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A Reinforcement Learning Controller for  

Functional Electrical Stimulation of a Human Arm 

 

Abstract 

by 

PHILIP SEBASTIAN THOMAS 

 

This thesis demonstrates the feasibility of using reinforcement learning (RL) for 

functional electrical stimulation (FES) control of a human arm as an improvement over (i) 

previous closed-loop controllers for upper extremities that are unable to adapt to changing 

system dynamics and (ii) previous RL controllers that required thousands of arm movements to 

learn. We describe the relevance of the control task and how it can be applied to help people with 

spinal cord injuries. We also provide simulations that show previous closed-loop controllers are 

insufficient. We provide background on possible RL techniques for control, focusing on a 

continuous actor-critic architecture that uses function approximators for its mappings. We test 

various function approximators, including Artificial Neural Networks (ANNs) and Locally 

Weighted Regression (LWR) for this purpose. Next, we introduce a novel function 

approximator, Incremental Locally Weighted Regression (ILWR), which is particularly suited 

for use in our RL architecture. We then design, implement, and perform clinically relevant tests 

using ANNs for the two mappings in the continuous actor-critic. During these trials, unexpected 

behavior is observed and eventually used to create a hybrid controller (that switches among 

different learning parameter sets) that can both adapt to changes in arm dynamics in 200 to 300 

arm movements and remain stable in the long-term. A non-switching controller with similar 

performance  is achieved using ILWR in place of an ANN for the controller's critic mapping.
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CHAPTER 1: 

INTRODUCTION 

 

1.1 Functional Electrical Stimulation (FES) 

An estimated 255,702 people in the United States suffer from spinal cord injuries (SCI), 

with approximately 12,000 new cases each year, 42% of which result from motor vehicle crashes 

(NSCISC, 2008). People with SCI frequently suffer from paralysis, rendering them unable to 

move their limbs, though most of their nerves and muscles may be intact. Functional Electrical 

Stimulation (FES) can activate these muscles to restore movement by activating motor neurons 

with electrical currents, which are applied via subcutaneous probes. Figure 1.1 depicts a typical 

FES setup. By intelligently selecting the current applied to the motor neurons associated with 

each muscle, individual muscles can be stimulated by various amounts, allowing researchers to 

control a subject's muscles. For background information on FES, refer to (Sujith, 2008; 

Ragnarsson, 2008; Sheffler and Chae, 2007; Peckham and Knutson, 2005).  

For the purpose of this thesis, it is sufficient to view FES from a control perspective in 

which the muscles to be stimulated are a system or plant whose state is determined by joint 

angles, joint angle velocities, and several hidden states, as depicted in Figure 1.2. The plant 

inputs are electrical stimulation levels for each muscle, ranging from 0% to 100%, which result 

in muscle forces that change the state. The controller is given the current and target states, and 

generates the stimulations required to reach the target state. 
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Figure 1.1: Typical FES setup in which the control unit communicates with implanted electrodes 
and sensors via coils that transmit, receive, and provide power to the internal system. 
Reproduced from Peckham and Knutson (2005). 

 

 

Figure 1.2: Block diagram of FES as a control task in which the controller receives the current 
state and target state, and generates muscle stimulations, which in turn affect the plant, which 
updates the state given to the controller. 

 

Open-loop FES control has been successfully applied to basic systems such as hand grasp 

(Peckham et al., 2001), rowing (Wheeler et al., 2002) and gait (Kobetic and Marsolais, 1994; 

Braz et al., 2007). In order to produce accurate movements, open-loop control requires detailed 
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information about the system properties, which is often not available for more complex tasks that 

have not been accurately modeled, or whose dynamics change over time (Crago et al., 1996). 

Closed-loop FES control does not have these drawbacks, and has therefore been used 

successfully on more complicated tasks such as hand grasp (Crago et al., 1991), knee joint 

position control (Chang et al., 1997), and standing up (Ferrarin et al., 2002). However, 

challenges related to using the required sensors have prevented feedback control from being 

applied in a clinical setting (Jaeger, 1992). Complex controllers that require detailed state 

information have been tested only in simulation (Stroeve, 1996; Abbas and Triolo, 1997). 

Jagodnik and van den Bogert (2007) designed a Proportional Derivative controller (PD 

controller; see Section 2.1) for planar control of a paralyzed subject's arm. The gains for the PD 

controller were tuned to minimize joint angle error and muscle forces for a two-dimensional arm 

simulation using a Hill-based muscle model (Schultz et al., 1991). During human trials, Jagodnik 

and van den Bogert (2007) found that the PD controller's gain matrix often required retuning to 

account for variations in the dynamics of the subject's arm both from day to day, as well as 

within one FES session. The subject's arm also differed from the ideal arm used in simulation 

because it had unpredictable biceps stimulation due to spasticity. Results from simulation, which 

are provided in Section 2.1, support the claim that PD controllers do not perform well with such 

unmodelled or changing dynamics. 

In practice, basic closed-loop controllers, such as the Proportional Integral Derivative 

controller (PID controller; see Section 2.1), must be manually tuned to each subject to account 

for differing dynamics between simulation, real-world application, and each individual arm. 

Additionally, these controllers require retuning during consecutive trials on the same subject. 



15 
 

The dynamics between two subjects may vary as a result of different physical dimensions, 

muscle strengths, muscle atrophy, and muscle spasticity, while the dynamics of each subject's 

arm changes primarily due to muscle fatigue, which is exacerbated by FES's high stimulation 

frequency compared to a healthy central nervous system (Lynch and Popovic, 2008). 

Reinforcement learning (RL) techniques (Sutton and Barto, 1998) can be used to create 

controllers that adapt to these changes in system dynamics, finding non-obvious and efficient 

strategies. Within FES, RL has been tested in simulation to control a standing up movement 

(Davoodi and Andrews, 1998), but this did not require generalization and did not include varying 

target states. RL has also been shown to control arm movements (Izawa et al., 2004), however, 

learning required too many training movements for clinical applications (between 2,000 and 

5,000). 

 

1.2 Problem Statement (Adaptive RL FES Controller Task) 

In this thesis, which is an extension of prior research by Thomas et al. (2008a; 2009a), we 

show the feasibility of using RL for FES control of a human arm as an improvement over 

previous closed-loop controllers for upper extremities that are unable to adapt to changing 

system dynamics. Specifically, we control horizontal planar movement of the right arm of a 

subject with complete paralysis in a simulated environment without friction. 

The arm model we use, called the Dynamic Arm Simulator 1 (DAS1), described and 

utilized in (Blana, Kirsch, and Chadwick, 2009), has two joints (shoulder and elbow) and is 

driven by six muscles; see Figure 1.3. Two of the six muscles act across both joints. Each muscle 
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( )tθ  is a vector of joint angular velocities, ( )Goal tθ  is a vector of target joint angles, and T 

denotes matrix transpose.  

The goal of this thesis is to create a RL controller that begins with a policy similar to that 

of the PD controller of Jagodnik and van den Bogert (2007), but that is also stable, robust to 

sensor noise, and capable of adapting to realistic changes in arm dynamics within 200 to 300  

movements. The task of creating such a controller will be referred to as the Adaptive RL FES 

Controller Task. Because the RL controller must be able to adapt to continuously changing 

dynamics, learning rates and exploration should not be decayed. 

 

1.3 Thesis Contribution 

As far as we know, this research is the first successful effort to tackle the Adaptive RL 

FES Controller Task, defined previously in Section 1.2. This thesis both demonstrates that RL 

control is feasible and deserves future research, and also serves as a guide for the implementation 

of such a system in human trials. In creating the necessary RL controller, we utilize function 

approximators to represent the mapping of states to both actions and other values. To improve 

performance of the controller, we create a novel function approximator, Incremental Locally 

Weighted Regression (ILWR), described in Chapter 3. The benefits of using ILWR over the 

more common Artificial Neural Networks (ANNs), described in Section 2.3.1, are discussed in 

Chapters 3 and 7. 

Further contribution to the RL literature is summarized in Section 8.1. The work leading 

to this thesis has also been published in two conference papers (Thomas et al., 2008a; Thomas et 
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al., 2009a) and several research posters (Thomas et al., 2008b; Thomas et al., 2008c; Jagodnik et 

al., 2008; Thomas et al., 2009b). 

 

1.4 Thesis Outline 

This thesis is separated into eight chapters and six appendices as follows. 

Chapter 1 defines the problem of FES control, provides an overview of prior research, and 

presents information about the purpose and layout of this document. 

Chapter 2 covers background information used in subsequent chapters. The first section, 2.1, 

covers PD and PID controllers and demonstrates why they are insufficient for the 

Adaptive RL FES Controller Task, defined in Section 1.2. Section 2.2 covers the basics 

of reinforcement learning and introduces the continuous actor-critic architecture, which is 

the foundation for all reinforcement learning trials performed in the subsequent chapters. 

Section 2.3 introduces the function approximators used throughout this thesis in the 

continuous actor-critic architecture. Section 2.4 concludes the chapter with a case study 

of the continuous actor-critic. 

Chapter 3 introduces the Incremental Locally Weighted Regression (ILWR) algorithm that 

we devised for use in the actor-critic as a local function approximator. It is then tested on 

simple problems. 

Chapter 4 contains a summary of the tests devised to evaluate the actor-critic's ability to 

adapt to realistic and clinically relevant changes in arm dynamics, as required in the 

Adaptive RL FES Controller Task. 
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Chapter 5 presents the results from the tests described in Chapter 4, using ANNs to 

represent the actor and critic. Different parameter settings achieve either rapid initial 

learning or long-term stability, but not both. Chapter 5 concludes with discussion of an 

unexplained phenomenon. 

Chapter 6 provides several attempts to achieve rapid initial learning as well as long-term 

stability, and concludes with the creation of a hybrid controller that combines the best 

attributes of the different results from Chapter 5. 

Chapter 7 provides the results from the tests described in Chapter 4, using ILWR to 

represent the critic. The resulting controller achieves both rapid initial learning as well as 

long-term stability—without the need to switch between various parameter settings. 

Chapter 8 concludes with a summary of the results and recommendations for future work.  

Appendix A presents a derivation of the derivative of the ILWR function approximator's 

output with respect to the outputs of its knowledge points. 

Appendix B presents a derivation of the derivative of the ILWR function approximator's 

output with respect to the inputs of its knowledge points. 

Appendix C provides an algorithm for efficiently computing the derivative derived in 

Appendix B. 

Appendix D provides a derivation of equations relating to the gradient descent algorithm. 

Appendix E provides the setup files for DAS1, the arm simulation model used. 

Appendix F provides a summary of all parameter sets used in the continuous actor-critic. 
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1.5 Implementation 

All implementation in this thesis was done in Microsoft Visual C++ 2008 Professional using 

the Microsoft Windows Vista Ultimate 64-bit operating system, running on a computer with 

6GB of RAM, and an Intel Q6600 Quad Core 2.4GHz CPU, unless otherwise specified. 
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CHAPTER 2: 

BACKGROUND 

 

2.1 Proportional Derivative (PD) and  

Proportional Integral Derivative (PID) Controllers  

Two of the simplest linear closed-loop controllers, which are commonly used in real-

world control problems, are Proportional Derivative (PD) and Proportional Integral Derivative 

(PID) controllers (Franklin, Powell, and Workman, 1997). In this section, we first discuss the 

prior application of a PD controller to FES control of a human arm (Jagodnik and van den 

Bogert, 2007) and its limitations. Next, we introduce the PID controller and present experiments 

that illustrate why it is insufficient for our adaptive control task. 

 Jagodnik and van den Bogert (2007) trained a PD controller to move a subject's arm 

from an initial configuration, 0 ,s  to a goal configuration, Goal.s  Configurations consist of the two 

joint angles, [ ]1 2, ,Tθ θ θ=  two target joint angles, 
1 2Goal Goal Goal, ,

T
θ θ θ⎡ ⎤= ⎣ ⎦  and the time derivative 

of the joint angle, .θ  To achieve realistic results, shoulder and elbow joint angles were both 

restricted to 20 to 80 degrees. The four-dimensional state was represented as 

 ( ) ( ) ( ) ( )Goal , .
T

s t t t tθ θ θ⎡ ⎤= −⎣ ⎦  (2.1) 
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The first two terms correspond to the error in the joint angles, while the latter two terms are the 

error in the joint angle time derivative (velocity) when the desired velocity at the target state is 

zero. Equation 2.1 is often referred to as the error vector. 

Jagodnik and van den Bogert (2007) define the PD controller as Equation 2.2, where u is 

the vector of six muscle stimulation values, G is the six (muscles) by four (state) gain matrix, and 

s is a column vector of the current state, as defined in Equation 2.1. 

 .u Gs=  (2.2) 

Jagodnik and van den Bogert (2007) applied a simulated annealing minimization 

algorithm to the DAS1 model to derive the gain matrix provided in Table 2.1. During human 

trials using these gains, an actual subject's arm moved toward its goal configuration smoothly. 

Upon reaching the goal configuration, it oscillated around the target, but usually stabilized within 

one second (Jagodnik and van den Bogert, 2007). At this point, the muscle stimulations are all 

small (less than .02).  The weights were optimized for initial configurations and goal 

configurations between 20 and 80 degrees at each joint. 

 

Label in 
Figure 1.3 

 
11 Goalθ θ−  

22 Goalθ θ−  1θ  2θ  

a 1u  –1.01787396  0.33212884 –0.15703080 –0.01493472 

b 2u   1.13413540  0.15551148  0.17941533  0.05653848 

c 3u  –0.00686023 –1.18587656 –0.03227234 –0.10250393 

d 4u  –0.17434505  1.03188031  0.01106836  0.07647948 

e 5u   0.49111238  0.97548825  0.11836239  0.08897244 

f 6u  –0.43426468 –0.72186559 –0.09872529 –0.07017570 
 

Table 2.1: PD Controller gains derived by Jagodnik and van den Bogert (2007). 
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 The PID controller has the same output equation as the PD, Equation 2.2, though the state 

is augmented to include the integral of the error: 

 ( ) ( ) ( ) ( ) ( ) ( )GoalGoal
0

, , .
T

t

s t t t t dθ θ θ θ τ θ τ τ
⎡ ⎤

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫   (2.3) 

When implemented, the integral error term was approximated using a backward rectangular 

approximation. 

 We implemented a PID controller to determine whether a more sophisticated closed-loop 

architecture could better cope with the changing dynamics of the arm. The gains were tuned 

using a variant of the First-Choice Random-Restart Hill Climbing minimization algorithm 

(Russell and Norvig, 1995) in which the gradient is sampled in fifty random directions, the best 

of which is followed. Each random direction involves random changes in up to 10 of the 36 

dimensions. These changes were steps of 5% of each current gain value, with sign changes 

allowed as each weight approached 0. For the random restarts, the proportional and derivative 

gains were taken from the PD controller (Table 2.1), and the integral gains were chosen 

randomly between 1−  and 1. We used the same evaluation criteria as Jagodnik and van den 

Bogert (2007). 

