̂NPDIS(πe|H i
L, πb) is an unbiased esti-

mator of ρ(πe) for all i ∈ {1, . . . , nD} and (2) for all i ∈ {1, . . . , nD}

ρ̂NPDIS(πe|H i
L, πb) ∈

[
0,

L
εL

(rub − rlb) + rlb
γL−1
γ−1
−Glb

Gub −Glb

]
,

and so ρ̂NPDIS(πe|H i
L, πb) has bounded variance. �

3.7.3 Example: Gridworld

Consider the application of NPDIS to the behavior and evaluation policies from

the gridworld. We will use the exact same trajectories that were used to produce

the left plot in Figure 3.1 (the empirical distribution of returns under the behavior

policy) to produce an estimate of the performance of the behavior policy. That is, we

compute ρ̂NPDIS(πe|H i
L, πi), for each of the 500,000 trajectories (i ∈ {1, . . . , 500,000})

that were generated by the behavior policy. The resulting distribution of the 500,000

estimators, ρ̂NPDIS(πe|HL, πi), is depicted in Figure 3.4.

The mean NPDIS estimator (i.e., PDIS(πe|D)) was 0.900, which is equal to the

true expected performance, ρ(πe), to all three decimal places. The largest observed

PDIS estimator was 60.494 and the smallest was approximately 0.011. The upper

bound on ρ̂NPDIS(πe|HL, πb) is ρ̂PDIS
ub (πe, πb) = 2.1421.071× 1058. Notice that the first

column extends beyond the top of the plot to a value of 212,131. Also notice that the

NPDIS estimator is distributed much like the IS estimator, although not identically.

This is because the evaluation policy tends to reach the terminal state quickly. The

terminal state has the largest reward, which makes up much of the return, and its

importance weight is the same as the importance weight used by the IS estimator.

51

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

x 10
4

Importance Weighted Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

x 10
4

Importance Weighted Return

N
um

be
r

of
 O

cc
ur

an
ce

s
ou

t o
f 5

00
,0

00

Figure 3.4. Empirical distribution of NPDIS estimators when evaluating the evalua-
tion policy for the gridworld using 500,000 trajectories from the behavior policy. The
plot on the right is zoomed in to provide more detail around the region containing
most of the probability mass. The first column is cut off by the limit of the vertical
axis—it dwarfs the others with a value of 212,131.

Still, the NPDIS estimator is preferable to the IS estimator since it has slightly

lower variance and a lower upper bound, and it will be preferable to the PDIS esti-

mator in the next chapter because its lower bound is 0, which is closer to ρ(πe) than

ρ̂PDIS
lb (πe, πb).

3.8 Weighted Importance Sampling (WIS) Estimator

The primary drawback of IS, PDIS, and NPDIS is their large possible range,

which results in high variance for IS and NPDIS. Notice, for example, that even

though the returns, G(HL), and expected returns, ρ(π), are between 0 and 1, the

estimators, ρ̂†(πe|HL, πb) for † ∈ {IS, PDIS, NPDIS}, can be much larger than 1

(see for example ρ̂†ub(πe, πb) or the largest observed estimator values for the gridworld

example for each estimator). Weighted importance sampling (WIS) is an alternative

that is usually biased but which has a much smaller range (it is always in [0, 1], like

the true expected return) and it has much lower variance than IS and NPDIS (it often

performs similarly to PDIS).

52

When there are few samples available, the lower variance of WIS may produce a

larger reduction in expected square error than the additional error incurred due to the

bias (Thomas et al., 2015a), making WIS preferable to IS and NPDIS even though it

is a biased estimator of ρ(πe). Furthermore, although WIS is a biased estimator, we

will show that it is consistent, which means that it becomes less biased as the number

of samples increases.

WIS is intended for the batch setting where many samples are available. Let

{qi}ni=1 be n probability mass functions. Let p be another probability mass func-

tion. The average of the IS estimator over all qi produces an unbiased estimator of

E[f(X)|X ∼ p]:

E[f(X)|X ∼ p] = E

∑n
i=1

p(Xi)
qi(Xi)

f(Xi)

n︸ ︷︷ ︸
mean IS estimator

∣∣∣∣∣∣∣X1 ∼ q1, . . . Xn ∼ qn

 .

The WIS estimator divides by the sum of the importance weights, rather than n:

E[f(X)|X ∼ p] ≈ E

∑n

i=1
p(Xi)
qi(Xi)

f(Xi)∑n
i=1

p(Xi)
qi(Xi)︸ ︷︷ ︸

WIS estimator

∣∣∣∣∣∣∣∣∣∣
X1 ∼ q1, Xn ∼ qn

 . (3.20)

In our setting, the WIS estimator is given by

WIS(πe|D) :=

∑nD
i=1

∏L
t=1

πe(Ait|Oit)
πi(Ait|Oit)

G(H i
L)∑nD

i=1

∏L
t=1

πe(Ait|Oit)
πi(Ait|Oit)

. (3.21)

In our case where G(HL) ∈ [0, 1], dividing by the sum of the importance weights

ensures that the WIS estimator is also bounded within [0, 1]. We saw that the IS

estimator was often an underestimate if only a few samples are available because

most samples have small (near zero) importance weights. The WIS estimator is less

53

sensitive to this because, if every sample has a small (near zero) importance weight,

the denominator will be much less than n, which increases the value of the WIS

estimator relative to the IS estimator. Similarly, if a massive importance weight

occurs, the IS estimator tends to greatly overestimate the target value. However, the

WIS estimator will divide by the massive importance weight causing the estimator to

maintain a reasonable value.

To better see what WIS is doing and why it is consistent, consider the case where

there is only a single sample in (3.20), i.e., n = 1. The importance weights in WIS

cancel from the numerator and denominator and the WIS estimator is merely f(X1),

where X1 ∼ q1, which can be a biased estimator of E[f(X)|X ∼ p]. However, notice

from Lemma 3 that as the number of samples increases, the denominator of the WIS

estimator tends towards n (if it is n, then WIS is equivalent to IS).

The WIS estimator is trivially bounded within [0, 1], and so ρ̂WIS
lb (πe, πb) = 0 and

ρ̂WIS
ub (πe, πb) = 1 for all πe and πb. Below we show that WIS is a consistent estimator

of ρ(πe) if there is a single behavior policy (Theorem 11) or if there are multiple

behavior policies that satisfy a technical requirement (Theorem 12).

Theorem 11. If Assumption 1 holds and there is only one behavior policy, i.e.,

πi = πb for all i, then WIS(πe|D) is a consistent estimator of ρ(πe).

Proof. First, we rewrite the WIS estimator by multiplying the numerator and de-

nominator both by 1
nD

:

WIS(πe|D) =

1
nD

∑nD
i=1

∏L
t=1

πe(Ait|Oit)
πi(Ait|Oit)

G(H i
L)

1
nD

∑nD
i=1

∏L
t=1

πe(Ait|Oit)
πi(Ait|Oit)

. (3.22)

This proof then proceeds by first showing that the numerator of (3.22) converges

almost surely to ρ(πe) and then that the denominator converges almost surely to 1.

By Property 2, this means that WIS(πe|D) also converges almost surely to ρ(πe), and

so WIS(πe|D) is a consistent estimator of ρ(πe).

54

Numerator: The numerator is equal to IS(πe|D). Therefore, by Theorem 3 and

Assumption 1, the numerator converges almost surely to ρ(πe).

Denominator: By Lemma 3 we have that for all i ∈ {1, . . . , nD}:

E

[
L∏
t=1

πe(A
i
t|Oi

t)

πi(Ait|Oi
t)

∣∣∣∣∣H i
L ∼ πi

]
=1. (3.23)

Furthermore, each term,
∏L

t=1
πe(Ait|Oit)
πi(Ait|Oit)

is identically distributed for each i ∈ {1, . . . , nD}

since there is only one behavior policy. So, by the Khintchine strong law of large num-

bers, we have that

1

nD

nD∑
i=1

L∏
t=1

πe(A
i
t|Oi

t)

πi(Ait|Oi
t)

a.s.−→ 1. (3.24)

�

Theorem 12. If Assumption 1 holds and there exists a constant ε > 0 such that

πi(a|o) ≥ ε for all i ∈ {1, . . . , nD} and (a, o) where πe(a|o) 6= 0, then WIS(πe|D) is a

consistent estimator of ρ(πe) even if there are multiple behavior policies.

Proof. This proof has the same form as the proof of Theorem 11—we show that the

numerator and denominator of (3.22) converge almost surely to 1 and ρ(πe) respec-

tively.

Numerator: The numerator is equal to IS(πe|D). Therefore, by Theorem 4 and

Assumption 1, the numerator converges almost surely to ρ(πe).

Denominator: Again, by Lemma 3 we have that (3.23) holds. Furthermore, each

term,
∏L

t=1
πe(Ait|Oit)
πi(Ait|Oit)

∈
[
0, 1

εL

]
and therefore has bounded variance. So, by the Kol-

mogorov strong law of large numbers, we have that (3.24) holds. �

55

3.9 Weighted Per-Decision Importance Sampling (WPDIS)

Estimator

Just as the IS estimator was modified to produce the WIS estimator, we can mod-

ify the PDIS estimator to get a weighted per-decision importance sampling (WPDIS)

estimator. Rather than dividing by the number of samples in the batch PDIS esti-

mator, we simply divide by the sum of the importance weights:

WPDIS(πe|HL, πb) :=

(
1

Gub −Glb

)
∑nD

i=1

∑L
t=1 γ

t−1Rt

∏t
j=1

πe(Aij |Oij)
πi(Aij |Oij)∑nD

i=1

∑L
t=1 γ

t−1
∏t

i=1

πe(Aij |Oij)
πi(Aij |Oij)

−Glb

 .

(3.25)

This estimator was proposed by Precup (2000) for the MDP setting. Although they

correctly assert that it may be a biased estimator of ρ(πe), they incorrectly assert that

it is a consistent estimator of ρ(πe). To see that it is not consistent, consider what

happens if πe = πi for all i. This makes all of the action probability ratios one. To

further simplify the equation, let γ = 1, L > 1, Glb = 0, and Gub = 1. The estimator

then becomes

WPDIS(πe|HL, πe) =

∑nD
i=1

∑L
t=1 Rt

nL
− 0

1− 0

=

∑nD
i=1

∑L
t=1Rt

nL

=
1

L

1

nD

nD∑
i=1

G(H i
L),

which, if ρ(πe) 6= 0, will converge almost surely to ρ(πe)
L
6= ρ(πe). So, not only can

the WPDIS estimator be a biased estimator of ρ(πe), but it is also not a consistent

estimator of ρ(πe), even if using only a single behavior policy. Because the WPDIS

estimator is neither unbiased nor consistent, we do not discuss it further or include

it in our experiments.

56

3.10 Consistent Weighted Per-Decision Importance Sampling

(CWPDIS) Estimator

We propose a new estimator that applies the ideas behind the WIS estimator to

the PDIS estimator in a way that allows it to remain a consistent estimator of ρ(πe).

Because this estimator is based on PDIS, it only applies to definitions of G(HL) that

are affine functions of the reward, like the normalized discounted return. We call this

new estimator the consistent weighted per-decision importance sampling (CWPDIS)

estimator. If using the normalized discounted return defined in (2.5) for G(H i
L), then:

CWPDIS(πe|D) :=

(
1

Gub −Glb

)

L∑
t=1

γt−1

∑nD
i=1Rt

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)∑nD

i=1

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)︸ ︷︷ ︸

WIS estimate of E[Rt|HL ∼ πe]

−Glb

 .

(3.26)

For each time, t, the PDIS estimator uses ordinary importance sampling to estimate

the expected discounted reward at time t (see (3.10)). It then sums these L IS es-

timators (including the discount parameter γ) to get an estimate of the expected

(unnormalized) return. Here we use weighted importance sampling rather than or-

dinary importance sampling to estimate the expected reward at time t. Notice that

each weighted importance sampling estimate of E[Rt|HL ∼ πe] is bounded within rlb

and rub, and so ρ̂CWPDIS
lb (πe, πb) = 0 and ρ̂CWPDIS

ub (πe, πb) = 1 for all πe and πb if G(HL)

is as defined in (2.5) and Glb and Gub are as defined in (2.3) and (2.4).

The CWPDIS estimator can be biased. However, unlike the WPDIS estimator, it

is a consistent estimator of ρ(πe):

Theorem 13. If Assumption 1 holds and there is only one behavior policy, i.e.,

πi = πb for all i, then CWPDIS(πe|D) is a consistent estimator of ρ(πe).

57

Proof. Let

Xt :=

∑nD
i=1Rt

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)∑nD

i=1

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)

,

so that CWPDIS(πe|D) =
(
∑L
t=1 γ

t−1Xt)−Glb

Gub−Glb
.

By Properties 1 and 3 we have that if Xt
a.s.−→ E[Rt|HL ∼ πe] for all t ∈ {1, . . . , L},

then CWPDIS(πe|D)
a.s.−→ ρ(πe). To show that Xt

a.s.−→ E[Rt|HL ∼ πe], we first rewrite

Xt my multiplying the numerator and denominator both by 1
nD

:

Xt :=

1
nD

∑nD
i=1Rt

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)

1
nD

∑nD
i=1

∏t
j=1

πe(Aij |Oij)
πb(A

i
j |Oij)

. (3.27)

This proof proceeds by first showing that the numerator of (3.27) converges almost

surely to E[Rt|HL ∼ πe] and then that the denominator converges almost surely to

1. By Property 2, this means that Xt also converges almost surely to E[Rt|HL ∼ πe],

and so we can conclude that CWPDIS(πe|D) is a consistent estimator of ρ(πe). Notice

that the remainder of the proof holds for any fixed t ∈ {1, . . . , L}.

Numerator: Let

Yi := Rt

t∏
j=1

πe(A
i
j|Oi

j)

πi(Aij|Oi
j)
. (3.28)

We have that

58

E[Yi|H i
L ∼ πi] =E

[
Rt

t∏
j=1

πe(Aj|Oj)

πi(Aj|Oj)

∣∣∣∣∣HL ∼ πi

]
(a)
=E

[
Rt

t∏
j=1

πe(Aj|Oj)

πi(Aj|Oj)

∣∣∣∣∣Ht ∼ πi

]

=
∑

suppt πi

Pr(Ht = ht|πi)rt
t∏

j=1

πe(aj|oj)
πi(aj|oj)

(b)
=

∑
suppt πi

Pr(Ht = ht|πi)rt
Pr(Ht = ht|πe)
Pr(Ht = ht|πi)

=
∑

suppt πi

Pr(Ht = ht|πe)rt

(c)
=

∑
suppt πe

Pr(Ht = ht|πe)rt

=E [Rt|Ht ∼ πe]

(d)
= E [Rt|HL ∼ πe] , (3.29)

where (a) and (d) hold by Lemma 2, (b) holds by Lemma 1, and (c) holds because

Assumption 1 implies Corollary 3. So, by the Khintchine strong law of large numbers,

we have that

1

n

nD∑
i=1

Yi︸ ︷︷ ︸
numerator of (3.27)

a.s.−→ E [Rt|HL ∼ πe] .

Denominator: By Lemma 3 we have that

E

[
t∏

j=1

πe(A
i
j|Oi

j)

πi(Aij|Oi
j)

∣∣∣∣∣H i
L ∼ πi

]
=1. (3.30)

Furthermore, each term,
∏t

j=1

πe(Aij |Oij)
πi(Aij |Oij)

is identically distributed for each i ∈ {1, . . . , nD}.

So, by the Khintchine strong law of large numbers, we have that

1

nD

nD∑
i=1

t∏
j=1

πe(A
i
j|Oi

j)

πi(Aij|Oi
j)

a.s.−→ 1.

59

�

Theorem 14. If Assumption 1 holds and there exists a constant ε > 0 such that

πi(a|o) ≥ ε for all i ∈ {1, . . . , nD} and (a, o) where πe(a|o) 6= 0, then CWPDIS(πe|D)

is a consistent estimator of ρ(πe) even if there are multiple behavior policies.

Proof. Recall the definition ofXt from (3.27), such that CWPDIS(πe|D) =
(
∑L
t=1 γ

t−1Xt)−Glb

Gub−Glb
.

By Properties 1 and 3 we have that if Xt
a.s.−→ E[Rt|HL ∼ πe] for all t ∈ {1, . . . , L},

then CWPDIS(πe|D)
a.s.−→ ρ(πe).

This proof proceeds by first showing that the numerator of Xt converges almost

surely to E[Rt|HL ∼ πe] and then that the denominator converges almost surely to

1. By Property 2, this means that Xt also converges almost surely to E[Rt|HL ∼ πe],

and so we can conclude that CWPDIS(πe|D) is a consistent estimator of ρ(πe). Notice

that the remainder of the proof holds for any fixed t ∈ {1, . . . , L}.

Numerator: Let Yi be defined as in (3.28). We have from (3.29) that E[Yi|H i
L ∼

πi] = E [Rt|HL ∼ πe] . Furthermore,

Yi ∈
[
min

{
0,
rlb

εt

}
,max

{
0,
rub

εt

}]
,

and so each Yi has bounded variance. So, by the Kolmogorov strong law of large

numbers, we have that

1

nD

nD∑
i=1

Yi︸ ︷︷ ︸
numerator of Xi

a.s.−→ E [Rt|HL ∼ πe] .

Denominator: By Lemma 3 we have that (3.30) holds. Furthermore, each term,∏t
j=1

πe(Aij |Oij)
πi(Aij |Oij)

∈ [0, εt], and therefore has bounded variance. So, by the Kolmogorov

strong law of large numbers, we have that

1

nD

nD∑
i=1

t∏
j=1

πe(A
i
j|Oi

j)

πi(Aij|Oi
j)

a.s.−→ 1.

60

�

3.11 Deterministic Behavior Policies

Notice that our derivation of IS (Equation (3.4)) assumes that the support of

the target distribution (evaluation policy) is a subset of the support of the sampling

distribution (behavior policy), or at least that if q(x) = 0 then f(x)p(x) = 0. In

our application this is enforced by Assumption 1. However, Assumption 1 may not

always hold if a behavior policy is deterministic.

We show that, even if Assumption 1 does not hold, the expected value of the IS

estimator is less than ρ(πe). That is, on average, it produces an underestimate of

ρ(πe). This means that when we use it later for high-confidence off-policy evaluation,

the lower bounds that we generate will be lower bounds even if Assumption 1 does

not hold.

Theorem 15. Let p and q be the probability mass functions for two distributions

over a discrete set of events, X , and f : X → [0,∞). Then the expected importance

sampling estimator, E
[
p(X)
q(X)

f(X)
∣∣∣X ∼ q

]
, is less than E[f(X)|X ∼ p].

Proof.

61

E[f(X)|X ∼ p] =
∑

x∈supp p

p(x)f(x)

=
∑

x∈supp q

p(x)f(x) +
∑

x∈supp p\supp q

p(x)f(x)−
∑

x∈supp q\supp p

p(x)f(x)

︸ ︷︷ ︸
(a)
= 0

(b)

≥
∑

x∈supp q

p(x)f(x)

=
∑

x∈supp q

q(x)

q(x)︸︷︷︸
=1

p(x)f(x)

=
∑

x∈supp q

q(x)
p(x)

q(x)
f(x)

=E

[
p(X)

q(X)
f(X)

∣∣∣∣X ∼ q

]
,

where (a) this integral is zero because, from the definition of supp p, we have p(x) = 0

for every x ∈ supp q \ supp p, and (b) this inequality holds because f(x) ≥ 0 for all

x. �

It follows from Theorem 15 that the expected value of the IS estimators (batch

and single-trajectory) will never be above ρ(πe):

Corollary 4. E[ρ̂IS(πe|HL, πb)] ≤ ρ(πe) for all πe and πb where HL ∼ πb.

Proof. This follows from Theorem 15 since ρ̂IS(πe|HL, πb) is the ordinary IS estimator.

�

Corollary 5. E[IS(πe|D)] ≤ ρ(πe) for all πe and πb where HL ∼ πb.

Proof. This follows from Corollary 4 and the definition of IS(πe|D). �

Next we can show that the same holds for the NPDIS estimators:

Theorem 16. E[ρ̂NPDIS(πe|HL, πb)] ≤ ρ(πe) for all πe and πb where HL ∼ πb.

62

Proof. Consider the application of ordinary importance sampling to γt−1(Rt − rlb),

which is always positive. By Theorem 15 we have that

E

γ
t−1(Rt − rlb)︸ ︷︷ ︸

f(X)

t∏
i=1

πe(Ai|Oi)

πb(Ai|Oi)︸ ︷︷ ︸
p(X)
q(X)

∣∣∣∣∣∣∣∣∣∣∣∣
HL ∼ πb︸ ︷︷ ︸

X∼q

 ≤ E
[
γt−1(Rt − rlb)

∣∣HL ∼ πe
]︸ ︷︷ ︸

E[f(X)|X∼p]

.(3.31)

So,

E
[
ρ̂NPDIS(πe|HL, πb)

∣∣HL ∼ πb
]

=E

(∑L

t=1 γ
t−1(Rt − rlb)

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

)
+ rlb

γL−1
γ−1 −Glb

Gub −Glb

∣∣∣∣∣∣HL ∼ πb

=

(∑L
t=1 E

[
γt−1(Rt − rlb)

∏t
i=1

πe(Ai|Oi)
πb(Ai|Oi)

∣∣∣HL ∼ πb
])

+ rlb
γL−1
γ−1 −Glb

Gub −Glb

(a)

≤

(∑L
t=1 E

[
γt−1(Rt − rlb)

∣∣HL ∼ πe
])

+ rlb
γL−1
γ−1 −Glb

Gub −Glb

=

(∑L
t=1 E

[
γt−1Rt

∣∣HL ∼ πe
])
−
(∑L

t=1 γ
t−1rlb

)
+ rlb

γL−1
γ−1 −Glb

Gub −Glb

=

(∑L
t=1 E

[
γt−1Rt

∣∣HL ∼ πe
])
−Glb

Gub −Glb

=E

(∑L

t=1 γ
t−1Rt

)
−Glb

Gub −Glb

∣∣∣∣∣∣HL ∼ πe

=ρ(πe),

where (a) comes from (3.31). �

Corollary 6. E[PDIS(πe|D)] ≤ ρ(πe) for all πe and πb where HL ∼ πb.

Proof. This follows from Theorem 16 and the definition of NPDIS(πe|D). �

Next we consider the estimators that are based on weighted importance sampling.

First, we define what it means for a sequence of estimators to be consistent underes-

timators, which is the consistency equivalent to ensuring that the expected value of

an estimator is no larger than the target value.

63

Definition 4. Let θ be a real number and (θ̂n)∞n=1 be an infinite sequence of random

variables. We call θ̂n, a consistent underestimator of θ if and only if θ̂n
a.s.−→ θ′

for some θ′ ≤ θ.

Notice that the weighted importance sampling estimators are not consistent un-

derestimators of ρ(πe) if Assumption 1 does not hold. Consider the following coun-

terexample. We use weighted importance sampling to estimate E[f(X)|X ∼ p] given

n samples, {Xi}ni=1, where each Xi ∼ q. The WIS estimator in this case is

WIS(p, {Xi}ni=1, q) :=

∑n
i=1

p(Xi)
q(Xi)

f(Xi)∑n
i=1

p(Xi)
q(Xi)

.

If X ∈ {x1, x2}, p(x1) = 0.5, p(x2) = 0.5, q(x1) = 0, q(x2) = 1, f(x1) = 0, and f(x2) =

1, then E[f(X)|X ∼ p] = 0.5. However, WIS(p, {Xi}ni=1, q)
a.s.−→ 1.

In summary, the IS and NPDIS estimators will be useful for generating lower

bounds on ρ(πe) when Assumption 1 is not guaranteed since they do not overestimate

ρ(πe) in expectation. However, the other estimators should be avoided if Assumption

1 is not satisfied.

3.12 Empirical Comparison

The effectiveness of each method depends mainly on the similarity of the policies

being compared, how close to deterministic the policies are, how long the trajectories

are, and whether or not the bulk of the return is received near the end of the episode.

All of these properties can be varied using the gridworld domain. So, we compare IS,

PDIS, NPDIS, WIS, and CWPDIS using five different policies for the gridworld. The

policies are:

1. π1 (random): This policy selects each of the four actions with probability 0.25

regardless of the observation. It takes a long time to reach the goal and often

64

visits the punishing state that gives a reward of −10. This is the same policy

that was used as the behavior policy in the examples included thus far in this

chapter, i.e., the behavior policy from Figure 3.1.

