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Abstract

Many open problems involve the search for a
mapping that is used by an algorithm solv-
ing an MDP. Useful mappings are often from
the state set to some other set. Examples in-
clude representation discovery (a mapping to
a feature space) and skill discovery (a map-
ping to skill termination probabilities). Dif-
ferent mappings result in algorithms achiev-
ing varying expected returns. In this paper
we present a novel approach to the search for
any mapping used by any algorithm attempt-
ing to solve an MDP, for that which results
in maximum expected return.

1. Introduction

Although there have been successful applications of
mechanisms for solving Markov decision processes
(MDPs) to real-world problems, there remain diffi-
culties. These difficulties include representation dis-
covery : finding a feature space conducive to learning;
motor primitive discovery : finding a low-dimensional
action space; and skill discovery : the creation of tem-
porally extended actions. Although we adopt rein-
forcement learning (RL) terminology (Sutton & Barto,
1998) and refer to any mechanism for solving an MDP
as an agent, we do not assume that the agents use RL.

Maximizing the expected return is the goal of an agent,
and therefore also the goal when solving any of the
aforementioned problems. However, methods are typ-
ically heuristic, in that they attempt to optimize some
heuristic that may be correlated with the expected re-
turn. For example, one might search for feature spaces
that best preserve the distance metric of state tran-
sitions (Mahadevan & Maggioni, 2007), motor prim-
itives that best recreate observed policies (Todorov
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& Ghahramani, 2003), or skills that reach bottleneck
states (McGovern & Barto, 2001).

Rather than relying on a heuristic optimization to im-
prove expected return, we propose direct optimization
of the expected return for these and other problems
by phrasing the problem in a general way: the search
for a mapping, f , from the state set to some other
set or space U . For representation discovery, U would
be the feature space; for motor primitive discovery, it
would be the action set of the MDP1; for skill discov-
ery, it would be skill termination probabilities (Sutton
et al., 1999). Our goal is to find the mapping, f∗, that
maximizes an agent’s expected return.

We show how an algorithm can take advantage of the
structure of the underlying problem to perform an in-
formed search for f∗. By doing so, the search prob-
lem itself becomes an MDP, which we call a Conjugate
MDP (CoMDP). We then propose that one agent solve
the original MDP while a second agent (coagent) solves
the CoMDP.

2. Background

Sequential decision problems are often formulated as
MDPs, each a tuple M = (S,A,P,R), where S and A
are the sets of possible states and actions respectively,
P gives state transition probabilities: P(s, a, s′) =
Pr(st+1=s′|st=s, at=a), where t is the current time
step, and R(s, a, s′, r) = Pr(rt=r|st=s, at=a, st+1=s′)
is the reward distribution. R represents the reward
distribution rather than the expected reward to facil-
itate proofs in the appendix. If S,A, or U are un-
countable, replace the corresponding probability dis-
tributions with probability density functions, summa-
tions with integrals, and mixima with suprema. An
agent, A, with time-varying parameters θt ∈ Θ (typ-
ically function approximator weights, learning rates,

1We define a motor primitive to be a mapping from a
set with one element to a high-dimensional action space.
This is equivalent to a constant map from the state space
to the action space. We expound upon this in Section 8.
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etc.) observes the current state, st, selects an action,
at, based on st and θt, which is used to update the
state according to P. It then observes the resulting
state st+1, receives uniformly bounded reward rt ac-
cording to R, and updates its parameters to θt+1.