 To test the PID's ability to adapt to changing dynamics in simulation, the arm model was 

modified to include a baseline biceps stimulation. The biceps muscle (e in Figure 1.3) was given 

the PID's instructed stimulation plus an additional 20% (not to exceed 100%). This simulated the 

spasticity that was observed during human trials of the PD controller. When using the PID 

controller during a two-second episode with an initial state of shoulder joint angle 

1 .349 (20 ),θ = ° elbow joint angle 2 1.571 (90 )θ = ° and a goal of 
1Goal 1.571 (90 ),θ = °  

2Goal .349 (20 ),θ = °  the arm overshot the goal state by .216 radians (12.4 )°  for the shoulder 
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angle, and .231 radians (13.2 )°  on the elbow angle, which equates to an overshoot of 23cm, 

assuming the upper and lower arms are both .3m long. Over time, the integral term built up, and 

the arm settled to the correct steady state. Unlike the PD and PID controllers, the RL controller 

described in the next section learns to avoid steady state error and overshoot given this 

unexpected muscle spasticity. 

 Retuning of static linear controllers could restore performance but would require 

extensive trial-and-error experimentation to find the optimal controller for each subject. Such a 

design process would not scale well to systems with more muscles and more joints, especially 

considering that this trial-and-error must be performed on a human. Unlike the PD and PID 

controllers, an RL controller, as described in the next section, does not require manual retuning; 

it learns on its own to avoid overshooting the goal position when presented with unexpected 

muscle spasticity. 

 

2.2 Reinforcement Learning (RL) 

The purpose of this section is to provide necessary background knowledge in 

reinforcement learning (RL), and to explain the reasons for choosing the continuous actor-critic 

architecture. This section is divided further into ten subsections. Subsection 2.2.1 contains an 

overview of the history of RL techniques. Subsection 2.2.2 outlines the problem that defines RL. 

Subsection 2.2.3 defines the value function, which is used in Subsection 2.2.4 to define the 

optimal policy. Subsection 2.2.5 introduces the Q-function, which does not explicitly store the 

value function, and which can be updated using temporal-difference (TD) methods, discussed in 

Subsection 2.2.6. Subsection 2.2.7 introduces the discrete actor-critic architecture, which is 

another TD method, and presents results on a simple problem. Subsection 2.2.8 introduces a 
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version of the actor-critic architecture created for problems where both state and time are 

continuous. Subsection 2.2.9 provides the Stochastic Real-Valued Unit Algorithm, which is used 

when analyzing the continuous actor-critic architecture in Subsection 2.2.10. 

 

2.2.1 History 

The setup for RL originated as far back as 1950, when Shannon proposed using an 

action-value function similar to that of modern Q-learning (Shannon, 1950). Markov decision 

processes (MDPs) were presented in the late 1950s (Bellman, 1957) as a mathematical 

framework that would later be applied to RL. The RL problem was studied in its current form in 

the early 1970s as researchers such as Witten and Corbin (1973) began experimenting with 

MDPs. This research, later analyzed by Witten (1977), was actually a form of actor-critic 

learning, as was the paper published soon thereafter (Barto, Sutton, and Anderson, 1983). Actor-

critic architectures stepped out of the limelight with the introduction of the Q-learning algorithm 

(Watkins, 1989). For background information and a more detailed history of RL, see (Kaelbling, 

1996) and (Sutton and Barto, 1998). 

Gullapalli (1990) introduced the Stochastic Real-Valued (SRV) Unit algorithm, reviewed 

in Subsection 2.2.9, as well as proofs of its convergence under certain strong assumptions. This 

algorithm was a type of actor-critic which was adapted by Doya (2000) for problems with 

continuous time and space. 
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2.2.2 Problem Statement 

RL involves a program or robot, called an agent, learning which actions will maximize 

the rewards provided by the environment. The state of the environment at time t, ( ) nx t X∈ ⊆  

changes as a function of the agent's action, ( ) .mu t U∈ ⊆  The exact way the environment 

changes as a function of the agent's actions is described by either the stochastic transition 

function, 

 ( ) [ ], , : 0,1 ,T x u x' X U X× × →  (2.4) 

which represents the probability of progressing to state x'  if the agent takes action u in state x, or 

the deterministic transition function, 

 ( ), : ,T x u X U X× →  (2.5) 

which returns the state x'  that results from taking action u in state x. Though our arm model, 

DAS1, is deterministic, the stochastic transition function is typically used in literature.  

These definitions of the transition function satisfy the Markov property because the 

distribution of the next state can be determined using only the current state and action. The 

practical example of FES control of a human arm (both human trials and DAS1), does not satisfy 

this constraint due to hidden state variables of the plant, such as the lengths of the parallel elastic, 

series elastic, and contractile elements (McLean, Su, and van den Bogert, 2003), which cannot 

presently be directly measured using sensors nor practically imputed from observable variables. 

However, these internal states have fast decay times, resulting in little history dependence. The 

agent is therefore able to glean enough information about the environment from the observable 
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states to learn a reasonable policy, as observed in the results of this thesis. We therefore treat the 

environment as though the hidden states were not present, knowing that this may hinder results 

and remove convergence guarantees. We will thus assume that the Markov property is satisfied 

for the remainder of this thesis. 

The agent has a policy (which may change over time) that specifies what action should be 

taken for any state, ( ) : .x X Uπ →  After the agent takes action u in state x, the environment 

returns a reward signal, 

 ( ), : .R x u X U× →  (2.6) 

In other sources, the reward function is independent of the agent's actions, mapping each state to 

a reward, 

 ( ) : .R x X →  (2.7) 

We will use the latter formulation. This reward signal defines the problem, in which the agent 

seeks the policy that maximizes the reward signal over time. A block diagram of the agent's 

interaction with the environment is provided in Figure 2.1. 

 

 

Figure 2.1: RL problem, figure adapted from (Sutton and Barto, 1998, Figure 3.1). 
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At time t, the agent should not necessarily take the action that maximizes only the reward 

received from the current action, because such an action may result in low rewards in the future. 

Rather, the agent should maximize the time-decayed sum of expected future rewards, 

 ( )( ) ( ) , ,k t

k t

E R x k x tγ π
∞

−

=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  (2.8) 

where 0 1γ< <  is a time decay constant (also known as the discount rate), the current time is t, 

and the state and actions follow the transition function and the current policy, ,π  from the 

current state, ( ).x t  The decay of the reward signal over time is necessary because the infinite 

sum of the reward signal without decay may diverge. 

 

2.2.3 Value Function 

The agent will often keep an approximation of the value function, sometimes called the 

utility function, which represents the time-decayed sum of expected future reward, when carrying 

out the policy π  starting in state x. 

 ( ) ( )( ) ( )
0

0 , .t

t

V x E R x t x xπ γ π
∞

=

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑  (2.9) 

The value function for the optimal policy is known as the optimal value function, which 

can be represented by 

 ( ) ( )* max .V x V xπ

π
=  (2.10) 

The Bellman Equation (Russell and Norvig, 1995) states that 
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 ( ) ( ) ( )( ) ( ), , ,
x'

V x R x T x x x' V x'π πγ π= + ∑  (2.11) 

in the stochastic case, and  

 ( ) ( ) ( ) ,V x R x V x'π πγ= +  (2.12) 

in the deterministic case, where 

 ( )( ), .x' T x xπ=  (2.13) 

Similarly, for the optimal value function, 

 ( ) ( ) ( ) ( )* max , , * ,
u x'

V x R x T x u x' V x'γ= + ∑  (2.14) 

for the stochastic case, and 

 ( ) ( ) ( )* * ,V x R x V x'γ= +  (2.15) 

for the deterministic case, where 

 ( )( )( ),arg max * , .
u

x' T x V T x u=  (2.16) 

The value function can be iteratively approximated using the Bellman update, derived 

from Equations 2.11 and 2.12 as 

 ( ) ( ) ( )( )1 max , ,i iu
V x R x V T x uγ+ ← +  (2.17) 

in the deterministic case, or 
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 ( ) ( ) ( ) ( )1 max , , ,i iu x'
V x R x T x u x' V x'γ+ ← + ∑  (2.18) 

in the stochastic case. The continual application of these equations has been shown to converge 

to a unique optimal solution, ( )* ,V x  if the agent chooses its actions greedily with respect to the 

value function as in Equation 2.19 for the deterministic case or Equation 2.20 for the stochastic 

case (Russell and Norvig, 1995): 

 ( ) ( )( )( )arg max ,
u

u t V T x t u=  (2.19) 

 ( ) ( )( ) ( )arg max , , .
u x'

u t T x t u x' V x'= ∑  (2.20) 

 

2.2.4 Optimal Policy 

The agent's goal is to learn a policy as similar as possible to the optimal policy, 

 
( ) ( )* arg max *

u
x V xπ = , (2.21) 

which maximizes the expected future reward. If the transition function is known, then the 

optimal policy can be determined by solving the Bellman equation to find the optimal value 

function, and then selecting actions by 

 
( ) ( ) ( )* arg max , , *

u x'

x T x u x' V x'π ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ , (2.22) 

in the stochastic case, and  
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( ) ( )( )* arg max * ,

u
x V T x uπ = , (2.23) 

in the deterministic case. 

 

2.2.5 Q-Functions 

Rather than explicitly storing the value function, some agents may keep an approximation 

of the Q-function for policy ,π  ( ), ,Q x uπ  which represents the expected sum of future rewards if 

the agent takes action u starting in state x. This function, also known as the action-value function, 

can be written as 

 ( ) ( )( ) ( ) ( )
0

, 0 , 0 , .t

t

Q x u E R x t x x u uπ γ π
∞

=

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
∑  (2.24) 

If an agent can find the optimal Q-function, 

 ( ) ( )* , max , ,Q x u Q s aπ

π
=  (2.25) 

then it can derive the optimal policy as 

 ( ) ( )* arg max * , .
u U

x Q x uπ
∈

=  (2.26) 

Q-learning is more appropriate to our problem because, unlike using only a value 

function via the Bellman update, a model of the environment, T, is not required if the agent has 

access to the Q-function. Though use of the Q-function does not require the agent to explicitly 

represent the transition function, the dimensionality of the problem has increased from learning 
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: ,nV →  to learning : ,n mQ + →  where n is the dimension of the state space, and m is the 

dimension of the action space. 

 

2.2.6 Temporal Difference (TD) Methods 

In order to learn the optimal value and Q-functions, agents often utilize the temporal-

difference (TD) error or simply TD-error, 

 ( )( ) ( )( ) ( )( )1 ,R x t V x t V x tπ πδ γ= + + −  (2.27) 

which represents the difference between the observed reward plus the resulting next state's value 

and the expected future reward that was predicted. Notice that Equation 2.12, the definition of V, 

is satisfied when the TD-error is zero. If the observed reward and resulting state value is larger 

than the prediction, the TD-error is positive, whereas if the observed reward and resulting state 

value are smaller than the prediction, the TD-error is negative. The TD-error update for the value 

function is 

 ( )( ) ( )( ) ,V x t V x tπ π αδ← +  (2.28) 

where 0α >  is a learning rate. Similarly, the TD update for learning the Q-function is, 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ), , max 1 , , .
u'

Q x t u t Q x t u t R x t Q x t u' Q x t u tπ π π πα γ⎡ ⎤← + + + −⎣ ⎦  

  (2.29) 

In summary, if the transition function, T, is available, the value function, V, can be 

learned using the direct application of the Bellman equation. If T is not available, then the Q-
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function can be learned using its TD update. Though the Q-function has the benefit of being 

model-free, its dimension is ,n m+  compared to the value function's dimension of n. 

The actor-critic architecture, described in Subsections 2.2.7 and 2.2.8, is a model-free 

TD-learning method, which, in an attempt to sidestep the curse of dimensionality, splits the 

learning problem into two lower-dimensional problems relative to Q-learning. Also, Equations 

2.18 through 2.26, in general, are impractical in a continuous environment because the maximum 

over u cannot necessarily be computed efficiently. Some work has been done to generate cases 

where this maximum can be efficiently computed (Hagen, 2000), though these methods have not 

gained popularity. The actor-critic architecture is better suited for adaptation to continuous time 

and space, as shown in Subsection 2.2.8. 

 

2.2.7 Discrete Actor-Critic 

Actor-critic methods are typically TD methods, which learn the policy in parallel with the 

value function, without the need for a model of the environment and without computing the full 

action-value function. The actor-critic consists of two components, shown in Figure 2.2. The 

actor represents the current policy, mapping states to actions, : .A X U→  The critic represents 

the value function for the current actor, : .C X →  

The actor-critic is designed to reduce dimensionality compared to a Q-learning style 

algorithm, as described further in Subsection 2.2.8. Overall, the agents will perform a type of 

gradient descent in policy space. From its current policy, the actor-critic will make minor 

changes to its policy. If the changes are beneficial (positive TD-error), they will be kept; if not 

(negative TD-error), they will be discouraged. This is akin to sampling the gradient in policy 
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space in one direction and either stepping in that direction or the opposite direction. However, 

the utility of each policy is approximated by the critic, which is itself only an approximation. 

Thus, only approximations of the points in policy space are available for computing the gradient, 

which can result in divergence. 

 

 

Figure 2.2: Actor-critic architecture diagram, recreated from (Sutton and Barto, 1998, Figure 
6.15). 

 

This approach is a minimization routine like any other, and is susceptible to the same 

problems, primarily local minima. Changes to the policy are implemented by adding exploration, 

in the form of noise, to the actions. The larger the noise, the greater the deviation from the 

current policy will be. It is common for exploration to be decayed as the policy improves, much 

like the temperature in a simulated annealing minimization routine. 

The actor-critic architecture for discrete space and time is described in Chapters 6.6 

(Actor-Critic Methods) and 7.7 (Eligibility Traces for Actor-Critic Methods) of (Sutton and 

Barto, 1998). Chapter 7 of (Sutton and Barto, 1998) also provides an introduction to eligibility 
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traces, which represent how much the value function at each visited state should be changed if a 

TD-error is observed at the current time, t. Equations 2.34 and 2.35 provide equations for 

exponentially decaying eligibility traces for the discrete actor-critic. 

They can be added to most temporal-difference methods to increase learning efficiency. 

Without eligibility traces, a distant future reward will slowly propagate back to the states 

resulting in it. Using eligibility traces, the first time a reward is seen, the previously visited states 

resulting in the reward can be immediately updated. 

