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Abstract

Natural actor-critics form a popular class of policy search algorithms for finding
locally optimal policies for Markov decision processes. In this paper we address
a drawback of natural actor-critics that limits their real-world applicability—their
lack of safety guarantees. We present a principled algorithm for performing nat-
ural gradient descent over a constrained domain. In the context of reinforcement
learning, this allows for natural actor-critic algorithms that are guaranteed to re-
main within a known safe region of policy space. While deriving our class of
constrained natural actor-critic algorithms, which we call Projected Natural Actor-
Critics (PNACs), we also elucidate the relationship between natural gradient de-
scent and mirror descent.

1 Introduction

Natural actor-critics form a class of policy search algorithms for finding locally optimal policies
for Markov decision processes (MDPs) by approximating and ascending the natural gradient [1] of
an objective function. Despite the numerous successes of, and the continually growing interest in,
natural actor-critic algorithms, they have not achieved widespread use for real-world applications. A
lack of safety guarantees is a common reason for avoiding the use of natural actor-critic algorithms,
particularly for biomedical applications. Since natural actor-critics are unconstrained optimization
algorithms, there are no guarantees that they will avoid regions of policy space that are known to be
dangerous.

For example, proportional-integral-derivative controllers (PID controllers) are the most widely used
control algorithms in industry, and have been studied in depth [2]. Techniques exist for determining
the set of stable gains (policy parameters) when a model of the system is available [3]. Policy search
can be used to find the optimal gains within this set (for some definition of optimality). A desirable
property of a policy search algorithm in this context would be a guarantee that it will remain within
the predicted region of stable gains during its search.

Consider a second example: functional electrical stimulation (FES) control of a human arm. By se-
lectively stimulating muscles using subcutaneous probes, researchers have made significant strides
toward returning motor control to people suffering from paralysis induced by spinal cord injury [4].
There has been a recent push to develop controllers that specify how much and when to stimulate
each muscle in a human arm to move it from its current position to a desired position [5]. This
closed-loop control problem is particularly challenging because each person’s arm has different dy-
namics due to differences in, for example, length, mass, strength, clothing, and amounts of muscle
atrophy, spasticity, and fatigue. Moreover, these differences are challenging to model. Hence, a
proportional-derivative (PD) controller, tuned to a simulation of an ideal human arm, required man-
ual tuning to obtain desirable performance on a human subject with biceps spasticity [6].

Researchers have shown that policy search algorithms are a viable approach to creating controllers
that can automatically adapt to an individual’s arm by training on a few hundred two-second reach-
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ing movements [7]. However, safety concerns have been raised in regard to both this specific ap-
plication and other biomedical applications of policy search algorithms. Specifically, the existing
state-of-the-art gradient-based algorithms, including the current natural actor-critic algorithms, are
unconstrained and could potentially select dangerous policies. For example, it is known that certain
muscle stimulations could cause the dislocation of a subject’s arm. Although we lack an accurate
model of each individual’s arm, we can generate conservative safety constraints on the space of
policies. Once again, a desirable property of a policy search algorithm would be a guarantee that it
will remain within a specified region of policy space (known-safe policies).

In this paper we present a class of natural actor-critic algorithms that perform constrained
optimization—given a known safe region of policy space, they search for a locally optimal pol-
icy while always remaining within the specified region. We call our class of algorithms Projected
Natural Actor-Critics (PNACs) since, whenever they generate a new policy, they project the policy
back to the set of safe policies. The interesting question is how the projection can be done in a
principled manner. We show that natural gradient descent (ascent), which is an unconstrained opti-
mization algorithm, is a special case of mirror descent (ascent), which is a constrained optimization
algorithm. In order to create a projected natural gradient algorithm, we add constraints in the mir-
ror descent algorithm that is equivalent to natural gradient descent. We apply this projected natural
gradient algorithm to policy search to create the PNAC algorithms, which we validate empirically.

2 Related Work

Researchers have addressed safety concerns like these before [8]. Bendrahim and Franklin [9]
showed how a walking biped robot can switch to a stabilizing controller whenever the robot leaves
a stable region of state space. Similar state-avoidant approaches to safety have been proposed by
several others [10, 11, 12]. These approaches do not account for situations where, over an unavoid-
able region of state space, the actions themselves are dangerous. Kuindersma et al. [13] developed
a method for performing risk-sensitive policy search, which models the variance of the objective
function for each policy and permits runtime adjustments of risk sensitivity. However, their ap-
proach does not guarantee that an unsafe region of state space or policy space will be avoided.