We define P to be the space of all policies: map-
pings from states to probabilities of selecting each
possible action. The agent’s parameterized policy is
π(θ), π(θ) : S × A → [0, 1], where π(θ)(s, a) =
Pr(at=a|st=s), and π : Θ → P is a parameterized
policy generator (PPG). The agent attempts to find
a θ ∈ Θ that approximates2 a policy, µ∗, called an
optimal policy, which maximizes the expected return:

µ∗ = arg max
µ∈P

E

[ ∞∑
t=0

γtrt

∣∣∣µ, d0

]
, (1)

where γ ∈ [0, 1) is a discount parameter and d0(·) is the
initial state distribution. We only consider problems
for which µ∗ exist, which precludes some MDPs that
have continuous actions. The value function for policy
µ and MDP M maps states to the expected return
from that state if actions are selected according to µ:

V µM (s) = E

[ ∞∑
t=0

γtrt

∣∣∣µ, s0 = s

]
. (2)

Hereafter, we abuse notation by interchanging π(θ),
and θ as superscripts, as they both describe a policy.

We augment this formulation by allowing A access to
a mapping, f , from S to some set U . For generality,
we allow the mapping to be probabilistic by making
f a conditional probability distribution over U given
the current state st, so f : S × U → [0, 1], where
f(s, u) = Pr(ut=u|st=s). For convenience, we call f a
probabilistic mapping from S to U . We define F to be
the space of all such fs. Thus, A has access to both
st and ut ∈ U at each time step. A’s policy becomes
π(θ) : S × U ×A → [0, 1] for all θ ∈ Θ. We define A’s
function for updating its parameters given recent ob-
servations to be Ξ : S×U×A×R×S×U×A×Θ→ Θ,
so θt+1 = Ξ(st, ut, at, rt, st+1, ut+1, at+1, θt). We place
no restrictions on how A uses ut within π and Ξ. This
definition encompasses batch methods because A may
store state histories and time counters in θt, as well
as function approximator weights. Because an agent
can be entirely described by its current parameters,
PPG, and its update function, we define an agent to
be At = (θt, π,Ξ). The canonical formulation without
f is a degenerate case in which U is a singleton.

2We do not concern ourselves with how A approximates
an optimal policy, as we place no restrictions on A.

If an agent attempts to solve M , it faces a new
MDP, which we call the augmented MDP, MA =(
S × U ,A,PA,RA

)
, where S ×U is the new state set,

PA gives transition probabilities, andRA is the reward
distribution. We define PA to update the S portion
of the state according to P, and to then sample the
U component of the state from f(st, ·). Similarly we
define RA to be equivalent to R, where the U com-
ponent of the state is ignored. If we vary f during
our search, MA is nonstationary because the transi-
tion function depends on f . The value function of MA

is independent of the U component of its state given
the S component, and thus is the same as that of M .

Although U is part of the state, we place no restrictions
on A, so we do not require it to use ut as an additional
feature. For example, A may use ut to encode the
probability of an exploratory action or the termination
probability of a temporally extended action. Similarly,
Amay ignore the S component of its state. This lack of
constraint on A leaves the responsibility of selecting a
reasonable A to the researcher. Here we are interested
in finding a good f regardless of the A selected.

3. Problem Statement

Given an MDP M = (S,A,P,R), called the base
MDP, and agent A0 = (θ0, π,Ξ), our goal is to find
a (θ, f) that maximizes the expected return on M :

arg max
(θ,f)∈Θ×F

EM

[ ∞∑
t=0

γtrt

∣∣∣θ, f, d0

]
, (3)

where EM denotes the expected value assuming the
dynamics of M . We constrain the problem by requir-
ing that Expression 3 exist and θt only be updated
according to Ξ during the search for an optimal (θ, f).

This is a unified description of the problems listed in
the introduction: for an agent that uses some prob-
abilistic mapping f , we want to find the optimal f ,
with optimality defined in terms of expected return.
Because applications typically involve continuous state
or action spaces, we forgo attempts to search for global
optima and instead search for a locally optimal (θ, f).

4. Conjugate MDPs

A common method for solving multivariate optimiza-
tion problems is grouped coordinate ascent (Bezdek
et al., 1987), in which the variables are partitioned
into two disjoint subsets, one of which is fixed while the
objective function is maximized over the other (which
we refer to as a partial optimization hereafter), and
the process repeated with the other subset fixed. Re-
peated application of this process guarantees a local
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maximum if each partial optimization reaches a global
maximum (Bezdek et al., 1987).