 

[…] an eligibility trace is a temporary record of the 

occurrence of an event, such as the visiting of a state or the taking 

of an action. The trace marks the memory parameters associated 

with the event as eligible for undergoing learning changes. When a 

TD error occurs, only the eligible states or actions are assigned 

credit or blame for the error. Thus, eligibility traces help bridge 

the gap between events and training information. Like TD methods 

themselves, eligibility traces are a basic mechanism for temporal 

credit assignment. – (Sutton and Barto, 1998) 

 

The actor, defined in Equation 2.30, is stochastic to allow for exploration (which can be 

tapered over time or as the policy approaches the optimal policy). For the discrete 

implementation, both the actor and the critic are typically implemented using tables instead of 
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function approximators. The actor is represented by a table of probability values, ( ), ,p x u  where 

the stochastic policy is computed using the Gibbs Softmax method provided in Equation 2.30 

(Sutton and Barto, 1998), 

 
( , )

( , )( , ) Pr{ | } .
p x u

t t t p x b

b

ex u u u x x
e

π = = = =
∑

 (2.30) 

The critic is represented by a real-valued table representing the value of each state, ( ).V x  

The actor-critic works by generating an action using Equation 2.30, applying the action to 

the environment, generating a TD-error using the critic, and finally using the TD-error to update 

both the actor and the critic. The critic remains on-policy, meaning it approximates the value 

function for the current policy of the actor (Sutton and Barto, 1998). Equation 2.31 defines the 

TD-error, where tr  is the reward from progressing from state 1tx −  to tx , and γ  is the discount 

rate of the utility, 

 ( ) ( )1 1 .t t t tr V x V xδ γ+ += + −  (2.31) 

Equation 2.32 provides the TD update equation for the critic, where α  is the learning 

rate, and ( )V xπ  is the approximated utility of state x given the current policy, :π  

 ( ) ( ) .t t tV x V xπ π αδ← +  (2.32) 

 Equation 2.33 is the TD update equation for the actor, where β  is the learning rate: 

 ( ) ( ), , .t t t t tp x u p x u βδ← +  (2.33) 
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Once the eligibility traces are defined, they can be readily added to these equations as a linear 

scaling factor on the TD-error for each state. The more difficult part is deciding how best to 

define the eligibilities. Variations of the definitions of Sutton and Barto (1998) were used and are 

provided in Equation 2.34 for the actor, and Equation 2.35 for the critic, where λ  is a decay 

constant: 

 
( ) ( )( )

( )
1

1

, 1 , if , and ,
,

, , otherwise,
t t t

t
t

e x u x x u u
e x u

e x u

γλ

γλ
−

−

⎧ + = =⎪= ⎨
⎪⎩  

(2.34) 

 ( ) ( )( )
( )
1

1

1 , if ,

, otherwise.
t t

t
t

e x x x
e x

e x

γλ

γλ
−

−

⎧ + =⎪= ⎨
⎪⎩

 (2.35) 

The eligibility traces can be added to the update equations as previously described, 

resulting in Equation 2.36 for the critic and Equation 2.37 for the actor: 

 ( ) ( ) ( ) ,t t t t tV x V x e xπ π αδ← +  (2.36) 

 ( ) ( ) ( ), , , .t t t t t t t tp x u p x u e x uβδ← +  (2.37) 

These Equations (2.30, 2.31, 2.34, 2.35, 2.36, and 2.37) were used to implement a simple 

discrete problem. An agent was placed randomly on a 10 10×  grid and allowed to move up, 

down, left, or right. If it tried to move off the grid, it stayed in the same position for that iteration. 

Episodes were terminated when the agent reached the terminal state. Rewards were all zero 

except when the agent moved to the terminal state, where the reward was one. The utilities 

learned by the actor-critic are displayed in Table 2.2, with .9.γ =  Eligibilities were cleared at the 

start of each episode.  
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0.14358 0.163716 0.190235 0.213739 0.240321 0.268046 0.297888 0.331051 0.370866 0.412367 
0.164114 0.190959 0.217898 0.244666 0.272905 0.305 0.340462 0.377249 0.420366 0.46828 
0.187638 0.217985 0.245377 0.275355 0.306591 0.342318 0.380683 0.423436 0.46984 0.523183 
0.211337 0.244625 0.27606 0.309058 0.344233 0.382565 0.425359 0.473855 0.526008 0.583735 
0.237658 0.272447 0.307345 0.343995 0.384081 0.427922 0.475969 0.527296 0.585228 0.65193 
0.267387 0.304041 0.342326 0.382065 0.426934 0.475675 0.530004 0.588924 0.651768 0.726157 
0.297307 0.340978 0.381293 0.426311 0.475233 0.52991 0.589838 0.655925 0.726743 0.807879 
0.333444 0.37896 0.425197 0.47491 0.529278 0.5894 0.655785 0.728876 0.807826 0.898406 
0.370964 0.421787 0.470426 0.528127 0.587141 0.655189 0.728628 0.80993 0.899958 0.999766 
0.412948 0.467835 0.522984 0.58428 0.651165 0.724479 0.806889 0.898681 0.999989 N/A 

 

Table 2.2: Critic (value function) generated using discrete actor-critic for the 10 10×  gridworld 
described in the text, with 0.9.γ =  The terminal state (10, 10) is the lower right. 

 

 Sutton and Barto (2007) assert that this is only one example of an actor-critic method, 

and that other variations may select actions in ways other than that provided in Equation 2.30. 

This variant does not reduce the dimensionality of the problem since the dimension of the actor 

is the same as that of the Q-function. The dimension reducing properties of the actor-critic are 

shown in the following section, which introduces the continuous actor-critic. The discrete and 

continuous cases must be differentiated because function approximators must be used to 

represent the continuous policy and value function, whereas the discrete system in this section 

can be implemented using tables. Similarly, minor changes to the TD-error equation must be 

made to account for the switch to continuous time. 

 

2.2.8 Continuous Actor-Critic 

Doya's continuous actor-critic (Doya, 2000) extends the discrete actor-critic to 

continuous time and space using function approximators and modified update equations. While 

most of the setup remains the same as with the discrete actor-critic, the function the actor 
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computes must be modified because the Gibbs Softmax method (Equation 2.30) does not work 

for continuous actions. It is therefore changed to : ,A X U→  which maps states directly to 

actions. While Doya's update equation for the actor is derived from the SRV algorithm 

(Gullapalli, 1990), this new actor is not stochastic. Because exploration is no longer inherent to 

the actor, explorational noise must be artificially injected into the actions.  

Doya provides the continuous counterpart of the TD error as 

 ( ) ( ) ( )( ) ( )1 ,t r t V x t V tδ
τ

= − +  (2.38) 

where τ  is a constant that determines the discount rate of rewards. Using a backward Euler 

approximation for the derivative of the value function, he finds 

 ( ) ( ) ( )( ) ( )( )1 1 .tt r t V x t V x t t
t

δ
τ

⎡ Δ ⎤⎛ ⎞= + − − −Δ⎜ ⎟⎢ ⎥Δ ⎝ ⎠⎣ ⎦
 (2.39) 

The critic, a function approximator ( )( ); : ,V x t w X →  with parameter vector w, can be 

updated using exponential eligibility traces as 

 ( ) ( ) ( )( );
,i i

i

V x t w
e t e t

w
κ

∂
= − +

∂
 (2.40) 

and 

 ( ) ( ) ,i C iw t e tη δ=  (2.41) 

where Cη  is the critic's learning rate, κ  scales the decay of the eligibility traces over time, and 

0 κ τ< ≤  (Doya, 2000). 

He then proposes that the actor be updated using the SRV algorithm, citing (Gullapalli, 

1990). The update for the actor, ( )( ); ,AA x t w  which has its own parameter vector, ,Aw  is 
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 ( ) ( )
( )( );

,
A

A
i A A

i

A x t w
w t n t

w
η δ

∂
= ⋅

∂
 (2.42) 

where Aη  is the actor's learning rate. The actions of the actor are selected as 

 ( ) ( )( ) ( )( ); ,Au t S A x t w n tσ= +  (2.43) 

where σ  is a constant, and S  is a monotonically increasing function. For the remainder of this 

thesis, the sigmoid function, provided in Equation 2.62, is used for S. The term ( ) ,n t  which is 

the same dimension as the action space, defines the explorational noise that is injected into the 

policy. In his examples, Doya used 

 ( ) ( ) ( ) ,nn t n t N tτ = − +  (2.44) 

where ( )N t  is normal Gaussian noise of the same dimension as the action space. 

This thesis focuses on the application of the continuous actor-critic to the Adaptive RL 

FES Controller Task. 

 

2.2.9 Stochastic Real-Valued Unit Algorithm (SRV Algorithm) 

When the continuous actor-critic's update equation for the actor (Equation 2.42) is 

presented in (Doya, 2000), the Stochastic Real-Valued Unit algorithm (SRV algorithm; 

Gullapalli, 1990) is cited as the source and justification. Subsection 2.2.10 discusses convergence 

of the continuous actor-critic, for which a background on the SRV algorithm will be useful. It is 

therefore presented in this subsection.  

In this system, the states are real-valued vectors in the state space ,n⊆X  and the 

actions are real numbers .⊆U  The rewards have fixed range ( ) [ ]0,1 .r t ∈  The reward function 
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is defined by the distribution [ ]: 0,1 ,G × × →R X U  where 

( ) ( ) ( ) ( ){ }, , Pr , .G r x u r t r x t x u t u= ≤ = =  The optimal action can then be defined as 

 ( ){ }* arg max , .
u

u E r x u
∈

=
U

 (2.45) 

The actor is represented by a parameter vector, ,θ  while the critic is represented by a 

parameter vector, .φ  For a given time step, the state ( )x t  is selected randomly, though the 

system obeys the transition function. The agent's action is generated stochastically via the 

Gaussian distribution 

 ( ) ( ) ( )( )( )ˆ~ , ,Tu t N x t S r tμ σ= =θ  (2.46) 

where ( ) ( )ˆ Tr t x tφ=  is the estimation of the reward to be received and S is a monotonically 

decreasing non-negative function, such that ( )1 0.S =  The variance of the action distribution 

decreases as the reward increases, which equates to decaying exploration as performance 

improves. 

After generating the current action, the agent receives a reward for its action, 

( ) ( )( ), .r u t x t  Recall that this signal is a random variable. The actor parameter array is then 

updated as follows. 

 ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )ˆ1 , ,t t t r u t x t r t u t t x tσ μ+ = + − −θ θ  (2.47) 

where 

 ( ) ( ) ,Tt x tμ = θ  (2.48) 

 ( ) ( )( )ˆ ,t S r tσ =  (2.49) 

 ( ) ( )ˆ ,Tr t x tφ=  (2.50) 
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and 

 ( ) ( ) ( )( )~ , .u t N t tμ σ  (2.51) 

The critic parameter array is updated such that 

 ( ) ( ) ( ) ( )( ) ( )( ) ( )ˆ1 , ,t t r u t x t r t x tφ φ ρ+ = + −  (2.52) 

where ρ  is a learning rate. 

Gullapalli (1990) shows that, under certain strong assumptions, this system will converge 

to the optimal actor. 

 

2.2.10 Continuous Actor-Critic Analysis 

The relation between Doya's update equation (Equation 2.42) for the actor and 

Gullapalli's SRV update (Equation 2.47) is not obvious. If one substitutes 

( ) ( ) ( )( ) ( )ˆ, ,t r u t x t r tδ = −  which is not strictly true—though the two terms are related—the 

SRV update for the actor becomes 

 ( ) ( ) ( ) ( ) ( )( ) ( )1 .t t t t u t x tσ δ μ+ = + −θ θ  (2.53) 

Further substituting ,Aw = θ  and ( ) ( ) ( )( ) ,n t t u tσ μ= −  which again is not true, though the two 

terms are related, yields 

 ( ) ( ) ( ) ( ) ( )1 .A Aw t w t n t t x tδ+ = +  (2.54) 

This equation is identical to Doya's update because in the SRV algorithm,  

 ( )
( )( );

.
A

A
i

A x t w
x t

w
∂

=
∂

 (2.55) 
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This adaptation of the SRV algorithm is not perfect, so all convergence guarantees no 

longer apply, though Gullapalli's intuitive justification carries over. This justification is 

reproduced below. 

 

 If this noise has caused the unit to receive a [reward] that 

is more than the expected evaluation, then it is desirable [that] 

the [actor] should [...] be changed in the direction of the noise. 

That is, if the noise is positive, the unit should update its 

parameters so that the mean value increases. Conversely, if the 

noise is negative, the parameters should be updated so that the 

mean value decreases. On the other hand, if the evaluation 

received is less than the expected evaluation, then the [actor 

should be updated] in the direction opposite to that of the noise.  

– (Gullapalli, 1990) 

 

Though this justification is still sound, the adaptation to the continuous actor-critic is still only an 

approximation. 

To the best of our knowledge, there are no convergence proofs for the continuous actor-

critic. This is likely due to mathematical complications introduced by the addition of function 

approximators. We must therefore rely on Gullapalli's intuition to understand why the continuous 

actor-critic learns. This intuition relies on the critic being accurate, which can become 

problematic, as shown in Section 2.4. 
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However, we can use Gullapalli's intuition to make informed decisions about parameter 

settings. With a positive TD-error, the actor ought to reinforce the explorational noise used. The 

actor's surface should be warped so the output at the current state approaches the output plus the 

current noise. Thus, the locality of the update to the actor should be such that the states close 

enough to benefit from similar exploration will be updated, but states further away (where the 

same exploration may not be beneficial) will not be updated. 

In order to achieve an accurate critic, so that Gullapalli's intuition applies, the updates to 

the critic should eventually be local. However, global updates may initially be beneficial to allow 

the critic to take on the general shape of the value function. We therefore recommend increasing 

the locality of critic updates over time. This will be left to future work because the Adaptive RL 

FES Controller Task does not allow for decaying learning rates (which is akin to increasing the 

locality of updates).  

 

2.3 Function Approximators 

In order to implement the continuous actor-critic, function approximators are used to 

represent V and π  (also known as A and C). These function approximators are then updated via a 

form of gradient descent during training. Function approximators can be split into two classes, 

local and global. When changes are made to a local approximator, the value of the function will 

only change within some neighborhood, while an update to a global approximator changes the 

value of the function over the entire domain.  

Initial tests, described below, were performed with two global approximators, Artificial 

Neural Networks (ANNs) and Functional Link Networks (FLNs), and three local approximators, 
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k-Nearest Neighbor (k-NN), Locally Weighted Regression (LWR), and Radial Basis Functions 

(RBFs), all of which are defined in the following subsections. Though an approximator 

consisting of a linear combination of the inputs could exactly represent the PD controller, it was 

not included in tests because it is equivalent to a one-layer ANN with a linear activation 

function. In these trials, the approximators used a supervised learning technique, gradient 

descent, to approximate the value of states when using the PD controller as the policy for FES 

control of the simulated arm. In this chapter, these preliminary results are reviewed. Although 

these results are for supervised learning, they give insight into the learning speed of each 

method, which was then used to decide which approximators to implement in the actor-critic 

architecture. 

For this task, called the Utility Approximation Task (UAT), 720,000 state-utility points 

were generated. These points consist of states of the form 

  ( ) ( ) ( ) ( )Goal, , ,
T

x t t t tθ θ θ⎡ ⎤= ⎣ ⎦  (2.56) 

and their empirically calculated utility. The utility was computed as the integral of the reward 

signal over a two-second episode: 

 
( ) ( ) ( )

2 6
2

Goal Goal
10

MuscleForce ,T T
i

it

W dtζ θ θ θ θ θ θ
==

⎡ ⎤+ − − +⎢ ⎥⎣ ⎦
∑∫  (2.57) 

where 164.14W =  and ( )2/180 .ζ π= −  This reward signal is similar to that used by Jagodnik 

and van den Bogert (2007) to create the PD controller discussed in Section 2.1, and also 

resembles the reward signal used in the actor-critic tests in Chapters 5 through 8. The start and 
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goal states for each episode were both sampled randomly from 

[ ] [ ] [ ] [ ].349,1.571 .349,1.571 20 ,90 20 ,90θ ∈ × = ° ° × ° °  and [ ] [ ]0,1 0,1 .θ ∈ ×  

 The 720,000 points were split into a training set of 550,000 points and a testing set of the 

remaining 170,000 points. Performance was judged based on the number of training iterations 

required for convergence, as well as the sum of the squared error (SSE) on the testing set, once 

converged. The SSE is defined as 

 
( )2

1
,

n

i i
i

SSE x h
=

= −∑  (2.58) 

where x is a scalar representing the desired result for the ith testing point, 170,000n =  is the 

number of testing points, and h is a scalar representing the output of the approximator. The 

average SSE if all outputs were zero was 187,929.  