2. π2 (mediocre): This policy was discovered using a few iterations of a black

box optimization routine to maximize ρ. It moves quickly to the goal and

infrequently visits the state that gives a reward of −10. This is the same policy

that was used as the evaluation policy in the examples included thus far in this

chapter, i.e., the evaluation policy from Figure 3.1.

3. π3 (mediocre+): This policy is π2 but with all action probabilities made

slightly more extreme (the most common action is given a slightly higher prob-

ability). This results in a slight improvement over π2.

4. π4 (near-optimal): This policy is a hand coded near-optimal policy that

moves quickly to the position (2, 4) without hitting (2, 2). It then usually takes

the action to move down, and occasionally takes the action to move right. Once

it is in (2, 4) it moves almost deterministically to (4, 4).

5. π5 (near-optimal+): This policy is a slightly more deterministic version of

π4.

The performance of each policy is presented graphically in Figure 3.5.

Each of the following empirical comparisons is performed the same way. First,

a behavior and evaluation policy are selected. We then repeat the following using

various numbers of trajectories, nD. We sample nD trajectories and use each estimator

to estimate ρ(πe) using these nD trajectories. We compute the squared error of each

estimator by comparing its value to the ground truth values computed for Figure 3.5.

We repeat this process 1,000 times for each nD and record the mean squared error

(MSE) of each estimator. We then produce a plot where the horizontal axis is the

65

0.84

0.90 0.90

0.97
0.98

-72.4

1.4 2.6

73.7
85.9

-112.8

-57.35

-1.9

53.55

109

0.8

0.85

0.9

0.95

1

π1 π2 π3 π4 π5

Ex
pe

ct
ed

 U
nn

or
m

al
iz

ed
 R

et
ur

n

Ex
pe

ct
ed

 R
et

ur
n

Figure 3.5. Expected return (left vertical axis) and expected unnormalized return
(right vertical axis) for each of the five policies that we consider. These values were
computed for each policy as the average (on-policy) sample return from 100,000 tra-
jectories. We treat these values as ground truth (standard error bars are too small to
be visible).

number of trajectories used, nD, and where we the vertical axis is the mean squared

error.

We include only the upper standard deviation error bars because the plots use

logarithmic scales for the vertical (and also horizontal) axis. The lower error bars

would almost always go to below zero, i.e., they would go off the bottom of the plot,

which would cause unnecessary clutter.

First we used π1 for both the evaluation and behavior policies. In the on-policy

setting the importance weights are always one, and so every method degenerates to

computing the mean sample return. They all therefore have the same MSE and the

same error bars. These results are depicted in Figure 3.6.

Next, consider Figure 3.7, which uses πb = π1 and πe = π2—data from the random

policy to evaluate a significantly better policy. As expected, IS performs the worst.

PDIS provides a significant improvement over IS, but it will not be practical for our

later use, as discussed previously. NPDIS, the variant of PDIS that will be applicable

later, performs much more similarly to IS than PDIS. Although not clear due to the

logarithmic scale, NPDIS has 72% the MSE of IS, on average. The closest it comes to

66

1E-13

1E-10

0.0000001

0.0001

0.1

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.6. Behavior policy = π1 and evaluation policy = π1.

the IS curve is 80% the MSE of IS. WIS performs exceptionally well, with much lower

MSE than IS, PDIS, and NPDIS. However, recall that it is not an unbiased estimator

of ρ(πe). Still, its lower MSE suggests that it is a better estimator of ρ(πe) in this

case. Finally, the consistent and weighted variant of PDIS, CWPDIS, performs almost

identically to WIS. These same general trends are apparent in Figure 3.8, which uses

πb = π2 and πe = π3 (data from a reasonable policy to evaluate a similar but slightly

better policy).

1E-14

1E-11

1E-08

0.00001

0.01

10

10000

10000000

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.7. Behavior policy = π1 and evaluation policy = π2.

However, Figure 3.9, which uses πb = π3 and πe = π4 is quite different. To see

what is going on, consider the action probabilities in position (2, 4) under the two

policies: π3(down|(2, 4)) = 0.340, π3(right|(2, 4)) = 0.463, π4(down|(2, 4)) = 0.993,

67

1E-18

1E-15

1E-12

1E-09

1E-06

0.001

1

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.8. Behavior policy = π2 and evaluation policy = π3.

and π4(right|(2, 4)) = 0.006. Trajectories that are likely under π4 include multiple

selections of the down action in position (2, 4) to accrue positive rewards. However, it

is unlikely that a trajectory generated by π3 will select the down action many times

in position (2, 4). So, trajectories that are likely under π4 are unlikely under π3.

0.00001

0.01

10

10000

10000000

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.9. Behavior policy = π3 and evaluation policy = π4.

Moreover, consider one particular trajectory, hL, which results from the action

sequence down, down, down, right, followed by down until the episode terminates

due to time running out. We computed that Pr(HL = hL|π3) ≈ 1.4 × 10−47 and

Pr(HL = hL|π4) ≈ 0.5. That is, under π4, this trajectory occurs 50% of the time,

yet under π3 it almost never occurs. The importance weight for this trajectory is

68

approximately 0.5
1.4×10−47 = 7 × 1046. Its return is approximately 0.98, making the

importance weighted return for this trajectory ρ̂IS(πe|hL, πb) ≈ 6.87× 1046.

Consider the expected value of ρ̂IS(π4|HL, π3):

E
[
ρ̂IS(π4|HL, π3)

∣∣HL ∼ π3
]

=
∑

hL∈HL

Pr(HL = hL|π3)ρ̂IS(π3|hL, π4)

≈0.97.

Notice that the trajectory that we have described contributes

Pr(HL = hL|π3)ρ̂IS(π3|hL, π4) ≈ 0.5

to the summation—more than half of the expected value comes from the magnitude

of the importance weighted return associated with the single exceedingly unlikely

trajectory that we described earlier. So, if that trajectory is not sampled (as it never

was), then the IS estimator will remain a significant underestimate of ρ(πe).

The impact that this has is clear in Figure 3.10, which shows the actual estimates

of ρ(π4) as more and more trajectories are appended to D (e.g., the estimate using 2

trajectories uses the first trajectory plus one new trajectory). This plot shows only

one trial—there is no averaging (the expected value of the unbiased estimators would

be ρ(π4)). Initially, trajectories that are likely under π3 but unlikely under π4 are

sampled and the IS estimator is near zero. Eventually a trajectory is sampled that is

both unlikely under π3 and likely under π4. This trajectory has a very large impor-

tance weight and a large return and results in a large jump up in the IS estimator.

More trajectories that are likely under π3 are then sampled and the IS estimator

slowly decays back down until another unlikely trajectory with a large importance

weighted return is sampled and the IS estimator jumps back up again. This process

repeats.

69

0

0.07

0.14

0.21

1 100 10,000 1,000,000

E
st

im
a

te

Number of Episodes

IS NPDIS

Figure 3.10. Actual estimates from the IS and NPDIS estimators using πb = π3
and πe = π4.

The same general property is true of the NPDIS estimator, as evidenced by Figure

3.10. However, consider what happens if the beginning of a trajectory is likely under

π4 but the end of the trajectory is very unlikely under π4. Overall, the trajectory is

unlikely and so the IS estimator will give it a small importance weight and it will result

in an underestimate of ρ(π4). However, the NPDIS estimator uses the probability

of just the beginning of the trajectory when estimating the expected early rewards

in the trajectory, and so it can produce large estimates for individual rewards in

the trajectory. This means that the NPDIS estimator can increase its estimate if

a trajectory begins in a way that is likely under π4, while IS requires the entire

trajectory to be likely under π4. This is evident in Figure 3.10 since the NPDIS

estimator increases its value before the IS estimator does (the curves for the IS and

NPDIS estimator were computed using the same sets of trajectories).

Next consider what is happening with the PDIS estimator when using πb = π3

and πe = π4. Consider a trajectory that is likely under π3 but unlikely under π4,

which results in a small importance weight for most rewards (recall that PDIS uses

importance weights for each individual reward rather than one importance weight for

the entire return). The individual rewards can be positive or negative, and so the

small importance weight can decrease a positive reward to create an underestimate

70

like in IS, or it could increase a negative reward to create an overestimate. As a

result, PDIS does not have as strong of a tendency to underestimate ρ(π4) as IS and

NPDIS do. In this case (this is not always a property of PDIS), it tends to start closer

to ρ(π3) ≈ 0.90 and slowly works its way up to ρ(π4) ≈ 0.97, as shown in Figure

3.11, which is identical to Figure 3.10 but for PDIS, WIS, and CWPDIS.

Finally consider what happens with the WIS and CWPDIS estimators when using

πb = π3 and πe = π4. Recall from the discussion of WIS that the weighted methods,

when using a single sample, are an unbiased estimator of ρ(π3) (since the importance

weights cancel out). So, the WIS and CWPDIS estimators begin as estimates of ρ(π3)

and increase up to ρ(π4) as the number of trajectories increases. Notice that even

after 4 million trajectories (the span of the plot) none of the estimators (PDIS, WIS,

or CWPDIS) has made much progress towards ρ(π4) ≈ 0.97. This is because the

trajectories that result in the largest importance weighted returns are exceptionally

unlikely (recall the most important trajectory has probability 1.4×10−47 of occurring,

which means that it is unlikely to occur in only 4 million trajectories).

Next we used πb = π4 and πe = π5, the results of which are depicted in Figure

3.12. This setting is different from the others because the behavior policy results in

long trajectories (usually they take the full 100 time steps before transitioning to the

absorbing state). So, whereas before the bulk of the return was obtained at the end

of the episode (the reward of +10 for reaching the terminal state), in this case the

rewards are fairly evenly spread across the entire trajectory. This means that NPDIS

and CWPDIS perform much better than IS and WIS, respectively. That is, the MSE

of WIS averages four times the MSE of CWPDIS while the MSE of IS averages 15

times the MSE of NPDIS.

It is important to notice that overall performance is good for all estimators with

πb = π4 and πe = π5. That is, even though the behavior policy is nearly deterministic,

the estimators still perform well. This is because, for every o and a where π4(a|o) is

71

near one, π5(a|o) > π4(a|o). That is, π5 is also nearly deterministic in the same way

as π4. So, the trajectory most needed to evaluate π5 is likely under π4. Furthermore,

the ratio π5(a|o)/π4(a|o) is not too large regardless of whether the most likely action

was taken or not.

0.89

0.9

0.91

0.92

1 100 10,000 1,000,000

E
st

im
at

e

Number of Episodes

PDIS WIS CWPDIS

Figure 3.11. Actual estimates from the PDIS, WIS, and CWPDIS estimators using
πb = π3 and πe = π4.

1E-17

1E-14

1E-11

1E-08

0.00001

0.01

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.12. Behavior policy = π4 and evaluation policy = π5.

So far we have always used evaluation policies that are better than the behavior

policies. We now consider the opposite setting, where the behavior policy is better

than the evaluation policy. First, we used πb = π2 and πe = π1, the result of

which is depicted in Figure 3.13. The estimators all perform poorly, although not as

poorly as when πb = π3 and πe = π4. However, the reason for the poor performance

72

is essentially the same—many of the trajectories required to evaluate π1 have low

probability under π2.

0.000001

0.001

1

1000

1000000

1E+09

1E+12

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.13. Behavior policy = π2 and evaluation policy = π1.

This is not a problem when using πb = π3 and πe = π2, as shown in Figure

3.14. In this case all estimators perform well, with the same general ordering of their

performance.

1E-18

1E-15

1E-12

1E-09

1E-06

0.001

1

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.14. Behavior policy = π3 and evaluation policy = π2.

The problems arise again when using πb = π4 and πe = π3, although not quite as

severely. This experiment is depicted in Figure 3.15. The problems are not as severe

because π3 is not as deterministic as π4, and so there isn’t one single trajectory

that dominates E[ρ̂IS(π3|HL, π4)|HL ∼ π4]. Still, when π4 deviates only a few times

within a trajectory from its usual action choices, the probability of the trajectory can

73

become very small, which results in a large importance weight. The sensitivity of

the unweighted importance sampling methods (IS, PDIS, NPDIS) to these outliers is

evident, as is the stability of WIS and CWPDIS.

1E-11

1E-08

0.00001

0.01

10

10000

10000000

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.15. Behavior policy = π4 and evaluation policy = π3.

Lastly, we used πb = π5 and πe = π4, the result of which is depicted in Figure 3.16.

This results in the same problem that we saw when using πb = π4 and πe = π3—

when the behavior policy deviates only a few times within a trajectory from its usual

action choices, the probability of the trajectory becomes very small, which results in

a large importance weight. In this case this is even more extreme and so, for example,

CWPDIS finishes with 1/4 the MSE that it had originally (for comparison, in Figure

3.12 it finished with 2.85× 10−11 the MSE it began with).

74

1E-10

0.0000001

0.0001

0.1

100

100000

100000000

1E+11

1 10 100 1000 10000

M
ea

n
S

qu
ar

ed
 E

rr
or

Number of Trajectories

IS PDIS NPDIS WIS CWPDIS

Figure 3.16. Behavior policy = π5 and evaluation policy = π4.

3.13 Discussion and Conclusion

We have reviewed the IS, PDIS, WIS, and WPDIS estimators, and derived the

NPDIS and CWPDIS estimators. It was known that IS, PDIS, and WIS are consistent

estimators if a single behavior policy is used. We showed that IS, PDIS, WIS, NPDIS,

and CWPDIS are all consistent estimators if a single behavior policy is used or if

multiple behavior policies that meet a mild restriction are used. All of these estimators

typically require that the support of the evaluation policy be a subset of the support

of the behavior policy (Assumption 1). We showed that, even if this assumption does

not hold, the expected values of the IS and PDIS estimators will never be above

ρ(πe), which means that they will still be useful for producing lower bounds on ρ(πe)

in subsequent chapters.

Our empirical results were as expected. IS performs the worst in almost every

case. PDIS performs significantly better—often on par with the weighted methods

(WIS, CWPDIS). However, the PDIS estimator is not bounded below by zero, and

so it will be of little use to us in the next chapter. To remedy this, we derived the

NPDIS estimator, which typically resulted in MSE 1.5 to 15 times lower than the

MSE of the IS estimator. However, this improvement is minor in comparison to the

reduction in MSE produced by WIS.

75

We found that WIS was much less sensitive to unlikely trajectories and typically

had several orders lower MSE than IS and NPDIS. However, we were able to further

improve upon WIS with CWPDIS—a weighted variant of PDIS—particularly when

the trajectories are long so that the bulk of the return is not concentrated towards

the end of the episode. Because it can be challenging to determine which estimator

is best to use for each situation, we provide a decision diagram in Figure 3.17.

Require
Unbiased

Normalized
Discounted
Return

Normalized
Discounted
Return

Assumption 1 Assumption 1

HCOPEWISIS CWPDIS PDIS

IS

HCOPE

PDIS

NPDIS

yesno

yesno

yesno

yesno

no
yes

yesno

no yes

IS

IS

IS

WIS

HCOPE

PDIS

NPDIS
IS

no

yes

NPDIS
IS

IS

Figure 3.17. Decision diagram for deciding which importance sampling variant to
use. The recommended method is presented in a gray-filled box in bold. The other
applicable methods are listed in order of preference thereunder (in italics). The top
node corresponds to whether or not an unbiased estimator is required. The second
level nodes, “normalized discounted return,” correspond to whether R is defined to be
the normalized discounted return (see (2.5)). The decision nodes labeled “Assumption
1” are asking whether Assumption 1 holds. Even if it does not, you may select the
answer “yes” if you are not concerned with error introduced by this false assumption.
The “HCOPE” decision node denotes whether or not the estimator will be used for
HCOPE (the topic of the next chapter). If it will be, then the estimator should be
lower bounded by a number close to ρ(πe) (which is not the case with PDIS). The
dotted red paths are the two that will be used in the subsequent chapters—they use
CWPDIS when unbiased estimates are not required and NPDIS when they are.

76

CHAPTER 4

HIGH CONFIDENCE OFF-POLICY EVALUATION

In many potential applications of RL algorithms, some current policy (often chosen

by a domain expert) has already been deployed. An engineer or researcher, who we

refer to as the user, may attempt to improve upon the current policy using an RL

method and historical data collected from the deployment of the current policy. After

selecting and applying any of the many applicable RL algorithms to obtain a newly

proposed policy, the user is faced with a problem: should the newly proposed policy

actually be deployed?

RL algorithms often require careful tuning of hyperparameters like step sizes,

which results in the common impression that RL algorithms are not black boxes that

“just work,” but rather brittle tools that require expert knowledge and luck to apply

successfully. Due to this reputation, whether deserved or not, the policies proposed by

RL algorithms are often not deployed, especially for applications where deployment

of a bad policy can be costly or dangerous.

In this chapter we present a method for evaluating a newly proposed

policy using historical data, which can instill the user with confidence

that the newly proposed policy will perform well if actually deployed.

Importantly, this evaluation can be off-policy—the newly proposed policy can be

evaluated without ever actually being deployed and using historical data from any

number of previous policies. Also, this chapter is agnostic to what RL algorithm was

used to compute the newly proposed policy—the methods presented here can be used

in conjunction with any RL algorithm.

77

Many off-policy evaluation methods use historical data to predict the expected per-

formance of any policy. However, they do not provide confidence bounds to quantify

how accurate their estimates are. This is troublesome because off-policy evaluation

methods are known to produce estimates that have high variance. It is therefore

reasonable for the user to be skeptical of performance predictions made by existing

off-policy evaluation methods.

To overcome this, our evaluation method, which we call a high confidence off-

policy evaluation (HCOPE) method, produces a high confidence lower bound on the

performance of the newly proposed policy rather than an estimate of its performance.

For example, if the performance of the currently deployed policy is known, then our

method can produce statements of the form “with confidence 95%, the newly proposed

policy will perform at least as well as the current policy.”

This chapter is organized as follows. In Section 4.1 we formalize the goal of this

chapter before discussing related work in Section 4.2. We then review concentration

inequalities in Sections 4.3, 4.4, and 4.5. In Section 4.6 we present our general ap-

proach. In Section 4.7 we describe a related method in detail. We then derive a

concentration inequality in Section 4.8 that makes our approach feasible using less

historical data than earlier methods. We provide pseudocode for the resulting meth-

ods in Section 4.9 before presenting experiments in Section 4.10 and concluding in

Section 4.11.

The primary contribution of this chapter is a concentration inequality that is well

suited to HCOPE. Other minor contributions include the bringing together of relevant

state-of-the-art methods (both concentration inequalities and variants of importance

sampling) that can be leveraged for HCOPE, and the proposal of risk quantification

plots, which quantify the risk associated with deploying a new policy.

78

4.1 Problem Description

We assume that we are given a data set, D, that consists of nD trajectories,

{H i
L}

nD
i=1, each labeled by the policy that generated it, {πi}nDi=1, i.e.,

D =
{(
H i
L, πi

)
: i ∈ {1, . . . , nD}, H i

L ∼ πi
}
. (4.1)

Note that {πi}nDi=1 are behavior policies—those that generated the batch of data (tra-

jectories). Finally, we denote by πe the evaluation policy—the newly proposed policy

that should be evaluated using the data set D. Although some trajectories in D may

have been generated using the evaluation policy, we are particularly interested in the

setting where some or all of the behavior policies are different from the evaluation

policy.

Our goal is to construct an algorithm that takes as input the historical

data, D, an evaluation policy, πe, a confidence level, δ, and produces a

1− δ confidence lower bound on ρ(πe). We refer to this algorithm as an HCOPE

algorithm. Formally, the algorithm is a function Λ, where the lower bound that it

produces given πe,D, and δ is Λ(πe|D, δ). A good HCOPE algorithm is one that

produces tight lower bounds on ρ(πe), i.e., where Λ(πe|D, δ) is large.

It is important to understand which of these quantities are fixed and which are

random. We assume that δ and πe are fixed (not random variables). We also assume

that the behavior policies, {πi}nDi=1, are fixed. However, the trajectories, {H i
L}

nD
i=1

are random variables—each H i
L can be sampled by generating a trajectory using the

policy πi. So, D is a random variable and therefore Λ(πe|D, δ) is as well.

When we say that Λ(πe|D, δ) should be a 1− δ confidence lower bound on ρ(πe),

we mean that the following should hold:

Pr
(
ρ(πe) ≥ Λ(πe|D, δ)

)
≥ 1− δ. (4.2)

79

The distinction here between probabilities and confidences is crucial in order to

properly interpret the output of an HCOPE algorithm. Let {(hiL, πi)}
nD
i=1 be a sample

of D so that Λ(πe|{(hiL, πi)}
nD
i=1, δ

)
is a sample of Λ(πe|D, δ). A common misunder-

standing that we have encountered when presenting this work arises because it is not

correct to say that

Pr
(
ρ(πe) ≥ Λ(πe|{(hiL, πi)}

nD
i=1, δ

))
≥ 1− δ, (4.3)

since there is no randomness in ρ(πe) ≥ Λ(πe|{(hiL, πi)}
nD
i=1, δ

)
—it is either true or

false. This is a subtle but crucial point. Consider a motivating example where an

executive assigns a researcher to compute a 95% confidence lower bound (δ = 0.05)

on the performance of a new policy, πe, using historical data, {(hiL, πi)}
nD
i=1. The

researcher uses an HCOPE method to compute Λ(πe|{(hiL, πi)}
nD
i=1, 0.05) = 0.8. It

would be incorrect for the researcher to say that the new policy’s performance will be

at least 0.8 with probability 0.95 (this is English for (4.3), which we have established

is incorrect). Instead, the researcher should say that 0.8 is a 95% confidence lower

bound on the new policy’s performance (this is English for (4.2)).

We present two different approaches to HCOPE—exact and approximate meth-

ods. Exact HCOPE methods should provide the guarantee specified above without

requiring any additional (possibly false) assumptions. The benefit of exact HCOPE

methods is that they provide a real guarantee about the performance of a new policy if

the environment fits our formalization of POMDPs. The drawback of exact HCOPE

methods is that they require more historical data (trajectories) than approximate

HCOPE methods to produce tight bounds on the performance of the evaluation pol-

icy.

Approximate HCOPE methods can use approximations and additional (possibly

false) assumptions that can help improve data efficiency. For example, they may

assume that data that are approximately normally distributed are actually normally

80

distributed. The benefit of approximate HCOPE algorithms over exact HCOPE

algorithms is that they can provide tight confidence bounds on the performance of

the evaluation policy using much less historical data. The drawback of approximate

HCOPE methods is that, even if the environment fits the POMDP formalization that

we use, the bounds that they produce are only approximate bounds—the error rate

will be approximately δ, rather than upper bounded by δ.

4.2 Related Work

In this section we review related off-policy evaluation methods as well as the two

existing approaches to HCOPE of which we are aware.

4.2.1 Off-Policy Evaluation

Whereas our HCOPE approach provides a high confidence lower bound on the

performance of an evaluation policy using historical data, off-policy evaluation meth-

ods attempt to estimate the performance of the evaluation policy but do not provide

any confidence bounds on their estimates. Several methods for off-policy evaluation

based on importance sampling were reviewed in detail in the previous chapter.

Thomas et al. (2015a) propose an off-policy evaluation method, which they call

complex weighted importance sampling (CWIS), that generalizes the ECR estimator

(Tetreault and Littman, 2006). They show that their method, which is founded on

fewer typically false assumptions than previous methods, produces an estimator with

lower mean squared error than existing methods, including IS and WIS, across several

examples (Thomas et al., 2015a). The primary drawbacks of their approach are that

it is computationally inefficient and that it relies on the availability of good features

for linear value function approximation (Sutton and Barto, 1998).

While this chapter is primarily concerned with bounding the performance of a

policy, much work in off-policy evaluation has focused on how to estimate the expected

81

return if the episode where to deterministically start from a known state. The target

function of this approach is called the value function associated with a policy, π, and

is denoted by vπ. Formally,

vπ(s) := E

[
∞∑
t=1

γt−1Rt

∣∣∣∣∣π, S1 = s

]
,

where γ ∈ [0, 1]. The problem of estimating vπe given an off-policy data set, D, is

particularly challenging if the state set is large or continuous so that a value, v̂πe(s),

cannot be stored for each s ∈ S. In this setting, a parameterized estimator, v̂πew , is

often used, where w is a vector of weights. It was not until 2009 that a convergent

method was developed for estimating vπe with v̂πew using off-policy data (Sutton et al.,

2009). This convergent method, the gradient temporal-difference (GTD) method,

was later improved so that its backwards implementation (Sutton and Barto, 1998) is

exactly equivalent to its forward implementation (van Hasselt et al., 2014), and not

just approximately so (Bertsekas and Tsitsiklis, 1996, page 198).