To apply grouped coordinate ascent to Expression 3,
we must provide methods for performing each partial
optimization,

arg max
θ∈Θ

EM

[ ∞∑
t=0

γtrt

∣∣∣θ, f, d0

]
, (4)

for fixed f , and

arg max
f∈F

EM

[ ∞∑
t=0

γtrt

∣∣∣θ, f, d0

]
, (5)

for fixed θ. Expression 4 is the standard problem of
solving an MDP: the solutions are the θs that maxi-
mize the return on MA. In practice, the agent A aims
to maximize this return by using the rule Ξ to update
θt. However, because we place no restrictions on A,
these updates may not always produce an increase in
objective value, and we must therefore forfeit conver-
gence guarantees. In principle, appropriate choices of
A will provide such a guarantee for problems with fi-
nite state and action sets, and will tend to increase the
objective function for infinite MDPs.

To find solutions for Expression 5, we construct a
new MDP, the Conjugate MDP (CoMDP), such that
each f is a policy for the CoMDP, and an optimal
policy is an optimal f . The CoMDP is defined as
MC =

(
S,U ,PC ,RC

)
, where S remains the state set,

U is now the action set, PC gives state transition prob-
abilities,

PC(s, u, s′) =
∑
a

π(θ)(s, u, a)P(s, a, s′), (6)

and where RC : S × U × S × R → [0, 1] is the reward
distribution when transitioning from s to s′ via action
u:

RC(s, u, s′, r) =

∑
a π(θ)(s, u, a)P(s, a, s′)R(s, a, s′, r)∑

a π(θ)(s, u, a)P(s, a, s′)
.

(7)

Notice that RC(s, u, s′, ·) is the reward distribution
given the observation of s, u and s′, but not a, for M
with fixed θ.

Because the CoMDP MC has state space S and ac-
tion space U , a policy for MC is a probabilistic map-
ping µC(s, u) = Pr(ut=u|st=s), just like f . In the
appendix, we prove in Theorem 1 that the state-value
function for MC is the same as that of M and then
use this result to show in Theorem 2 that the optimal
policies for MC are the solutions to Expression 5.

5. Approximate Coordinate Ascent

In the previous section, we proposed the use of grouped
coordinate ascent to perform the multivariate opti-
mization problem of Expression 3. This involves fixing
f and using A to solve MA, then fixing θ and solving
MC using any algorithm for solving MDPs, and re-
peating. We call the agent solving the CoMDP the
coagent, C.

However, coordinate ascent is impractical for at least
three reasons: it requires convergence tests to de-
termine when to switch variables being optimized, it
could result in poor performance at the beginning of
each partial optimization, and the first partial opti-
mization of θ may result in a locally optimal (θ, f)
before the space of fs has been searched, because the
agent has tuned its parameters specifically for the ini-
tial f .

To overcome these drawbacks, we propose an approxi-
mation to grouped coordinate ascent for on-line meth-
ods in which the partial optimizations each run for k
steps of M . For large k, this approaches grouped co-
ordinate ascent. When k = 1 the agents take turns
training every other time step. We define k = 0 to
mean that both agents train during every time step
of M . Notice that k scales the nonstationarity of the
MDPs. We call this process APproximate Coordinate
Ascent (k), or APCA(k), the pseudocode for which
is provided in Algorithm 1, where θA, θC , ΞA, ΞC ,
πA, and πC are the parameters, update functions, and
PPGs of A and C respectively, and the outer loop is
over episodes. Notice that, while both A and C use
the formulation of agents from Section 2, C’s state is
S while A’s augmented state is S × U .