 The remainder of this chapter describes ANNs, FLNs, k-NN, LWR, and RBFs, and 

describes their performance on the task of learning the utility function. A summary of the 

performance of each function approximator is provided in Subsection 2.3.6. 

 

2.3.1 Artificial Neural Networks (ANNs) 

Because ANNs have been successfully applied to many classification, function 

approximation, and RL tasks (Baxt, 1990; Hutchinson, 1994; Le Cun et al, 1990; Leung et al., 

1990; Pomerleau, 1993; Sejnowski et al., 1990; Shea and Liu, 1990), they serve as an 

experimental control for comparison to other methods. In this work, we use fully connected feed-

forward ANNs with one or two hidden layers. We use notation similar to that of Russell and 
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Norvig (1995). In this notation, the output of the lth node in the input layer is denoted ,la  the 

output of the kth node in the hidden layer following the inputs (called the second hidden layer in 

this thesis) is denoted ,ka  the output of the jth node in the first hidden layer is denoted ,ja  and 

the output of the ith output node is denoted .ia  

The output for each node is defined as 

 ( ) ,i ia S in=  (2.59) 

where S is the activation function (also called a threshold function) for the ith node, and  

 , ,i j i j
j

in w a=∑   (2.60) 

where w is an array of weights, and ,j iw  denotes the weight between the jth node of the first 

hidden layer and the ith node of the output layer. An additional node with a fixed output of 1−  is 

added to each layer, other than the output layer, to serve as a threshold for neurons in the 

subsequent layer (Russell and Norvig, 1995). Equations 2.59 and 2.60 apply to all layers, with 

the sum in Equation 2.60 being over the neurons in the previous layer. For further description of 

the notation, see (Russell and Norvig, 1995). 

Neurons in the output layer use a linear activation function, 

 ( ) ,L x x=  (2.61) 

while all other neurons used the sigmoid activation function,  

 
( ) 1 .

1 xS x
e−=

+
 (2.62) 
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The derivatives of Equations 2.61 and 2.62 are required for gradient descent updates such as 

error backpropagation, and are provided in Equations 2.63 and 2.64, respectively: 

 ( ) ( ) 1,L x L' x
x
∂

= =
∂

 (2.63) 

 ( ) ( ) ( )( ) ( )1 .S x S' x S x S x
x
∂

= = −
∂

 (2.64) 

For future reference, the derivatives of the ANN output with respect to the weights in 

each layer are provided below. These are required for actor-critic updates. Equations 2.65, 2.66, 

and 2.67 provide the derivatives of an ANNs output with respect to a weight in the output layer, 

second hidden layer, and first hidden layer respectively. 

 ( )
,

, if ,
0, otherwise,

i j

j i

a L' in a y iy
w

∂ ⎧ =
= ⎨

∂ ⎩
 (2.65) 

 ( ) ( ),
,

,i
i j i j k

k j

a L' in w S' in a
w
∂

=
∂

 (2.66) 

 ( ) ( ) ( )( ), ,
,

.i
l i j i j k j k

jl k

a a L' in w S' in w S' in
w
∂

=
∂ ∑  (2.67) 

For training on the UAT, the backpropagation algorithm was used (Russell and Norvig, 

1995). The computational cost of this algorithm resembles that of the actor-critic updates, and 

was therefore computed for various network sizes. Training and testing for one point using 

ANNs was efficient, requiring 23.4 microseconds to train a network with 20 neurons in its only 

hidden layer on one point, and 2.68 microseconds to run the same network on a query point. 

These values were determined using a 1.6 GHz AMD Turion 64 processor running 32-bit 
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Windows XP. Table 2.3 shows the training and testing times for various network sizes as well as 

their performance on the UAT. Each training epoch consisted of training on 550,000 points, and 

each testing epoch consisted of running the network on 170,000 points, as discussed at the top of 

Section 2.3. 

 

First 
Hidden 

Layer Size 

Second 
Hidden 
Layer 
Size 

Training 
Time Per 

Epoch 
(Seconds) 

Testing 
Time Per 

Epoch 
(Seconds) 

Learning 
Rate 

Epochs to 
Convergence 

SSE 

5 0 3.1148 .3476 .000001 121 20,000 
10 0 6.912 .8 .00001 31 15,000 
20 0 12.88 1.479 .000001 500 2,913 
5 5 6.1188 .6844 .0001 1 11,088 
10 5 9.4092 1.0564 .000001 100 5,000 
10 10 12.875 1.422 .0000001 500 3,080 

 

Table 2.3: Training and testing times for ANNs of various sizes on the UAT. Each size was 
tested with learning rates varying from .001 to .0000001, training for up to 500 epochs. The 
setups resulting in the smallest SSE for each network size are reported above. 

 

The smallest SSE achieved by an ANN was 2,913 when using 20 neurons in its single 

hidden layer, with a learning rate of 61 10α −= ×  after training for 500 epochs over the training set 

of 550,000 points. Overall, learning with backpropagation was remarkably slow with respect to 

the number of updates required for convergence. With larger learning rates, the function failed to 

converge to an accurate value, while smaller learning rates require hundreds of epochs (on the 

order of 50 million updates) to converge. 
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2.3.2 Functional Link Networks (FLNs) 

 Functional Link Networks (FLNs) attempt to increase the learning speed and stability of 

ANNs during training by predetermining interesting features of the current state to use as 

additional inputs to the ANN (Klassen, Pao, and Chen, 1988). The features chosen were varied 

throughout these tests. The best found are provided in Table 2.4. 

 

1θ  2θ  
1θ  2θ  

1Goal 1θ θ−  
2Goal 2θ θ−  ( )1 1sinθ θ  ( )2 2sinθ θ  

( )1 2 2sinθ θ θ  ( )1sin θ  ( )2sin θ  ( )1

2

Goal 1θ θ−  

( )2

2

Goal 2θ θ−  ( )1 2 2sinθ θ θ  ( ) ( )
2

2 2sinθ θ ( ) ( )
2

1 2sinθ θ  
 

Table 2.4: 16 features found to work well for FLNs. 

 

These features were chosen after manually inspecting the equations for the dynamics of 

the simulated arm. An SSE on the UAT of 4,893 was achieved using all 16 parameters in Table 

2.4, after training for only 60 epochs with 13 neurons in the first hidden layer and no second 

hidden layer, 6
.1 10α −= ×  Though this error is worse than that of the best ANN, learning 

occurred faster. 

 In conclusion, the improvement over the standard ANN was not significant enough to 

warrant further investigation. 
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2.3.3 k-Nearest Neighbors (k-NN) 

 k-Nearest Neighbors (k-NN) served mainly as a stepping stone to the implementation of 

Locally Weighted Regression (LWR), discussed below. A KD-Tree was implemented to store all 

the training instances for both k-NN and LWR. It was found that finding the k-nearest neighbors 

using the KD-Tree was not the computational choke point, so further consideration of nearest 

neighbor runtimes was not necessary. 

For the remainder of this subsection, k is the number of nearest neighbor points used in 

the approximation of query point q. These are the k points with the smallest (usually Euclidean) 

distance to the query point. For a given definition of ,iw  the approximation function is defined 

by Equation 2.68, 

 

( ) ( )
1

,
k

i i

i j
j

w U x
h x

w=

⋅
=∑ ∑

 (2.68) 

where ( )iU x  is the known output for the input ,ix  which in the UAT is the numerically 

determined utility of the state .ix  In order to improve performance, the state was changed from 

Equation 2.56 to 

  ( ) ( ) ( ) ( ) ( )Goal, , .
T

x t t t t tθ θ θ θ⎡ ⎤= −⎣ ⎦  (2.69) 

k-NN can be implemented using different weighting schemes. Tests were performed 

using no weighting, inverse weighting, and exponential weighting. The approximation function 

( )h x  is the same for each of these weighting schemes. Equation 2.70 defines the weights if 
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using no weighting, while Equation 2.71 defines the weights when using inverse-distance 

weighting, and Equation 2.72 defines the weights when using exponential distance:  

 1,iw =  (2.70) 

 ( )2

1 ,
,i

i

w
d x q

=  (2.71) 

 
( ),2 .id x q

iw −=  (2.72) 

In Equations 2.71 and 2.72, d is the Euclidean distance and q is the query point.  

Unlike ANN-based algorithms, there is no training phase for k-NN, so it is more difficult 

to judge training time. However, using all 550,000 training points on the UAT, k-NN achieved 

much smaller errors than ANNs, as shown in Figure 2.3. The lowest error achieved was 1,286 

using the inverse-distance weighting and k between 8 and 11.  

 

  

Figure 2.3: Sum of the squared error on the UAT testing set when using k-NN with varying k and 
weighting schemes. 
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The ANNs and FLNs have the innate property that they can be used to approximate a 

function that changes over time. Instance based methods like k-NN and LWR do not have this 

property because they are not based on the same system of training. Thus, in order for k-NN to 

be used in the actor-critic, it would have to be modified as with LWR in Chapter 3. 

 

2.3.4 Locally Weighted Regression (LWR) 

Like k-NN, Locally Weighted Regression (LWR) is a memory-based regression method, 

however, rather than merely taking a weighted average of the outputs for the k-nearest neighbors, 

LWR fits a linear model to the nearest neighbors, which it then uses to extrapolate the value at 

the query point. The fit for the linear model is computed to minimize the squared error of each of 

the k-nearest neighbors, weighted exponentially by the inverse of their distances from the query 

point. The LWR Algorithm is provided as Algorithm 2.1. 

 The parameter D is a diagonal matrix representing the weight of each dimension as well 

as the size of the neighborhood to be considered. Defining 

 [ ]( )1 2, ,..., ,nh diag n n n= ⋅D  (2.73) 

we split D into two components: h, which scales the neighborhood, and the array of ,in  which 

normalize the range of the input dimensions. Commonly, the values of n are fixed to  

 
2

1 ,i
i

n
σ

=  (2.74) 

where iσ  is the standard deviation of the ith dimension of the training points. The value for h on 

the UAT can then be determined using leave-one-out cross validation, defined in Algorithm 2.2. 
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Algorithm 2.1: The LWR Algorithm, reproduced from (Schaal, Atkeson, and Vijayakumar, 
2002).  

 

A variation of leave-one-out cross validation was implemented to search for h, but it was 

computationally intensive when the number of candidate values for h was large ( H  in 

Algorithm 2.2). It was therefore only used with a small set of candidate values to obtain an initial 

range for h, after which a manual search was done to find a near optimal h. This manual search 

was similar to Algorithm 2.2, except that the consecutive values of rh  were determined by the 

author after studying the results of previous values. 

The LWR Algorithm: 
Given: 
A query point qx  and p training points { },i iyx  in memory 
Compute Prediction: 

a) compute diagonal weight matrix W  where 

( ) ( )1exp
2

T

ii i q i qw ⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

x x D x x  

b) build matrix X  and vector y  such that 

( )1 2, ,...,
T

p=X x x x  where ( ) 1
TT

i i q
⎡ ⎤= −⎢ ⎥⎣ ⎦

x x x

( )1 2, ,...,
T

py y y=y  
c) compute locally linear model  

( ) 1Tβ
−

= X WX Wy  
d) the prediction for qx  is thus 

1ˆq ny β +=  
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Algorithm 2.2: The Leave-One-Out Cross Validation Algorithm, reproduced from Schaal et al., 
(2002), which can be used to determine the proper setting for h in Algorithm 2.1. 

 

According to Schaal et al. (2002), the computational complexity of Algorithm 2.1 is 

( )2 ,O pn  where p is the number of training points, and n is the dimension of the query point. In 

order for the matrix inverse in LWR to be calculated (step c in Algorithm 2.1), the total number 

of training points used must be greater than the dimension of the output. To store the training 

points, the same KD-Tree used for k-NN was used. Because the Gaussian weighting kernel falls 

off steeply, only the k (fixed) nearest training points were run through the LWR Algorithm to 

generate an approximation. Figure 2.4 depicts the Gaussian weighting kernel for a sample point, 

exemplifying how most points need not be included in each regression. 

Leave-One-Out Cross Validation: 

Given: A set H of reasonable values hr 

Algorithm: 

For all :rh H∈  

0rsse =  

For i=1:p  

a) q ix x=  
b) Temporarily exclude { , }i ix y  from training 

data 
c) Compute LWR prediction ˆqy  with reduced 

data 
d) ( )2

ˆr r i qsse sse y y= + −  
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Figure 2.4: Locally Weighted Regression Point Weighting (query point (0.5, 0.5), marked by the 
diamond). Close by points that have significant weights (greater than 0.05) are marked by filled 
circles. Sample points on any given circle centered at the query point will have equal weights. 
Because only a small number of the closest points have non-negligible weights, the LWR 
algorithm can be run using only the k-nearest neighbors without significant loss of precision. 
Reproduced from (Wedge, 2004, Figure 3.5). 

 

When testing on the UAT, the state was once again modified to that in Equation 2.61, as 

with k-NN. Table 2.5 shows the SSE on the testing set for various values of h and k. LWR's SSE 

of 294 is the lowest of all the approximators tested. It achieved this SSE without requiring the 

long training of ANNs and FLNs. As described for k-NN, this is also its drawback—it is not 

natively a learning algorithm, so it will have to be modified. 
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h k SSE 
0.0001 10 553.504 
0.0001 15 303.006 
0.0001 20 294.74 
0.0001 25 304.421 
0.0001 30 320.461 
1e-005 10 461.128 
1e-005 15 302.998 
1e-005 20 294.758 
1e-005 25 304.444 
1e-005 30 320.487 
1e-006 10 463.428 
1e-006 15 303.015 
1e-006 20 294.759 
1e-006 25 304.446 
1e-006 30 320.489 
1e-007 10 594.221 
1e-007 15 303.031 
1e-007 20 294.758 
1e-007 25 304.443 
1e-007 30 320.486 

 

Table 2.5: Performance of LWR on the UAT with various h and k. The lowest SSEs appear in 
bold. 

 

2.3.5 Radial Basis Functions (RBFs) 

In order to mimic Doya’s work (Doya, 2000) in Section 2.4, Radial Basis Functions 

(RBFs) were implemented in the continuous actor-critic. The benefit of RBFs is that they are 

local approximators, which are made for iterative learning, unlike the memory-based k-NN and 

LWR algorithms.  

RBFs are the weighted sum of multiple kernel functions as shown in Equation 2.75:  

 
( )0

1
( ) , ,

N

i i
i

F q w w K q x
=

= +∑  (2.75) 
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where q is the query point, iw  are tunable parameters, and N is the total number of kernel 

functions used. Gaussian functions were used for the kernels in our implementation: 

 

2

2
( , )

2( , ) ,
id x x

iK x x e σ
−

=  (2.76) 

where σ  is the standard deviation of the Gaussian, x is the query point, ix  is the center of the ith 

kernel, and ( ), id x x  is a distance metric. Different distance metrics may be used to account for 

different units. 