Bhatnagar et al. [14] presented projected natural actor-critic algorithms for the average reward set-
ting. As in our projected natural actor-critic algorithms, they proposed computing the update to the
policy parameters and then projecting back to the set of allowed policy parameters. However, they
did not specify how the projection could be done in a principled manner. We show in Section 7
that the Euclidean projection can be arbitrarily bad, and argue that the projection that we propose is
particularly compatible with natural actor-critics (natural gradient descent).

Duchi et al. [15] presented mirror descent using the Mahalanobis norm for the proximal function,
which is very similar to the proximal function that we show to cause mirror descent to be equivalent
to natural gradient descent. However, their proximal function is not identical to ours and they did
not discuss any possible relationship between mirror descent and natural gradient descent.

3 Natural Gradients

Consider the problem of minimizing a differentiable function f : Rn → R. The standard gra-
dient descent approach is to select an initial x0 ∈ Rn, compute the direction of steepest descent,
−∇f(x0), and then move some amount in that direction (scaled by a step size parameter, α0). This
process is then repeated indefinitely: xk+1 = xk − αk∇f(xk), where {αk} is a step size schedule
and k ∈ {1, . . .}. Gradient descent has been criticized for its low asymptotic rate of convergence.
Natural gradients are a quasi-Newton approach to improving the convergence rate of gradient de-
scent.

When computing the direction of steepest descent, gradient descent assumes that the vector xk
resides in Euclidean space. However, in several settings it is more appropriate to assume that xk
resides in a Riemannian space with metric tensor G(xk), which is an n× n positive definite matrix
that may vary with xk [16]. In this case, the direction of steepest descent is called the natural
gradient and is given by −G(xk)−1∇f(xk) [1]. In certain cases, (which include our policy search
application), following the natural gradient is asymptotically Fisher-efficient [16].
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4 Mirror Descent

Mirror descent algorithms form a class of highly scalable online gradient methods that are useful
in constrained minimization of non-smooth functions [17, 18]. They have recently been applied to
value function approximation and basis adaptation for reinforcement learning [19, 20]. The mirror
descent update is

xk+1 = ∇ψ∗k
(
∇ψk(xk)− αk∇f(xk)

)
, (1)

where ψk : Rn → R is a continuously differentiable and strongly convex function called the proxi-
mal function, and where the conjugate of ψk is ψ∗k(y) , maxx∈Rn {xᵀy − ψk(x)}, for any y ∈ Rn.
Different choices of ψk result in different mirror descent algorithms. A common choice for a fixed
ψk = ψ,∀k, is the p-norm [20], and a common adaptive ψk is the Mahalanobis norm with a dynamic
covariance matrix [15].

Intuitively, the distance metric for the space that xk resides in is not necessarily the same as that of
the space that ∇f(xk) resides in. This suggests that it may not be appropriate to directly add xk
and −αk∇f(xk) in the gradient descent update. To correct this, mirror descent moves xk into the
space of gradients (the dual space) with ∇ψk(xk) before performing the gradient update. It takes
the result of this step in gradient space and returns it to the space of xk (the primal space) with∇ψ∗k.
Different choices of ψk amount to different assumptions about the relationship between the primal
and dual spaces at xk.

5 Equivalence of Natural Gradient Descent and Mirror Descent

Theorem 5.1. The natural gradient descent update at step k with metric tensor Gk , G(xk):

xk+1 = xk − αkG−1
k ∇f(xk), (2)

is equivalent to (1), the mirror descent update at step k, with ψk(x) = (1/2)xᵀGkx.

Proof. First, notice that∇ψk(x) = Gkx. Next, we derive a closed-form for ψ∗k:

ψ∗k(y) = max
x∈Rn

{
xᵀy − 1

2
xᵀGkx

}
. (3)

Since the function being maximized on the right hand side is strictly concave, the x that maximizes
it is its critical point. Solving for this critical point, we get x = G−1

k y. Substituting this into (3), we
find that ψ∗k(y) = (1/2)yᵀG−1

k y. Hence, ∇ψ∗k(y) = G−1
k y. Inserting the definitions of ∇ψk(x) and

∇ψ∗k(y) into (1), we find that the mirror descent update is

xk+1 =G−1
k (Gkxk − αk∇f(xk)) = xk − αkG−1

k ∇f(xk),

which is identical to (2). �

Although researchers often use ψk that are norms like the p-norm and Mahalanobis norm, notice
that the ψk that results in natural gradient descent is not a norm. Also, since Gk depends on k, ψk is
an adaptive proximal function [15].