If MA and MC have finite state and action spaces,
and A and C are guaranteed to converge to an opti-
mal policy for MA and MC respectively (e.g., tabular
Q-learning), then APCA(∞), though impractical, is
guaranteed to converge to a local optimum. Theorem
3, in the appendix, shows that the policy gradients for
MA and MC are the components of the policy gra-
dient for M , suggesting that policy gradient methods
may provide convergence guarantees for APCA(0).

6. Coagent Networks

We have presented a framework in which a coagent, C,
and an agent, A, work together to solve M . Given a
state of M , they coordinate to produce an action and
use the resulting state and reward from M to perform
an update. Thus, we can view A and C together as
one larger agent, A′. Notice that A′ fits the definition
of an agent given in Section 2.



Conjugate Markov Decision Processes

Algorithm 1 Approximate Coordinate Ascent (k)

1: Initialize θA, θC .
2: count← 0
3: loop
4: s ∼ d0

5: u ∼ πC(θC)(s, ·)
6: a ∼ πA(θA)(s, u, ·)
7: repeat
8: s′ ∼ P(s, a, ·)
9: r ∼ R(s, a, s′, ·)

10: u′ ∼ πC(θC)(s′, ·)
11: a′ ∼ πA(θA)(s′, u′, ·)
12: if k = 0 or bcount/kc mod 2 = 0 then
13: θA ← ΞA(s, u, a, r, s′, u′, a′, θA)
14: end if
15: if k = 0 or bcount/kc mod 2 = 1 then
16: θC ← ΞC(s, u, r, s′, u′, θC)
17: end if
18: s← s′, u← u′, a← a′

19: count← count+ 1
20: until s is terminal
21: end loop

We can then ask whether an additional input, for ex-
ample an additional feature, could be useful to A′. If
so, we can create a new coagent, C ′, that searches for
this mapping. C ′ will then be solving a new CoMDP.
This process can be repeated an arbitrary number of
times to create a structure, called a coagent network
(CN), consisting of multiple coagents and one agent,
all working together to solve M . Because the state-
value function is the same for all CoMDPs (Theorem
1), it need only be computed by one coagent. This al-
lows for architectures in which a subset of the coagents
compute TD errors and broadcast them to the others,
much like the dopamine system in animals (Schultz,
1998). To see how adding additional coagents can ac-
tually make a problem easier, see Section 8.

7. Alternate Views

In this section we present alternate views of coa-
gents and CoMDPs. First, although it may seem that
the CoMDP framework is introducing an unnecessary
temporal component to an inherently non-temporal
problem—searching for an optimal mapping f—this
is not the case. Rather, by phrasing the problem as
an MDP, we are taking advantage of structure in the
underlying problem.

Consider the application of a general optimization
technique, such as simulated annealing, to Expression
5. One must compute a heuristic, h(f): an estimate

of the expected return for various f . If we use the
observed return for a finite time τ : h(f) =

∑τ
t=0 γ

trt,
small τ will result in high bias, while large τ will re-
sult in high variance. Furthermore, because the agent
must wait τ steps to estimate h(f), policy improve-
ment slows as τ increases. All these problems can be
mitigated by storing an estimate V f : S → R of the ex-
pected future return, observing the return for small τ ,
and using V f to estimate the remainder of the return.
V f is the value function for MC , suggesting that the
search for f takes the form of the underlying problem:
an MDP.

The second interpretation is to view agents as black
boxes that learn to output whatever is necessary to
achieve maximal expected return in their environ-
ments, and which can cope with mild amounts of non-
stationarity. One may then ask what would happen
if two boxes were connected such that one’s (coagent)
output was given as input to the second (agent), and
both observed the same states and rewards. One would
expect the coagent to learn the output patterns nec-
essary to maximize its expected return, which is the
same as the agent’s expected return. The environ-
ment, as seen by the coagent, is the CoMDP.