 The distance metric, d, used was Euclidean distance. For dimensions of the state that are 

in radians, the distance in radians was found to be the smallest distance, allowing for wraparound 

from 0 to 2 .π  Though each weight, ,iw  can be changed, the centers of the kernel functions, ,ix  

are fixed.  

In this implementation, the kernel functions were evenly distributed in a grid covering the 

volume of interest. The derivatives with respect to each weight are needed later for performing 

gradient descent and are therefore provided in Equations 2.77 and 2.78: 

 0

1,F
w
∂

=
∂

 (2.77) 

 
( )

1

, .i
i

F K q x
w ≥

∂
=

∂
 (2.78) 

 RBFs appear to be more robust to large learning rates than ANNs, though the standard 

deviation of the kernel functions must be well set. For a description of what happens with 

improper standard deviations, see Figure 20.13 in (Russell and Norvig, 1995). RBFs are known 

to scale poorly to higher dimensions because the number of kernels required grows exponentially 
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with the dimension. Thus, RBFs were not selected for implementation on the FES control 

problem nor the UAT, but rather were only implemented in Section 2.4 when duplicating the 

work of (Doya, 2000).  

 

2.3.6 Function Approximator Performance Summary 

 This subsection consolidates the performance descriptions of all the function 

approximators and compares the results. Table 2.6 provides an overview of the performance of 

ANNs, FLNs, k-NN, and LWR on the UAT. The memory-based methods, k-NN and LWR, 

achieved the smallest SSE, and thus deserve further consideration for use in the continuous 

actor-critic on the Adaptive RL FES Controller Task. However, these methods are not iterative, 

and are therefore not suitable for use in their current form. Chapter 3 modifies LWR to create an 

incremental algorithm for use in the continuous actor-critic. 

 

 Best SSE Pros Cons 
ANNs 2,913 Well researched and 

understood 
Slow training 

FLNs 4,893 Learns much faster than ANN Higher error than ANN, possibly 
due to more local minima 

k-NN 1,286 Simple, low error Not incremental algorithm 
LWR 295 Lowest error Many tunable parameters, not 

incremental algorithm 
 

Table 2.6: Summary of the performance of ANNs, FLNs, k-NN, and LWR on the UAT. RBFs 
are not included because they were not implemented for the UAT (see Subsection 2.3.5). 
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 Also, notice that the analysis of the results from k-NN and LWR may not be indicative of 

the results for incremental versions thereof because a training phase must be introduced. We 

selected the number of known points for k-NN and LWR to be all of the training points, though 

the relation of this selection to the training time of incremental variants of k-NN and LWR is 

unknown. 

 

2.4 Pendulum Swing-Up Case Study 

In order to better understand the continuous actor-critic (Subsection 2.2.8), the pendulum 

swing-up task (Doya, 2000) was implemented. The pendulum swing-up task was used by Doya 

to showcase the continuous actor-critic's learning speed. The pendulum environment is depicted 

in Figure 2.5. 

 

 
Figure 2.5: Reproduced from (Doya, 2000). The pendulum model consists of an arm with a 
weight on the end. A limited amount of torque, ,Max Maxu T u− ≤ ≤  can be applied to the 
pendulum. The dynamics follow the equations θ ω=  and 2 sin ,ml w w mgl uμ θ= − + +  where 

1,m =  9.8,g =  1,l =  .01μ =  (amount of damping of the pendulum’s motion), and 5.Maxu =  
Though a time step of .02 seconds was used for updating the actor-critic, motion approximation 
was done using a forward Euler approximation with a time step of .001 seconds. 
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The agent must learn to swing the pendulum up to 0.θ =  To do this, the agent receives 

an instantaneous reward of ( ) cos .R x θ=  Doya used the initial configuration ( ) [ ]0 00 , ,Tx θ ω=  

where 0 0,ω =  and the initial angle, 0 ,θ  is selected randomly in [ ], .π π−  For our tests, we used 

0 0ω =  and 0θ π=  to simplify empirical evaluation of each policy. 

The actor and critic were both represented using RBFs (Subsection 2.3.5), which are 

reviewed here. The Gaussian kernels were distributed in a 15 15×  grid across the domain 

[ ]0, 2 ,θ π∈  5 5, .
4 4

θ π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦
 The kernels used  

 ( )
( ) ( )22

22, ,
i i

iK e
θ θ θ θ

σθ θ
− + −

−
=  (2.79) 

where iθ  is the center of the ith kernel, and .45.σ =  The output for each function approximator 

is  

 ( ) ( )0
1

, , ,
n

i i
i

f w w Kθ θ θ θ
=

= +∑  (2.80) 

where n is the total number of kernels, and the vector w, of length 1n +  is the set of tunable 

weights for the function approximator. 

The agent's performance is evaluated as the integral of the rewards over a 20-second 

episode starting with the pendulum hanging straight down. Though Doya terminated episodes 

when the pendulum completed an entire revolution, our trials were terminated when the agent 

reached 0θ =  or after the full 20 seconds. For evaluations, explorational noise was not included. 

The parameters 1,τ =  1,Nτ =  5,Aη =  1,Cη =  and 1κ =  were unchanged from (Doya, 2000). 

Exploration was decayed differently from Doya's implementation. We set 
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1 .Episode Number1
10

σ =
+

 (2.81) 

Each setup was run 100 times, and the evaluations were averaged to create Figure 2.6. 

 

 
Figure 2.6: Mean performance (N=100) of the continuous actor-critic on the pendulum swing up 
task. Standard deviation error bars are included. 

 

 In a typical run after 1,000 episodes of training, the agent swings the pendulum up 

clockwise to 4.3,θ =  then back counterclockwise to 2.2,θ =  after which it swings clockwise up 

to 0.θ =  This is a local minimum in policy space because initially swinging to 2.2θ =  would 

require less time. Additionally, on the final swing up to 0,θ =  the pendulum moves slowly over 

the final .2 radians. This is likely an artifact of our choice to terminate episodes when the 

pendulum reaches 0θ =  rather than after a full over-rotation. 

To better understand learning, it is useful to view how accurate the critic is during 

training. To quantify this, after each training episode a separate critic was trained on the actor-



63 
 

critic’s policy for 1,000 episodes using the same parameters as the actor-critic, except with no 

exploration. The squared difference between the two critics' values was summed over the 

domain, evaluated every .1 radians from 0 to π  for θ  and every .2 radians per second from 

5 4π−  to 5 4π  for .w  Figure 2.7 shows the relation between this quantification of critic error 

and the evaluation. These errors are over the entire state space, though the training episodes only 

cover the subset of the domain encountered by the current policy. 

 

Figure 2.7: Comparison of how accurate the critic is (bottom), to learning (top). Notice the 
logarithmic scale of the vertical axis in the bottom plot. During the rapid initial learning phase, 
the critic is less accurate than during the later stages. Some instability is observed both in the 
critic and the policy after 800 episodes and after 900 episodes. 
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 On the pendulum swing-up task, which utilizes shaping rewards in a manner similar to 

that of the application of the continuous actor-critic to the DAS1 model in Chapters 5 and 7, the 

actor-critic achieves rapid initial learning, which occurs even though the critic is not yet accurate. 

When the critic becomes accurate, learning is slower but more stable. Gullapalli's intuition for 

why the system learns (Subsection 2.2.10) only applies well when the critic is accurate. Future 

work should be done to better explain why the system learns when the critic is inaccurate.
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CHAPTER 3:  

INCREMENTAL LOCALLY WEIGHTED REGRESSION  

 

This chapter has been placed prior to Chapters 4, 5, and 6 in order to preserve the flow of 

background, methods, and then results. Because the methods provided herein are not utilized 

until Chapter 7, the reader may opt to skip this chapter and return to it after Chapter 6. 

The Locally Weighted Regression (LWR) algorithm (Algorithm 2.1, presented in 

Subsection 2.3.4), performed the best on the preliminary Utility Approximation Test (UAT) from 

Chapter 2, approximating the desired function with the least error. It is a promising candidate for 

use with the continuous actor-critic because it has the potential for local updates, unlike Artificial 

Neural Networks (ANNs). However, unlike ANNs, which are updated incrementally, the LWR 

algorithm is memory-based. This means that LWR takes a set of known input and output pairs, 

which it uses to generate future approximations. For RL applications, the input and output pairs 

are often not known, but rather it is known that the output should be larger or smaller. 

In this chapter, we convert the LWR algorithm to an incremental version, dubbed 

Incremental Locally Weighted Regression (ILWR). We then test its performance on simple tasks 

and real-world tasks, which give a better understanding of how the different ILWR variants, 

presented in the following sections, relate to each other.  

Previous efforts have been made to create an incremental LWR algorithm (Schaal, 

Atkeson, and Vijayakumar, 2002). These methods attempt to reproduce results if points were all 
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stored and then slowly forgotten over time. Unlike these prior incremental LWR algorithms, 

which have required forgetting factors (Vijayakumar, D'Souza, and Schaal, 2005), ILWR does 

not explicitly forget points. ILWR is also fundamentally different due its placement of regression 

points off the surface to be approximated (cf. Figure 3.3). 

Previous incremental LWR algorithms, sometimes called locally weighted learning 

(LWL) methods, also tend to be kernel centric. Such methods, as well as Radial Basis Functions 

(RBFs; Subsection 2.3.5) are known to scale poorly to high-dimensional problems. If the 

Adaptive RL FES Controller Task is to be scaled up to include more muscles and degrees of 

freedom, we desire a function approximator that scales well for our problem. LWR is known to 

have several advantages over kernel based models (Atkeson, Moore, and Schaal, 1996), 

including its ability to perfectly represent a planar function, such as the PD control law of 

Equation 2.2. In our incremental adaptation of LWR presented in this chapter, we will preserve 

this planar local model rather than switching to kernels, with the hope that it will scale better to 

future problems. 

The memory-based LWR algorithm can be converted to an incremental method using the 

gradient descent rule provided in Equation 3.1. As with other function approximators, such as 

ANNs, the equations for LWR are continuously differentiable with respect to its parameters, 

making it suitable for use with the gradient descent rule. LWR will be given a fixed number of 

points, initialized randomly or using prior knowledge (such as placing higher initial point 

densities in areas with large 2 2/ ),y x∂ ∂  which will be incrementally modified to better 

approximate the desired function. At each step, a query point, q qx , y  is observed. LWR generates 

an approximation, ˆ ,qy  then modifies the weights to decrease the error term. 
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The points stored initially and updated during training will be referred to as knowledge 

points, while the points used to train the knowledge points will be called training points. 

According to (Mitchell, 1997), the gradient descent rule, in terms of the parameters or 

weights, w, for a function approximator, is 

 ,w w w← +Δ  (3.1) 

 ( ) ,w E wηΔ = − ∇  (3.2) 

where η  is a learning rate and the error term, ( )E w  is defined as 

 ( ) ( )2

, ,
1

1 ˆ ,
2

od

q i q i
i

E w y y
=

≡ −∑  (3.3) 

where do is the dimension of the output, ŷ  is ILWR's approximation for the current query, and 

yi,j is the jth output of the ith training point, yi. We will apply this to the LWR algorithm, with the 

knowledge points treated as the weights, w. This choice of error term simplifies the expansion of 

the gradient descent rule, defined for each weight as 

 ( ) ,
, ,

1

ˆ
ˆ .

od
q

i i q q
i

y
w w y y

w
α

α α
α

η
=

∂⎡ ⎤
← − ⋅ −⎢ ⎥∂⎣ ⎦

∑  (3.4) 

A derivation of Equation 3.4 is provided in Appendix D. Because we wish to train after each 

point, the error term in Equation 3.3 does not include a sum over all training points observed. 

This form of gradient descent is often referred to as incremental gradient descent or stochastic 

gradient descent. For further information on the differences between true gradient descent and its 

stochastic approximation, see (Mitchell, 1997).  
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Next, we must consider what the weights, w, represent. One approach is to consider the 

outputs of the knowledge points, yi, the weights. For approximating a function ( )y f x=  where 

, ,x y∈  such as that depicted in Figure 3.1, this means fixing the x-coordinates of knowledge 

points, but allowing the y-coordinates to vary. This will be referred to as Static Input Incremental 

Locally Weighted Regression (SI-ILWR). 

 

 
Figure 3.1: Example ILWR problem, where y denotes the initial knowledge points, and ( )f x  
denotes the desired function. 
 

Another option is to vary both the inputs and the outputs. This allows gradient descent to 

choose the density of knowledge points over the input space. In Figure 3.1 this means allowing 

points to move along both the x- and y-axes. This method will be referred to as Dynamic Input 

Incremental Locally Weighted Regression (DI-ILWR). One expects DI-ILWR to perform better 

than SI-ILWR because it can move points to more interesting regions of the domain. In this 

method, different learning rates are used in Equation 3.4 for updates of the inputs and outputs of 

the knowledge points. SI-ILWR and SO-ILWR, described in the following paragraph, are 
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specific cases of DI-ILWR, with one learning rate set to zero. In other chapters, references to 

ILWR therefore refer to DI-ILWR. 

The third option, fixing the outputs and allowing the inputs to vary, is not practical, but 

serves as an interesting example. In the example provided in Figure 3.1, this means fixing the y-

values of each knowledge point, but moving them along the x-axis. This method will be referred 

to as Static Output Incremental Locally Weighted Regression (SO-ILWR).  

When implementing Equation 3.4, SI-ILWR requires only , ,ˆ / ,q k i jy y∂ ∂  SO-ILWR 

requires only , ,ˆ / ,q k i jy x∂ ∂  and DI-ILWR requires both. Notice that , ,ˆ /q k i jy x∂ ∂  cannot be 

extracted from ,ˆ /q ky∂ ∂X  because it does not account for the change in the approximation due to 

the change in W when xi,j changes.  

The derivative of each output with respect to each training point's output is 

 ( )
1,

1

,
1,

0, when ,

, otherwise,
i

i

d k
T T

i j
d i

j k

y
+

−

+

≠⎧∂ ⎪= ⎨⎡ ⎤∂ ⎪⎢ ⎥⎣ ⎦⎩

β
X WX X W

 (3.5) 

where di is the dimension of the inputs. A derivation of this equation is provided in Appendix A. 

The derivative of each output with respect to each training point's input is 

( ) ( ) ( )1 1 11,

, , , , , ,
1,

i

i

T T

d k T T T T T T

i j i j i j i j i j i j
d k

x x x x x x
− − −+

+

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦

β W X X W XX WX X y Wy X WX X W X WX X WX X Wy  

 (3.6) 

where ,/ i jx∂ ∂X  is a 1ip d× +  matrix with all entries zero except , 1,i j =X  and where ,/ i jx∂ ∂W  

is a p p×  matrix with all entries zero except the entry at i,i, which is 
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 ( ), , , ,
, ,

.i i j j q j i j
i j i i

x x
x

⎡ ⎤∂
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦

W W D  (3.7) 

Equation 3.7 assumes D is fixed, or not a function of xi,j. This assumption is discussed in the 

following paragraph. Derivations of Equations 3.6 and 3.7 are provided in Appendix B. 