Another promising avenue of off-policy evaluation research involves constructing

models of the transition dynamics (and of the reward function if it is not known).

The hope of these methods is that an accurate model can be computed using fewer

samples than would be required to generate an accurate off-policy estimate of the

value function without constructing a model. This model can then be used to estimate

the value of any policy (Mannor et al., 2007). This approach can be particularly

powerful if some structure of the environment is known a priori (Hallak et al., 2015).

4.2.2 Other Methods for High-Confidence Off-Policy Evaluation

We are aware of two previous attempts at providing practical confidence bounds on

the estimates produced by off-policy evaluation methods (Bottou et al., 2013, Mannor

et al., 2007). Although working independently, Bottou et al. took an approach

quite similar to ours. The convergence of independent efforts to similar solutions is

82

encouraging. During the derivation of our approach we discuss where our approach

branches from theirs. The drawbacks of their approach relative to ours are that

their approach is only approximate (it does not provide a true guarantee, whereas

our approach does), it discards data (our approach does not), it is only applicable

when there is a single behavior policy (our approach can work with many behavior

policies), and it uses a simple heuristic for setting an important hyperparameter that

we automatically optimize from the data (a threshold, c). In our experiments we

compare to their approach and show that, in practice, our approach can produce

tighter exact confidence bounds than their approximate confidence bounds.

Mannor et al. (2007) proposed a model-based approach to HCOPE wherein the

historical data is used to estimate the transition function and reward function. The

performance of any evaluation policy can then be estimated by treating the approx-

imations of the transition and reward functions as though they are exact. Mannor

et al. (2007) provide upper bounds on the bias and variance of this off-policy evalua-

tion approach. However, their approach has three drawbacks relative to ours:

1. It is derived for the MDP setting, not the full POMDP setting.

2. It assumes that the state and action sets are finite.

3. The bounds on the bias and variance of their estimator are expressed in terms

of the true transition function and reward function. If the empirical estimates

are used in place of the true transition and reward functions in the bounds,

then their method is only an approximate HCOPE method.

4.2.3 Finite-Sample Bounds for Off-Policy Evaluation

Recent work has shown that the GTD algorithm (mentioned in Section 4.2.1)

and other related algorithms are true stochastic gradient algorithms for primal-dual

saddle-point objective functions (Liu et al., 2015). This new understanding of off-

83

policy evaluation methods allows for finite-sample bounds on the error of value func-

tion approximations. These finite-sample bounds quantify how the off-policy value

function estimates produced by GTD differ from the true value function as the num-

ber of iterations of GTD increases. This is much like how the Chernoff-Hoeffding

inequality (discussed in the following section) quantifies how much the sample mean

of some random variables differs from their true mean as the number of random

variables increases. For example, Liu et al. (2015, Proposition 5) show that after n

iterations of GTD, with probability at least 1− δ (using their notation, and given a

few assumptions):

‖V − v̄n‖ξ ≤
1 + γ

√
ρmax

1− γ
‖V − ΠV ‖ξ +

√
2τCτξmax

σmin(AᵀM−1A)
Err(θ̄n, ȳn). (4.4)

The left side of (4.4) is a measure of the error in the value function estimate

produced by GTD, and the right side of (4.4) is the finite-sample bound, which

depends on many (typically unknown) properties of both the MDP and the choice

of function approximator. One approach to HCOPE that could be fruitful, would

be to produce high-confidence bounds on all of the unknown terms on the right side

of this equation. These bounds, together with (4.4), could be used to produce high-

confidence off-policy bounds on the performance of a policy (by running GTD or a

similar algorithm and using these bounds to bound the error in the resulting estimate

of the value of the initial state).

Instead of this approach, we propose the use of concentration inequalities to bound

the error of the estimates produced by the unbiased importance sampling estimators

described in the previous chapter. The benefit of this approach is that it does not

rely on bounding many unknown properties of the problem at hand. This not only

makes our approach more simple, but it avoids the over conservativeness associated

with combining several confidence bounds using the union bound. Still, the approach

84

based on finite-sample bounds that we have outlined here could be a promising avenue

of future work.

4.3 Exact Concentration Inequalities

As discussed in the previous chapter, we can use IS, PDIS, and NPDIS to generate

an unbiased estimator of ρ(π) from each trajectory in D. That is, for each i ∈

{1, . . . , nD} and † ∈ {IS, PDIS, NPDIS}:

E[ρ̂†(πe|H i
L, πi)] = ρ(πe).

The remaining challenge in HCOPE is to use nD such estimators to produce a high

confidence lower bound on ρ(πe). This is exactly what concentration inequalities (CIs)

do—they use samples of a random variable to provide probabilistic statements about

how the probability mass or density of the random variable is concentrated.

Let {Xi}ni=1 be n independent random variables. A common form of CIs (a form

which all CIs discussed in this dissertation can be written in) is:

Pr

(
E

[
1

n

n∑
i=1

Xi

]
≥ f(X1, . . . , Xn, δ)

)
≥ 1− δ, (4.5)

for any δ ∈ [0, 1], where f is some function that ensures that the inequality holds

(each concentration inequality that we discuss has a different f , and we cite a proof

that each such f causes (4.5) to hold). Different CIs will have different additional

restrictions on {Xi}ni=1, such as that they are bounded or identically distributed. CIs

often, but not always, use f of the form:

f(X1, . . . , Xn, δ) =
1

n

n∑
i=1

Xi − g(X1, . . . , Xn, δ),

85

where g(X1, . . . , Xn, δ) ≥ 0 and limn→∞ g(X1, . . . , Xn, δ) = 0 (not every such g will

cause (4.5) to hold, but some do). This means that the concentration inequality states

that

Pr

E

[
1

n

n∑
i=1

Xi

]
︸ ︷︷ ︸

true mean

≥ 1

n

n∑
i=1

Xi︸ ︷︷ ︸
sample mean

− g(X1, . . . , Xn, δ)︸ ︷︷ ︸
positive terms that go to zero as n→∞

 ≥ 1− δ,

for some specific g. However, not all concentration inequalities are of this form.

For our application, eachXi is an importance weighted return: Xi := ρ̂†(πe|H i
L, πi).

We have that

E

[
1

n

n∑
i=1

ρ̂†(πe|H i
L, πi)

]
= ρ(πe),

if Assumption 1 holds and † ∈ {IS, PDIS, NPDIS}, so the concentration inequality

can be written as:

Pr
(
ρ(πe) ≥ f(ρ̂†(πe|HL1, π1), . . . , ρ̂†(πe|HLn, πn), δ)

)
≥ 1− δ,

which means that f(ρ̂†(πe|HL
1, π1), . . . , ρ̂†(πe|HL

n, πn), δ) is a 1− δ confidence lower

bound on ρ(πe). Notice that this requires ρ̂†(πe|HL, πb) to be an unbiased estima-

tor of ρ(πe) for any πe, πb, and HL ∼ πb. Since the WIS and CWPDIS estima-

tors are not unbiased estimators, this means that their use results in approximate

HCOPE methods. Furthermore, the WIS and CWPDIS estimators have only been

defined in their batch form—there is no obvious way to define ρ̂WIS(πe|HL, πb) and

ρ̂CWPDIS(πe|HL, πb). So, the early parts of this chapter will focus on methods that

apply for † ∈ {IS, PDIS, NPDIS} (later we will explicitly discuss using WIS and

CWPDIS for approximate HCOPE).

In this application, the Xi (importance weighted returns) are independent be-

cause each trajectory is sampled independently. If there is only one behavior policy,

86

then the Xi are also identically distributed because the trajectories are all produced

by the same behavior policy. However, if there are multiple behavior policies, then

the importance weighted returns are not necessarily identically distributed (each be-

havior policy induces a different distribution over trajectories, and thus a different

distribution over importance weighted returns).

Many concentration inequalities depend on the range of the random variables, Xi.

In our case, these bounds are ρ̂†lb(πe, πb) and ρ̂†ub(πe, πb), which are defined for each

value of † in the previous chapter (see Table 3.1). Recall that these bounds often

span a massive range.

We review several relevant concentration inequalities below. We emphasize their

dependence on the range of the Xi, because, for our application, the range of the

importance weighted returns tends to be so massive that it dominates the concen-

tration inequalities. We also specify any additional assumptions that are made by

the different concentration inequalities (e.g., that the Xi are identically distributed,

which would mean that the historical data must come from only one behavior policy).

The Chernoff-Hoeffding (CH) inequality is one of the best known. It allows for

Xi that are not identically distributed (multiple behavior policies). Formally:

Theorem 17 (Chernoff-Hoeffding (CH) Inequality). Let {Xi}ni=1 be n independent

random variables such that Pr (Xi ∈ [ai, bi]) = 1, for all i ∈ {1, . . . , n}, where all

ai ∈ R and bi ∈ R. Then

Pr

E

[
1

n

n∑
i=1

Xi

]
≥ 1

n

n∑
i=1

Xi −

√
ln
(

1
δ

)∑n
i=1(bi − ai)2

2n2

 ≥ 1− δ. (4.6)

Proof. See the work of Massart (2007). �

To easily see the dependence on the range of the random variables, consider the

case where Xi ∈ [0, b], so ai = 0 and bi = b, for all i. Equation (4.6) can then be

written as

87

Pr

E

[
1

n

n∑
i=1

Xi

]
≥ 1

n

n∑
i=1

Xi − b

√
ln
(

1
δ

)
2n

 ≥ 1− δ.

Since b will be large in our application, the crucial relationship here is how quickly

the terms that depend on b go to zero as n → ∞. In the CH inequality, the term

is b
√

ln(1/δ)
2n

= Θ
(

b√
n

)
, where here Θ assumes its definition from asymptotic analysis

(Cormen et al., 2009).

Notice that the only statistic of the random variables used by the CH inequality is

the sample mean—the sample variance and other statistics are not used. Maurer and

Pontil (2009, Theorem 11) derived an inequality, which they refer to an an empirical

Bernstein bound, that uses both the sample mean and the sample variance. The

additional information provided by the sample variance allows for a better dependence

on the range of the random variables:

Theorem 18 (Maurer and Pontil’s Empirical Bernstein (MPeB) Inequality). Let

{Xi}ni=1 be n independent random variables such that Pr (Xi ∈ [a, b]) = 1, for all

i ∈ {1, . . . , n}, where a ∈ R and b ∈ R. Then

Pr

E

[
1

n

n∑
i=1

Xi

]
≥ 1

n

n∑
i=1

Xi︸ ︷︷ ︸
sample mean

−
7(b− a) ln

(
2
δ

)
3(n− 1)

−

√√√√√√
2 ln

(
2
δ

)
n

1

n(n− 1)

n∑
i,j=1

(Xi −Xj)
2

2︸ ︷︷ ︸
sample variance

 ≥ 1− δ.

Proof. See the work of Maurer and Pontil (2009), where (using their notation) we

first normalize X and then apply their Theorem 11 with 1−X instead of X. �

For easy comparison to the CH inequality, consider the case where all Xi ∈ [0, b].

In this setting

Pr

E

[
1

n

n∑
i=1

Xi

]
≥ 1

n

n∑
i=1

Xi −
7b ln

(
2
δ

)
3(n− 1)

− 1

n

√√√√ ln
(

2
δ

)
n− 1

n∑
i,j=1

(Xi −Xj)
2

 ≥ 1− δ.

(4.7)

88

The term that depends on b in the MPeB inequality is
7b ln(2

δ)
3(n−1)

= Θ
(
b
n

)
, which goes

to zero more quickly than the term in the CH inequality, which is Θ
(

b√
n

)
. For

applications like ours where the range is the limiting factor, this means that the

MPeB inequality tends to produce tighter confidence bounds.

However, notice that the MPeB inequality requires each random variable to have

the same range, whereas the CH inequality allowed for random variables with different

ranges. We can trivially select a = mini∈{1,...,n} ai and b = maxi∈{1,...,n} bi if the

Xi actually have different ranges. However, if these bounds are loose for some Xi,

then the MPeB may be loose. Consider, for example, if one Xi is bounded such

that Xi ∈ [0, 100] while the other n − 1 random variables are bounded such that

Xi ∈ [0, 0.1]. Let n = 100 and δ = 0.5 and consider the terms in CH and MPeB that

depend on the range (recall that we would like these terms to be as close to zero as

possible). In the CH inequality the term is

1

n

√
ln
(

1
δ

)∑n
i=1(bi − ai)2

2n2
≈ 0.01.

However, in the MPeB inequality the term is

7b ln
(

2
δ

)
3(n− 1)

≈ 8.7.

So, even though MPeB should scale better with the range of the random variables as

n grows, this example suggests that the CH inequality may perform better for small

n if the bounds on some Xi are loose bounds on other Xi. In practice this means

that the MPeB inequality may be a loose bound when the historical data comes from

multiple behavior policies. Notice that if one tries to remedy this by normalizing each

random variable prior to applying MPeB (so that they all do have the same range),

then the resulting lower bound is not a lower bound on E
[

1
n

∑n
i=1Xi

]
.

89

Recall that the MPeB inequality improved upon the CH inequality by taking into

account additional statistics (the sample variance). Anderson (1969) proposed a con-

centration inequality that takes into account even more of the available information:

the entire empirical cumulative distribution function. This concentration inequal-

ity had one unspecified parameter, an optimal value for which was later derived by

Massart (1990) to produce the following concentration inequality:

Theorem 19 (Anderson and Massart’s (AM) Inequality). Let {Xi}ni=1 be n in-

dependent and identically distributed random variables such that Xi ≥ a, for all

i ∈ {1, . . . , n}, where a ∈ R. Then

Pr

(
E

[
1

n

n∑
i=1

Xi

]
≥ Zn −

n−1∑
i=0

(Zi+1 − Zi) min

{
1,
i

n
+

√
ln(2/δ)

2n

})
≥ 1− δ,

where Z0 = a and {Zi}ni=1 are {Xi}ni=1, sorted such that Z1 ≤ Z2 ≤ . . . ≤ Zn.

Proof. This follows from the works of Anderson (1969) and Massart (1990). �

Unlike the CH and MPeB inequalities, which hold for independent random vari-

ables, the AM inequality only holds for independent and identically distributed ran-

dom variables, i.e., {Xi}ni=1 should also be identically distributed. In the context

of our problem, this means that the AM bound can only be used when all of the

trajectories in D were generated by a single behavior policy.

This drawback of the AM inequality comes with a major benefit—the AM in-

equality has no direct dependence on the range of the random variables. Rather,

it depends on the largest observed value, Zn. In our application, we upper bound

the importance weighted returns by ρ̂†ub(πe, πb) (see Table 3.1), which assumes that

the largest action probability ratio occurs at every time step, which is exceedingly

unlikely in most cases. This means that the largest observed sample of ρ̂†(πe|HL, πb)

will often be several orders of magnitude smaller than the upper bound on the ran-

90

dom variables, which makes the AM inequality significantly tighter than the other

concentration inequalities.

However, if the random variables do not have heavy upper tails (their range is not

large), then the AM inequality tends to produce loose lower bounds due to its inherent

reliance on the Dvoretsky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956), which

is not ideal for bounding the mean (Diouf and Dufour, 2005). The general looseness

of the confidence intervals produced by the AM inequality for distributions without

heavy tails suggests that there may still be room for improvement in the confidence

intervals that it provides for heavy tailed distributions.

Unlike the CH and MPeB inequalities, which quantify how much the sample mean

can usually differ from the true mean, Bubeck et al. (2012) provide a concentration

inequality that quantifies how much the sample median of means can usually differ

from the true mean. This results in a bound that is applicable to unbounded random

variables (it was developed for random variables with heavy tailed distributions that

are not necessarily sub-Gaussian).

Although Bubeck et al.’s inequality does not depend directly on the range of the

random variables, it requires the variances of the random variables to be known.

Maurer and Pontil (2009, Theorem 10) provided a method for bounding the true

variance of the random variables from samples, which can be used in place of the true

variance in the inequality of Bubeck et al. (with one application of the union bound).

However the bound on the variance depends on the range of the random variables,

so the resulting concentration inequality still depends on the range of the random

variables:

Theorem 20 (Bubeck and Maurer’s (BM) inequality). Let {Xi}ni=1 be n indepen-

dent and identically distributed random variables such that Xi ∈ [a, b], for all i ∈

{1, . . . , n}, where a ∈ R and b ∈ R. Let δ ∈ (0, 1], k = bmin{8 ln(e1/8/δ), n/2}c, and

N = bn/kc. Let

91

µ̂1 =
1

N

N∑
t=1

Xt

µ̂2 =
1

N

2N∑
t=N1

Xt

. . .

µ̂k =
1

N

kN∑
t=(k−1)N+1

Xt.

Let µ̂M denote the median of µ̂1, µ̂2, . . . , µ̂k (the median of means). Then

Pr

E

[
1

n

n∑
i=1

Xi

]
≥ µ̂M − (b− a)

√√√√√√192

[√
1

n(n−1)

∑n
i,j=1

(xi−xj)2

2
+
√

2 ln(2/δ)
n−1

]2

ln
(

2e1/8

δ

)
n

 ≥ 1− δ. (4.8)

Proof. This follows from combining the results of Bubeck et al. (2012, Lemma 2) and

Maurer and Pontil (2009, Theorem 10) using the union bound (also known as Boole’s

inequality). �

The terms in the BM inequality that depend on b are:

b

√√√√√192

[√
1

n(n−1)

∑n
i,j=1

(xi−xj)2

2
+
√

2 ln(2/δ)
n−1

]2

ln
(

2e1/8

δ

)
n

= Θ

(
b√
n

)
,

which is the same as the CH inequality. Also notice that the BM inequality requires

the random variables to be identically distributed, which for our application means

that the historical data from only one behavior policy can be used.

4.4 Approximate Concentration Inequalities

The lower bounds produced by the concentration inequalities described thus far

are impressive in that they make relatively weak assumptions about the distributions

of the random variables (e.g., they do not assume that the random variables are

92

normally distributed). However, this general applicability means that the bounds

that they produce are often not as tight as the bounds that could be produced if

additional information about the form of the random variables’ distributions was

available.

Here we present approximate concentration inequalities, which provide

bounds that are usually much tighter than those of the exact concentra-

tion inequalities, but which make (typically false) assumptions about the

distributions of some statistics.

First, consider the distribution of the sample mean, X̄n := 1
n

∑n
i=1 Xi, which is an

unbiased estimator of E
[

1
n

∑n
i=1 Xi

]
. The central limit theorem (CLT) says that, as

n→∞, X̄n becomes normally distributed:

Theorem 21 (Lyapunov Central Limit Theorem). Let {Xi}ni=1 be n independent

random variables drawn from distributions with means µi and finite variances σ2
i , for

i ∈ {1, . . . , n}. Then

1

n

n∑
i=1

Xi
d→ N

(
1

n

n∑
i=1

µi,

∑n
i=1 σ

2
i

n

)
,

where N (µ, σ2) denotes a normal distribution with mean µ and standard deviation σ,

and
d→ denotes convergence in distribution (Sen and Singer, 1993).

Proof. See the work of Sen and Singer (1993, Theorem 3.3.2). �

In practice, statisticians often suggest that the CLT justifies the assumption that

a sample mean like X̄n is normally distributed if n ≥ 30. In some applications of

HCOPE, there may be thousands or even hundreds of thousands of trajectories (see,

for example, the digital marketing example provided later), in which case the as-

sumption that X̄n is normally distributed is quite reasonable. In particular, the true

environment often does not exactly fit our formalization of POMDPs (due to nonsta-

93

tionarity). In these cases, the false assumption that X̄n is normally distributed may

be minor in comparison to the false assumption that the environment is a POMDP.

If we introduce the (false, yet often reasonable) assumption that X̄n is actually

normally distributed, then we can apply a one-tailed Student’s t-test (TT):

Theorem 22 (Student’s t-test (TT)). Let {Xi}ni=1 be n independent random variables

such that X̄n := 1
n

∑n
i=1Xi is a normally distributed random variable. Then

Pr

E

[
1

n

n∑
i=1

Xi

]
≥ 1

n

n∑
i=1

Xi −

√
1

n−1

∑n
i=1

(
Xi − X̄n

)2

√
n

t1−δ,n−1

 ≥ 1− δ,

where t1−δ,ν denotes the 100(1 − δ) percentile of the Student’s t distribution with ν

degrees of freedom (i.e., tinv(1− δ, ν) in Matlab).

Proof. See the work of Walpole et al. (2007, Section 10.7). �

Notice that the TT has no direct dependence on the range of the random variables–

in fact it assumes that at least some of the Xi are unbounded in order for X̄n to be

normally distributed. As we will show later, the TT tends to be overly conservative

(provide a valid, but loose bound) when the Xi are distributed with a heavy upper

tail, as is common in our application. That is, it makes errors (gives a lower bound

on the mean of at least ρ−) significantly less than 100δ% of the time.

If X̄n were truly normally distributed, then the error rate of the TT would be

exactly 100δ%. This suggests an alternative approach—use the available samples to

estimate the true distribution of X̄n and produce a confidence bound specialized to

that distribution. This is the high level idea behind bootstrap confidence bounds.

These approaches are still only approximate (they do not guarantee at most a 1− δ

error rate) since they assume that X̄n comes from the predicted distribution.

Bias corrected and accelerated bootstrap (BCa) (Davison and Hinkley, 1997, Efron

and Tibshirani, 1993) is perhaps the most popular such method. It is best expressed

94

as an algorithm rather than an equation, and is therefore presented as pseudocode

in the following subsection (Algorithm 4.6). For our application, we will find that it

produces the tightest confidence intervals. Even though the bounds produced by BCa

are only approximate, BCa is often used to analyze the results of medical research

(Champless et al., 2003, Folsom et al., 2003). This suggests that the lower bounds

produced by BCa may be sufficiently reliable even for high risk applications.

Using the bootstrap estimate of the distribution of X̄n, BCa can correct for the

heavy tails in our data to produce lower bounds that are not overly conservative like

those of the TT. As with the TT, for some distributions the bounds produced by BCa

may have error rates larger than δ. It is therefore best to think of the TT and BCa

as trying to produce an error rate of approximately δ, as opposed to upper bounding

the error rate by δ.

To emphasize the over-conservativeness of TT relative to BCa when used for distri-

butions with heavy tails, we compared the lower bounds produced by both methods

when applied to samples from a gamma distribution. The results are provided in

Figure 4.1. The different properties of the exact and approximate concentration in-

equalities are summarized in Table 4.1. The entries for “BEA” and “CUT” correspond

to other concentration inequalities that we present later.

95

0

0.05

5 50 500

E
m

p
iri

ca
l E

rr
o

r
R

at
e

Number of samples

CI

TT

BCa

Figure 4.1. Empirical error rates when estimating a 95% confidence lower-bound on
the mean of a gamma distribution (shape parameter k = 2 and scale parameter θ =
50) using TT, BCa, and also the two exact concentration inequalities (AM and CUT)
that are applicable to random variables with no upper bound (they both perform
identically in this plot, and so are represented by a single line, labeled as “CI”).
The gamma distribution used has a heavy upper-tail similar to that of importance
weighted returns. The logarithmically scaled horizontal axis is the number of samples
used to compute the lower bound (from 5 to 2000) and the vertical axis is the mean
empirical error rate over 1,000,000 trials. This error rate is the number of times the
lower bound on the mean was greater than the true mean, divided by the number
of samples. The error bars show the sample standard deviation. Note that CI is
overly conservative, with zero error in all the trials (it is on the x-axis). The t-test
is initially conservative, but approaches the allowed 5% error rate as the number
of samples increases. BCa has an error rate above 5%, but remains close to 5%
throughout most of the plot.

Name Direct
Dependence
on b

Identically
Distributed Only

Exact or
Approximate

Reference Notes

CH Θ
(

b√
n

)
No Exact (Massart, 2007) None

MPeB Θ
(

b
n

)
No Exact (Maurer and Pon-

til, 2009, Theo-
rem 11)

Requires all random variables to
have the same range.

AM None Yes Exact (Anderson, 1969,
Massart, 1990)

Depends on the largest observed
sample. Loose for distributions
without heavy tails.

BM Θ
(

b√
n

)
Yes Exact (Bubeck et al.,

2012)
None.

TT None No Approximate (Walpole et al.,
2007)

Assumes X̄n is normally dis-
tributed. Tends to give conser-
vative lower bounds for random
variables with heavy upper tails.

BCa None No Approximate (Davison and
Hinkley, 1997,
Efron and Tib-
shirani, 1993)

Assumes X̄n comes from the boot-
strap distribution.

BEA None Yes Approximate (Bottou et al.,
2013)

Discards some data.