Third, the CoMDP framework is a fully-cooperative
multi-agent reinforcement learning (MARL) ap-
proach (Busoniu et al., 2008), much like (Barto & Jor-
dan, 1987). It can also be viewed as a meta-learning
system (Vilalta & Drissi, 2002).

8. Case Study

To empirically validate our method, we avoid canoni-
cal domains such as cart-pole, mountain-car, and pen-
dulum swing-up because they are too simple for mod-
ern methods, leaving little room for improvement. We
therefore create a more difficult domain conducive to
representation and motor primitive discovery: a simu-
lated navigation task for a high-dimensional robot in
a 10 × 10 continuous room. Rather than providing it
with its x, y coordinates, we provide it with a high-
dimensional self-centric state representation: simu-
lated LIDAR data. We shoot 20 rays from the agent
at equally spaced angular intervals and compute the
distance before the rays strike a wall. These 20 real-
valued numbers in the range [0,

√
200] make up the

state representation S.

Real-world tasks can also require the coordination of
many actions. For example, movement of a human
arm requires the coordinated activation of over 100
muscle elements. To make our problem more realis-
tic, we therefore introduce a high-dimensional action
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space. Rather than moving directly in the four cardi-
nal directions, the agent has 50 actuators pointing at
equally spaced angles. Each actuator can be either on
or off, and, when on, moves the agent in the actuator’s
direction at a velocity of 1/4. We use a time step of
∆t = 0.1, and randomly scale movement velocities by
up to 10%. The effects of the actuators are additive,
so, when randomly activated, they tend to cancel out
and result in only small movement. In order to pro-
duce rapid movement, the agent must coordinate its
actions to turn on only the actuators on one side.

The agent’s goal is to reach a terminal state: any
within one unit of (5, 5), starting from a random initial
state. The reward function is 1 for reaching a termi-
nal state, plus a misleading shaping reward with po-
tential function proportional to the negative squared
distance from (3, 6). One approach to problems with
such high-dimensional state and action spaces is to
perform simultaneous representation and motor prim-
itive discovery.

The 20-dimensional real-valued state makes fixed bases
without domain specific knowledge impractical, while
methods for computing feature spaces based on state
trajectories will also face difficulties because random
initial policies result in slow trajectories. To solve the
representation problem, we therefore create 1000 Q(λ)
coagents, Fi, i ∈ {1...1000}, each learning one binary
feature used by the agent. That is, they search for
a probabilistic mapping f : S × {0, 1} → [0, 1], the
result of which, when applied to the current state, is
used by A as a feature. Rather than searching for
learning parameters for these coagents, we select them
randomly from a distribution of reasonable parame-
ters. This works because the agent only requires a few
good features to represent the value function, so only
a few coagents must learn well. We call the resulting
feature space F = {0, 1}1000.

The motor primitive discovery problem arises because
there are 250 possible actions. Rather than searching
this space, our agent searched over 10 actions, each of
which results in a pattern of activation over the 50 ac-
tuators. We created 10 coagents, Pi, i ∈ {1, ..., 10},
one to learn each of these motor primitives, which
are probabilistic mappings from F to A. Each of
these 10 coagents is composed of 50 coagents, Bi,j ,
j ∈ {1, ..., 50}, each of which learns a probabilistic
mapping from the feature space to the action for one
actuator for one motor primitive, f : F × {0, 1} →
[0, 1]. These coagents are actor-critics (Sutton &
Barto, 1998), with state-independent policies, which
result in state invariant motor primitives. We then
maintain one critic, Critic, for all 500 of these actor-

[0,10]20 {0,1}s

F1

F2

{0,1}

… Bi,1
{0,1}

Pi

s
F1000 {0,1}

{0,1}1000

…

CriticTD-error
1 Bi,2

Bi 50

…
{0,1}50

{0,1} 50

P1

1
{0,1}50

P2

A
{ , }

{1,…,10}
i,50

{0,1} 50

{ , }
1 …2

P10 {0,1} 50

Figure 1. Diagram of the coagent network used. Bold lines
denote inputs and outputs to M , the upper right trapezoid
depicts the contents of each Pi, circles denote concatena-
tion, and the non-gradiated trapezoid is a multiplexer.

critic coagents. A and Critic both use the feature
space F as a substitute for the state space S. When
|F| is large, this substitution is admissible because the
representation will likely remain Markov.