6 Projected Natural Gradients

When x is constrained to some set,X , ψk in mirror descent is augmented with the indicator function
IX , where IX(x) = 0 if x ∈ X , and +∞ otherwise. The ψk that was shown to generate an
update equivalent to the natural gradient descent update, with the added constraint that x ∈ X , is
ψk(x) = (1/2)xᵀGkx+ IX(x). Hereafter, any references to ψk refer to this augmented version.

For this proximal function, the subdifferential of ψk(x) is ∇ψk(x) = Gk(x) + N̂X(x) = (Gk +

N̂X)(x), where N̂X(x) , ∂IX(x) and, in the middle term, Gk and N̂X are relations and + denotes
Minkowski addition.1 N̂X(x) is the normal cone of X at x if x ∈ X and ∅ otherwise [21].

∇ψ∗k(y) = (Gk + N̂X)−1(y). (4)
1Later, we abuse notation and switch freely between treating Gk as a matrix and a relation. When it is a

matrix, Gkx denotes matrix-vector multiplication that produces a vector. When it is a relation, Gk(x) produces
the singleton {Gkx}.
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Let ΠGk
X (y), be the set of x ∈ X that are closest to y, where the length of a vector, z, is (1/2)zᵀGkz.

More formally,

ΠGk
X (y) , arg min

x∈X

1

2
(y − x)ᵀGk(y − x). (5)

Lemma 6.1. ΠGk
X (y) = (Gk + N̂X)−1(Gky).

Proof. We write (5) without the explicit constraint that x ∈ X by appending the indicator function:

ΠGk
X (y) = arg min

x∈Rn
hy(x),

where hy(x) = (1/2)(y − x)ᵀGk(y − x) + IX(x). Since hy is strictly convex over X and +∞
elsewhere, its critical point is its global minimizer. The critical point satisfies

0 ∈ ∇hy(x) = −Gk(y) +Gk(x) + N̂X(x).

The globally minimizing x therefore satisfies Gky ∈ Gk(x) + N̂X(x) = (Gk + N̂X)(x). Solving
for x, we find that x = (Gk + N̂X)−1(Gky). �

Combining Lemma 6.1 with (4), we find that ∇ψ∗(y) = ΠGk
X (G−1

k y). Hence, mirror descent with
the proximal function that produces natural gradient descent, augmented to include the constraint
that x ∈ X , is:

xk+1 =ΠGk
X

(
G−1
k

(
(Gk + N̂X)(xk)− αk∇f(xk)

))
=ΠGk

X

(
(I +G−1

k N̂X)(xk)− αkG−1
k ∇f(xk)

)
,

where I denotes the identity relation. Since xk ∈ X , we know that 0 ∈ N̂X(xk), and hence the
update can be written as

xk+1 = ΠGk
X

(
xk − αkG−1

k ∇f(xk)
)
, (6)

which we call projected natural gradient (PNG).

7 Compatibility of Projection

The standard projected subgradient (PSG) descent method follows the negative gradient (as opposed
to the negative natural gradient) and projects back to X using the Euclidean norm. If f and X are
convex and the step size is decayed appropriately, it is guaranteed to converge to a global minimum,
x∗ ∈ X . Any such x∗ is a fixed point. This means that a small step in the negative direction of any
subdifferential of f at x∗ will project back to x∗.

Our choice of projection, ΠGk
X , results in PNG having the same fixed points (see Lemma 7.1). This

means that, when the algorithm is at x∗ and a small step is taken down the natural gradient to x′,
ΠGk
X will project x′ back to x∗. We therefore say that ΠGk

X is compatible with the natural gradient.
For comparison, the Euclidean projection of x′ will not necessarily return x′ to x∗.
Lemma 7.1. The sets of fixed points for PSG and PNG are equivalent.