CUT None No Exact Theorem 23 None.

Table 4.1. Summary of properties of the exact and approximate concentration in-
equalities discussed in this dissertation.

96

4.5 Pseudocode for Exact and Approximate Concentration

Inequalities

Pseudocode is provided below for each of the concentration inequalities that we

have discussed. The CH inequality is presented in Algorithm 4.1, the MPeB inequality

is presented in Algorithm 4.2, the AM inequality is presented in Algorithm 4.3, the

BM inequality is presented in Algorithm 4.4, the TT is presented in Algorithm 4.5,

and BCa is presented in Algorithm 4.6. The pseudocode in Algorithm 4.6 for BCa

was derived from that of Carpenter and Bithell (2000), with notation changed as

necessary to avoid conflicts with our other notation. It uses B = 2000 resamplings as

suggested by practitioners (Davison and Hinkley, 1997, Efron and Tibshirani, 1993),

Φ to denote the cumulative distribution function of the normal distribution, 1A to

denote one if A is true and 0 otherwise, and #ξi < X̄n to denotes the number of ξi

that are less than X̄n. Some comments are provided in the pseudocode for BCa in

order to provide a high level understanding for what the different portions of code

are doing. However, for a detailed description of the pseudocode, see the work of

Carpenter and Bithell (2000).

Algorithm 4.1: CH(X1, . . . , Xn, δ, a1, . . . , an, b1, . . . , bn): Uses the CH inequal-
ity to return a 1− δ confidence lower bound on E[1

n

∑n
i=1 Xi].

Assumes: The Xi are independent and Xi ∈ [ai, bi] for all i.

1 return 1
n

∑n
i=1Xi −

√
ln(1

δ)
∑n
i=1(bi−ai)2

2n2 ;

Algorithm 4.2: MPeB(X1, . . . , Xn, δ, a, b): Uses the MPeB inequality to return
a 1− δ confidence lower bound on E[1

n

∑n
i=1Xi].

Assumes: The Xi are independent and Xi ∈ [a, b] for all i.

1 b← maxi∈{1,...,n} bi;

2 return 1
n

∑n
i=1Xi −

7(b−a) ln(2
δ)

3(n−1)
− 1

n

√
ln(2

δ)
n−1

∑n
i,j=1 (Xi −Xj)

2;

To simplify later pseudocode, we provide a uniform interface to all of the concen-

tration inequalities in Algorithm 4.7.

97

Algorithm 4.3: AM(X1, . . . , Xn, δ, a): Uses the AM inequality to return a 1−δ
confidence lower bound on E[1

n

∑n
i=1Xi].

Assumes: The Xi are independent and identically distributed and Xi ≥ 0 for
all i.

1 Let z1, . . . , zn be X1, . . . , Xn, sorted in ascending order;
2 z0 ← a;

3 return zn −
∑n−1

i=0 (zi+1 − zi) min

{
1, i

n
+
√

ln(2/δ)
2n

}
;

Algorithm 4.4: BM(X1, . . . , Xn, δ, a, b): Uses the BM inequality to return a
1− δ confidence lower bound on E[1

n

∑n
i=1Xi].

Assumes: The Xi are independent and identically distributed and Xi ∈ [a, b]
for all i.

1 k ← bmin{8 ln(e1/8/δ), n/2}c ; // Select number of groups

2 N ← bn/kc ; // Number of random variables in each group

3 for i = 1 to k do

4 µ̂i ← 1
N

∑iN
t=(i−1)N+1Xt ; // Compute the mean of each group

5 µ̂M ←Median(µ̂1, µ̂2, . . . , µ̂k) ; // Median of means

6 return µ̂M − (b− a)

√
192

[√
1

n(n−1)

∑n
i,j=1

(xi−xj)2

2
+
√

2 ln(2/δ)
n−1

]2

ln
(

2e1/8

δ

)
n

;

Algorithm 4.5: TT(X1, . . . , Xn, δ): Uses the TT to return an approximate 1−δ
confidence lower bound on E[1

n

∑n
i=1Xi].

Assumes: The Xi are independent random variables with finite variance..

1 return 1
n

∑n
i=1Xi −

√
1

n−1

∑n
i=1(Xi−X̄n)

2

√
n

t1−δ,n−1;

98

Algorithm 4.6: BCa(X1, . . . , Xn, δ): Uses BCa to return an approximate 1− δ
confidence lower bound on E[1

n

∑n
i=1Xi].

Assumes: The Xi are independent random variables.

1 X̄n ← 1
n

∑n
i=1Xi; // Sample mean

2 B ← 2000; // Number of bootstrap resamplings to perform

// Generate B resamplings of the data and store the sample means

3 for i = 1 to B do
4 Randomly sample n elements of x ∈ X, with replacement;
5 Set ξi to be the mean of these n samples;

// Estimate the bias constant, z0 (Efron, 1987)

6 Sort the vector ξ = (ξ1, ξ2, . . . , ξB) such that ξi ≤ ξj for 1 ≤ i < j ≤ B;

7 z0 ← Φ−1
(
{#ξi<X̄n}

B

)
;

// Estimate the skew, a, of the distribution of X̄n

8 for i = 1 to n do
9 Set yi to be the mean of X excluding the ith element:

10 yi ← 1
n−1

∑n
j=1 1(j 6=i)Xj;

11 ȳ ← 1
n

∑n
i=1 yi;

12 a←
∑n
i=1(ȳ−yi)3

6[
∑n
i=1(ȳ−yi)2]

3/2 ; // Standard equation for estimating skewness

// Get bootstrap confidence bound using a linear interpolation

(Carpenter and Bithell, 2000) and the computed bias and skew

terms

13 zL ← z0 − Φ−1(1−δ)−z0
1+a(Φ−1(1−δ)−z0)

;

14 Q← (B + 1)Φ(zL);
15 l← min{bQc, B − 1};

16 return X̄n +
Φ−1(Q

B+1
)−Φ−1(l

B+1
)

Φ−1(l+1
B+1

)−Φ−1(l
B+1

)
(ξQ, ξQ+1);

99

Algorithm 4.7: LowerBound‡(X1, . . . , Xn, δ, a1, . . . , an, b1, . . . , bn): Uses
‡ ∈ {CH, MPeB, AM, BM, TT, BCa, CUT} to return a 1− δ confidence lower
bound on E[1

n

∑n
i=1Xi].

Assumes: The assumptions of the underlying method, ‡, are satisfied.
Notice: Some methods, ‡, do not rely on all of the inputs, and so some inputs
are not necessary for some ‡.
1 if ‡ = CH then
2 return CH(X1, . . . , Xn, δ, a1, . . . , an, b1, . . . , bn);

3 else if ‡ ∈ {MPeB, BM} then
4 return ‡(X1, . . . , Xn, δ,mini∈{1,...,n} ai,maxi∈{1,...,n} ai);

5 else if ‡ = AM then
6 return AM(X1, . . . , Xn, δ, a1);

7 else if ‡ ∈ {TT, BCa, CUT} then
8 return ‡(X1, . . . , Xn, δ);

9 else if ‡ = BEA then
10 return BEA(X1, . . . , Xn, δ,mini∈{1,...,n} ai);

4.6 Approach

Our general approach to HCOPE combines off-policy evaluation methods like IS,

PDIS, NPDIS, WIS, and CWPDIS with exact and approximate concentration in-

equalities. Our approach to HCOPE when using IS, PDIS, or NPDIS is presented as

pseudocode in Algorithm 4.8. This pseudocode does not allow for the weighted impor-

tance sampling variants because they are only defined in their batch forms—we have

not defined (and it is not clear how to define) ρ̂WIS(πe|HL, πb) or ρ̂CWPDIS(πe|HL, πb).

100

Algorithm 4.8: HCOPE†‡(πe,D, δ): Compute a 1− δ confidence lower bound

on ρ(πe) using the historical data D = {(H i
L, πi) : i ∈ {1, . . . , n}, H i

L ∼ πi}.
The importance sampling method is specified by † ∈ {IS, PDIS, NPDIS} and
the concentration inequality by ‡ ∈ {CH, MPeB, AM, BM, TT, BCa, CUT}.
Any combination of † and ‡ is allowed except for † = PDIS and ‡ = CUT, as
discussed later.
Assumes: If ‡ ∈ {AM, BM}, then there is only one behavior policy, i.e., πi = πj
for all i, j. Also, if † = PDIS, then Assumption 1 is required.

1 for i = 1 to n do
2 Xi ← ρ̂†(πe|H i

L, πi) ; // Compute importance weighted returns

3 for i = 1 to n do

4 ai ← ρ̂†lb(πe, πi); // Compute lower bound on Xi

5 bi ← ρ̂†ub(πe, πi); // Compute upper bound on Xi

6 return LowerBound‡(X1, . . . , Xn, δ, a1, . . . , an, b1, . . . , bn);

The weighted importance sampling estimators, WIS and CWPDIS, are not suit-

able for use with the exact concentration inequalities because they are only defined

as batch methods. It is also unclear how they can be suitably used with TT without

using some form of bootstrapping to estimate the variance of the WIS and CWPDIS

estimators. However, it is straightforward to use both WIS and CWPDIS with BCa,

since BCa can be used to lower bound any statistic of the data (not just the sample

mean). In Algorithm 4.9 we present pseudocode for HCOPE using WIS and CWPDIS

with BCa.

Notice that HCOPE†‡(πe,D, δ) is an exact HCOPE method if † ∈ {IS, PDIS, NPDIS}

and ‡ ∈ {CH, MPeB, AM, BM, CUT}, and an approximate HCOPE method if

† ∈ {WIS, CWPDIS} or ‡ ∈ {TT,BCa}. Also, notice that it is defined for all combi-

nations of

† ∈ {IS, PDIS, NPDIS, WIS, CWPDIS}

‡ ∈ {CH, MPeB, AM, BM, TT, BCa, CUT},

101

except for when † ∈ {WIS, CWPDIS} and ‡ 6= BCa. Also notice that so far we

have defined HCOPE methods for CUT, an exact concentration inequality that we

present later, but we have not yet defined HCOPE methods for BEA (the approximate

concentration inequality described in the next section).

102

Algorithm 4.9: HCOPE†BCa(πe,D, δ): Compute a 1 − δ confidence lower
bound on ρ(πe) using the historical data D = {(H i

L, πi) : i ∈ {1, . . . , n}, H i
L ∼

πi}. The importance sampling method is specified by † ∈ {WIS, CWPDIS} and
BCa is used.
Assumes: Nothing—any number of behavior policies can be used and Assump-
tion 1 is not required (although it will increase the accuracy of the approximate
lower bound).
Notice: The only differences between this pseudocode and Algorithm 4.6 are
the lines that are highlighted in red.

1 X̄n ← †(πe|D); // Sample of statistic to be bounded (θ̂ in most BCa

literature)

2 B ← 2000; // Number of bootstrap resamplings to perform

// Generate B resamplings of the data and store the sample

statistics

3 for i = 1 to B do
4 Randomly sample nD trajectories, H i

L, and their behavior policies, πi, from
D, with replacement. Store these nD resampled trajectories in D′;

5 ξi ← †(πe|D′);
// Estimate the bias constant, z0 (Efron, 1987)

6 Sort the vector ξ = (ξ1, ξ2, . . . , ξB) such that ξi ≤ ξj for 1 ≤ i < j ≤ B;

7 z0 ← Φ−1
(
{#ξi<X̄n}

B

)
;

// Estimate the skew, a, of the distribution of X̄n

8 for i = 1 to n do
9 Set yi to be the mean of X excluding the ith element:

10 yi ← 1
n−1

∑n
j=1 1(j 6=i)Xj;

11 ȳ ← 1
n

∑n
i=1 yi;

12 a←
∑n
i=1(ȳ−yi)3

6[
∑n
i=1(ȳ−yi)2]

3/2 ; // Standard equation for estimating skewness

// Get bootstrap confidence bound using a linear interpolation

(Carpenter and Bithell, 2000) and the computed bias and skew

terms

13 zL ← z0 − Φ−1(1−δ)−z0
1+a(Φ−1(1−δ)−z0)

;

14 Q← (B + 1)Φ(zL);
15 l← min{bQc, B − 1};

16 return X̄n +
Φ−1(Q

B+1
)−Φ−1(l

B+1
)

Φ−1(l+1
B+1

)−Φ−1(l
B+1

)
(ξQ, ξQ+1);

103

4.7 Using Clipped Importance Weights

Bottou et al. (2013) presented an approach to HCOPE that is similar to ours.

Although their derivation predates ours,1 the two efforts were independent. Bottou

et al. (2013) propose using IS with MPeB for HCOPE, with one change—the impor-

tance weights are “clipped”. That is, let c be the 5th largest importance weight for

the trajectories in D. We call c the threshold. When computing ρ̂IS(πe|H i
L, πi), set the

importance weight to zero if it is larger than c. This removes the largest importance

weights and ensures that all of the random variables, Xi, that are provided to MPeB

are in the range [0, c]. If c � ρ̂IS
ub(πe, πb), then this can make MPeB significantly

tighter. However, because the threshold, c, depends on the data, the range of the Xi

depends on the data, and thus MPeB is not technically applicable with [0, c] as the

range for the Xi (MPeB assumes that the range of the random variables is a fixed

constant, and not a random variable that depends on the data). Even so, Bottou

et al. propose using [0, c] as the range of the Xi when using MPeB, and so their

HCOPE method is only approximate (Bottou et al., 2013, footnote 7). We present

their method in Algorithm 4.10.

In the next section we present a new exact concentration inequality based on an

approach that is similar to that of Bottou et al. (2013). The differences between the

method we propose and that of Bottou et al. are enumerated below:

1. Rather than clipping values, we “collapse” them. That is, if a value, x, is greater

than a threshold, c, we set x← c rather than x← 0 (which effectively discards

data).

1This work was performed from March 2014 to August 2015. Our first publication of this work
was in January 2015 (Thomas et al., 2015c), two years after the work of Bottou et al. (2013).
However, since we were not aware of their work until mid-2015, this dissertation contains the first
comparison of our approach to theirs.

104

Algorithm 4.10: HCOPEIS
BEA(πe,D, δ): Compute a 1 − δ confidence lower

bound on ρ(πe) using the historical data D = {(H i
L, πi) : i ∈ {1, . . . , n}, H i

L ∼
πi}. This uses the method of Bottou et al. (2013), which is based on IS with
clipped weights and MPeB.
Assumes: There is only one behavior policy, i.e., πi = πj for all i, j.

1 for i = 1 to n do

2 wi ←
∏L

t=1
πe(at|ot)
πb(at|ot)

; // Importance weight

3 c← the fifth largest element of (wi)
n
i=1; // Compute the threshold, c

4 for i = 1 to n do
5 if wi ≥ c then
6 wi ← 0 ; // Clip the importance weight if it is too large

7 Xi ← wiG(HL) ; // Clipped importance weighted return

8 return MPeB(X1, . . . , Xn, δ, 0, c); // Notice that each Xi ∈ [0, c]

2. We collapse the importance weighted returns, as opposed to clipping the im-

portance weights.

3. We show that our approach is viable for multiple behavior policies.

4. Whereas their approach is specific to combining MPeB with IS, our approach is

a general concentration inequality like CH and MPeB. This means that it may

be useful outside of the RL community, and also that it can be used with PDIS

and NPDIS.

5. Whereas their approach is only an approximate HCOPE method, ours is an ex-

act concentration inequality (which means that it can produce an exact HCOPE

method if combined with an unbiased estimator like IS, PDIS, or NPDIS).

6. We optimize the threshold, c, in a more principled way and show that its opti-

mization is crucial to good performance.

4.8 A New Concentration Inequality

Here we present a new exact concentration inequality that is particularly well

suited to HCOPE with IS or NPDIS (not PDIS, because it can produce negative

105

estimates). That is, it performs well when the random variables, {Xi}ni=1 are non-

negative and have large upper bounds that would make other exact concentration

inequalities like CH and MPeB perform poorly. It is an extension of MPeB that relies

on two key insights: 1) removing the upper tail of a distribution can only lower its

expected value, and 2) MPeB can be generalized to handle random variables with

different ranges if it is used to lower bound a value that is greater than or equal to

the expected value of each random variable.

Here we present an intuitive description of how the derivation of our concentration

inequality will proceed before presenting a formal proof. Intuitively, we first assume

that a threshold, ci, has been provided for each random variable, Xi, and that each

Xi ≥ 0. Later we will discuss how to select each ci automatically from the data.

We then collapse the random variables {Xi}ni=1 to produce Yi := min{Xi, ci} for each

i ∈ {1, . . . , n}. Notice that

E [Yi] =E[min{Xi, ci}] (4.9)

≤E[Xi].

So, if some value, µlb, is a 1−δ confidence lower bound on E[1
n

∑n
i=1 Yi], then it is also

a 1 − δ confidence lower bound on E[1
n

∑n
i=1 Xi]. Next, recall that MPeB performs

poorly if each random variable has a different range. To overcome this, we normalize

each Yi so that it is in the range [0, 1]. Since Yi ∈ [0, ci], we can define the normalized

Yi to be Zi := Yi
ci
∈ [0, 1]. We then apply MPeB to Zi to produce a 1 − δ confidence

lower bound on E[1
n

∑n
i=1 Zi]. Next we must extract from this lower bound a lower

bound on E[1
n

∑n
i=1Xi]. We do this by leveraging the second property listed above to

undo the normalization to get a 1− δ confidence lower bound on E[1
n

∑n
i=1 Yi], which

we know from (4.9) is also a 1− δ confidence lower bound on E[1
n

∑n
i=1Xi].

Our approach for collapsing the tails of the distributions and then bounding the

means of the new distributions is similar to bounding the truncated mean and is

106

a form of Winsorization (Wilcox and Keselman, 2003). We present our concentra-

tion inequality in Theorem 23, and we refer to it as the collapsed upper tail (CUT)

inequality.

Theorem 23. [CUT Inequality] Let {Xi}ni=1 be n independent real-valued bounded

random variables such that for each i ∈ {1, . . . , n}, we have Pr (0 ≤ Xi) = 1, E[Xi] ≤

µ, and the fixed real-valued threshold ci > 0. Let δ > 0 and Yi := min{Xi, ci}. Then

with probability at least 1− δ, we have

µ ≥

(
n∑
i=1

1

ci

)−1 n∑
i=1

Yi
ci︸ ︷︷ ︸

empirical mean

−

(
n∑
i=1

1

ci

)−1
7n ln(2/δ)

3(n− 1)︸ ︷︷ ︸
term that goes to zero as 1/n as n→∞

−

(
n∑
i=1

1

ci

)−1√√√√ ln(2/δ)

n− 1

n∑
i,j=1

(
Yi
ci
− Yj
cj

)2

︸ ︷︷ ︸
term that goes to zero as 1/

√
n as n→∞

.

(4.10)

Proof. We define n independent random variables, Z = {Zi}ni=1, as Zi := Yi
ci

. Thus,

we have

Z̄ :=
1

n

n∑
i=1

Zi =
1

n

n∑
i=1

Yi
ci
. (4.11)

Since E[Yi] ≤ E[Xi] ≤ µ, we may write

E[Z̄] =
1

n

n∑
i=1

E[Yi]

ci
≤ µ

n

n∑
i=1

1

ci
. (4.12)

Notice that the Zi random variables, and therefore also the (1−Zi) random variables,

are n independent random variables with values in [0, 1]. So, using Theorem 11 of

Maurer and Pontil (2009), with probability at least 1− δ, we have that

E[1− Z̄] ≤ 1− Z̄ +

√
2Vn(1− Z) ln(2/δ)

n
+

7 ln(2/δ)

3(n− 1)
, (4.13)

107

where the empirical variance, Vn(1− Z), is defined as

Vn(1− Z) :=
1

2n(n− 1)

n∑
i,j=1

(
(1− Zi)− (1− Zj)

)2

=
1

2n(n− 1)

n∑
i,j=1

(
Yi
ci
− Yj
cj

)2

. (4.14)

The claim follows by replacing Z̄, E[Z̄], and Vn(1 − Z) in (4.13) with (4.11), (4.12),

and (4.14). �

Notice that if there is some b ∈ R such that Pr (Xi ≤ b) = 1 and ci = b for all i,

then Theorem 23 degenerates to MPeB. Also, despite the nested sum,
∑

i,j, the right

side of (4.10) can be evaluated in linear time (a single pass over the samples), since

we may write

n∑
i,j=1

(Zi − Zj)2 =
n∑

i,j=1

Z2
i − 2ZiZj + Z2

j

=2n
n∑
i=1

Z2
i − 2

(
n∑
i=1

Zi

)2

,

and so (4.10) may be rewritten as

µ ≥

(
n∑
i=1

1

ci

)−1
 n∑
i=1

Yi
ci
− 7n ln(2/δ)

3(n− 1)
−

√√√√√2 ln(2/δ)

n− 1

n n∑
i=1

(
Yi
ci

)2

−

(
n∑
i=1

Yi
ci

)2

 .

Also notice that the CUT inequality requires E[Xi] ≤ µ, which is more general

than requiring E[Xi] = µ. This is useful when using IS or NPDIS in a setting where

Assumption 1 does not hold, since then we have from Corollary 4 and Theorem 16

that E[ρ̂†(πe|HL, πb)] ≤ ρ(πe) for † ∈ {IS, NPDIS}. This means that we can get a

108

high confidence lower bound on ρ(πe) by using the CUT inequality with the IS or

NPDIS estimators, even if Assumption 1 does not hold. However, notice from the

proofs of Corollary 4 and Theorem 16 that the lower bound will become loose as the

number of observation-action pairs where Assumption 1 is violated increases.

In order to use the result of Theorem 23 for HCOPE, we must select the values of

the ci, i.e., the thresholds beyond which the distributions of the Xi are collapsed. To

simplify this procedure, we select a single c > 0 and set ci = c for all i. When c is too

large, it loosens the bound just like a large range, b, does for MPeB (see (4.7)). On

the other hand, when c is too small, it decreases the expected values of the collapsed

random variables, Yi, which also loosens the bound. The optimal c must properly

balance this trade-off between the range and mean of the Yi.

Figure 4.2 illustrates this trade-off using easily reproduced synthetic data. Notice

that the lower bound produced by the CUT inequality is sensitive to the value of c.

When c is too small, the lower bound approaches zero because every sample, Xi, is

collapsed to Yi = 0. When c is too large, performance also degrades because of the

CUT inequality’s direct dependence on c. Also notice that the optimal value of c

changes with the number of samples. Also, particularly when there are only a few

samples, the CUT inequality is sensitive to c being too large. Since we are primarily

interested in achieving tight lower bounds with little data, this means that finding a

near-optimal value for c will be crucial.

We are therefore faced with the challenge of determining a near-optimal value

for c. Theorem 23 requires the thresholds, ci, to be fixed—i.e., they should not be

computed using realizations of any Xi. If ci depends on any Xj where i 6= j, then Zi

and Zj are not independent and so Theorem 11 of Maurer and Pontil (2009) cannot

be applied in our proof. If ci depends on Xi, then 4.12 may not hold because ci is

a random variable and so a covariance term, Cov(Yi, 1/ci), is missing. This means

that we must select a value, c, without looking at the data that is used by the CUT

109

-50

0

50

100

1 10 100 1,000 10,000 100,000 1,000,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd
 o

n
M

ea
n

c

n=2
n=4
n=8
n=16
n=32
n=64
n=128
n=256
n=512
n=1024
n=2048
n=4096
n=8192
n=16384
n=32768

Figure 4.2. This figure uses samples from the gamma distribution with shape pa-
rameter k = 2 and scale parameter θ = 50, which has a true mean of 100. The plot
shows the 95% confidence lower bound on the mean produced by the CUT inequality
using n samples for various c (specified on the horizontal axis). For readers without
color, notice that the thinner curves correspond to larger n. Notice the logarithmic
scale of the horizontal axis. For any n, an optimal value of c is one that causes the
curve to take its largest value.

inequality. Recall that BEA selected c based on the data—this is why it is only an

approximate HCOPE method.

To select c in a way that produces an exact HCOPE method, we propose parti-

tioning the data set, {Xi}ni=1, into two sets, Xpre and Xpost. Xpre is used to estimate

the optimal threshold, c, and Xpost is used to compute the lower bound (the RHS

of (4.10)). Although in this scheme c is random, it does not depend on any of the

data that is used by the CUT inequality, and so the requirements of Theorem 23 are

satisfied.