Our final system has 1500 coagents, one agent, and
one critic, all learning simultaneously via APCA(0).
The CoMDPs all have state space S and action space
{0, 1}. Thus, the CoMDP framework has allowed us
to decompose a high-dimensional task into many low-
dimensional, though nonstationary, tasks, such that
successful solutions for a few will result in good over-
all performance. The resulting coagent network is de-
picted in Figure 1. Notice that the only information
we have provided the coagent network a priori is that
it should create 1000 features and 10 motor primitives.

We also created a modified task in which an actuator
only produces velocity if both of its neighbors are not
activated, though the velocity produced by each ac-
tuator is increased to 1/2. Maximum velocity is then
achieved by turning on every other actuator on one
side. Although the coagents must already coordinate
to achieve large velocities, this modified problem em-
phasizes the necessity for coagent coordination.

As the number of steps to reach the goal increases,
the discounted lifetime return decreases, so we plot the
time to reach the goal during training for APCA(0) on
the original and modified problem in Figure 2. Figure
3 depicts typical motor primitives (outputs of each Pi)
after training the coagent network for 2000 episodes.
Random actuator settings result in an average velocity
of 0.78 and 1.02 on the original and modified tasks re-
spectively, and the maximum possible velocity is 3.98
for both. The motor primitives learned result in the
agent achieving average movement speeds of 2.91 and



Conjugate Markov Decision Processes

0 500 1000 1500 2000
10

100

1000

10000

Episode

S
te

ps
 to

 G
oa

l

 

 

CN
CN'
K&S
NAC

Figure 2. Average steps to reach the goal during training
episodes when using APCA(0) on a CN for the original
(CN) and modified (CN’) problems, including standard er-
ror bars (30 trials). Results are also provided for K&S
on the original problem (20 trials), though the horizon-
tal axis is scaled by a factor of 5, so it ranges from 0 to
10000 episodes. A least-squares linear fit to the K&S data
estimates a slope of −0.35, suggesting that its policy is
improving, though performance appears flat when plotted
with a logarithmic vertical axis. Lastly, results are pro-
vided for NAC on the original problem (20 trials), however
this curve is deceiving. In 1/3 of NAC trials, the agent
failed to complete an episode within a million time steps
and the trial was terminated. The plot shown excludes
these failures.

3.03, respectively. During control trials with 1000 ran-
dom fixed features, the agent failed to learn.

We were unable to compare our results to Q(λ),
Sarsa(λ), least squares policy iteration (Lagoudakis &
Parr, 2002) or any other method that requires eval-
uation of arg maxa∈A because the large action space
makes them impractical. Wire-fitting (Baird & Klopf,
1993) and Product of Experts (Sallans & Hinton, 2004)
are not applicable because the actions are discrete and
state continuous, respectively.

We therefore compare our results to a simple yet ro-
bust policy gradient method (Kohl & Stone, 2004),
which we call K&S, as well as a state of the art
natural policy gradient method, the natural actor-
critic (NAC) with LSTD-Q(λ) (Peters & Schaal, 2008).
For the former we searched the space of parameters
t ∈ {1, 2, 5, 10, 50, 100, 200, 500, 1000, 2000, 5000}, η ∈
{0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5}, n ∈ {0, 1, 2, 3}, and
ε ∈ {0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5} using the uncou-
pled Fourier basis (Konidaris et al., 2011) of order n,
uncoupled polynomial basis of order n, and the iden-
tity basis.