Proof. A necessary and sufficient condition for x to be a fixed point of PSG is that −∇f(x) ∈
N̂X(x) [22]. A necessary and sufficient condition for x to be a fixed point of PNG is

x =ΠGk
X

(
x− αkG−1

k ∇f(x)
)

= (Gk + N̂X)−1
(
Gk
(
x− αkG−1

k ∇f(x)
) )

=(Gk + N̂X)−1 (Gkx− αk∇f(x))

⇔Gkx− αk∇f(x) ∈ Gk(x) + N̂X(x)

⇔−∇f(x) ∈ N̂X(x). �

To emphasize the importance of using a compatible projection, consider the following simple exam-
ple. Minimize the function f(x) = xᵀAx+ bᵀx, where A = diag(1, 0.01) and b = [−0.2,−0.1]ᵀ,
subject to the constraints ‖x‖1 ≤ 1 and x ≥ 0. We implemented three algorithms, and ran each for
1000 iterations using a fixed step size:
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Figure 1: The thick diagonal line shows
one constraint and dotted lines show pro-
jections. Solid arrows show the direc-
tions of the natural gradient and gradient
at the optimal solution, x∗. The dashed
blue arrows show PNG-Euclid’s projec-
tions, and emphasize the the projections
cause PNG-Euclid to move away from
the optimal solution.

1. PSG - projected subgradient descent using the Euclidean projection.
2. PNG - projected natural gradient descent using ΠGk

X .
3. PNG-Euclid - projected natural gradient descent using the Euclidean projection.

The results are shown in Figure 1. Notice that PNG and PSG converge to the optimal solution, x∗.
From this point, they both step in different directions, but project back to x∗. However, PNG-Euclid
converges to a suboptimal solution (outside the domain of the figure). If X were a line segment
between the point that PNG-Euclid and PNG converge to, then PNG-Euclid would converge to the
pessimal solution within X , while PSG and PNG would converge to the optimal solution within X .
Also, notice that the natural gradient corrects for the curvature of the function and heads directly
towards the global unconstrained minimum. Since the natural methods in this example use metric
tensor G = A, which is the Hessian of f , they are essentially an incremental form of Newton’s
method. In practice, the Hessian is usually not known, and an estimate thereof is used.

8 Natural Actor-Critic Algorithms

An MDP is a tuple M = (S,A,P,R, d0, γ), where S is a set of states, A is a set of actions,
P(s′|s, a) gives the probability density of the system entering state s′ when action a is taken in state
s, R(s, a) is the expected reward, r, when action a is taken in state s, d0 is the initial state distri-
bution, and γ ∈ [0, 1) is a reward discount parameter. A parameterized policy, π, is a conditional
probability density function—π(a|s, θ) is the probability density of action a in state s given a vector
of policy parameters, θ ∈ Rn.

Let J(θ) = E [
∑∞
t=0 γ

trt|θ] be the discounted-reward objective or the average reward objective
function with J(θ) = limn→∞

1
nE [

∑n
t=0 rt|θ]. Given an MDP, M , and a parameterized policy, π,

the goal is to find policy parameters that maximize one of these objectives. When the action set is
continuous, the search for globally optimal policy parameters becomes intractable, so policy search
algorithms typically search for locally optimal policy parameters.

Natural actor-critics, first proposed by Kakade [23], are algorithms that estimate and ascend the
natural gradient of J(θ), using the average Fisher information matrix as the metric tensor:

Gk = G(θk) = Es∼dπ,a∼π

[(
∂

∂θk
log π(a|s, θk)

)(
∂

∂θk
log π(a|s, θk)

)ᵀ]
,

where dπ is a policy and objective function-dependent distribution over the state set [24].

There are many natural actor-critics, including Natural policy gradient utilizing the Temporal Differ-
ences (NTD) algorithm [25], Natural Actor-Critic using LSTD-Q(λ) (NAC-LSTD) [26], Episodic
Natural Actor-Critic (eNAC) [26], Natural Actor-Critic using Sarsa(λ) (NAC-Sarsa) [27], Incremen-
tal Natural Actor-Critic (INAC) [28], and Natural-Gradient Actor-Critic with Advantage Parameters
(NGAC) [14]. All of them form an estimate, typically denoted wk, of the natural gradient of J(θk).
That is,wk ≈ G(θk)−1∇J(θk). They then perform the policy parameter update, θk+1 = θk+αkwk.

9 Projected Natural Actor-Critics

If we are given a closed convex set, Θ ⊆ Rn, of admissible policy parameters (e.g., the stable
region of gains for a PID controller), we may wish to ensure that the policy parameters remain
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within Θ. The natural actor-critic algorithms described in the previous section do not provide such
a guarantee. However, their policy parameter update equations, which are natural gradient ascent
updates, can easily be modified to the projected natural gradient ascent update in (6) by projecting
the parameters back onto Θ using Π

G(θk)
Θ :

θk+1 = Π
G(θk)
Θ (θk + αkwk) .