If too much data is allocated to Xpre, then there will not be enough data in Xpost

to provide a tight lower bound, regardless of how well optimized c is. However, if too

little data is allocated to Xpre, then it may not be possible to predict what value of

c will work well when using the CUT inequality with Xpost. This is an interesting

optimal stopping problem—one sample should be allocated to Xpre at a time, until

110

some algorithm determines that no more samples are needed (reducing the number of

remaining samples is no longer worth the incremental improvement to the estimate of

an optimal threshold, c). However, a principled solution to this problem is beyond the

scope of this work. Instead we present a scheme that works well for exact HCOPE.

We place 1/5 of the samples in Xpre and the remainder in Xpost.
2 We found that

1/5 of the samples is sufficient to optimize c, and if it is more samples than needed, it

can only reduce performance by at most 1/5 = 20%, i.e., our approach will “waste”

at most 20% of the data. Our scheme for optimizing c then proceeds as follows. First

we describe how Xpre can be used to compute an estimate of the output of the CUT

inequality if applied to Xpost with any value of c. We then search for the value of c

that maximizes this estimator.

If X = {Xi}ni=1, let ĈUT(X , δ, c,m) be an estimate of what the CUT inequality

would output if using m samples rather than n samples. We will apply this estimator

with X = Xpre and m = |Xpost|. To derive the estimator that we use, notice that the

CUT inequality is based on the number of samples, the sample mean of the collapsed

random variables, and the sample variance of the collapsed random variables. So, we

use the sample mean and sample variance from the collapsed X , but m as the number

of samples:

ĈUT(X , δ, c,m) :=
1

n

n∑
i=1

min{Xi, c}︸ ︷︷ ︸
sample mean of X (after being collapsed)

− 7c ln(2/δ)

3(m− 1)
(4.15)

−

√√√√√√√√
ln(2/δ)

m

2

n(n− 1)

n n∑
i=1

(min{Xi, c})2 −

(
n∑
i=1

min{Xi, c}

)2

︸ ︷︷ ︸
sample variance of X (after being collapsed)

,

2In our experiments we randomly select 1/5 of the data for Xpre. An alternate implementation
might use stratified sampling to, for example, ensure that identically distributed random variables
are split so that approximately 1/5 are in Xpre.

111

where n = |X |. Notice that ĈUT(Xpre, δ, c,m), is the lower bound produced by the

CUT inequality (rather than a prediction) if m = |Xpre|.

Although intuitively appealing, even if the Xi are all identically distributed,

ĈUT(X , δ, c,m) is not necessarily an unbiased estimator of the expected output of

the CUT inequality if using m samples, i.e., it is not necessarily the case that

E
[
ĈUT(X , δ, c,m)

]
= E

[
ĈUT(X ′, δ, c,m)

]
,

if X = {Xi}ni=1, X ′ = {X ′i}mi=1, and all Xi and X ′i are independent and identically

distributed random variables. Although the sample mean in (4.15) when computing

ĈUT(X , δ, c,m) is an unbiased estimator of the expected sample mean when comput-

ing ĈUT(X ′, δ, c,m), the sample standard deviation is not. This is because, although

the sample variance (using Bessel’s correction) is an unbiased estimator of the true

variance, the sample standard deviation is not an unbiased estimator of standard

deviation.

We can now specify how c∗, an estimate of the optimal value for c, should be

chosen given Xpre and Xpost:

c∗ ∈ arg max
c

ĈUT(Xpre, δ, c, |Xpost|).

Notice that, although c∗ depends on |Xpost|, it does not depend on the values of any

Xi ∈ Xpost, and so we can then compute the 1 − δ confidence lower bound on µ

specified by Theorem 23, i.e., ĈUT(Xpost, δ, c
∗, |Xpost|).

4.9 Pseudocode

Pseudocode for the CUT inequality is provided in Algorithm 4.11. Notice that

the CUT inequality requires the random variables to be nonnegative, and so it will

112

not be applicable with PDIS for exact HCOPE. This is why Algorithm 4.8 disallows

the combination of † = PDIS and ‡ = CUT.

Algorithm 4.11: CUT(X1, . . . , Xn, δ): Uses the CUT inequality to return a
1− δ confidence lower bound on E[1

n

∑n
i=1Xi].

Constants: This algorithm has a real-valued hyperparameter, cmin ≥ 0, which
is the smallest allowed threshold. It should be chosen based on the application.
For HCOPE we use cmin = 1.
Assumes: The Xi are independent random variables such that Pr(Xi ≥ 0) = 1
for all i ∈ {1, . . . , n}.
1 Randomly select 1/5 of the Xi and place them in a set Xpre and the remainder

in Xpost;
// Optimize threshold using Xpre

2 c? ∈ arg maxc∈[1,∞] ĈUT(Xpre, δ, c, |Xpost|); // ĈUT is defined in (4.15)
3 c∗ = max{cmin, c

∗}; // Do not let c∗ become too small

// Compute lower bound using optimized threshold, c∗ and Xpost

4 return ĈUT(Xpost, δ, c
?, |Xpost|);

4.9.1 Other Uses of the CUT Inequality

In some cases, we might be provided with a lower bound, for which we would like

to determine the confidence that the lower bound will hold. Given a confidence level,

δ, we can use (4.10) to compute a 1− δ confidence lower bound on µ (it is the right

side of (4.10)). If we are provided with a lower bound, µlb, we can solve (4.10) for

1− δ to get the confidence with which the lower bound holds:

Corollary 7. Let {Xi}ni=1 be n independent real-valued bounded random variables

such that for each i ∈ {1, . . . , n}, we have Pr (0 ≤ Xi) = 1, E[Xi] ≤ µ, and the fixed

real-valued threshold ci > 0. Let Yi := min{Xi, ci}, µlb be any real number and

113

k1 =
7n

3(n− 1)
,

k2 =

√√√√√ 2

(n− 1)

n n∑
i=1

(
Yi
ci

)2

−

(
n∑
i=1

Yi
ci

)2
,

k3 = µlb

n∑
i=1

1

ci
−

n∑
i=1

Yi
ci
,

k4 =
−k2 +

√
k2

2 − 4k1k3

2k1

.

Then µlb is a lower bound on µ with confidence

1− δ =

1−min{1, 2 exp (−k2

4)} if k4 is real and positive,

0 otherwise.

Proof. This follows from solving (4.10) for δ. �

4.9.2 High Confidence Upper Bounds

Theorem 23 can also be used to generate a high-confidence upper bound on in-

dependent random variables {Xi}ni=1 if Xi ≤ bi. This can be accomplished by first

negating the Xi and then translating them so that they are always positive. That

is, let X ′i = bi − Xi, for all i. We can then apply Theorem 23 to {X ′i}ni=1 to pro-

duce a high confidence lower bound on E[1
n

∑n
i=1X

′
i], from which an upper bound

on E[1
n

∑n
i=1 Xi] can be extracted. However, notice that this scheme will only work

well if the X ′i have heavy upper tails. For example, for HCOPE this is not the case if

bounding the mean of the IS estimator for each trajectory. In this setting it is more

appropriate to negate and translate the returns, rather than the importance weighted

returns. Importance sampling can then be used with the negated and translated

returns.

114

Label in legend † ‡ Exact Comments

CH NPDIS CH Yes
MPeB NPDIS MPeB Yes
AM NPDIS AM Yes
BM NPDIS BM Yes
TT NPDIS TT No
BCa NPDIS BCa No
BEA IS BEA No
CUT NPDIS CUT Yes Recommended (exact)
CUT+IS IS CUT Yes For fair comparison to BEA
BCa2 CWPDIS BCa Yes Recommended (approximate)

Table 4.2. The combinations of † and ‡ that we include in our plots. The first column
corresponds to the label in the legends of future plots. The second and third columns
are the importance sampling and concentration inequality methods that are used.
The four column specified whether or not the method is an exact or approximate
HCOPE method.

4.10 Experiments

In this section we provide an empirical comparison of the various exact and approx-

imate concentration inequalities. First we must decide which variants of importance

sampling to use. We use NPDIS for almost all experiments. We select NPDIS over

IS because we saw in the experiments of the previous chapter that NPDIS performs

better. We select NPDIS over PDIS because PDIS performs poorly for exact HCOPE

since ρ̂PDIS
lb (πe, πb) � 0 in most cases, and we do not have machinery to effectively

handle the heavy lower tail of the distribution of ρ̂NPDIS(πe|HL, πb). We select NPDIS

over WIS and CWPDIS because the former produces an exact HCOPE method. For

approximate HCOPE, we also consider using CWPDIS with BCa.

Since HCOPE†BEA is only defined for † = IS, we use IS with BEA. However, this

results in an unfair comparison to CUT—is the better performance of HCOPENPDIS
CUT

due to its use of CUT or NPDIS? To answer this, we also show results for HCOPEIS
CUT.

The combinations of † (importance sampling variant) and ‡ (concentration inequality)

that we use are presented in Table 4.2.

115

We present results using three domains: the gridworld described in Section 2.5,

the canonical mountain car domain (Sutton and Barto, 1998), and a digital marketing

example using real data. Unless otherwise specified, the plots that we show depict the

95% confidence lower bound on ρ(πe) produced by the various HCOPE approaches

when using different numbers of trajectories, nD (specified on the horizontal axis).

The plots use a logarithmic horizontal axis. The curves are all averaged over 100 trials

and standard error error bars are included. Since a higher lower bound is better, the

higher the curves the better. For clarity, we sometimes show multiple versions of the

same plot with different scales on the vertical axis. The exact HCOPE methods use

dashed or dotted lines while the approximate HCOPE methods use solid lines. The

legend entry for “True” denotes the true value of ρ(πe), which is being lower bounded.

The most important trend to notice is that BCa2 always gives the tightest lower

bounds, while CUT gives the tightest lower bounds of the exact HCOPE methods.

4.10.1 Gridworld

The gridworld POMDP is described in Section 2.5, and here we use the same five

policies that were used in the previous chapter and which are described in Section

3.12. The results for various behavior and evaluation policies are presented in Figures

4.3, 4.4, 4.5, 4.6, and 4.7. Notice the following general trends:

1. Approximate HCOPE: BCa2 gives far tighter bounds than the other meth-

ods, which showcases the power of BCa when combined with CWPDIS. Also,

BCa outperforms TT in every case. BEA performs the worst of the approximate

HCOPE methods, and is also worse than CUT and CUT+IS (which are exact

HCOPE methods).

2. Exact HCOPE: CH, MPeB, and BM perform poorly—there were no exper-

iments where they returned lower bounds above zero, which is a trivial lower

bound. This is to be expected because they all have strong dependencies on the

116

range of the random variables. Also notice that although CH sometimes begins

with better lower bounds than MPeB, MPeB eventually catches up because of

its better dependence on the range of the random variables.

AM performs much better than CH, MPeB, and BM, as is expected because it

has no direct dependence on the range of the random variables. However our

concentration inequality, CUT, performs the best in almost every case—only

losing to AM in some cases when using a small number of trajectories (where

the lower bounds are so loose that they are likely of little practical use).

Even though BEA is only an approximate HCOPE method, it performs worse

than CUT+IS in every experiment (recall that we compare to CUT+IS rather

than CUT to avoid conflating the benefits of CUT with the benefits of NPDIS).

This suggests that our automatic optimization of the threshold works better

than their ad hoc scheme for selecting the threshold (although it may also be

due to our collapsing of the random variables as opposed to their clipping of

the importance weights).

117

0.8

0.9

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

0

0.3

0.6

0.9

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-6E+58

-3E+58

0

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.3. Lower bounds on ρ(π2) using trajectories from π3.

118

0.88

0.892

0.904

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

0

0.3

0.6

0.9

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-50,000

-25,000

0

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.4. Lower bounds on ρ(π3) using trajectories from π2.

119

0.9

0.98

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

0

0.5

1

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-1.5E+15

-1E+15

-5E+14

0

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.5. Lower bounds on ρ(π5) using trajectories from π4.

120

0.88

0.8915

0.903

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

0.6

0.9

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.6. Lower bounds on ρ(π2) using trajectories from π3.

121

0.9

0.95

1

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

0

0.035

0.07

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.7. Lower bounds on ρ(π3) using trajectories from π4.

122

Consider Figure 4.7 in more detail. We saw in Figure 3.15 that off-policy eval-

uation is challenging in this setting with πb = π4 and πe = π3. This means that

HCOPE is also challenging. Notice the large discrepancy between the performance of

BCa2 and the other methods. This discrepancy is present partly because CWPDIS

produces much better estimates of ρ(π3) than NPDIS (again, see 3.15). This is also

the only plot in this chapter where a mean lower bound produced by BCa2 is larger

than ρ(πe).

To understand why BCa2 produces lower bounds that are too large, first recall

from Figure 4.1 that BCa can produce expected error rates larger than desired when

the random variables have a heavy upper tail. However, the too-large lower bounds

produced by BCa2 in Figure 4.7 are primarily due to a different cause: recall from the

previous chapter that the weighted importance sampling variants, WIS and CWPDIS,

begin (when using a single trajectory) as unbiased estimators of ρ(πb), not ρ(πe).

As more trajectories are provided, they change from unbiased estimators of ρ(πb)

towards being unbiased estimators of ρ(πe). So, when using only a few trajectories, the

CWPDIS estimator used by BCa2 is a better estimator of ρ(π4) ≈ 0.97, and so BCa2

produces high confidence lower bounds on ρ(π4), which are not valid lower bounds

on ρ(π3). As the number of trajectories increases, CWPDIS shifts towards correctly

estimating ρ(π3), and so BCa2 produces lower bounds that are more appropriate.

Although the behavior of BCa2 in this case (Figure 4.7) is concerning, it is not

damning. Notice that if ρ(πe) ≥ ρ(πb), then there is no concern since a lower bound

on ρ(πb) is also a lower bound on ρ(πe). In the other case, where ρ(πe) < ρ(πb),

BCa2 produces high confidence lower bounds that are too large, however, they are

reasonable lower bounds of ρ(πb). Later we will use HCOPE methods to search

for policies that are predicted to outperform the current behavior policy with high

confidence. That is, we will search for a policy π such that we can guarantee that

ρ(π) > ρ(πb) (where an approximation to ρ(πb) may be used). If ρ(π) ≥ ρ(πb), then

123

BCa2 (and in general using CWPDIS as a foundation for HCOPE) does not tend

to produce lower bounds that are too large on average. However, if ρ(π) < ρ(πb),

then even though BCa2 may tend to produce lower bounds that are too large, they

will also tend to be viable lower bounds on ρ(πb), and therefore will not result in the

erroneous conclusion that ρ(π) > ρ(πb) with high confidence.

To emphasize this point, we plot the empirical error rates of the different methods

in Figures 4.8, 4.9, 4.10, 4.11, 4.12. We compute this error rate in two ways. First we

compute the number of times that each method produced a lower bound larger than

ρ(πe) and divide it by the total number of trials (100). We refer to this statistic as

the empirical error rate. Next we computed the number of times that each method

produced a lower bound larger than max{ρ(πe), ρ(πb)}, which is a better indicator

of how often each method will produce an error in the high confidence off-policy

improvement work in the next chapter. We refer to this statistic as the empirical

severe error rate. We only plot the empirical severe error rate for the cases where

ρ(πb) > ρ(πe), since it is the same as the empirical error rate otherwise.

0

0.05

0.1

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.8. Empirical error rate when using πb = π1 and πe = π2.

Notice that in each plot showing empirical error rates, BCa, and TT have error

rates of approximately 0.05, not error rates upper bounded by 0.05 (recall that we

124

0

0.05

0.1

0.15

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.9. Empirical error rate when using πb = π2 and πe = π3.

0

0.05

0.1

0.15

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.10. Empirical error rate when using πb = π4 and πe = π5.

used δ = 0.05). For approximate HCOPE, we can therefore think of δ = 0.05 as

the target error rate, which is marked in the plots. BCa2 has a similar error rate in

Figures 4.8, 4.9, and 4.10, where ρ(πe) ≥ ρ(πb). However, in Figures 4.11 and 4.12 the

empirical error rate of BCa2 is significantly too large when there are few trajectories

(with more trajectories its error rates are similar to those of BCa and TT). However,

in these figures, the empirical severe error rate of BCa2 remains reasonable, which

125

0

0.1

0.2

0.3

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

0

0.05

0.1

0.15

10 100 1,000 10,000

E
m

p
iri

ca
l S

ev
er

e
E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.11. Empirical error rate and empirical severe error rate when using πb = π3
and πe = π2.

means that it will still produce reasonable high confidence lower bounds for our later

applications.

Also notice that these plots support the theory—the exact HCOPE methods pro-

duce lower bounds that have error rates below 0.05 at all times. It is also evident

that the exact HCOPE methods are overly conservative since their error rates are near

zero in every plot. This highlights the difference between the exact and approximate

HCOPE methods. The exact methods provide an actual high confidence lower bound

on ρ(πe), and are typically overly conservative. The approximate HCOPE methods

126

0

0.5

1

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

0

0.05

0.1

10 100 1,000 10,000

E
m

p
iri

ca
l S

ev
er

e
E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.12. Empirical error rate and empirical severe error rate when using πb = π4
and πe = π3.

produce error rates much closer to the allowed level, however, they sometimes produce

error rates that are too large.

127

4.10.2 Mountain Car

Next we validated our HCOPE methods on the canonical mountain car domain

(Sutton and Barto, 1998), modified so that each action chosen by the agent is held

fixed for 20 time steps. This modification shortens the trajectories to avoid numerical

instability issues (particularly numerical overflows within some of the concentration

inequalities that depend on the range of the random variables). In the mountain car

domain, the agent is controlling a car via three actions: {forward, reverse, none},

which specify the direction that the car accelerates (with none denoting no accelera-

tion caused by the agent). The car begins at the bottom of a valley, and the goal is

to reach the top of the hill in front of the car. However, the car does not have enough

power to drive straight up the hill. So, the agent must learn to reverse up the hill

behind it before accelerating forwards.

The domain is depicted in Figure 4.13. The agent observes its current horizontal

position and velocity. The exact dynamics of the domain are specified by Sutton

and Barto (1998), with the one exception that we make each action last for 20 time

steps (one time step in our domain is 20 time steps in their domain). Each episode

terminates when the agent reaches the goal, and a reward of −1 is provided at each

time step to motivate the agent to reach the goal as quickly as possible. We force

every episode to terminate within L = 100 time steps (2,000 time steps in the original

mountain car domain).

An optimal policy for this domain requires 5 time steps to reach the goal, which

corresponds to 100 time steps in the original domain. In our experiments, the behavior

policy, πb, is already a decent policy that requires an average of 28 time steps to

reach the goal. The evaluation policy, πe, is a significantly better policy (found using

Sarsa(λ) (Sutton and Barto, 1998)), that requires an average of 7 time steps to reach

the goal. Figure 4.14 depicts the results of using different numbers of trajectories

with different exact and approximate HCOPE methods to lower bound ρ(πe) with

128

Inelastic wall Goal position

Figure 4.13. Graphical depiction of the mountain car domain.

95% confidence. Figure 4.15 presents the empirical error rates, which are similar to

those of the gridworld experiments.

We observe the same trends as before—BCa2 gives the tightest bounds, followed

by BCa and TT, which are also approximate HCOPE methods. The best exact

HCOPE method is CUT, followed closely by CUT+IS. The next best is BEA (an

approximate method), and then AM (an exact method). CH, MPeB and BM are far

behind the others. Although CH produces a tighter lower bound than MPeB when

there are few trajectories, MPeB performs better when more trajectories are available

because of its better dependence on the range of the random variables.

129

0

0.5

1

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-5E+45

0

10 100 1,000 10,000

95
%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-1.5E+47

-1E+47

-5E+46

0

10 100 1,000 10,000

9
5%

 C
on

fid
e

nc
e

L
ow

e
r

B
o

un
d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.14. Exact and approximate HCOPE results on the mountain car domain.

130

0

0.05

0.1

0.15

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.15. Empirical error rates on the mountain car domain.

4.10.3 Digital Marketing Domain

Our final empirical study uses a digital marketing domain that is based on real-

world data from a Fortune 20 company. Adobe Marketing Cloud is a powerful set

of tools that allows companies to fully leverage digital marketing using both auto-

mated and manual solutions. It has been deployed widely across the internet, with

approximately seven out of every ten dollars transacted on the web passing through

one of Adobe’s products. Adobe Target, one of the six core components of Adobe

Marketing Cloud, allows for automated user-specific targeting of advertisements and

campaigns. When a user requests a webpage that contains an advertisement, the

decision of which advertisement to show is computed based on a vector containing all

of the known features of the user. A trajectory consists of the history of interactions

with a single user.3

This problem tends to be treated as a bandit problem, where an agent treats

each advertisement as a possible action and attempts to maximize the probability

3For simplicity, we do not consider issues that arise due to the parallel and continuing nature of
the problem—we ignore that trajectories occur in parallel (Silver et al., 2013) and that there is no
way to determine whether a trajectory has ended (users may return after an arbitrarily long hiatus).

131

that the user clicks on the advertisement. Although this greedy approach has been

successful, it does not necessarily also maximize the total number of clicks from each

user over his or her lifetime. It has been shown that more far-sighted reinforcement

learning approaches to this problem can improve significantly upon bandit solutions

(Theocharous and Hallak, 2013).

In order to avoid the large costs associated with deployment of a bad policy, in

this application it is imperative that new policies proposed by RL algorithms are

thoroughly evaluated prior to deployment. Because off-policy evaluation methods are

known to have high variance, estimates of performance without associated confidences

are not sufficient. However, our HCOPE methods can provide sufficient evidence

supporting the deployment of a new policy to warrant its execution.

We used real data, captured with permission from the website of a Fortune 20

company that receives hundreds of thousands of visitors per day, and which uses

Adobe Target, to train a simulator using a proprietary in-house system identification

tool at Adobe Research. The simulator produces a vector of 10 real-valued features

that provide a compressed representation of all of the available information about a

user.4 The advertisements are clustered into two high-level classes that the agent must

select between. After the agent selects between these two classes of advertisements,

the user either clicks (reward of +1) or does not click (reward of 0) and the feature

vector describing the user is updated. We selected L = 10 (recall that L is the

maximum trajectory length) and γ = 1. We selected L = 10 because few visitors

returned to the website more than 10 times. Notice that using L = 10 is a significant

improvement over the myopic bandit approach, which effectively uses L = 1.

4The digital marketing data used in this dissertation comes from a different company than the
data used in our original HCOPE publication (Thomas et al., 2015c). Most notably, the feature
vectors describing users have been refined down to 10 features from 31.

132

The (unnormalized) expected return of a policy for a digital marketing application

is known as its lifetime value (LTV):

LTV(π) := E

[
L∑
t=1

Rt

∣∣∣∣∣π
]
.

To make our results more easily interpretable, we report the expected click-through

rate (CTR):

CTR(π) := E

[
clicks

visits
100%

]
.

So, a CTR of 0.004 means that 4 out of every thousand user visits results in a click

on an advertisement. LTV is more appropriate than CTR for evaluating policies

for digital marketing because it can account for how different policies can result in

different numbers of user visits (Theocharous et al., 2015a,b). However, since we use

a fixed horizon of L = 10, the two are equal: CTR(π) = LTV(π)/L.

The problem of improving the current policy for advertisement selection is a par-

ticularly challenging problem because the reward signal is sparse—users usually do

not click on the advertisements. If each of the two clusters of advertisements are

shown with probability 0.5, then the average probability that a user will click is

0.0027, i.e., the CTR of this policy is 0.0027. This means that most trajectories pro-

vide no feedback. Also, whether a user clicks or not is close to random, so returns

have high variance.

We selected a reasonable initial policy, πb, which has a CTR of 0.004322. We

computed a better policy,5 πe, with CTR ≈ 0.00496, which is a ≈ 14.8% improvement.

Figure 4.16 shows the 95% confidence lower bound on the CTR of πe produced using

the various HCOPE methods and different numbers of trajectories, and Figure 4.17

5The method used to compute πe is of little importance—it could have been produced by any
RL algorithm. In this case we used Sarsa(λ) with a manually tuned step size and eligibility trace
decay parameter.

133

shows the corresponding empirical error rates. Yet again we see the same trends—

BCa2 performs the best, followed by BCa and TT. Of the exact HCOPE methods,

CUT performs the best, followed closely by CUT+IS.

4.10.4 Risk Quantification Plot

In this section we introduce risk quantification plots (RQPs), which quantify the

risk associated with deploying the evaluation policy, πe. Reporting the 95% confidence

lower bound on ρ(πe) (or the lower bound on CTR(πe) for the digital marketing

application) provides some insight into how well πe will likely perform. However, in

the cases where the high confidence lower bound is larger than ρ(πe), it says nothing

about how bad the performance of πe might be. To fully quantify the risk associated

with deploying πe requires a high confidence lower bound on ρ(πe) to be computed

for every possible value of δ (or a dense sampling of δ ∈ [0, 1]). A RQP is a plot that

shows the observed performance of the current policy (πb in this case) as well as the

lower bound on ρ(πe) for a dense sampling of values of δ. A RQP may also include

markings that denote off-policy (not high confidence) predictions of the evaluation

policy’s performance.