Appendix C shows how to efficiently implement Equation 3.6 by taking advantage of the 

structures of ,/ ,i jx∂ ∂X  ,/ ,i jx∂ ∂W  and W. 

One key feature of these learning algorithms is that all changes are effectively local. As 

the distance from the change increases, the influence of the change decreases exponentially. If D 

were not fixed, then changes to a knowledge point's inputs would change the weighting of each 

dimension, which is a global change. We desire local updates, so D is fixed. It is our untested 

belief that the gradient descent algorithm will learn to work with the dimension weightings it is 

provided as long as the values are reasonable. If one intends to implement these algorithms 

without fixing D, the derivation of Equation 3.7 deviates at Equation B23. 

 

3.1 Experiments 

The following four subsections show results for ILWR learning on simple problems. The 

results are useful for understanding the inner workings of ILWR, evaluating performance relative 

to ANNs, as well as justifying further investigation of ILWR for FES control of a human arm. 
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3.1.1 Sigmoid Environment 

In the first environment, dubbed the Sigmoid Environment, the agent must learn to 

approximate the sigmoid function 

 ( ) 1 .
1 xS x

e−=
+

 (3.8) 

This test is designed not to judge each method's learning speed, but instead to judge how 

accurate of an approximation can eventually be achieved with small learning rates and as many 

training points as are necessary for convergence. Only five knowledge points were used, each 

initialized randomly throughout the domain, [ ]10,10 ,x∈ −  and the range, ( )0,1 .y∈  Evaluations 

were computed by taking the normalized (divided by 21) sum of the squared error over the 

domain, sampled at every unit, as in Equation 3.9:  

 
( )

210

10

1 1 ˆEvaluation ,
21 1 x

x
y x

e−
=−

⎛ ⎞= −⎜ ⎟+⎝ ⎠
∑  (3.9) 

where ( )ŷ x  is ILWR's approximation for the point x. The knowledge points are randomly 

placed over the domain and range. A typical initial evaluation with this setup is .243.  

All three ILWR variants were trained using 2,000,000 randomly generated training 

points, far more than were necessary to achieve numerical convergence. In all tests, D was fixed 

as ( ).05 .diag=D  The best evaluation achieved by SI-ILWR was .004, with a learning rate of 

.005. The best evaluation achieved by DI-ILWR was .0000875, with learning rates of .01 for 

outputs, and .015 for inputs. The best evaluation achieved by SO-ILWR was .0075, with learning 

rate .001. Figures 3.2, 3.3, and 3.4 present the results when using SI-ILWR, DI-ILWR, and SO-

ILWR, respectively.  
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Figure 3.2: Final function approximated by SI-ILWR after 2,000,000 random training points, 
with a learning rate of .005. The final evaluation (Equation 3.9) is .004. The thick green line 
represents what the weights would be for knowledge points with various x, if the query point was 
at zero. This weighting, determined by D, is identical for the remainder of this subsection. 

 

 
Figure 3.3: Final function approximated by DI-ILWR after 2,000,000 random training points, 
with a learning rate of .01 for outputs and .015 for inputs. The plot for DI-ILWR's approximation 
obscures the plot of the actual sigmoid over most of the domain. The final evaluation (Equation 
3.9) is .0000875. 
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Figure 3.4: Final function approximated by SO-ILWR after 2,000,000 random training points, 
with a learning rate of .001. The final evaluation (Equation 3.9) is .0075.  

 

Notice that, unlike the LWR algorithm, the knowledge points are not necessarily 

positioned on the target surface. Instead, they are positioned at the locations that result in the 

most accurate approximation of the surface. As the density of knowledge points increases and 

the locality of D increases, one would expect the points to converge to the actual surface. 

As expected, DI-ILWR performs best, accurately approximating the sigmoid. SO-ILWR 

performs the worst, though its performance is remarkably good considering that the y-values of 

the points could not be changed, and none of the random initial outputs for the knowledge points 

in Figure 3.4 are less than .4. Learning curves were not provided for this learning task because 

we were interested in final error and gaining a basic understanding of the three variants of 

ILWR, not learning speed. Learning curves will be provided for the problem in Subsection 3.1.2. 
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3.1.2 Double Environment 

The second environment, dubbed the Double Environment, tests the speed of learning for 

approximating a function with two inputs and two outputs. This is equivalent to approximating 

two separate functions given only one set of knowledge points. Tests were run using ten, and 

then 100 knowledge points. The desired function is defined as 

 ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 1 25 5 , 5 5 .f x x x x x⎡ ⎤= − + − + + +⎣ ⎦  (3.10) 

This function was chosen because the two outputs have different points of maximal 

2 2/ ,y x∂ ∂  which are expected to be areas where higher knowledge point densities are most 

beneficial. The domain and range used were [ ]1 2, 10,10x x ∈ −  and [ ]1 2, 0,450 .y y ∈  Evaluations 

were done by taking the average squared error over the domain, sampled every square unit. A 

typical initial evaluation is approximately 65,000. A smaller evaluation is better. 

For the first tests, the knowledge base of ten points was initialized randomly over the 

domain and range. D was fixed as ( ).05,.05 .diag=D  Learning rates were manually optimized to 

achieve evaluations less than 1,500 as rapidly as possible. Of all the learning rates tested, those 

that achieved an evaluation less than 1,500 after the fewest training points are reported in Table 

3.1. Results are compared in Table 3.1 to those of an ANN with ten neurons in its only hidden 

layer, trained using the error backpropagation algorithm (Russell and Norvig, 1995). The choice 

of ten neurons results in 52 tunable weights in the ANN, which is comparable to the 40 tunable 

weights in DI-ILWR with ten knowledge points. SO-ILWR is not included in Table 3.1 because 

the best evaluation it achieved was 50,000, and it has a tendency to diverge even with small 

learning rates. 
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 Input 
Learning 

Rate 

Output 
Learning 

Rate 

Episodes to 
Evaluation 

<1,500 

Minimum 
Learning Rate 
of Divergence 

Tunable 
Parameters

SI-ILWR NA .2 2,500 .6 20 
DI-ILWR .00001 1 128 NA 40 
ANN NA .0002 80,000 .15 52 



Table 3.1: Relative learning speeds of each algorithm, optimal learning rates for rapidly 
achieving an evaluation less than 1,500, and maximum learning rates before divergence occurs. 
For the ANN, learning rates between .0002 and .15 converge to worse evaluations than 1,500. 
DI-ILWR does not have a learning rate for divergence listed because its learning rate is two-
dimensional. 

 

Figure 3.5 shows the learning curves for the SI-ILWR and DI-ILWR setups in Table 3.1. 

DI-ILWR performs an order of magnitude better than SI-ILWR with this setup, suggesting that, 

when using few knowledge points, DI-ILWR is capable of achieving significantly lower errors 

than SI-ILWR. 

These results suggest that SI-ILWR and DI-ILWR are capable of approximating this 

function to higher accuracy than a small ANN of comparable size for a fixed, small number of 

updates. However, a larger ANN can still represent the function with similar accuracy to ILWR, 

though it requires more updates. Using a small learning rate for 7,000,000 updates, an ANN with 

20 neurons in the first hidden layer and 20 neurons in the second hidden layer achieved an 

evaluation of 50. Both SI-ILWR and DI-ILWR were found to be empirically stable in the long-

term for at least 200,000 training points. 
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Figure 3.5: Learning curves for SI-ILWR, DI-ILWR, and an ANN on the Double Environment 
using the parameters from Table 3.1. SI-ILWR and DI-ILWR both used 10 randomly initialized 
knowledge points. Notice the logarithmic vertical axis. 

 

For the second set of tests, the knowledge base was increased to 100 points and was 

initialized in a Sukharev Grid (Sukharev, 1971), covering the domain with a uniform density. 

The largest learning rate for which SI-ILWR was stable was found, through manual search, to be 

ten. With this learning rate, its evaluation breaks 1,500 after 39 training points. This same setup, 

using randomly initialized knowledge points rather than the Sukharev Grid, requires 482 training 

points. This suggests that initializing the points in a Sukharev Grid improves performance 

significantly. For DI-ILWR, the largest stable input learning rate found was .001, and the largest 

output learning rate was ten. DI-ILWR also required 39 training points before its evaluation 

reached 1,500. 

The larger learning rates are required because, with more points close to each query 

point, the derivative of the output with respect to a single point is generally smaller. Figures 3.6 
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and 3.7 show the evaluations over time of these two methods. The learning curves are more 

similar than those of Figure 3.5, suggesting that, as the number of knowledge points increases to 

the point where the domain is well covered, the benefits of DI-ILWR over SI-ILWR are 

marginal. 

 

 
Figure 3.6: Evaluations over time for SI-ILWR, DI-ILWR, and an ANN in the Double 
Environment. The LWR algorithms have 100 knowledge points, an input learning rate of .001, 
and an output learning rate of 10. The ANN is the one found for Table 3.1, which has ten 
neurons in its hidden layer and a backpropagation learning rate of .002. The graph spans 1,500 
training points. 
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Figure 3.7: Long-term plot with same setup from Figure 3.6, except this graph spans 15,000 
training points (notice that the horizontal axis is scaled by a factor of 100). 

 

Figure 3.8 illustrates the initial and final knowledge point configurations of SI-ILWR and 

DI-ILWR when using the parameters from Table 3.1 for 15,000 training points. Subsection 3.1.3 

further investigates the movement of knowledge points when using DI-ILWR. 

These results are encouraging not only because the learning speeds and converged errors 

are superior to those of fully connected feed-forward ANNs with similar numbers of tunable 

parameters, but also because the points seem to cluster around the most interesting parts of the 

domain, though this is not completely clear when the domain is densely covered as in Figure 3.8. 

Therefore, the following subsection will further investigate whether the knowledge points move 

to the most interesting regions of the domain.  
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 SI-ILWR DI-ILWR 

 
 
 
 

 
Initial 
Distribution 

Evaluation = 43,868.3  Evaluation = 43,868.3 

 
 
 
 
 

After 100 
Iterations 

 

Evaluation = 309.976 
Evaluation = 227.706 

 
 
 
 
 

After 15,000 
Iterations 

Evaluation = .776443 
Evaluation = .463469 

Figure 3.8: Illustration of the movement of knowledge points during training using SI-ILWR and 
DI-ILWR. In all images, the origin is in the center of the blue box, which spans from –10 to 10. 
The more green a point is, the larger its value in the first output dimension. Similarly, the more 
red a point is, the larger its value in the second output dimension. A point with little red and 
green is displayed as being dark. Above each point are the input coordinates, and below are the 
output coordinates. The white circle with a black outline denotes the location of the latest 
training point. 
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3.1.3 FitzHugh-Nagumo Approximation (Accuracy) 

This subsection is inspired by (Wedge, 2004), which focuses on using function 

approximators to approximate the FitzHugh-Nagumo equations (Izhikevich, 2007) for modeling 

a cell. V represents the electrical potential of a cell and W is a variable relating to sodium and 

potassium gating. Figure 3.6 of (Wedge, 2004) shows the values of V and W after one time unit 

of simulation with a small time step, given various initial V and W. We will focus on the values 

of V. Figure 3.13 of (Wedge, 2004) shows that, when points are distributed with a higher density 

around interesting regions, smaller errors can be achieved when using LWR. We wish to see 

whether DI-ILWR will find such a distribution. The FitzHugh-Nagumo approximation problem 

was chosen because of its real-world application and complexity. 

The FitzHugh-Nagumo equations are, reproduced from (Wedge, 2004), 

 
31 ,

3
V VV W
t ε

⎛ ⎞∂
= − −⎜ ⎟∂ ⎝ ⎠

 (3.11) 

 ( ) ,W V W
t

ε γ β∂
= − +

∂
 (3.12) 

where .2,ε =  .7,β =  and .8.γ =  For further description of these parameters, see (Wedge, 2004). 

Simulations were performed with a forward Euler approximation, with time step .0001.tΔ =  The 

domain of initial conditions tested is [ ]2.1,1.9V ∈ −  and [ ].7,1.0 .W ∈ −  The desired function is 

shown in Figure 3.9. 
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Figure 3.9: Result of simulating FitzHugh-Nagumo equations for one time unit, starting with 
initial conditions V, W. Image reproduced from (Wedge, 2004, Figure 3.6). 

 

 The first test in this environment, dubbed the FitzHugh-Nagumo Accurate Approximation 

Task, compares the final approximations of SI-ILWR and DI-ILWR after training with small 

learning rates for as many training points as are needed for convergence. The goal of this test is 

to show that DI-ILWR can reorganize the points in ways that result in smaller errors than is 

possible with SI-ILWR. The expectation is that the points will be most dense around the areas of 

the function with the largest second derivative. This test will also show whether, for this 

problem, the two methods are empirically stable in the long-term. 

 Learning rates were manually determined to achieve minimal converged error. For SI-

ILWR, the output learning rate was 1. For DI-ILWR the output learning rate was 1 and the input 

learning rate .01. Both used a 10 10×  grid of knowledge points, initialized randomly between –2 

and 2. D was fixed as ( )5,5diag=D  for this subsection as well as the following, Subsection 

3.1.4. Evaluations were computed as the normalized (divided by 10,000) sum of the squared 

error. Evaluation points were sampled in a 100 100×  grid over the domain. Because the 
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evaluation of points on the surface is computationally expensive, 500,000 random points were 

pre-evaluated for training. Training points were then sampled randomly from these 500,000 

points. Figure 3.10 shows the performance of both algorithms over 1,000,000 training iterations. 

  

 
Figure 3.10: Performance of SI-ILWR and DI-ILWR on the FitzHugh-Nagumo Accurate 
Approximation Task. Notice the logarithmic scale of the vertical axis. 

 

 After 1,000,000 training points, DI-ILWR has reached a smaller error than SI-ILWR. Its 

knowledge points have been moved about the domain to increase the point density in areas with 

a high second derivative, as shown in Figure 3.11. 
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Figure 3.11: DI-ILWR knowledge point locations after 1,000,000 training points. Notice the high 
point density along the cliff from ( ), .5, .5V W = − −  to ( ), 1,.8 ,V W =  where the function has the 
largest second derivative. The remaining points have moved farther away from the cliff, creating 
a relatively flat surface away from the cliff. The “heat map” covers the domain over which the 
approximation is evaluated: [ ]2.1,1.9V ∈ −  and [ ].7,1.0 .W ∈ −  

 

Figure 3.12 depicts the final surfaces generated by SI-ILWR and DI-ILWR. Notice that 

DI-ILWR has achieved better accuracy both at the cliff and over the relatively linear regions. 

Figure 3.13 depicts the error in the DI-ILWR and SI-ILWR approximations. 
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Figure 3.12: The target surface (top), reproduced to mimic Figure 3.9; the surfaces approximated 
by DI-ILWR (bottom left) and SI-ILWR (bottom right) after the run from Figure 3.10. Notice 
that, around the cliff, as well as over the linear regions of the target function, DI-ILWR performs 
significantly better than SI-ILWR. 
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Figure 3.13: The difference between the DI-ILWR approximation and the target function (left), 
and the difference between the SI-ILWR approximation and the target function (right). Notice 
that the W-axis has been flipped to provide a better view of the surface. A positive value denotes 
that the target value was smaller than the approximation. Notice that the scales are same on both 
plots, making the larger error in SI-ILWR clearly visible. 