Many of the existing natural policy gradient algorithms, including NAC-LSTD, eNAC, NAC-Sarsa,
and INAC, follow biased estimates of the natural policy gradient [29]. For our experiments, we
must use an unbiased algorithm since the projection that we propose is compatible with the natural
gradient, but not necessarily biased estimates thereof.

NAC-Sarsa and INAC are equivalent biased discounted-reward natural actor-critic algorithms with
per-time-step time complexity linear in the number of features. The former was derived by replacing
the LSTD-Q(λ) component of NAC-LSTD with Sarsa(λ), while the latter is the discounted-reward
version of NGAC. Both are similar to NTD, which is a biased average-reward algorithm. The
unbiased discounted-reward form of NAC-Sarsa was recently derived [29]. References to NAC-
Sarsa hereafter refer to this unbiased variant. In our case studies we use the projected natural actor-
critic using Sarsa(λ) (PNAC-Sarsa), the projected version of the unbiased NAC-Sarsa algorithm.

Notice that the projection, Π
G(θk)
Θ , as defined in (5), is not merely the Euclidean projection back

onto Θ. For example, if Θ is the set of θ that satisfy Aθ ≤ b, for some fixed matrix A and vector b,
then the projection, Π

G(θk)
Θ , of y onto Θ is a quadratic program,

minimize f(θ) =− yᵀG(θk)θ +
1

2
θᵀG(θk)θ, s.t. Aθ ≤ b.

In order to perform this projection, we require an estimate of the average Fisher information matrix,
G(θk). If the natural actor-critic algorithm does not already include this (like NAC-LSTD and NAC-
Sarsa do not), then an estimate can be generated by selecting G0 = βI , where β is a positive scalar
and I is the identity matrix, and then updating the estimate with

Gt+1 = (1− µt)Gt + µt

(
∂

∂θk
log π(at|st, θk)

)(
∂

∂θk
log π(at|st, θk)

)ᵀ

,

where {µt} is a step size schedule [14]. Notice that we use t and k subscripts since many time steps
of the MDP may pass between updates to the policy parameters.

10 Case Study: Functional Electrical Stimulation

In this case study, we searched for proportional-derivative (PD) gains to control a simulated human
arm undergoing FES. We used the Dynamic Arm Simulator 1 (DAS1) [30], a detailed biomechanical
simulation of a human arm undergoing functional electrical stimulation. In a previous study, a
controller created using DAS1 performed well on an actual human subject undergoing FES, although
it required some additional tuning in order to cope with biceps spasticity [6]. This suggests that it is
a reasonably accurate model of an ideal arm.

The DAS1 model, depicted in Figure 2a, has state st = (φ1, φ2, φ̇1, φ̇2, φ
target
1 , φtarget2 ), where

φtarget1 and φtarget2 are the desired joint angles, and the desired joint angle velocities are zero. The
goal is to, during a two-second episode, move the arm from its random initial state to a randomly
chosen stationary target. The arm is controlled by providing a stimulation in the interval [0, 1] to
each of six muscles. The reward function used was similar to that of Jagodnik and van den Bogert
[6], which punishes joint angle error and high muscle stimulation. We searched for locally optimal
PD gains using PNAC-Sarsa where the policy was a PD controller with Gaussian noise added for
exploration.

Although DAS1 does not model shoulder dislocation, we added safety constraints by limiting the
l1-norm of certain pairs of gains. The constraints were selected to limit the forces applied to the
humerus. These constraints can be expressed in the form Aθ ≤ b, where A is a matrix, b is a vector,
and θ are the PD gains (policy parameters). We compared the performance of three algorithms:

1. NAC: NAC-Sarsa with no constraints on θ.
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(Figure 2a) DAS1, the two-joint, six-muscle biome-
chanical model used. Antagonistic muscle pairs are
as follows, listed as (flexor, extensor): monoarticu-
lar shoulder muscles (a: anterior deltoid, b: posterior
deltoid); monoarticular elbow muscles (c: brachialis,
d: triceps brachii (short head)); biarticular muscles
(e: biceps brachii, f: triceps brachii (long head)).

NAC PNAC PNAC‐ENAC PNAC PNAC E

‐15

rn
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tu
r

‐16

M
ea
n 

1

M

‐17
(Figure 2b) Mean return during the last 250,000
episodes of training using thee algorithms. Standard
deviation error bars from the 10 trials are provided.
The NAC bar is red to emphasize that the final pol-
icy found by NAC resides in the dangerous region of
policy space.