To emphasize that our approach can handle multiple behavior policies, we use the

same πb as was used in Figure 4.16 to generate 90% of the historical data (recall that

the CTR of πb is ≈ 0.004322). We then use the policy, π′b, that always selects between

the two advertisement clusters with equal probability to generate the other 10% of

the data (recall that the CTR of π′b is ≈ 0.0027). This usage of the random policy (π′b)

for a small subset of the users is common in industry to allow for better statistical

analysis of historical data (Theocharous et al., 2015a,b). We used 100,000 trajectories

to generate the RQP because 100,000 users is a realistic amount of historical data

for this particular client. We used the same evaluation policy, πe, as was used in

Figure 4.16, which has a CTR of ≈ 0.00447. We used HCOPENPDIS
CUT to produce the

134

0

0.005

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

ow
er

 B
ou

nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-1

0

10 100 1,000 10,000

9
5%

 C
o

nf
id

en
ce

 L
ow

er
 B

ou
n

d

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

-50

0

10 100 1,000 10,000

95
%

 C
on

fid
en

ce
 L

o
w

er
 B

ou
nd

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

True

Figure 4.16. Exact and approximate HCOPE results on the digital marketing do-
main.

135

0

0.05

0.1

10 100 1,000 10,000

E
m

pi
ric

al
 E

rr
or

 R
at

e

Number of Trajectories

CH

MPeB

AM

BM

TT

BCa

BEA

CUT

CUT+IS

BCa2

Target

Figure 4.17. Empirical error rates on the digital marketing domain.

high confidence lower bounds, since it was the best performing of the exact HCOPE

methods.

Expected Return

C
on

fid
en

ce

4.322 4.84

x 10
−3

0

0.95
1

Figure 4.18. Risk quantification plot for the digital marketing domain, generated
using HCOPENPDIS

CUT with 100,000 trajectories. The 95% confidence lower bound on
ρ(πe) is 0.00447. The vertical red line at 0.00432 denotes the observed CTR of πb,
and the vertical green line at 0.00484 denotes the prediction from CWPDIS of the
CTR of πe.

136

This RQP is exceptionally compelling evidence supporting the deployment of the

policy πe in place of πb. It shows that πe will outperform πb with very high confi-

dence (greater than 95%), and also that it will be a significant improvement upon

πb with high confidence (the 95% confidence lower bound on the CTR is ≈ 0.00447).

Also, CWPDIS predicts that ρ(πe) ≈ 0.00484, which is an 8% improvement. Also,

because we are using a simulator, we can easily deploy the evaluation policy for a

large number of trajectories to estimate its true performance. Figure 4.19 shows

the RQP augmented to include the “true” CTR of πe (computed from 2 million on-

policy trajectories). Notice that, because the behavior policy has lower CTR than

the evaluation policy, CWPDIS underestimates the CTR of the evaluation policy.

Expected Return

C
on

fid
en

ce

4.322 4.84 4.957

x 10
−3

0

0.95
1

Figure 4.19. Figure 4.18, modified to also show the “true” CTR of πe (the vertical
blue at 0.004957).

Notice that the RQP is not restricted to the off-policy setting. If a new policy is

deployed to a small portion of the users (or for a brief duration), the machinery that

we have proposed can be used to determine whether or not the observed performance

137

of the policy warrants its continued use. Furthermore, any historical data from past

policies can be merged with on-policy data to produce a new data set, D, that can

also be used. Lastly, notice that the RQP does not ensure that every bound given

holds simultaneously with the specified confidence. This is due to the problem of

multiple comparisons, which is discussed in more detail in the next chapter.

At the time of writing this dissertation, researchers at Adobe Research continue

to use RQPs to evaluate new policies, and are working to transfer the technology to

the product team for Adobe Test and Target.

4.11 Discussion and Conclusions

We have presented tools for high confidence off-policy evaluation (HCOPE). These

tools leverage historical data to provide practical guarantees about the performance of

any new policy. Most importantly, they can be used to instill someone with confidence

that the policy proposed by any RL algorithm will actually perform well, without

requiring it to be deployed. We also introduced risk quantification plots, which can use

a combination of HCOPE and off-policy evaluation methods like CWPDIS to provide

compelling evidence supporting the use of a new policy. The primary drawback of

the HCOPE methods that we propose is that they are based on the (often false)

assumption that the environment is a POMDP. Deriving confidence bounds on ρ(πe)

using weaker stationarity assumptions would be an interesting direction of future

research.

Although the bringing together of existing tools to craft HCOPE algorithms is

one of the major contributions of this chapter, we also derived a new concentration

inequality, which we call the collapsed upper tail (CUT) inequality, and showed that

it outperforms all of the existing concentration inequalities that we compared it with

(with the one exception that the concentration inequality of Anderson (1969) and

138

Massart (1990) (AM) performs better that the CUT inequality when little data is

available and the resulting bounds are both loose).6

Two of the new variants of importance sampling, NPDIS and CWPDIS, which

we derived in the previous chapter, serve as the foundation of the HCOPE methods

that we presented in this chapter. Not only do these methods perform better than

IS and WIS (which were used in our original publication of this work (Thomas et al.,

2015c)), but we showed in Section 3.11 that an HCOPE method that uses NPDIS

does not require the behavior policies to be stochastic everywhere (Assumption 1).

There are two other clear avenues of future work. First, our scheme for automati-

cally selecting the threshold parameter, c, in the CUT inequality is ad hoc. This could

be improved, especially by a method for adaptively determining how many samples

should be used to select c. Second, in our experiments the AM inequality was the best

method after the methods based on CUT. If the AM inequality could be modified

to use a statistic other than the Dvoretsky-Kiefer-Wolfowitz inequality (Dvoretzky

et al., 1956), then it may outperform the CUT inequality.

We present in Figure 4.20 a decision diagram to assist with selecting which variant

of HCOPE to use for a specific application.

6This is not a concern for us, so we will use the CUT inequality in the remainder of
this dissertation. If this is a concern for some application, then the CUT and AM in-
equalities can be combined using the union bound to produce a 1 − δ confidence bound:
max{CUT(X1, . . . , Xn, δ/2),AM(X1, . . . , Xn, δ/2)} that has performance similar to the AM inequal-
ity when there are few samples and similar to the CUT inequality when there are more samples.

139

Exact

Normalized
Discounted

Return

Normalized
Discounted

Return

★ ★

WIS, BCaIS, BCa CWPDIS, BCaNPDIS, BCa

NPDIS, CUT

yesno

yesno

no yes

yesno

no yes
IS, CUT

Figure 4.20. Decision diagram for deciding which variant of HCOPE to use. The
recommended method is presented in a gray-filled box in bold. The top node cor-
responds to whether or not an exact HCOPE method is required (yes) or whether
an approximate HCOPE method is acceptable (no). The second level nodes, “nor-
malized discounted return,” correspond to whether R is defined to be the normal-
ized discounted return (see (2.5)). The decision nodes labeled ? denote the ques-
tion: “Is it acceptable if the approximate HCOPE method returns lower bounds on
max{ρ(πe),max{ρ(πi)}nDi=1}?” That is, if the performance of the evaluation policy is
worse than that of the best behavior policy, is it acceptable if the lower bounds pro-
duced by the approximate HCOPE method are lower bounds on the performance
of the best behavior policy? If BCa is too computationally expensive (even using
smaller values of B in the BCa pseudocode), then BCa can be replaced with TT
in this diagram. The dotted red paths are the two that will be used in the next
chapter—we will use CWPDIS with BCa for approximate HCOPE and NPDIS with
the CUT inequality for exact HCOPE.

140

CHAPTER 5

SAFE POLICY IMPROVEMENT

In the previous chapter we showed how historical data can be used to lower bound

the performance of a policy using high confidence off-policy evaluation (HCOPE)

methods. We argued that these lower bounds can be used to provide the user of

an RL algorithm with confidence that a new policy will perform well. However, the

previous chapter was agnostic to how the new policy was proposed. In this chapter

we investigate how the new policy should be chosen.

One approach is to use an existing batch off-policy reinforcement learning al-

gorithm like fitted Q-iteration (Ernst et al., 2005) or least squares policy iteration

(Lagoudakis and Parr, 2001). However, the policies that these methods produce, and

in general the policies that are predicted to have high expected return based on the

historical data, are not necessarily the policies that will have the highest lower bounds

on their performance. If a proposed policy will only be deployed if its performance can

be lower bounded by a sufficiently large value, then it (the proposed policy) should

be generated based both on its predicted performance and a prediction of whether

the lower bound on its performance will be sufficiently large to warrant deployment.

In this chapter we present batch and incremental policy improvement algorithms

that balance this trade-off between predicted performance and predicted lower bound

when searching for “safe” policies—policies that are guaranteed to improve upon a

user-specified baseline with a user-specified confidence level. If the user specifies a

baseline or confidence that is too high for the algorithm to produce a safe policy given

the available data, our algorithms return No Solution Found. We call our batch

141

policy improvement algorithm safe policy improvement (SPI), and our incremental

policy improvement algorithm Daedalus.

5.1 Problem Description

We assume that we are given a data set, D, that consists of nD trajectories,

{H i
L}

nD
i=1, each labeled by the policy that generated it, {πi}nDi=1, i.e.,

D =
{(
H i
L, πi

)
: i ∈ {1, . . . , nD}, H i

L ∼ πi
}
. (5.1)

Note that {πi}nDi=1 are behavior policies—those that generated the batch of data (tra-

jectories). We are interested in algorithms, which we denote by Ψ, that take as input

a performance level, ρ−, a confidence level δ, and the historical data, D, and output

either No Solution Found, or a policy, π ∈ Π. That is,

Ψ(ρ−, δ,D) ∈ {No Solution Found} ∪ Π.

It is important to understand which of these quantities are fixed and which are ran-

dom. We assume that δ and ρ− are fixed (not random variables). We also assume

that the behavior policies, {πi}nDi=1, are fixed. However, the trajectories, {H i
L}

nD
i=1

are random variables—each H i
L can be sampled by generating a trajectory using the

policy πi. So, D is a random variable and therefore Ψ(ρ−, δ,D) is as well.

We call any policy, π, where ρ(π) < ρ− a bad policy and any policy, π, where

ρ(π) ≥ ρ− a good policy. Intuitively, we call an RL algorithm safe if it is unlikely that

it will propose a bad policy. Formally, we call Ψ safe if the following holds:

Pr
(

Ψ(ρ−, δ,D) ∈ {π ∈ Π : ρ(π) < ρ−}
)
< δ. (5.2)

There is some subtlety to this definition that makes it a weaker safety guarantee than

it might at first appear to be. This subtlety is different from the common miscon-

142

ceptions regarding probability and confidences that were discussed in the previous

chapter. If Ψ is safe and it returns a policy, π, then it is not correct to say that

ρ(π) ≥ ρ− with confidence 1− δ.

This is best understood through an example where an algorithm is safe because it

usually returns No Solution Found. Consider a simple safe algorithm, Ψ′, which

returns No Solution Found with probability 1− δ. Recall that (5.2) requires the

probability that a bad policy is returned to be at most δ. The probability that Ψ′

returns a policy at all, regardless of how good it is, is at most δ. So, Ψ′ satisfies (5.2),

regardless of how ρ− is selected.

Let ρ− be large enough that ρ− > ρ(π∗), where π∗ is an optimal policy.1 If

Ψ′(ρ−, δ,D) 6= No Solution Found, then Ψ′(ρ−, δ,D) ∈ {π ∈ Π : ρ(π) < ρ−}—

every policy that the safe algorithm Ψ′ returns will have performance below the

specified baseline because the baseline, ρ−, is above the performance of every policy.

So, it is incorrect to say that if Ψ is safe and it returns a policy, π, then with confidence

1− δ we have that ρ(π) ≥ ρ− (Ψ′ is a counter-example—it is safe, but if it returns a

policy, π, then ρ(π) < ρ− always).

It is correct to say that if Ψ is safe then with confidence 1− δ it will return either

No Solution Found or a policy π where ρ(π) ≥ ρ−. The key difference between

this statement and the incorrect one is that this statement allows Ψ to decrease the

probability of a bad policy being proposed by rarely suggesting changes to the policy.

That is, safe algorithms do not guarantee that they will improve or even change the

current policy. In Section 5.2 we discuss policy improvement algorithms that have

the stronger guarantee that with high probability they will will return a policy, and

it will be an improvement.

1An optimal policy is a policy, π∗, such that there does not exist a policy π′ where ρ(π′) > ρ(π∗).

143

Because safe algorithms do not guarantee that they will change the policy, con-

struction of a safe algorithm is not challenging (or particularly interesting), since the

algorithm, Ψ, is trivially safe if it always returns No Solution Found. We therefore

desire a safe algorithm that returns No Solution Found infrequently, and a good

policy (π ∈ {π ∈ Π : ρ(π) ≥ ρ−}) frequently. In this chapter we strive to create

policy improvement algorithms that are safe and which frequently return

good policies. Our empirical results suggest that, when provided with enough data,

our safe algorithms frequently return policies that are improvements over a reasonable

baseline, ρ−. For example, in Figure 5.3 in Section 5.6, our safe policy improvement

algorithms returned a policy during all trials using 5,000 trajectories of historical

data.

If the exact HCOPE component of a safe RL algorithm is replaced with an approx-

imate HCOPE method, then the confidence level, δ, is only approximately guaranteed,

and so we refer to the algorithm as semi-safe. We refer to a policy, π, (as opposed

to an algorithm) as safe if we can ensure, from historical data, that ρ(π) ≥ ρ− with

confidence 1 − δ. Notice that “a policy is safe” is a statement about our belief con-

cerning that policy given the historical data, and not a statement about the policy

itself (for comparison, saying that a policy is good or bad is a statement about the

policy itself).

We will present a safe batch RL algorithm that uses historical data to make a

single change to the policy. We then show how it can be applied repeatedly to make

multiple incremental improvements to the policy. If there are many policies that

might be deemed safe, then safe RL algorithms should return one that is expected to

perform best, i.e.,

π∗ ∈ arg max
safe π

ρ̂(π|D),

144

where ρ̂(π|D) ∈ R is a prediction of ρ(π) computed from D. In our experiments we

will use CWPDIS (see (3.26)) for ρ̂.

5.2 Related Work

The only existing safe RL algorithms that we are aware of are conservative pol-

icy iteration (CPI) (Kakade, 2003, Kakade and Langford, 2002a) and its derivatives

(Pirotta et al., 2013). CPI is an approximate policy iteration algorithm (Bertsekas,

2011) that guarantees policy improvement with high confidence. The CPI algorithm

has three steps:

1. Execute the current policy to generate m time steps of data. Use these data to

compute a new policy, π′.

2. Execute the current policy to generate n trajectories. Use this data to perform

a statistical analysis of π′.

3. Based on the statistical analysis, either stop or make π′ the current policy and

return to step 1.

CPI guarantees with high confidence that the sequence of policies that it produces

will have strictly increasing performance until it stops. How close CPI gets to an

optimal policy before stopping depends on a parameter, ε, which scales how much

data is needed at each step, i.e., m and n depend on ε.

The paper that introduced CPI (Kakade and Langford, 2002a) does not address

how large m must be (see the first sentence of their section 7.1). However, m is defined

in Sham Kakade’s dissertation (Kakade, 2003, Lemma 7.3.4) as (using his notation):

m := O

(
A2H2

ε2

(
log (|Π|) + log

(
1

δ

)))
,

145

if the set of policies being considered is finite and

m := O

(
H2

ε2

(
log (VC(Π)) + log

(
1

δ

)))
,

otherwise. The definition of n is specified in the appendix of the work of Kakade and

Langford (2002a) as:

n := O

(
R2

ε2
log

(
R2

δε2

))
.

The meanings of the various symbols here are not important. Rather, we present

these definitions to show that m and n are defined in big-O notation. Determining

the exact values for m and n requires delving into the proof of Lemma 7.3.4 of Sham

Kakade’s dissertation and the appendix of the work of Kakade and Langford (2002a),

respectively.

The fact that m and n are defined using big-O notation suggests that it was

not intended for CPI to be implemented using the values of m and n that actually

guarantee policy improvement with high confidence. Instead, m and n show how the

amount of data required by CPI scales with different properties of the MDP (e.g.,

the size of the action set, which they denote by A). So, although CPI can be viewed

as a safe RL algorithm, it was not intended to be implemented as such, and we have

found that doing so requires impractically large amounts of historical data (large

m and n). For example, CPI requires more trajectories of historical data to make

a single improvement to the policy for the gridworld than our methods require to

converge to a near-optimal policy (it would be a horizontal line at the performance

of the initial policy for the entire span of our plots, e.g., Figure 5.5). Furthermore,

CPI requires that data can be collected from a µ-restart distribution (Kakade and

Langford, 2002b)—a requirement that we do not have.

So far we have compared CPI unfavorably to our safe RL methods. We would like

to emphasize that CPI was not intended to compete with our safe RL methods, and so

146

comparing the two is unfair to CPI (our methods require much less historical data).

CPI has several properties that our safe RL methods do not. Most importantly,

CPI guarantees policy improvement with high confidence if the current policy is

sufficiently far from optimal—with high probability the policy will be updated, and

it will be an improvement. By contrast, our methods only do the latter—they do not

guarantee that the policy will be changed at all, regardless of how far from optimal

it is. Furthermore, whereas our safe algorithms observe the historical data before

deciding whether or not to return a policy, CPI specifies a priori exactly how much

historical data is needed to guarantee policy improvement with high confidence, and so

it can guarantee convergence (with high probability) to a near-optimal policy within

a fixed and finite number of episodes. This desirable property, which our methods

lack, allowed CPI to become the foundation of PAC RL research.

5.3 Predicting Lower Bounds

At a high level, our methods will partition the historical data into a small training

set and a larger testing set. The small training set is used to select a single candidate

policy, πc. The larger testing set is used to compute a high confidence lower bound on

ρ(πc). If the high confidence lower bound is above ρ−, then πc is returned, otherwise

No Solution Found is returned. The candidate policy, πc, is selected such that:

1. We predict from the historical data in the training set that ρ(πc) will be large.

2. We predict from the historical data in the training set that πc will have a high

confidence lower bound (computed from the testing set) of at least ρ−.

In order to search for a candidate policy with the second property, we require a

method for using a small amount of historical data to predict what the lower bound

on the performance of a policy will be when it is computed later using the remaining

historical data. This section describes two such methods.

147

In this section we redefine HCOPE†‡ to take four inputs rather than three—recall

that before we wrote HCOPE†‡(πe,D, δ). Let the additional input, m, be a positive in-

teger and HCOPE†‡(πe,D, δ,m) be a prediction of what HCOPE†‡(πe,D, δ) would be

if D contained m trajectories. In this chapter we will only use ‡ ∈ {CUT, BCa}. If D

contains exactly m trajectories, then let HCOPE†‡(πe,D, δ,m) = HCOPE†‡(πe,D, δ).

Pseudocode for HCOPE†CUT (πe,D, δ,m) is presented in Algorithm 5.1. This al-

gorithm can be viewed as the combination of Algorithms 4.8 and 4.11, but using ĈUT

(defined in (4.15)) rather than CUT. To highlight the occurances of m, we color it

red in the pseudocode.

Algorithm 5.1: HCOPE†CUT (πe,D, δ,m): Predict what the 1 − δ confi-
dence lower bound on ρ(πe) using the historical data D = {(H i

L, πi) : i ∈
{1, . . . , n}, H i

L ∼ πi} would be if |D| = m. The importance sampling method is
specified by † ∈ {IS, NPDIS}. Assumption 1 is not required.

1 for i = 1 to n do
2 Xi ← ρ̂†(πe|H i

L, πi) ; // Compute importance weighted returns

3 if n < 200 then
4 Select i from the discrete uniform distribution over {1, . . . , n};
5 c∗ = Xi;
6 Xpost = {Xj}nj=1 \ {Xi};
7 else
8 Randomly select 1/20 of the Xi and place them in a set Xpre and the

remainder in Xpost;
// Optimize threshold using Xpre

9 c? ∈ arg maxc∈[1,∞] ĈUT(Xpre, δ, c,m); // ĈUT is defined in (4.15)

10 c∗ = max{cmin, c
∗}; // Do not let c∗ become too small

// Compute lower bound using optimized threshold, c∗ and Xpost

11 return ĈUT(Xpost, δ, c
?,m);

Updating HCOPE when using BCa is also straightforward—we resample m trajec-

tories rather than |D| trajectories. The resulting pseudocode is provided in Algorithm

5.2.

148

Algorithm 5.2: HCOPE†BCa(πe,D, δ,m): Predict what the 1 − δ confi-
dence lower bound on ρ(πe) using the historical data D = {(H i

L, πi) : i ∈
{1, . . . , n}, H i

L ∼ πi} would be if |D| = m. The importance sampling method is
specified by † ∈ {WIS, CWPDIS} and BCa is used.
Assumes: Nothing—any number of behavior policies can be used and Assump-
tion 1 is not required (although it will increase the accuracy of the approximate
lower bound).

1 X̄n ← †(πe|D); // Sample of statistic to be bounded (θ̂ in most BCa

literature)

2 B ← 2000; // Number of bootstrap resamplings to perform

// Generate B resamplings of the data and store the sample

statistics

3 for i = 1 to B do
4 Randomly sample m trajectories, H i

L, and their behavior policies, πi, from
D, with replacement. Store these m resampled trajectories in D′;

5 ξi ← †(πe|D′);
// Estimate the bias constant, z0 (Efron, 1987)

6 Sort the vector ξ = (ξ1, ξ2, . . . , ξB) such that ξi ≤ ξj for 1 ≤ i < j ≤ B;

7 z0 ← Φ−1
(
{#ξi<X̄n}

B

)
;

// Estimate the skew, a, of the distribution of X̄n

8 for i = 1 to n do
9 Set yi to be the mean of X excluding the ith element:

10 yi ← 1
n−1

∑n
j=1 1(j 6=i)Xj;

11 ȳ ← 1
n

∑n
i=1 yi;

12 a←
∑n
i=1(ȳ−yi)3

6[
∑n
i=1(ȳ−yi)2]

3/2 ; // Standard equation for estimating skewness

// Get bootstrap confidence bound using a linear interpolation

(Carpenter and Bithell, 2000) and the computed bias and skew

terms

13 zL ← z0 − Φ−1(1−δ)−z0
1+a(Φ−1(1−δ)−z0)

;

14 Q← (B + 1)Φ(zL);
15 l← min{bQc, B − 1};

16 return X̄n +
Φ−1(Q

B+1
)−Φ−1(l

B+1
)

Φ−1(l+1
B+1

)−Φ−1(l
B+1

)
(ξQ, ξQ+1);

149

5.4 Safe Policy Improvement (SPI)

This section is based on our previous work where SPI was referred to as high

confidence policy improvement (HCPI) (Thomas et al., 2015c). We adopt the name

SPI because it was incorrect to imply that our methods guarantee policy improvement

with high confidence (like CPI does). For more details on this, refer to the previous

two sections.

In this and subsequent sections we present algorithms that contain lines of the

form πc ← arg maxπ∈Π f(π), for some f : Π→ R. These lines call for a large search of

policy space for a policy that maximizes some objective function, f . Any off-the-shelf

black box optimization algorithm can be used for this search. For our experiments in

Section 5.6 we used CMA-ES (Hansen, 2006).

Consider a simple approach to SPI:

1. (Policy Selection): Select a candidate policy, πc ← arg maxπ HCOPE†‡(π,D, δ).

2. (Safety Test): If HCOPE†‡(πc,D, δ) ≥ ρ− then return πc, otherwise return No

Solution Found.

This approach is not safe (and in preliminary experiments we found that it produced

error rates that were significantly too large). The problem with this approach stems

from computing πc from the same data, D, that is used to test it for safety. This is

akin to gathering data for a scientific study, using the data to form a hypothesis, and

then using that same data to test the hypothesis—it is biased in favor of accepting

the hypothesis even if it is wrong. This problem is related to the multiple comparisons

problem, which we review below.