Figure 3. Individual motor primitives from a typical trial
on the original task (top) and modified task (bottom).
Filled circles denote activated actuators, while unfilled cir-
cles denote deactivated actuators. Rays from each actuator
denote the velocity vector produced by that actuator. No-
tice that the first three in both sets result in a desirable
movement basis: rapid movement at equally spaced angles.

Due to the computational complexity of NAC with
LSTD-Q(λ), we were limited to the identity basis and
a smaller parameter search: β ∈ {0, 0.5, 0.9, 0.99}, α ∈
{0.001, 0.01, 0.1, 0.5, 1.0}, λ ∈ {0, 0.5, 0.9}, and γ ∈
{0.99, 0.9}. Additionally, because the angle between
consecutive gradient estimates failed to converge in
a reasonable time, we updated the policy after every
ε ∈ {3000, 6000, 10000, 20000, 50000} time steps. This
optimization took over a year of CPU time on a cluster
with 60 eight-core Xeon 5355 2.66 GHz CPUs.

Results using the best parameters found for NAC and
K&S are both provided in Figure 2. K&S performs
poorly because it was intended for problems with fewer
parameters and for which a reasonable initial policy is
known. Though NAC performs as well as the coagent
network 2/3 of the time, it failed during 1/3 of the
trials, as discussed in the caption of Figure 2. NAC
is also computationally expensive, requiring ten times
as many multiplications and additions per time step
as the entire coagent network, plus the additional cost
of inverting a 1071 × 1071 matrix for policy improve-
ment steps, making parameter optimizations imprac-
tical without access to a computational cluster.

Notice that, although we performed optimizations for
K&S and NAC, we did not optimize the parame-
ters nor the structure of the coagent network. Thus,
there may be room for improvement over the coa-
gent network results reported. Complete implementa-
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tion details, including source code and all parameters
used, can be found at http://www-anw.cs.umass.

edu/pubs.shtml.

9. Conclusion

We have presented a novel method for searching for a
mapping f that is used by an agent solving an MDP for
that which maximizes the agent’s expected return. We
presented a case study showing that this method can
outperform other state of the art methods, suggesting
that it deserves further study. Future work could per-
form comparisons to feature and motor primitive dis-
covery methods independently, or could use APCA(k)
to find other mappings, such as skill termination sets
or exploration policies for nonstationary tasks.
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Appendix

For the subsequent proofs, we require additional no-
tation. Let Ef5 [·] denote an expected value assuming
the dynamics of M with fixed θ and the specified f ,
i.e., the dynamics of Expression 5. Similarly, let EfC [·]
denote an expected value assuming the dynamics of
MC with the provided f as the policy. We also de-
fine dt5(s, d0) to be the probability that st = s given
initial state distribution d0 and assuming the dynam-
ics of Equation 5, with a suppressed dependence on
f . Similarly, we define dtC(s, d0) to be the probability
assuming the dynamics of MC . Lastly, we define ds to
be the state distribution where Pr(st=s) = 1.

Because we have not yet established that the composi-
tion of M and the agent with fixed θ produces an MDP
with actions u, we must redefine the value function,

V f5 (s) = Ef5

[ ∞∑
t=0

γtrt|s0 = s,

]
. (8)
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Notice that Ef5 , E
f
C , V

f
5 , V

f
MC , d

t
5, and dtC all assume

that θ is fixed and provided.

For Theorem 3, let f be parameterized by θC , ρ =
[θ, θC ], and let JM (ρ) = E[V ρM (s0)|d0] be the expected
discounted return for M from initial state distribu-
tion d0, where ρ induces a policy on M . Similarly,
JMA(θ) = E[V θMA(s)|d0], and JMC (θC) = E[V θC

MC |d0].
MA and MC have suppressed dependencies on θC and
θ respectively, so JMA and JMC are both functions of
θ and θC .