 

 From these results, we conclude that, on the FitzHugh-Nagumo Accurate Approximation 

Task, DI-ILWR does move the points to more interesting regions, as desired. This results in 

lower errors than SI-ILWR is capable of achieving.  

 

3.1.4 FitzHugh-Nagumo Approximation (Learning Speed) 

 The second test in the FitzHugh-Nagumo environment, dubbed the FitzHugh-Nagumo 

Rapid Approximation Task, compares the speed of learning with DI-ILWR and ANNs with 

optimized learning rates and architecture sizes. The goal will be to achieve the smallest sum of 

squared error after 1,000 stochastic gradient descent training updates. For the ANN, this 

corresponds to 1,000 updates with the backpropagation algorithm. 
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 Hidden layer sizes and learning rates for the ANN, as well as the number of knowledge 

points and learning rates for DI-ILWR, were optimized manually and using grid searches. The 

ANN sizes ranged from one neuron in one hidden layer to 20 neurons in two hidden layers (40 

total hidden neurons). The learning rates ranged from .0001 to 110, growing by factors of two. 

During optimization, DI-ILWR's knowledge base ranged from 1 to 100 points, with the input 

learning rate ranging from 0 to 128, and output learning rate ranging from 1 to 50. A manual 

search was performed around the best parameters found by the optimizations to narrow down the 

granularity of the possible parameters. The best parameters found for the ANN and DI-ILWR are 

shown in Table 3.2. Though the ANN in Table 3.2 has fewer tunable parameters, recall that its 

morphology was optimized over sizes ranging from 5 to 501 tunable parameters. 

Figure 3.14 shows the learning curves for these two parameter settings. DI-ILWR learns 

both faster and more smoothly. Based on these results, we conclude that, on the FitzHugh-

Nagumo Rapid Approximation Task, DI-ILWR outperforms ANNs of all sizes, learning 

significantly faster, while remaining more stable. 

 

First Hidden 
Layer Size 

Second 
Hidden 

Layer Size 

Learning 
Rate 

Evaluation after 
1,000 Training 

Points 

Tunable 
Parameters 

17 6 .4096 .238563 166 
     

Number of 
Knowledge 

Points 

Input 
Learning 

Rate 

Output 
Learning 

Rate 

Evaluation after 
1,000 Training 

Points 

Tunable 
Parameters 

100 .05 5 .136878 300 
 

Table 3.2: Best parameters for ANN (top) and DI-ILWR (bottom) for the FitzHugh-Nagumo 
Rapid Approximation Task. Evaluations were averaged over 10 trials. 
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Figure 3.14: An ANN and DI-ILWR run using parameters from Table 3.2, for 1,000 training 
points on the FitzHugh-Nagumo Rapid Approximation Task. All points are averaged over three 
trials. Notice the horizontal axis is scaled by a factor of ten. 

 

3.1.5 Non-Stationary Function 

In reinforcement learning architectures, a function approximator is often required to 

approximate a non-stationary function (e.g. the critic in the actor-critic architecture). In this test, 

we evaluate the abilities of DI-ILWR and ANNs to track a simple non-stationary function. The 

function used is provided in Equation 3.13: 

 ( ) ( )( ) ( )( )2 2
1

sin cos, , .x t y tf x y t e
−

− + −=  (3.13) 

The domain used was [ ], 2,2x y∈ −  and [ )0, ,t∈ ∞  giving a range of ( ) ( ), , 0,1 .f x y t ∈  

As t increases, this function rotates around the origin, with a period of 2 .π  The following figures 

(3.15, 3.16) show f over the domain considered. 
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Figure 3.15: f shown for 0t =  on the left and 4t π=  on the right. 

 

 

Figure 3.16: The difference between ( ), ,0f x y  and ( ), ,.001f x y  is shown on the left, and the 

difference between ( ), ,0f x y  and ( ), ,.01f x y  is shown on the right. Notice the magnitude of 
the difference with a time step of .01tΔ =  is approximately ten times that with a time step of 

.001.tΔ =  

 

After each training point, t is increased by .001.tΔ =  Thus, the function completes a full 

revolution every 6,283.2 updates. The function approximators were allowed access only to x and 

y, making the function non-stationary. A grid-search optimization was run for ANNs and DI-

ILWR to find the best sizes and learning rates, with ( )1,1 .diag=D  This optimization is identical 
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to that described in Subsection 3.1.4. Recall that this optimization allowed both to have similar 

numbers of tunable parameters. Evaluations are computed as the normalized (divided by 225) 

sum of the squared error between the approximation and the actual surface, over a 15 15×  

Sukharev Grid over the domain.  

Each algorithm was run 10 times for 5,000 training points, and the final evaluations were 

averaged to create Table 3.3, which presents the best parameters found for each. Again, recall 

that, though the ANN has fewer tunable weights, the size presented was the best found during an 

optimization that allowed between 5 and 501 tunable parameters in the ANN. Figure 3.17 shows 

the evaluations of the ANN and ILWR over time. Figure 3.18 shows the actual surface at the end 

of the run that generated Figure 3.17, as well as the approximation thereof. Figure 3.19 shows the 

difference between the actual and approximated surfaces.  

 

Tunable 
Parameters 

First Hidden 
Layer Size 

Second 
Hidden Layer 

Size 

Learning 
Rate 

Evaluation after 
5,000 Training 

Points 
83 20 1 .8192 .006076 
     

Tunable 
Parameters 

Number of 
Knowledge 

Points 

Input 
Learning 

Rate 

Output 
Learning 

Rate 

Evaluation after 
5,000 Training 

Points 
400 100 10 10 .000701 

 

Table 3.3: Best parameters for ANN (top) and DI-ILWR (bottom) for approximating the non-
stationary function after 5,000 training points. Evaluations were averaged over 10 trials. 
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Figure 3.17: Evaluations of parameters from Table 3.3 in the non-stationary environment, over 
100,000 training points (notice that the horizontal axis is scaled by a factor of 100). The average 
evaluations of the ANN and ILWR over the last 90,000 training points are .005 and .0009 
respectively. 

 

   

Figure 3.18: After the 100,000 training points of Figure 3.17, 100.t =  At this point, the actual 
surface is shown on the left, and DI-ILWR's approximation is shown on the right. 
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Figure 3.19: The difference (actual minus approximated) between the two plots in Figure 3.18, 
provided with the same axes scales as the previous plots (left), and a zoomed view (right). 

 

 Not only is DI-ILWR performing better than the ANN, but these figures show that it is 

tracking the function quite well, visually matching the target shape. Next, we will consider the 

effects of a more non-stationary function. To do this, the function will be accelerated to .01tΔ =  

without re-optimizing learning rates. The resulting learning curves for the ANN and ILWR are 

provided in Figure 3.20. 
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Figure 3.20: Evaluations of ANN and ILWR in the non-stationary environment with .01.tΔ =  
Notice that the horizontal axis is scaled by a factor of 100. 

 

3.2 Conclusion 

The Sigmoid Environment showed that DI-ILWR is capable of more closely 

approximating functions than SI-ILWR because of its ability to move knowledge points freely in 

space. It also showed that SO-ILWR is not capable of accurately approximating functions, 

though moving knowledge point inputs may improve performance. 

The Double Environment showed that DI-ILWR learns significantly faster than SI-ILWR 

when there are few knowledge points. With more knowledge points, DI-ILWR and SI-ILWR 

perform similarly. In architectures where a function approximator must be used to track a non-

stationary target function, such as the critic in the actor-critic architecture, rapid convergence is 
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required. Thus, having a small set of knowledge points is beneficial, highlighting the benefits of 

DI-ILWR over SI-ILWR. Both outperform backpropagation on ANNs in all tests. 

The FitzHugh-Nagumo Accurate and Rapid Approximation Tasks showed that DI-ILWR 

tends to distribute knowledge points with a higher density in areas with a larger second 

derivative. It also showed that DI-ILWR out-performs SI-ILWR, which is not surprising since 

the global minimum of DI-ILWR is guaranteed to be at least as good, because SI-ILWR is a 

special case of DI-ILWR where the input learning rate is zero. DI-ILWR also outperforms 

ANNs, learning faster and more smoothly than the best ANN. 

The non-stationary function showed that DI-ILWR is capable of tracking a simple non-

stationary function more accurately than an ANN. It also showed that DI-ILWR appears to be 

stable in the long-term when tracking a non-stationary function. These tests are relevant because 

the function the critic must approximate in the actor-critic architecture changes as the policy is 

refined. 

Unlike ANN algorithms, DI-ILWR has local updates, which may be beneficial in certain 

reinforcement learning applications. This calls for further research into the performance of DI-

ILWR in machine learning applications such as Q-Learning, the actor-critic architecture, and 

eligibility traces. We expect DI-ILWR to outperform ANNs when used with eligibility traces 

because of its ability to increase the eligibility locally, whereas increases to eligibilities in an 

ANN are global. This increased efficiency with eligibility traces may speed up the process of 

current rewards propagating back to previous states. 

Further research into the ability of DI-ILWR to adapt to different D matrices (see 

Equation 2.73) is also warranted, though we expect that the choice of D does not have a 

significant effect on learning. Finally, further research should be conducted regarding the 
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potential benefit of splitting a function with more than one output (such as the Double 

Environment) into multiple sets of knowledge points, with one for each output. 

  



95 
 

CHAPTER 4:  

DAS1 ARM SIMULATION EXPERIMENTS 

 

The purpose of this chapter is to present the tests of the actor-critic's adaptive abilities on 

the DAS1 arm model of Section 1.2, which will be used in the subsequent chapters. Section 4.1 

describes pre-training and evaluation. Sections 4.2 through 4.4 present tests of the actor-critic's 

adaptive abilities. Section 4.5 introduces a test to ensure that the system is robust to realistic 

sensor noise. Section 4.6 introduces an adaptation task developed specifically for use in the test 

described in Section 4.7.  

Sections 4.8, 4.9, and 4.10 present tests that mimic complications that would arise if a 

human were to provide the reward signal. Notice that these are only preliminary tests to give 

researchers an idea of possible issues that may arise with humans giving rewards. Even though 

the actor-critic performs well on these tests, it does not mean that it will necessarily perform well 

when humans provide the rewards. There are several other complications that cannot be 

simulated well. A human subject may not be consistent in providing rewards, and may not be 

good at judging partial movements. Most significantly, the value function that the critic begins 

with may be unrepresentative of the value function for the human's reward system. The effects of 

these complications should be considered during human trials and the analysis of the subsequent 

results. 
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4.1 Pre-Training and Evaluation 

In preliminary tests in which the actor and critic were both randomly initialized, the 

continuous actor-critic failed to converge to a desired solution, usually finding a policy that 

achieved one of the desired joint angles, but not the other. These tests included various function 

approximators and reward functions. These are likely two large local minima in policy space, 

which most policies converge to. In order to overcome this, we used supervised learning to pre-

train the actor to mimic the PD controller discussed in Section 2.1. This corresponds to placing 

the policy near a minimum expected to be the global minimum or of similar utility. When the 

arm dynamics change, the policy will no longer be the optimal policy, but in many cases it will 

be close enough that the actor-critic's gradient descent in policy space will converge to the 

corresponding minimum. 

This pre-training was executed differently when using ANNs and ILWR, so specifics for 

each are provided in Sections 5.1 and 7.1 respectively. For the tests described in this chapter, the 

actor-critic begins with an actor that is trained to mimic the PD controller. 

In all tests, each episode lasts for two seconds and involves start and goal positions that 

have a combined joint angle difference of at least .6 radians, which requires movements to be 

significant. All initial states and target states have zero joint angle velocities. The reward signal 

used was always 

 
( ) ( ) ( )( )2

Goal Goal, , , ,i
i

r t W u d x y x y= −∑  (4.1) 

where .016,W = −  u is a vector of the requested muscle stimulations, ,x y  is the current position 

of the hand if both arm segments are one unit long (Equation 4.2), and Goal Goal,x y  is the target 

position of the hand if both arm segments are one unit long (Equation 4.3): 
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 [ ] ( ) ( ) ( ) ( )1 1 2 1 1 2, cos cos , sin sin ,
TTx y θ θ θ θ θ θ= + + + +⎡ ⎤⎣ ⎦  (4.2) 

 [ ] ( ) ( ) ( ) ( )1 1 1 2Goal Goal Goal Goal Goal Goal Goal Goal, cos cos , sin sin .
2 1

TTx y θ θ θ θ θ θ⎡ ⎤= + + + +⎣ ⎦  (4.3) 

The value for W was computed such that the evaluation of the PD controller is identical 

to the evaluation when using the reward signal in Equation 2.57. Also, critics trained using the 

reward function in Equation 2.57 were found to be equally accurate when using the reward signal 

in Equation 4.1. This suggests that the two reward signals are almost identical. The reason for the 

switch in reward signals is that the muscle forces are not directly measurable in practice, though 

the requested muscle stimulations are. 

To evaluate the actor-critic's performance, we use the average total reward per episode, 

computed over 256 fixed two-second episodes involving large motions over the state space. The 

integral of the reward signal over time was approximated using a backward Euler approximation. 

Recall that the larger the reward received, the better. The larger an evaluation is, the better it is. 

All rewards are negative, so the average reward per episode must be negative. For comparison 

throughout, the evaluation of the PD controller, from Chapter 2, is .18.−  Visually, this policy 

appears near optimal, and at no time has any controller, including the PD and PID, achieved an 

evaluation above .17,−  suggesting that this evaluation may be near that of the optimal policy. 

 

4.2 Control Test (CT) 

 The first test was the Control Test (CT), in which the dynamics of the DAS1 arm are 

unchanged, allowing the actor-critic to further adapt to the standard arm model. Appendix E 

contains the parameters used in the DAS1 model for the CT. The PD controller's evaluation on 

this test is –.18. Because the PD controller is a linear controller and the actor is capable of 
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representing nonlinear functions using either an ANN or ILWR, the actor may be able to learn a 

policy that is superior to that of the PD controller.  

 

4.3 Baseline Biceps Test (BBT) 

 The second test was inspired by PD controller human trials in which the subject had 

spasticity of the biceps brachii, causing the biceps to exert a constant low level of torque on both 

joints. This Baseline Biceps Test (BBT) involved adding 20% of the maximum stimulation 

(100%) to the stimulation requested by the controller (clipped to 100%) in order to simulate 

spasticity. In the BBT, when using the PD controller or the actor-critic trained on it, the steady 

state of the arm is counterclockwise of the goal state at the point where the controller's requested 

triceps stimulation balances out the baseline biceps stimulation. The PD controller's evaluation 

on the BBT is .41.−  

 

4.4 Fatigued Triceps Test (FTT) 

 The third test, the Fatigued Triceps Test (FTT), simulates the effects of a muscle being 

severely weakened. In this test, the triceps stimulation used is 20% of the requested triceps (long 

head) stimulation. Thus, when a controller requests full triceps stimulation, only 20% will be 

applied. Unlike the BBT, this does not change the steady state when using the PD controller, 

though it does induce overshoot if the initial configuration is clockwise of the goal. This occurs 

because the biceps is used to pull the arm towards the goal, and the triceps is used to stop it at the 
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goal configuration. With the triceps weakened, the PD controller does not exert enough torque to 

overcome the arm's angular momentum.  