5.4.1 Testing Safety of Multiple Policies

Although the multiple comparisons problem is well studied (Benjamin and Hochberg,

1995), we briefly review it in our context. In this section we consider our safety test

(checking whether HCOPE†‡(πc,D, δ) ≥ ρ−) from a hypothesis testing perspective

150

(Wilcox, 2012), where the null hypothesis is that ρ(π) < ρ−. Consider the following

policy improvement scheme, which uses the historical data, D, to propose a new pol-

icy, π. First, randomly select π. Then use D to test whether π is safe, i.e., check

whether HCOPE†‡(πc,D, δ) ≥ ρ−. If it is, then return π, otherwise return No Solu-

tion Found. As desired, this näıve scheme will only make Type 1 errors (declare π

to be safe when it is not) with probability at most δ.

Now consider what would happen if the policy improvement mechanism randomly

selects two policies, π1 and π2. Both π1 and π2 are tested for safety. If both are deemed

unsafe, the policy improvement mechanism returns No Solution Found. If one or

both are deemed safe, then it returns one of the policies that was deemed safe. The

policy returned by this scheme can result in Type 1 errors with probability larger than

δ, i.e., it does not provide the desired safety guarantee. To see why, consider the case

where both π1 and π2 should be declared unsafe. The test HCOPE†‡(πi,D, δ) ≥ ρ−

ensures that the probability of incorrectly declaring πi to be safe is at most δ, for

i ∈ {1, 2}. However, if a Type 1 error is made on either policy, then the proposed

policy improvement scheme will make a Type 1 error by returning a policy that should

not have been declared safe. So, the probability that the policy improvement scheme

makes a Type 1 error can be as large as 2δ.

Although approaches exist to account for the multiple comparisons problem (Ben-

jamin and Hochberg, 1995), they all result in the individual hypothesis tests being

less data efficient than if only a single hypothesis were to be tested. In the context

of scientific experiments, where the multiple comparisons problem most frequently

arises, this is unavoidable because there are many hypotheses that must be tested

(e.g., which symptoms are reduced by a drug). However, in our setting there is no

requirement that we test multiple hypotheses. We will therefore avoid the multiple

comparisons problem by only testing a single hypothesis (we will set aside some of

the historical data and will use it to test a single policy for safety).

151

5.4.2 Algorithm

As suggested by the previous discussion, searching for a safe policy is a particularly

challenging problem due to the multiple comparisons problem. To avoid this problem

we propose a policy improvement algorithm that partitions the historical data into a

small training set, Dtrain, and a larger testing set, Dtest. The algorithm has the high

level structure:

1. Partition the historical data into two sets, Dtrain and Dtest.

2. (Policy Selection): Select a candidate policy, πc, using the training set, Dtrain.

3. (Safety Test): If HCOPE†‡(πc,Dtest, δ) ≥ ρ− then return πc, otherwise return

No Solution Found.

Notice that Dtest is only used once at the end during the “Safety Test” step to test

whether a single policy, πc is safe. This means that the multiple comparisons problem

is not an issue—only a single hypothesis is tested using Dtest, and the outcome of that

test determines whether a policy is returned. So, this algorithm is safe regardless of

how the candidate policy, πc, is generated from Dtrain. The viability of this approach

hinges on our ability to effectively use a small amount of historical data to select a

candidate policy that will both pass the safety test and have high performance (large

ρ(πc)). The remainder of this section therefore focuses on how we should use Dtrain

to select πc.

Our safe policy improvement algorithm, SPI†,?‡ , is presented in Algorithm 5.3,

where we specify the meaning of ? and formally define GetCandidatePolicy later.

To simplify later pseudocode, this method, called SPI, assumes that the trajectories

have already been partitioned into Dtrain and Dtest. In practice, we place 1/5 of the

trajectories in the training set and the remainder in the testing set. Also, notice that

if SPI uses ‡ = CUT and † = NPDIS, then it is a safe RL algorithm, while using

‡ = BCa and † = CWPDIS results in a semi-safe RL algorithm.

152

Algorithm 5.3: SPI†,?‡ (Dtrain,Dtest, δ, ρ−): Use the historical data, partitioned
into Dtrain and Dtest, to search for a safe policy (with 1−δ confidence lower bound
at least ρ−). If none is found, then return No Solution Found. Although
other † and ‡ could be used, we have only provided complete pseudocode for
(†, ‡) ∈ {(NPDIS,CUT), (CWPDIS,BCa)}. We allow for ? ∈ {None, k-fold}.
Assumption 1 is not required.

1 πc ← GetCandidatePolicy†,?‡ (Dtrain, δ, ρ−, |Dtest|);
2 if HCOPE†‡(πc,Dtest, δ) ≥ ρ− then

3 return πc;

4 return No Solution Found

SPI is presented in a top-down manner and makes use of the method

GetCandidatePolicy†,?‡ (D, δ, ρ−,m), which searches for a candidate policy. The

input m specifies the number of trajectories that will be used during the subsequent

safety test. We will present two versions of GetCandidatePolicy†,?‡ , which we

differentiate between using the ? superscript, which may stand for None or k-fold.

Since our notation is becoming cluttered, we remind the reader of the meaning of the

symbols:

SPI†=importance sampling variant,?=GetCandidatePolicy variant
‡=concentration inequality variant

Before presenting the two variants of GetCandidatePolicy, we define an ob-

jective function, f †‡ , as:

f †‡ (π,D, δ, ρ−,m) :=

ρ̂(π|D) if HCOPE†‡(π,D, δ,m) ≥ ρ−,

HCOPE†‡(π,D, δ,m) otherwise.

Intuitively, f †‡ uses HCOPE†‡(π,D, δ,m) to predict what the lower bound on ρ(π)

would be if it were to be computed using m trajectories of historical data. If the pre-

dicted lower bound is below ρ−, then it returns the predicted lower bound. However,

if the predicted lower bound is at least ρ−, then it returns the predicted performance

153

of π, ρ̂(π|D). This will serve as an objective function for GetCandidatePolicy†,?‡

(where D is Dtrain and m is |Dtest|).

Consider GetCandidatePolicy†,None
‡ , which is presented in Algorithm 5.4. This

method uses all of the available training data to search for the policy that is predicted

to perform the best, subject to it also being predicted to pass the safety test. That

is, if no policy is found that is predicted to pass the safety test, it returns the policy,

π, that it predicts will have the highest lower bound on ρ(π). If policies are found

that are predicted to pass the safety test, it returns one that is predicted to perform

the best (according to ρ̂).

Algorithm 5.4: GetCandidatePolicy†,None
‡ (Dtrain, δ, ρ−,m): Use the his-

torical data, partitioned into Dtrain to search for the candidate policy that is
predicted to be safe and perform the best (or to be closest to safe if none are
predicted to be safe). Although other † and ‡ could be used, we have only
provided complete pseudocode for (†, ‡) ∈ {(NPDIS,CUT), (CWPDIS,BCa)}.
Assumption 1 is not required.

1 return arg maxπ f
†
‡ (π,Dtrain, δ, ρ−,m);

The benefits of this approach are its simplicity and that it works well when there

is an abundance of data. However, when there are few trajectories in D (e.g., due to a

cold start), this approach has a tendency to overfit—it finds a policy that it predicts

will perform exceptionally well and which will easily pass the safety test, but actually

fails the subsequent safety test in SPI. We call this method ? = None because it does

not use any methods to avoid overfitting.

In supervised learning research it is common to introduce a regularization term,

λ‖w‖, into the objective function in order to prevent overfitting. Here w is the model’s

weight vector and ‖·‖ is some measure of the complexity of the model (often the L1 or

squared L2-norm), and λ is a parameter that is tuned using a model selection method

like cross-validation. This term penalizes solutions that are too complex, since they

are likely to be overfitting the training data.

154

Here we can use the same intuition, where we control for the complexity of the

solution policy using a regularization parameter, λ, that is optimized using k-fold

cross validation (a popular model selection technique). Just as the squared L2-norm

relates the complexity of a weight vector to its squared distance from the zero vector,

we define the complexity of a policy to be some notion of its distance from some

initial policy, π0. If there is a single behavior policy or if learning began with a

specific policy, then that policy can be used as π0. Otherwise, π0 can be chosen to be

the policy that always selects each action with equal probability. In order to allow for

an intuitive meaning of λ, rather than adding a regularization term to our objective

function, f †‡ (·,Dtrain, δ, ρ−, |Dtest|), we directly constrain the set of policies that we

search over to have limited complexity.2

We define a mixed policy, µλ,π0,π, to be a mixture of π0 and π with mixing pa-

rameter λ ∈ [0, 1]. As λ increases, the mixed policy becomes more like π, and as λ

decreases it becomes more like π0. Formally:

µλ,π0,π(a|o) := λπ(a|o) + (1− λ)π0(a|o).

We can avoid overfitting the training data by only searching the space of mixed

policies, µλ,π0,π, where λ is the fixed regularization parameter, π0 is the fixed initial

policy, and where we search the space of all possible π. Consider, for example what

happens to the probability of action a given the observation o when λ = 0.5. If

π0(a|o) = 0.4, then for any π, we have that µλ,π0,π(a|o) ∈ [0.2, 0.7]. That is, the

mixed policy can only change the probability of an action 100λ% = 50% of the way

towards 0 or 1, i.e., 100λ% towards deterministic action selection. So, using mixed

2This is not non-standard. In regression, depending on the regularization scheme, there is an
equivalence between regularization using weight decay and a constraint on model complexity (Abu-
Mostafa et al., 2012, Section 4.2.1)

155

policies results in our searches of policy space being constrained to some feasible set

centered around the initial policy, and where λ scales the size of this feasible set.

While small values of λ can effectively eliminate overfitting by precluding the

mixed policy from moving far away from the initial policy, they also limit the quality

of the best mixed policy in the feasible set. It is therefore important that λ is chosen

to balance the tradeoff between overfitting and limiting the quality of solutions that

remain in the feasible set. Just as in supervised learning, we use a model selection

algorithm, k-fold cross-validation, to automatically select λ.

This approach is provided in Algorithm 5.5, where

GetCandidatePolicy†,k-fold
‡ (Dtrain, δ, ρ−,m) uses k-fold cross validation to predict

the value of f †‡ (π,Dtest, δ, ρ−, |Dtest|) if π were to be optimized using Dtrain and reg-

ularization parameter λ. CrossValidate†‡ is described in Algorithm 5.6. In our

implementations we use k = min{20, 1
2
|D|} folds for cross validation.

Algorithm 5.5: GetCandidatePolicy†,k-fold
‡ (Dtrain, δ, ρ−,m): Use the his-

torical data, Dtrain, to search for the candidate policy that is predicted to be
safe and perform the best (or to be closest to safe if none are predicted to be
safe). Although other † and ‡ could be used, we have only provided complete
pseudocode for (†, ‡) ∈ {(NPDIS,CUT), (CWPDIS,BCa)}. Assumption 1 is not
required.

1 λ∗ ← arg maxλ∈[0,1] CrossValidate†‡(λ,Dtrain, δ, ρ−,m);

2 π∗ ← arg maxπ f
†
‡ (µλ∗,π0,π,Dtrain, δ, ρ−,m);

3 return µλ∗,π0,π∗ ;

To see that SPI is a safe algorithm (or semi-safe, depending on the choice of † and

‡), notice that it will only return a policy, π, if HCOPE†‡(π,Dtest, δ) ≥ ρ−. Recall from

the chapter on HCOPE (Chapter 4) that Pr
(
ρ(πe) ≥ HCOPE†‡(π,Dtest, δ)

)
≥ 1− δ.

So, the probability that SPI returns a policy, π, where ρ(π) < ρ− is at most δ.

156

Algorithm 5.6: CrossValidate†‡(λ,Dtrain, δ, ρ−,m): Predict the value of

f †‡ (π,Dtest, δ, ρ−, |Dtest|) if π were to be optimized using Dtrain and regularization
parameter λ. Although other † and ‡ could be used, we have only provided com-
plete pseudocode for (†, ‡) ∈ {(NPDIS,CUT), (CWPDIS,BCa)}. Assumption 1
is not required.

1 Partition Dtrain into k subsets, D1, . . . ,Dk, of approximately the same size;
2 result ← 0;
3 for i = 1 to k do

4 D̂ ←
⋃
j 6=iDj;

5 π? ← arg maxπ f
†
‡ (µλ,π0,π, D̂, δ, ρ−,m);

6 result ← result +f †‡ (µλ,π0,π? ,Di, δ, ρ−,m);

7 return result/k;

5.5 Multiple Policy Improvements: Daedalus

The SPI algorithm is a batch method that can be applied to any historical data, D.

However, it can also be used in an incremental manner by executing new safe policies

whenever they are found. The user might choose to change ρ− at each iteration,

e.g., to reflect an estimate of the performance of the best policy found so far or the

performance of the most recently proposed policy. However, for simplicity in our

pseudocode and experiments, we assume that the user fixes ρ− as an estimate of the

performance of the initial policy. This scheme for selecting ρ− is appropriate when

trying to convince a user to deploy an RL algorithm to tune a currently fixed initial

policy, since it guarantees with high confidence that it will not decrease performance.

Our algorithm maintains a list, C, of the policies that it has deemed safe. When

generating new trajectories, it always uses the policy in C that is expected to perform

best. C is initialized to include a single initial policy, π0, which is the same as the

baseline policy used by GetCandidatePolicy†,k-fold
‡ . This online safe learning al-

gorithm is presented in Algorithm 5.7,3 which takes as input an additional constant,

3If trajectories from one or more behavior policies are available a priori, then Dtrain,Dtest, and
C can be initialized accordingly.

157

β, that denotes the number of trajectories to be generated by each policy. We assume

that β is specified by the application. We name this algorithm Daedalus†,?‡ after

the mythological character who promoted safety when he encouraged Icarus to use

caution.

Algorithm 5.7: Daedalus†,?‡ (π0, δ, ρ−, β): Make repeated safe policy im-
provements. The initial policy is π0, δ and ρ− are the confidence level and
lower bounds for ensuring safety, and β is a positive integer that specifies
how many trajectories to generate between policy updates. Although other
† and ‡ could be used, we have only provided complete pseudocode for (†, ‡) ∈
{(NPDIS,CUT), (CWPDIS,BCa)}. We allow ? ∈ {None, k-fold}. Assumption 1
is not required.

1 C ← {π0};
2 Dtrain ← ∅;
3 Dtest ← ∅;
4 while true do

5 D̂ ← Dtrain;

6 π∗ ← arg maxπ∈C ρ̂(π|D̂);
7 Generate β trajectories using π∗ and append d1/5e to Dtrain and the rest to

Dtest;

8 πc ←SPI†,?‡ (Dtrain,Dtest, δ, ρ−);

9 D̂ ← Dtrain;

10 if πc 6= No Solution Found and ρ̂(πc|D̂) > maxπ∈C ρ̂(π|D̂) then
11 C ← C ∪ πc;
12 Dtest ← ∅;

The benefits of ‡ = k-fold are biggest when only a few trajectories are available,

since then GetCandidatePolicy†None is prone to overfitting. When there is a lot of

data, overfitting is not a big problem, and so the additional computational complexity

of k-fold cross-validation is not justified. In our implementations of Daedalus†k-fold,

we therefore only use ‡ = k-fold until the first policy is successfully added to C, and ‡

= None thereafter. This provides the early benefits of k-fold cross-validation without

incurring its full computational complexity.

The Daedalus†,?‡ algorithm ensures safety with each newly proposed policy. That

is, during each iteration of the while-loop, the probability that a new policy, π, where

158

ρ(π) < ρ−, is added to C is at most δ. The multiple comparison problem is not

relevant here because this guarantee is per-iteration. However, if we consider the

safety guarantee over multiple iterations of the while-loop, it applies and means that

the probability that at least one policy, π, where ρ(π) < ρ−, is added to C over k

iterations is at most min{1, kδ} (kδ can be larger than one, for example, if there are

k = 100 calls to SPI†,?‡ and δ = 0.05). However, the per-iteration guarantee can be

applied to the last of several iterations of the while-loop. That is, if k iterations of the

while-loop are executed, the probability that, during the last iteration, a new policy,

π, where ρ(π) < ρ−, is added to C is at most δ.

We define Daedalus2†,?‡ to be Daedalus†,?‡ but with line 12 (Dtest ← ∅) re-

moved. The multiple hypothesis testing problem does not affect Daedalus2†,?‡ more

than Daedalus†,?‡ , since the safety guarantee is per-iteration. However, a more sub-

tle problem is introduced: the importance weighted returns from the trajectories in

the testing set, ρ̂(πc|τDtest
i , πDtest

i), are not necessarily unbiased estimates of the true

performance, ρ(πc).

This happens because the policy, πc, is computed in part from the trajectories

in Dtest that are used to test it for safety. In Daedalus†,?‡ Dtest is cleared so that

trajectories that influenced the choice of the current candidate policy will not be

used during its safety test. This dependence is depicted in Figure 5.1. Importantly,

notice that the ability of Dtrain to impact the candidate policy is limited. Dtrain

impacts whether the safety test is passed or not—a Boolean value. This Boolean

value impacts which policy will be used to generate the next batch of historical data,

which in turn is used to select the next candidate policy. So, the candidate policy

may have a dependence on some trajectories in Dtrain, however this dependence is

likely small.

We also modify Daedalus2†,?‡ by changing lines 5 and 9 to D̂ ← Dtrain ∪ Dtest,

which introduces an additional minor dependence of πc on the trajectories in Dtest.

159

𝜋𝑐
1𝒟train

1

𝒟test
1

𝜋0
∗ Safety Test(𝜋𝑐

1) 𝜋2
∗

𝜋𝑐
2𝒟train

2

𝒟test
2

Safety Test(𝜋𝑐
2)𝜋1

∗

Line 6 Line 7 Line 8 Lines 10–12
and 5–6

Line 7 Line 8 Lines 10–12
and 5–6

Figure 5.1. This diagram depicts influences as Daedalus2†,?‡ runs. The line num-
bers that each part of the diagram corresponds to are provided at the bottom of
the figure. First the initial policy, π∗0, is used to generate sets of trajectories, D1

train

and D1
test, where superscripts denote the iteration. Next D1

train is used to select the
candidate policy, π1

c . Next, π1
c is tested for safety using the trajectories in D1

test (this
safety test occurs within line 8 of Algorithm 5.7, on line 2 of SPI†,?‡). The result of
the safety test influences which policy, π∗1, will be executed next—it will either be π∗0
or π1

c , depending on the outcome of the safety test within SPI†,?‡ . The policy π∗1 is
then used to produce D2

train and D2
test as before. Next, both D1

train and D2
train are used

to select the next candidate policy, π2
c . This policy is then tested for safety using the

trajectories in D1
test and D2

test. The result of this test influences which policy, π∗2, will
be executed next, and the process continues. Notice that D1

test is used when testing
π2
c for safety (as indicated by the dashed blue line) even though it also influences π2

c

(as indicated by the dotted red path). This is akin to performing an experiment,
using the collected data (D1

test) to select a hypothesis (π2
c is safe), and then using that

same data to test the hypothesis. Daedalus†,?‡ does not have this problem because
the dashed blue line is not present.

Although our theoretical analysis applies to Daedalus†,?‡ , we propose the use of

Daedalus2†,?‡ because the ability of the trajectories, Ditest, to bias the choice of which

policy to test for safety in the future (πjc , where j > i) towards a policy that Ditest

will deem safe, is small. However, the benefits of Daedalus2†,?‡ over Daedalus†,?‡

are significant—the set of trajectories used in the safety tests increases in size with

each iteration, as opposed to always being of size β. So, in practice, we expect the

over-conservativeness of our concentration inequality to far outweigh the small bias

that is introduced by Daedalus2†,?‡ .

Furthermore, notice that Daedalus2CUT,?
‡ is safe, and not just semi-safe, if we

consider its execution only up until the point where the policy is first changed, since

160

then the trajectories are always generated by π0, which is not influenced by any of

the testing data.

5.6 Experiments

In this section we provide an empirical comparison of the variants of SPI and

Daedalus2. We do not compare to any other algorithms because, to the best of

our knowledge, there are no other practical4 safe reinforcement learning algorithms.5

The previous chapters suggest that we should use † = NPDIS and ‡ = CUT for exact

HCOPE (safe algorithms) and † = CWPDIS and ‡ = BCa for approximate HCOPE

(semi-safe algorithms). We therefore focus on these two settings and compare the use

of ? = k-fold and ? = None.

For all of the domains, we select ρ− to be the performance of the initial policy,6

δ = 0.05, and β to be approximately the amount of data that we might expect to

see between policy improvement steps (e.g., for the digital marketing domain we use

β = 25,000, which corresponds to a week of historical data from a small company).

The plots in this section are all averaged over 100 trials, with standard error bars

shown.

The gridworld that we used to validate HCOPE is particularly challenging when

it comes to policy improvement—even well-tuned ordinary RL algorithms require an

unexpectedly large number of trajectories to converge to a near-optimal policy. We

therefore use a simplified variant for testing SPI and Daedalus. In this variant

4As discussed before, CPI can be a safe reinforcement algorithm if enough trajectories are used.
However, we argued that it was not intended to be implemented in this way and that doing so would
require an impractical amount of data (the number of trajectories that CPI requires to make a single
change to the policy is larger than the entire span of our plots).

5As in the rest of this dissertation, we refer specifically to our definition of a safe reinforcement
learning algorithm from Section 5.1.

6For experiments where we set ρ− to be larger, requiring significant improvements to the policy
before it is changed, see our previous work (Thomas et al., 2015d).

161

the rewards are all changed to −1. We begin with a hand-tuned policy that has an

expected normalized return of 0.22, and which almost always finds the goal within

10 time steps. We therefore truncate episodes to ensure that they terminate within

L = 10 time steps.

Figure 5.2 shows the results of running SPI with various settings. As anticipated,

BCa outperforms CUT (the approximate method outperforms the exact method,

which must provide a stronger safety guarantee). Using n = 50 trajectories, only

(‡ = BCa, ? = k-fold) produced any changes to the policy, however all methods were

able to improve the policy with n = 700 trajectories. When using ‡ = CUT, using

? = k-fold results in a large improvement in performance over ? =None. However,

when using ‡ = BCa, ? = k-fold results in a small decrease in performance when using

n = 700 trajectories, which suggests that in this case overfitting of the training set

was not an issue. When overfitting the training data is not an issue, ? = k-fold cross-

validation sometimes erroneously over-restricts the set of policies that are considered,

and therefore results in slightly worse performance than ? =None.

We see this same pattern for mountain car (Figure 5.3) and the digital maketing

domain (Figure 5.4). Impressively, the semi-safe SPI methods are able to improve the

policies for mountain car and digital marketing using as few as n = 50 and n = 1,000

trajectories, respectively. For mountain car the safe methods require just hundreds

of trajectories of historical data to improve upon the initial policy. For the digital

marketing domain the safe and semi-safe policy improvement algorithm can reliably

produce policy improvements with realistic amounts of data—historical data from a

few thousand users. For both the mountain car and digital marketing domains we

again see the trend that using ? = k-fold is primarily beneficial when using ‡ =CUT.

Figures 5.5, 5.6, and 5.7 depict the results on these three domains when using

Daedalus2†,?‡ for multiple policy improvements. There are a few interesting trends

to notice. First, notice that given the same number of trajectories, Daedalus2†,?‡

162

0.2

0.45

0.7

n=50 n=700 n=1500

E
xp

e
ct

e
d

 N
o

rm
al

iz
e

d
R

e
tu

rn

None, CUT None, BCa k-Fold, CUT k-Fold, Bca

Figure 5.2. Performance of SPI†,?‡ on the simplified gridworld domain, where † =
NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and ? ∈ {None, k-fold}.

0

0.25

0.5

0.75

1

n=50 n=200 n=900 n=5000

E
xp

e
ct

ed
 N

or
m

a
liz

e
d

 R
et

u
rn

None, CUT None, BCa k-Fold, CUT k-Fold, Bca

Figure 5.3. Performance of SPI†,?‡ on the mountain car domain, where † = NPDIS
and ‡ = CUT or † = CWPDIS and ‡ = BCa, and ? ∈ {None, k-fold}.

tends to outperform SPI (compare, for example, n = 700 in Figures 5.2 and 5.5).

This is because as Daedalus2†,?‡ improves the policy, it samples trajectories from

increasingly good regions of policy space. These trajectories are more informative

about even better policies than trajectories that are generated by the initial policy.

Next, notice that k-fold cross-validation tends to be beneficial when using the exact

163

0.002715

0.003832

n=10000 n=30000 n=60000 n=100000

E
xp

e
ct

ed
 N

o
rm

al
iz

e
d

R
e

tu
rn

None, CUT None, BCa k-Fold, CUT k-Fold, BCa

Figure 5.4. Performance of SPI†,?‡ on the digital marketing domain, where † =
NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and ? ∈ {None, k-fold}. Due
to runtime limitations, this plot was only averaged over 10 trials and the variants
that use k-fold cross-validation were not run for n > 30,000.

methods (CUT), or the approximate methods (BCa) with little data. However, when

there is sufficient data (particularly when using BCa), k-fold cross-validation often

hurts performance. This is likely because there is so much data that overfitting the

training set is not an issue.