Lemma 1: Ef5 [rt|dt] = EfC [rt|dt], for arbitrary t and
state distribution dt, where dt(s) = Pr(st = s).
Proof:

Ef5 [rt|dt] =
∑
r

rPr(r|dt)

=
∑
r

r
∑
s

dt(s)
∑
u

f(s, u)
∑
a

π(θ)(s, u, a)×∑
s′

P(s, a, s′)R(s, a, s′, r). (9)

EfC [rt|dt] =
∑

r,s,u,s′

r dt(s)f(s, u)PC(s, u, s′)RC(s, u, s′, r)

=Ef5 [rt|dt], (10)

by substituting from Equations 6 and 7 into Equation
10. �

Lemma 2: dt5(s, d0) = dtC(s, d0) for all states s, times
t, and initial state distributions d0.
Proof: The base case is d0

5(s, d0) = d0 = d0
C(s, d0).

The inductive step is to show that dt+1
5 (s, d0) =

dt+1
C (s, d0) if dt5(s, d0) = dtC(s, d0):

dt+1
5 (s, d0) =

∑
s̄

dt5(s̄, d0)
∑
u

f(s̄, u)×∑
a

π(θ)(s̄, u, a)P(s̄, a, s) (11)

dt+1
C (s, d0) =

∑
s̄

dtC(s̄, d0)
∑
u

f(s̄, u)PC(s̄, u, s)

=dt+1
5 (s, d0), (12)

by substituting Equation 6 for PC . �

Theorem 1: V f5 (s) = V f
MC (s) for all f and s.

Proof:

V f5 (s) =

∞∑
t=0

γtEf5
[
rt|dt5(·, ds)

]
, (13)

V f
MC (s) =

∞∑
t=0

γtEfC
[
rt|dtC(·, ds)

]
, (14)

which by Lemmas 1 and 2 allows us to conclude that
V f5 (s) = V f

MC (s). �

Notice that V f5 (s) is the expected return on M for the
current f and θ: the value function for M .

Theorem 2: The optimal policies for MC are the
solutions to Expression 5.
Proof: Optimal fs for Expression 5 satisfy

arg max
f∈F

EM

[ ∞∑
t=0

γtrt

∣∣∣θ, f, d0

]
= arg max

f∈F

∑
s

d0(s)V f5 (s). (15)

Similarly, an optimal policy for MC satisfies

arg max
f∈F

∑
s

d0(s)V f
MC (s). (16)

By Theorem 1, we conclude that Expressions 15 and
16 are equal. �

Theorem 3: If ∂JM (ρ)/∂ρ exists, and the parameter-
ized policies, µA(θ) for MA and µC(θC) for MC , are
differentiable with respect to their parameters, then
the policy gradients for MA and MC are the compo-
nents of the policy gradient for M .
Proof:

∂JM (ρ)

∂θ
=
∂

∂θ

∑
s

d0(s)V ρM (s) =
∂

∂θ

∑
s

d0(s)V θMA(s)

=
∂JMA(θ)

∂θ
, (17)

and

∂JM (ρ)

∂θC
=

∂

∂θC

∑
s

d0(s)V ρM (s) =
∂

∂θC

∑
s

d0(s)V θC
MC (s)

=
∂JMC (θC)

∂θC
, (18)

because V ρM = V θMA (see Section 2), V θC
MC = V f5 by

Theorem 1, and V f5 = V ρM , trivially. If A and C

compute their respective policy gradients,
∂JMA (θ)

∂θ and
∂JMC (θc)

∂θC
, they would therefore be computing

∂JM (ρ)

∂ρ
=

[
∂JMA(θ)

∂θ
,
∂JMC (θC)

∂θC

]
, (19)

which is the gradient of Expression 3 and the policy
gradient of M . �

If ρ is updated by ρ ← ρ + α∂JM (ρ)
∂ρ , then ρ will con-

verge to a local optimum under the usual conditions
for decreasing the step-size parameter α.