2. PNAC: PNAC-Sarsa using the compatible projection, Π
G(θk)
Θ .

3. PNAC-E: PNAC-Sarsa using the Euclidean projection.

Since we are not promoting the use of one natural actor-critic over another, we did not focus on
finely tuning the natural actor-critic nor comparing the learning speeds of different natural actor-
critics. Rather, we show the importance of the proper projection by allowing PNAC-Sarsa to run for
a million episodes (far longer than required for convergence), after which we plot the mean sum of
rewards during the last quarter million episodes. Each algorithm was run ten times, and the results
averaged and plotted in Figure 2b. Notice that PNAC performs worse than the unconstrained NAC.
This happens because NAC leaves the safe region of policy space during its search, and converges
to a dangerous policy—one that reaches the goal quickly and with low total muscle force, but which
can cause large, short, spikes in muscle forces surrounding the shoulder, which violates our safety
constraints. We suspect that PNAC converges to a near-optimal policy within the region of policy
space that we have designated as safe. PNAC-E converges to a policy that is worse than that found
by PNAC because it uses an incompatible projection.

11 Case Study: uBot Balancing

In the previous case study, the optimal policy lay outside the designated safe region of policy space
(this is common when a single failure is so costly that adding a penalty to the reward function for
failure is impractical, since a single failure is unacceptable). We present a second case study in which
the optimal policy lies within the designated safe region of policy space, but where an unconstrained
search algorithm may enter the unsafe region during its search of policy space (at which point large
negative rewards return it to the safe region).

The uBot-5, shown in Figure 3, is an 11-DoF mobile manipulator developed at the University of
Massachusetts Amherst [31, 32]. During experiments, it often uses its arms to interact with the
world. Here, we consider the problem faced by the controller tasked with keeping the robot balanced
during such experiments. To allow for results that are easy to visualize in 2D, we use a PD controller
that observes only the current body angle, its time derivative, and the target angle (always vertical).
This results in the PD controller having only two gains (tunable policy parameters). We use a
crude simulation of the uBot-5 with random upper-body movements, and search for the PD gains
that minimize a weighted combination of the energy used and the mean angle error (distance from
vertical).

We constructed a set of conservative estimates of the region of stable gains, with which the uBot-
5 should never fall, and used PNAC-Sarsa and NAC-Sarsa to search for the optimal gains. Each
training episode lasted 20 seconds, but was terminated early (with a large penalty) if the uBot-5 fell
over. Figure 3 (middle) shows performance over 100 training episodes. Using NAC-Sarsa, the PD
weights often left the conservative estimate of the safe region, which resulted in the uBot-5 falling
over. Figure 3 (right) shows one trial where the uBot-5 fell over four times (circled in red). The
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Figure 3: Left: uBot-5 holding a ball. Middle: Mean (over 20-trials) returns over time using PNAC-
Sarsa and NAC-Sarsa on the simulated uBot-5 balancing task. The shaded region depicts standard
deviations. Right: Trace of the two PD gains, θ1 and θ2, from a typical run of PNAC-Sarsa and
NAC-Sarsa. A marker is placed for the gains after each episode, and red markers denote episodes
where the simulated uBot-5 fell over.

resulting large punishments cause NAC-Sarsa to quickly return to the safe region of policy space.
Using PNAC-Sarsa, the simulated uBot-5 never fell. Both algorithms converge to gains that reside
within the safe region of policy space. We selected this example because it shows how, even if the
optimal solution resides within the safe region of policy space (unlike the in the previous case study),
unconstrained RL algorithms may traverse unsafe regions of policy space during their search.

12 Conclusion

We presented a class of algorithms, which we call projected natural actor-critics (PNACs). PNACs
are the simple modification of existing natural actor-critic algorithms to include a projection of newly
computed policy parameters back onto an allowed set of policy parameters (e.g., those of policies
that are known to be safe). We argued that a principled projection is the one that results from viewing
natural gradient descent, which is an unconstrained algorithm, as a special case of mirror descent,
which is a constrained algorithm.

We show that the resulting projection is compatible with the natural gradient and gave a simple em-
pirical example that shows why a compatible projection is important. This example also shows how
an incompatible projection can result in natural gradient descent converging to a pessimal solution
in situations where a compatible projection results in convergence to an optimal solution. We then
applied a PNAC algorithm to a realistic constrained control problem with six-dimensional contin-
uous states and actions. Our results support our claim that the use of an incompatible projection
can result in convergence to inferior policies. Finally, we applied PNAC to a simulated robot and
showed its substantial benefits over unconstrained natural actor-critic algorithms.
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