Impressively, the safe and semi-safe variants of Daedalus2†,?‡ are able to find near

optimal policies for the gridworld and mountain car domains using just hundreds of

trajectories. They are also able to find significantly improved policies for the digital

marketing domain using a realistic amount of historical data.

164

0.23

1

0 700 1400

E
xp

e
ct

ed
 N

or
m

al
iz

ed
 R

e
tu

rn

Number of Trajectories

None, CI

None, TT

None, BCa

k-fold, CI

k-fold, TT

k-fold, BCa

Figure 5.5. Performance of Daedalus2†,?‡ on the simplified gridworld domain,
where † = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and ? ∈
{None, k-fold}.

0.2

0.6

1

0 450 900

E
xp

ec
te

d
N

o
rm

a
liz

ed
 R

e
tu

rn

Number of Trajectories

None, CI

None, TT

None, BCa

k-fold, CI

k-fold, TT

k-fold, BCa

Figure 5.6. Performance of Daedalus2†,?‡ on the mountain car domain, where
† = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and ? ∈ {None, k-fold}.

165

0.0027

0.0046

0 50000 100000

Ex
pe

ct
ed

 N
or

m
al

iz
ed

 R
et

ur
n

Episodes

None, CI
None, BCa
k-fold, CI
k-fold, BCa

Figure 5.7. Performance of Daedalus2†,?‡ on the digital marketing domain, where
† = NPDIS and ‡ = CUT or † = CWPDIS and ‡ = BCa, and ? ∈ {None, k-fold}.
Due to runtime limitations, this plot was only averaged over 10 trials.

166

5.7 Discussion and Conclusions

In this chapter we formalized the notion of a safe reinforcement learning algorithm.

Recall that our definition of safety is one of many reasonable definitions, as described

in Section 2.6. After formalizing the notion of safety in this context, we presented the

first practical safe batch and incremental reinforcement learning algorithms. These

algorithms allow the user to specify a baseline performance level, ρ−, and a confidence

level, δ, to quantify how much risk is acceptable for the application at hand. They then

use historical data to search for policies with large expected return, while ensuring

that the probability that they return a policy with performance less than ρ− is at

most δ.

The viability of our batch algorithm, safe policy improvement (SPI), and our

iterative algorithms, Daedalus and Daedalus2, hinge on the foundation that we

laid in the previous chapters, which allows us to perform high confidence off-policy

evaluation (HCOPE) using remarkably little historical data. However, the creation of

policy improvement algorithms given our HCOPE algorithms was not a trivial task—

we had to be careful to avoid the problem of multiple comparisons, to avoid using the

same data to both select a policy and to test it for safety, and to avoid overfitting our

training data.

Although the resulting algorithms require more data than traditional (unsafe)

reinforcement learning algorithms with optimized hyperparameters, they surprised us

with how little data was necessary to find safe policy improvements. Unlike PAC RL

methods and CPI, which require hundreds of thousands to millions of trajectories to

provide statistical guarantees about learning, our methods can function using only

tens to hundreds of trajectories, and can converge to near-optimal policies within a

few thousand episodes.

Most importantly, we have shown that safe reinforcement learning is

tractable. We expect that the algorithms that we have proposed leave significant

167

room for further improvement, as there were too many design choices for us to op-

timize them all. It is our hope that this preliminary work will convince researchers

that high confidence policy improvement is a goal that is within reach, and will result

in new algorithms that outperform the methods that we have presented.

168

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation we have made several contributions, one
of which is particularly significant.

We began with a formal analysis of importance sampling variants for reinforcement

learning in Chapter 3. These importance sampling estimators can be used to estimate

the performance of one policy, called the evaluation policy, using data collected from

the application of a different policy, called the behavior policy. We reiterated several

known results, including that some of the estimators are unbiased and that if there is

only a single behavior policy, then some are strongly consistent. We showed that one

estimator from the literature is not a consistent estimator as was previously believed,

and we corrected it to produce a consistent estimator. This new estimator, which

we call CWPDIS, outperforms all of the other estimators in our experiments. We

also showed that most of the estimators are strongly consistent estimators of the

evaluation policy’s performance even if there are multiple behavior policies (but if an

additional restriction is satisfied).

In Chapter 4 we leveraged the importance sampling variants discussed in Chapter 3

to show how historical data from several behavior policies can be used to produce tight

confidence bounds on the performance of a new evaluation policy. We presented both

exact and approximate methods—the former produce actual statistical confidence

bounds, while the latter produce good approximations thereof. Intuitively, while the

exact methods have an error rate of at most δ (this is guaranteed by the theoretical

derivation, subject to the lone assumption that the environment is a POMDP), the

approximate methods have error rates of approximately δ. The key to producing

169

a viable exact HCOPE algorithm was our derivation of a concentration inequality,

which we call the collapsed upper tail (CUT) inequality, that is particularly well suited

to HCOPE. In our experiments we showed how our HCOPE algorithm could be used

to provide the user of any reinforcement learning algorithm with confidence that a

policy that has never before been used is actually safe to use.

Lastly, in Chapter 5 we showed how our HCOPE algorithms, which built on our

importance sampling variants, can be leveraged to perform “safe” policy improve-

ment.1 The resulting algorithms, safe policy improvement (SPI) and Daedalus,

take as input historical data from any number of previous policies, a confidence level,

δ, and a performance lower bound, ρ− (e.g., the performance of the currently deployed

policy). They then search for a policy that is expected to perform best, subject to the

requirement that safety is always insured—the probability that a policy is returned

with performance below ρ− is at most δ.

The most significant contribution of this dissertation is not one of the proofs or

the new algorithms, but rather the overarching message that HCOPE and SPI

are tractable problems. When this project began, we had little hope that the

problem of HCOPE (particularly exact HCOPE) would be tractable, and our first

experiments supported this—using ordinary importance sampling with the Chernoff-

Hoeffding concentration inequality required millions of trajectories to get a decent

high confidence lower-bound on the performance of a policy for a two-state two-

action Markov decision process (MDP). For these initial experiments (which are not

described in this dissertation) we were forced to use this trivial domain because the

experiments that are in this dissertation were beyond hope.

This dissertation describes the many incremental improvements that, together,

brought HCOPE and SPI from an interesting but unrealistic and impractical idea to

1Recall that our definition of safety is one of many reasonable definitions, as described in Section
2.6

170

a practical set of algorithms. Our empirical studies with these algorithms show the

surprising and now indisputable result that HCOPE and SPI are tractable problems.

That is, the amount of historical data needed to produce tight confidence bounds on

the performance of a policy or to search for a policy with a large lower bound on its

performance is not as prohibitive as we expected it to be. However, we would like

to make it clear that, although HCOPE and SPI are tractable for some problems

(more than we anticipated), there are of course many problems that are not yet

within reach—particularly problems where the behavior and evaluation policies are

very different and when trajectories are particularly long.

It is our hope that the algorithms that we have presented will not stand the test of

time. During their construction we faced many engineering decisions, some of which

are described again in the following section. It is likely that at some point we made

a decision that degraded the performance of our algorithms. However, they have

served their purpose—they have shown that the HCOPE and SPI problems can be

solved using a realistic amount of data. We hope that this will inspire researchers

to propose their own methods, which improve upon our own, and that the develop-

ment of increasingly data-efficient safe reinforcement learning algorithms will catalyze

the widespread adoption of reinforcement learning algorithms for suitable real-world

problems.

6.1 Future Work

As suggested by the previous section, we have constructed a sequence of methods

that build upon each other, with importance sampling methods at the foundation,

HCOPE methods in the middle, and SPI methods at the top. Although we are

aware of no mistakes that endanger our safety claims, we suspect that our derivations

have been rife with suboptimal engineering decisions that result in decreased data

efficiency. For example:

171

1. Is there a variant of importance sampling that yields even better performance

than NPDIS and CWPDIS, particularly if some domain-specific knowledge is

available?

2. The AM inequality has no inherent dependence on the upper bound of a random

variable (when computing a lower bound on its mean). Can it be improved be-

yond the CUT inequality by basing it on a statistic other than the Kolmogorov-

Smirnov statistic (which is implicit in its use of the Dvoretsky-Kiefer-Wolfowitz

inequality)?

3. The CUT inequality is based on the MPeB inequality. Is there a different

inequality (that does have a dependence on the upper bound of the random

variables) that would produce better results when using our thresholding ap-

proach?

4. How best could the threshold, c, be computed for the CUT inequality? We

use a heuristic method to decide how much data to allocate to optimizing this

hyperparameter, and our optimization is based on a biased estimator of how

good a given value of c is. Could any of these components be improved?

5. Our approach to HCOPE is based directly on the returns. Could better per-

formance be attained for some applications by instead building a model of the

transition dynamics (and reward function, if it is not known), and bounding

how much the expected returns computed from this model can differ from the

true POMDP?

6. We used a heuristic to decide how much data to use to search for the candidate

policy, and how much to use to test it for safety. Can this decision be better

optimized?

172

7. Do other methods for mitigating the problem of multiple comparisons yield

better performance (e.g., testing k candidate policies for safety, each with a

confidence level of δ/k)?

8. We used a heuristic to determine which candidate policy to return. Can this

heuristic be improved? Particularly, some preliminary tests suggests that the

candidate policy is often still predicted to be safe, but then fails the subsequent

safety test.

9. We used one form of regularization to ensure that we do not over-fit the training

data. Do other methods perform better?

10. We used CMA-ES to perform global searches over policy space. These searches

have high computational complexity, and may not be feasible for some prob-

lems. Could alternate approaches provide equal performance with much lower

computational complexity? For example, one might use an off-policy gradient

method to estimate the gradient of the objective function with respect to the

parameters of a parameterized policy. The search of policy space could then be

limited to the parameterized policies that lie along this gradient.

11. Does our use of importance sampling ignore some of the known structure of the

problem? For example, might an approach like the one outlined in Section 4.2.3

produce tighter confidence bounds than our HCOPE methods?

Perhaps most importantly, our methods only apply to POMDPs—they do not

apply to nonstationary problems.2 Can HCOPE and SPI methods be developed that

are robust to environments where the state-transition probabilities slowly drift be-

tween episodes? If so, how should Daedalus be modified? Specifically, if it remains

2POMDPs can model nonstationarity only within an episode, not across episodes.

173

as is, it may converge to a nearly-deterministic policy. If the state-transition proba-

bilities change, then sampling historical data from this nearly-deterministic (and now

sub-optimal) policy may not be very informative. The introduction of mechanisms

that ensure that the policy remains stochastic may be beneficial for nonstationary

problems.

174

BIBLIOGRAPHY

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. T. Lin. Learning from Daga: A Short
Course. AMLBook, 2012.

A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J.
Tomlin. Reachability-based safe learning with gaussian processes. In IEEE Con-
ference on Decision and Control, pages 1424–1431, 2014.

T. W. Anderson. Confidence limits for the value of an arbitrary bounded random
variable with a continuous distribution function. Bulletin of The International and
Statistical Institute, 43:249–251, 1969.

K. J. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning. ISA:
The Instrumentation, Systems, and Automation Society, 1995.

P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 99:1563–1600, 2010.

Y. Benjamin and Y. Hochberg. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society, 57
(1):289–300, 1995.

D. P. Bertsekas. Dynamic programming and stochastic control. Academic Press, 1976.

D. P. Bertsekas. Approximate policy iteration: A survey and some new methods.
Journal of Control Theory and Applications, 9(3):310–335, 2011.

D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, 2007.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic
algorithms. Automatica, 45(11):2471–2482, 2009.

N. Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press,
2014.

L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering, E. Por-
tugaly, D. Ray, P. Simard, and E. Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. Journal of Machine Learning
Research, 14:3207–3260, 2013.

175

E. Brunskill and L. Li. PAC-inspired option discovery in lifelong reinforcement learn-
ing. 2014.

S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. Bandits with heavy tail. Arxiv,
arXiv:1209.1727, 2012.

J. Carpenter and J. Bithell. Bootstrap confidence intervals: when, which, what? a
practical guide for medical statisticians. Statistics in Medicine, 19:1141–1164, 2000.

L. E. Champless, A. R. Folsom, A. R. Sharrett, P. Sorlie, D. Couper, M. Szklo, and
F. J. Nieto. Coronary heard disease risk prediction in the atherosclerosis risk in
communities (ARIC) study. Journal of Clinical Epidemiology, 56(9):880–890, 2003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, third edition, 2009.

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cam-
bridge University Press, Cambridge, 1997.

M. A. Diouf and J. M. Dufour. Improved nonparametric inference for the mean of
a bounded random variable with applicaiton to poverty measures. 2005. URL
http://web.hec.ca/scse/articles/Diouf.pdf.

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of a sam-
ple distribution function and of the classical multinomial estimator. Annals of
Mathematical Statistics, 27:642–669, 1956.

B. Efron. Better bootstrap confidence intervals. Journal of the American Statistical
Association, 82(397):171–185, 1987.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall,
London, 1993.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

A. R. Folsom, L. E. Chambless, B. B. Duncan, A. C. Gilbert, and J. S. Pankow.
Prediction of coronary heart disease in middle-aged adults with diabetes. Diabetes
Care, 26(10):2777–2784, 2003.

Z. Guo and E. Brunskill. Concurrent PAC RL. In Proceedings of the Twenty-Ninth
Conference on Artificial Intelligence, 2015.

S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, and
G. Hirzinger. Towards the robotic co-worker. Robotics Research, 70:261–282, 2011.

A. Hallak, F. Schnitzler, T. Mann, and S. Mannor. Off-policy model-based learning
under unknown factored dynamics. Arxiv, arXiv:1502.03255v1, 2015.

176

http://web.hec.ca/scse/articles/Diouf.pdf

N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano, P. Lar-
ranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary compu-
tation. Advances on estimation of distribution algorithms, pages 75–102. Springer,
2006.

R. M. Houtman, C. A. Montgomery, A. R. Gagnon, D. E. Calkin, T. G. Dietterich,
S. McGregor, and M. Crowley. Allowing a wildfire to burn: Estimating the effect on
future fire suppression costs. International Journal of Wildland Fire, 22:871–882,
2013.

Future Life Institute. Research priorities for robust and beneficial artificial intel-
ligence: an open letter, January 2015. URL http://futureoflife.org/misc/

open_letter.

P. A. Ioannou. Robust Adaptive Control. Dover Publications, 2012.

J. Jiang. Large Sample Techniques for Statistics. Springer-Verlag New York, 2010.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

S. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, Uni-
versity College London, 2003.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learn-
ing. In Proceedings of the Nineteenth International Conference on Machine Learn-
ing, pages 267–274, 2002a.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learn-
ing. In Proceedings of the Nineteenth International Conference on Machine Learn-
ing, pages 267–274, 2002b.

H. K. Khalil. Nonlinear Systems. Prentice Hall, third edition, 2001.

J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-driving car. In International
Conference on Cyber-Physical Systems, pages 31–40, April 2013.

R. M. Kretchmar, P. M. Young, C. Anderson, D. Hittle, M. Anderson, C. Delnero,
and J. Tu. Robust reinforcement learning control with static and dynamic stability.
International Journal of Robust and Nonlinear Control, 11:1469–1500, 2001.

S. Kuindersma, R. Grupen, and A. G. Barto. Variable risk control via stochastic
optimization. 32(7):806–825, 2013.

M. Lagoudakis and R. Parr. Model-free least-squares policy iteration. In Neural
Information Processing Systems: Natural and Synthetic, pages 1547–1554, 2001.

T. Lattimore and M. Hutter. PAC bounds for discounted MDPs. Arxiv,
arXiv:1202.3890, 2012.

177

http://futureoflife.org/misc/open_letter
http://futureoflife.org/misc/open_letter

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis
of proximal gradient TD algorithms. In Proceedings of the 31th Conference on
Uncertainty in Artificial Intelligence, 2015.

L. Lubin and M. Athans. Linear quadratic regulator control. In W. S. Levine, editor,
The Control Handbook, chapter 39. CRC press, 1996.

S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance approximation
in value function estimates. Management Science, 53(2):308–322, February 2007.

P. Massart. The tight constraint in the Dvoretzky-Kiefer-Wolfowitz inequality. The
Annals of Probability, 18(3):1269–1283, 1990.

P. Massart. Concentration Inequalities and Model Selection. Springer, 2007.

A. Maurer and M. Pontil. Empirical Bernstein bounds and sample variance penaliza-
tion. In Proceedings of the Twenty-Second Annual Conference on Learning Theory,
pages 115–124, 2009.

B. Moore, P. Panousis, V. Kulkarni, L. Pyeatt, and A. Doufas. Reinforcement learn-
ing for closed-loop propofol anesthesia: A human volunteer study. In Innovative
Applications of Artificial Intelligence, pages 1807–1813, 2010.

S. Niekum, A. G. Barto, and L. Spector. Genetic programming for reward function
search. In IEEE Transactions on Autonomous Mental Development, volume 2,
pages 83–90, 2010.

A. O’Dwyer. Handbook of PI and PID Controller Tuning Rules. Imperial College
Press, 2003.

T. J. Perkins and A. G. Barto. Lyapunov design for safe reinforcement learning.
Journal of Machine Learning Research, 3:803–832, 2003.

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In
Proceedings of the 30th International Conference on Machine Learning, 2013.

M. Powell and J. Swann. Weighted importance sampling— a Monte-Carlo technique
for reducing variance. Inst. Maths. Applics., 2:228–236, 1966.

D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, University
of Massachusetts Amherst, 2000.

R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. Wiley-
Interscience, second edition, 2007.

P. K. Sen and J. M. Singer. Large Sample Methods in Statistics An Introduction With
Applications. Chapman & Hall, 1993.

178

D. Silver, L. Newnham, D. Barker, S. Weller, and J. McFall. Concurrent reinforce-
ment learning from customer interactions. In Proceedings of the 30th International
Conference on Machine Learning, pages 924–932, 2013.

S. Singh, R. Lewis, and A. Barto. Where do rewards come from? In Proceedings of
the 31st Annual Conference of the Cognitive Science Society, Austin, TX, 2009.

J. Sorg, S. Singh, and R. Lewis. Internal rewards mitigate agent boundedness. In
Proceedings of the 27th International Conference on Machine Learning, 2010.

M. T. Söylemez, N. Munro, and H. Baki. Fast calculation of stabilizing PID con-
trollers. Automatica, 39(1):121–126, 2003.

R. F. Stengel. Stochastic Optimal Control. Wiley-Interscience, 1986.

A. Strehl and M. Littman. A theoretical analysis of model-based interval estimation.
In Proceedings of the 22nd International Conference on Machine Learning, pages
856–863, 2005.

A. Strehl and M. Littman. An analysis of model-based interval estimation for Markov
decision processes. Journal of Computer and System Sciences, 74(8):1309–1331,
2008.

A. Strehl, L. Li, and M. Littman. Reinforcement learning in finite MDPs: PAC
analysis. Journal of Machine Learning Research, 10:2413–2444, 2009.

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. Pac model-free
reinforcement learning. In International Conference on Machine Learning, pages
881–888, 2006.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergend o(n) algorithm for off-
policy temporal-difference learning with linear function approximation. In Advances
in Neural Information Processing Systems 21, 2009.

I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight
exploration complexity bounds. In Proceedings of the International Conference on
Machine Learning, pages 1031–1038, 2010.

J. R. Tetreault and D. J. Littman. Comparing the utility of state features in spo-
ken dialogue using reinforcement learning. In Proceedings of the Human Language
Technology/North American Association for Computational Linguistics, 2006.

D. Thapa, I. Jung, and G. Wang. Agent based decision support system using reinforce-
ment learning under emergency circumstances. Advances in Natural Computation,
3610:888–892, 2005.

179

G. Theocharous and A. Hallak. Lifetime value marketing using reinforcement learning.
In The 1st Multidisciplinary Conference on Reinforcement Learning and Decision
Making, 2013.

G. Theocharous, P. S. Thomas, and M. Ghavamzadeh. Personalized ad recommen-
dation systems for life-time value optimization with guarantees. In Proceedings of
the International Joint Conference on Artificial Intelligence, 2015a.

G. Theocharous, P. S. Thomas, and M. Ghavamzadeh. Ad recommendation systems
for life-time value optimization. In TargetAd 2015: Ad Targeting at Scale, at the
World Wide Web Conference, 2015b.

P. S. Thomas. A reinforcement learning controller for functional electrical stimula-
tion of a human arm. Master’s thesis, Department of Electrical Engineering and
Computer Science, Case Western Reserve University, August 2009.

P. S. Thomas, W. Dabney, S. Mahadevan, and S. Giguere. Projected natural actor-
critic. In Advances in Neural Information Processing Systems 26, 2013.

P. S. Thomas, S. Niekum, G. Theocharous, and G. D. Konidaris. Policy evaluation
using the Ω-return. In In submission, 2015a.

P. S. Thomas, Y. Pantazis, G. Arampatzis, and I. Gemp. On the benefits of using
measure theoretic probability for reinforcement learning research. In In submission,
2015b.

P. S. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence off-policy eval-
uation. In Proceedings of the Twenty-Ninth Conference on Artificial Intelligence,
2015c.

P. S. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence policy im-
provement. In International Conference on Machine Learning, 2015d.

H. van Hasselt, A. R. Mahmood, and R. S. Sutton. Off-policy TD(λ) with true online
equivalence. In Proceedings of the 30th Conference on Uncertainty in Artificial
Intelligence, 2014.

R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye. Probability & Statistics for
Engineers & Scientists. Prentice Hall, eighth edition, 2007.

N. Wiener. God and Golem, Inc. A comment on Certain Points where Cybernetics
Impinges on Religion. The M.I.T. Press, Cambridge, Massachusetts, 1964.

R. R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Third
edition, 2012.

R. R. Wilcox and H. J. Keselman. Modern robust data analysis methods: Measures
of central tendency. Psychological Methods, 8(3):254–274, 2003.

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,
1995.

180

	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions
	Layout

	Background and Related Work
	Notation
	Environments of Interest
	Partially Observable Markov Decision Processes (POMDPs) and Markov Decision Processes (MDPs)
	Limitations of the POMDP Framework
	Gridworld
	Related Work
	Control Theoretic Approaches
	Constraints on Policy Space
	Unintended Consequences of Goal-Directed Behavior
	Probably Approximately Correct (PAC) Algorithms

	Importance Sampling for Off-Policy Evaluation
	Background
	Almost Sure Convergence
	Unbiased and Consistent Estimators
	Laws of Large Numbers

	Problem Description
	Lemmas and Corollaries
	Overview of Importance Sampling Approaches
	Importance Sampling (IS)
	Upper and Lower Bounds on the IS Estimator
	Consistency of IS Estimator
	Example: Gridworld

	Per-Decision Importance Sampling
	Upper and Lower Bounds on the PDIS Estimator
	Consistency of PDIS Estimator
	Example: Gridworld

	Normalized Per-Decision Importance Sampling (NPDIS) Estimator
	Upper and Lower Bounds on the NPDIS Estimator
	Consistency of NPDIS Estimator
	Example: Gridworld

	Weighted Importance Sampling (WIS) Estimator
	Weighted Per-Decision Importance Sampling (WPDIS) Estimator
	Consistent Weighted Per-Decision Importance Sampling (CWPDIS) Estimator
	Deterministic Behavior Policies
	Empirical Comparison
	Discussion and Conclusion

	High Confidence Off-Policy Evaluation
	Problem Description
	Related Work
	Off-Policy Evaluation
	Other Methods for High-Confidence Off-Policy Evaluation
	Finite-Sample Bounds for Off-Policy Evaluation

	Exact Concentration Inequalities
	Approximate Concentration Inequalities
	Pseudocode for Exact and Approximate Concentration Inequalities
	Approach
	Using Clipped Importance Weights
	A New Concentration Inequality
	Pseudocode
	Other Uses of the CUT Inequality
	High Confidence Upper Bounds

	Experiments
	Gridworld
	Mountain Car
	Digital Marketing Domain
	Risk Quantification Plot

	Discussion and Conclusions

	Safe Policy Improvement
	Problem Description
	Related Work
	Predicting Lower Bounds
	Safe Policy Improvement (SPI)
	Testing Safety of Multiple Policies
	Algorithm

	Multiple Policy Improvements: Daedalus
	Experiments
	Discussion and Conclusions

	Conclusion and Future Work
	Future Work

	Bibliography