 The PD controller's evaluation on the FTT is .19.−  This evaluation is high compared to 

the BBT because the FTT has no steady state error. The extra negative rewards accrued during 

the brief overshoot of the target state when starting clockwise of the goal, and the slower motion 

to the goal when starting counterclockwise of the goal result in only a small difference in the 

integral of the reward signal used for evaluations. However, especially when starting clockwise 

of the goal, there is a clear visual degradation of performance between the CT and FTT. When 

evaluating the actor-critic's performance, rather than focusing on the numerical evaluation, it will 

therefore be useful to visualize the magnitude of the overshoot as training progresses. 

 

4.5 Noise Robustness Test (NRT) 

 In practice, the exact joint angles and their velocities are not known. Sensors can directly 

measure joint angles, though there is always minor error, which can be simulated as noise. The 

joint angle velocities are approximated using the difference between successive joint angle 

measurements, run through a low pass filter. Thus, the error in joint angle approximations can 

result in even larger error in the velocity calculations. The fourth test, the Noise Robustness Test 

(NRT), attempts to model this noise and test the robustness of the controller on the BBT in a 

noisy environment. Normal Gaussian noise was added to both the joint angle measurements, 

( ) ,tθ  and the joint angle velocity measurements, ( ) ,tθ  scaled by the constants θσ  and θσ  

respectively. Realistic values for these two parameters are .1θσ <  and .3.θσ <  The PD 

controller's evaluation on this test combined with the BBT with .1θσ =  and .3θσ =  is .45.−  
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 Another version of the NRT involves adding a bias to the sensor readings. This 

corresponds to a sensor not being properly calibrated and having a constant level of error in it. 

This bias need only be added to the joint angle measurements, as it will factor out during velocity 

computations. The scale and direction of the bias to each joint angle measurement is static and 

defined as .Bμ  

 

4.6 Fatigued Biceps Test (FBT) 

 The fifth test, the Fatigued Biceps Test (FBT) was developed for use in the Toggling 

Test, which is described in the next section. The FBT was developed for the TT because the BBT 

and FBT require different policies for improved performance. The FBT is identical to the FTT, 

except that rather than modifying the triceps, the biceps is weakened. Thus, the biceps 

stimulation used is 20% of the requested biceps stimulation. When a controller requests full 

biceps stimulation, only 20% will be applied. The PD controller's evaluation on this test is .19.−  

 

4.7 Toggling Test (TT) 

 In the Toggling Test (TT), the environment switches cyclically between various other 

tests (e.g., BBT and FTT) after a fixed number of episodes. The agent must continuously adapt to 

changing dynamics. However, the BBT and FTT require similar policies for improved 

performance. In both, increased triceps stimulation and decreased biceps stimulation will 

improve performance. The FBT was created so that policies that performed well on the BBT 

would be expected to perform poorly on the FBT. In the remainder of this thesis, whenever the 

TT is run, it will toggle between the BBT and FBT. The exact details of when toggling will occur 
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will be provided prior to discussing the results of the TT. These details are not presented in this 

section because the necessary results to justify these decisions have not yet been revealed. 

 

4.8 Delayed Reward Test (DRT) 

 Dr. Antonie van den Bogert and Kathleen Jagodnik, two researchers at the Cleveland 

Clinic Lerner Research Institute (LRI), are interested in trials using the reinforcement learning 

controller derived from this thesis for human trials. Trials are scheduled to begin during Summer 

2009 in which able-bodied human subjects will provide the reward signal. Researchers are 

interested in whether humans will give rewards in such a way that the agent is encouraged to 

learn more natural strategies. Having humans provide the rewards presents two challenges not 

inherent to the model. These are simulated in the Delayed Reward Test and the Discrete Reward 

Test (Section 4.9). 

In the standard setup, the agent is given the reward signal and state after every .02 

seconds. During trials in which a human provides the reward, the state can still be measured 

every .02 seconds, but a human may not be capable of accurately providing rewards at a rate of 

50Hz. This would be especially difficult for a patient suffering from SCI (Section 1.1), who may 

be using an unnatural sensor, such as a sip-and-puff sensor (e.g. the Breeze™ sip/puff switch that 

is in use at the LRI and is made by Origin Instruments of Grand Prairie, Texas), to provide input 

to the computer system. 

In the Delayed Reward Test (DRT), the reward signal is only provided once every .02kτ  

seconds, where kτ  is an integral time scaling constant. This can be simulated two ways. First, the 

reward at time t could be presented at all subsequent .02 second updates until the reward is 
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updated after .02kτ  seconds. Second, the sum of the rewards over the .02kτ  interval could be 

given every .02kτ  seconds, with the actor-critic only updating eligibility traces during the other 

.02 second state updates. We decided to use the latter method because it better approximates how 

we expect a human to present rewards. The DRT is combined with the BBT to judge adaptive 

ability with delayed rewards. Any controller's evaluation on the combination of the BBT and the 

DRT is initially the same as the BBT because the DRT affects learning, not initial performance. 

 

4.9 Discrete Reward Test (DiRT) 

 A human subject using a sip-and-puff sensor would have trouble representing a real-

valued reward signal accurately while simultaneously providing values rapidly enough for the 

system to learn. To simplify the task, researchers at the LRI decided to discretize the reward 

signal. We performed trials with various granularities of discretization, and discretization into 

five values was found to still allow for accurate learning. SCI patients can be expected to achieve 

five different values quite easily with a sip-and-puff. Thus, the results for discretization into five 

values will be presented for this test. This test is called the Discrete Reward Test (DiRT). 

 When discretizing the reward signal, we wish to do so into sections representative of 

various regions. For example, if there are 3 possible discrete rewards to which the real-valued 

reward signal will be mapped, one of the three discrete rewards should not correspond to a rare 

real-valued reward interval. Rather, we prefer that all three rewards occur frequently and 

preserve as much information from the real-valued reward as possible. In order to determine how 

best to discretize the reward signal, consider Figure 4.1, which depicts the reward signal plotted 

over 10 random episodes on the CT. From this plot, the discretization into the 5 values provided 

in Table 4.1 was derived. 
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Figure 4.1: Reward signal plotted over 10 random episodes using the PD controller on the BBT, 
with the reward evaluated every .02 seconds. Each episode lasts two seconds, resulting in 1,000 
points. Transparency was used to show the density of points. 
 
 

Reward 
Range: 

Reward 
.25≥ −  

.25 Reward .5− > ≥ −
 

.5 Reward 1− > ≥ −
 

1 Reward 2− > ≥ −
 

2 Reward− >
 

Meaning: At the 
target 
state 

Very near the target 
state 

Approaching the 
target state 

Not near the 
target state 

Far from the 
target state 

Discrete 
Mapping: 

–.25 –.5 –1 –2 –5 
 

Table 4.1: Reward discretization into 5 values. 

 

 Similar discretizations with seven values and three values were also tested. Performance 

with seven values was similar to that of five values. The system still learned when using only 

three values, though there was enough of a difference to warrant the use of five values. 
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4.10 Continuous Learning Modification (CLM) 

 When applied to an actual subject with SCI, individual episodes will not be entirely 

independent: each subsequent movement will begin where the previous episode ended. In all 

other tests, each episode began at a random initial state with zero joint angle velocity. With the 

Continuous Learning Modification (CLM), the initial state of each episode is the same as the 

terminal state of the previous episode. Though it would appear that this would not significantly 

impact performance, it reduces the amount of the state space that is explored over a fixed amount 

of time, which may slow learning. The CLM is run in conjunction with the BBT, testing the 

actor-critic's adaptive abilities when the episodes are relatively continuous. The word 

"continuous" in the CLM is a slight misnomer, as the state of the environment is not quite 

continuous over episodes. If the arm does not terminate at the target position, it will still begin 

the next episode at the target position. However, this can be viewed as being relatively 

continuous when compared to non-CLM trials in which subsequent episodes have random initial 

states. 
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CHAPTER 5:  

DAS1 ANN ACTOR-CRITIC RESULTS 

 

 This chapter is broken into 11 sections. In Section 5.1, the actor and critic are pre-trained 

to mimic the PD controller and its corresponding value function, respectively. In Section 5.2, the 

parameters of the continuous actor-critic architecture are optimized and four parameter sets are 

selected for further study. Parameter sets A and B both learn rapidly, though A has excessive 

exploration and B has little exploration. The Fast and Slow parameter sets both have a practical 

amount of exploration, between those of parameter sets A and B. The Fast parameters learn 

quickly, though they are unstable. The Slow parameters learn slowly, but remain stable. 

 Sections 5.3 through 5.10 present the results for the tests described in Chapter 4. Plots of 

joint angle trajectories are provided for the CT, BBT, and FTT to provide a better understanding 

of different evaluations on each test. Chapter 5 concludes with Chapter 5.11, which describes an 

unexplained phenomenon that was discovered during trials of the continuous actor-critic on the 

BBT.  

 

5.1 Pre-Training 

As described in Section 4.1, supervised learning was used to train the actor ANN, with 

ten neurons in its only hidden layer, to mimic the PD controller. To do this, the actions for 

550,000 training points and 170,000 testing points, each consisting of the state and 

corresponding action generated by the PD controller, were run through the inverse sigmoid, 
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generating training pairs for the actor ANN, ( )( ); AA x t w  from Subsection 2.2.8. The actor ANN 

was then trained using the error backpropagation algorithm with a learning rate of .001 (Russell 

and Norvig, 1995). After 2,000 epochs of simulation, each of which consisted of training once on 

each of the 550,000 training points, the actor converged to a policy qualitatively similar to the 

PD controller's policy. This policy has an evaluation of .21−  on the standard arm model (CT), 

which can be compared to the PD controller's evaluation of .18.−  The performance of this pre-

trained ANN actor on the CT, BBT, and FTT are depicted in Figure 5.1. 

Trials with as few as 5 hidden units and as many as 100 hidden units in two hidden layers 

did not result in significant improvements in learning speed nor long-term stability. The policy 

that the ANN must represent is nonlinear due to the inverse sigmoid function applied to the PD 

controller's policy. Achieving significantly improved accuracy would require adding many 

neurons, which would in turn result in more weights. This increase in tunable parameters 

increases the dimension of the policy space in which the actor-critic performs gradient descent, 

resulting in slower learning. We therefore desire a small number of neurons to allow for more 

rapid learning, while keeping enough neurons that the inductive bias (Mitchell, 1997) does not 

result in poor policies. 

The critic ANN was then trained using the actor-critic architecture with the previously 

trained actor. The actor's policy was fixed while the critic was trained. Two critics were created, 

the first with 20 neurons in its hidden layer, and the second with ten. Both achieve average TD-

error magnitudes of .1 on the unmodified arm (CT) when using the ANN actor. These two ANNs 

will be referred to as ANN critic-20 and ANN critic-10, respectively. ANN critic-20 was initially 

created and used with parameter sets A and B, defined in Table 5.1. It was then observed that 10 

neurons were sufficient for the hidden layer, and ANN critic-10 was used for subsequent tests 
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with the Fast and Slow parameter sets, defined in Table 5.2. ANN critic-20 was trained to be 

accurate for the actor ANN without exploratory noise. ANN critic-10 was trained to be accurate 

for the actor ANN with exploratory noise. 

 

     
 Control Test Baseline Biceps Test Fatigued Triceps Test 

 
Figure 5.1: Initial actor ANN's performance on a particular motion for the three adaptation tests. 
The black state is the goal state (90°, 20°), the medium grey state is the final state after two 
seconds of simulation, and the light grey states are snapshots of the arm location taken every 
20ms. The initial condition is the clockwise-most trace (20°, 90°). In the BBT, the final state is 
the counterclockwise-most trace, while in the control test and FTT the final state partially 
obscures the goal state. 
 

When both were trained, it was found that adding a cap on the magnitude of the TD-error, 

,δ  from Equation 2.39, can improve stability. Therefore, the TD-error magnitude was capped at 

.5 during training and for all subsequent trials, unless otherwise specified. Trials were performed 

with critics of sizes ranging from 5 hidden units in one hidden layer, to 100 across two hidden 

layers. None performed better, with respect to learning speed and stability, than the 10 hidden 

neuron ANN critic-10. The remainder of this thesis therefore focuses on ANN critic-10. 

 For each two-second episode, when training the critic, the start and goal were randomly 

selected with the sum of the difference in joint angles (in radians) between the initial and goal 

configurations being greater than .6. This constraint removed episodes in which the arm did not 

have to make a significant motion. After each episode, the eligibility traces were all set to zero. 

All further training was performed with the same episode duration and constraints. 
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The actor-critic thus begins all of the following tests with an actor ANN that is a close 

approximation of the PD controller, and an accurate critic for the CT. When the arm dynamics 

change, the critic will not be accurate, but must reconverge. 

 

5.2 Parameter Optimization 

 The parameters for the actor-critic model, ,Aη  ,Cη  ,Nτ  ,κ  and ,σ  defined in Equations 

2.42, 2.41, 2.44, 2.40, and 2.43 respectively, were initially optimized using Random Restart Hill 

Climbing Search (RRHCS), defined in (Russell and Norvig, 1995). This optimization was 

performed using the pre-trained ANNs described in Section 5.1. The parameters tΔ  and τ  were 

fixed to .02tΔ =  and 1.τ =  The optimization was run for learning on the BBT, with the gradient 

sampled at 90% and 110% of the current value for each learning parameter. The ANN actor's 

initial evaluation (Section 4.1) on the BBT is .65.−  Each parameter set's learning ability was 

measured as the average evaluation after training for 100, 200, 500, and 1000 random episodes. 

Random restarts used a "logarithmic distribution" half the time, and a linear distribution the other 

half of the time in order to better explore the extremes and full range of the parameter space. 

Points for the logarithmic distribution were sampled as 

 ( ) ( )( )random ln ,ln ,min maxe  (5.1) 

where random returns a random number with uniform distribution over the range [ ], .min max  

 In this section (5.2), references to the evaluations of parameter sets refer to this 

evaluation scheme, while all other sections only refer to the evaluation of a specific policy 

(Section 4.1). Values for these two evaluation schemes should not be confused. For example, a 
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policy with an evaluation of .28−  would be poor, while a parameter set with an evaluation of 

.28−  could be quite good.  

 This optimization could lead to overfitting of the learning parameters for the task of 

learning on the BBT, so generalizability is evaluated later via the FTT. 

 
 Of the 4,460 learning parameter sets examined by RRHCS, 1,363 had evaluations greater 

than .3.−  However, many of the best learning parameter sets found by the optimization did not 

have stable evaluations because the training episodes and exploration are stochastic. For 

example, the best parameter set received an evaluation of –.22 during the optimization, though 

further tests found its average evaluation was –.33 with a standard deviation of .15 (N=100). 

Parameter set A and parameter set B, defined in Table 5.1, were selected for further inspection 

due to their consistently good evaluations, as well as their different characteristics with respect to 

exploratory noise.  

 

Parameters  Aη  Cη  Nτ  κ  σ  τ Mean Evaluation Std. Dev.

A .001 .0001 .55 .55 74.5 1 –.267 .01 
B 99.5 34.4 2500 71.5 7991 1 –.286 .09 

 

Table 5.1: Two of the best parameter sets found from optimization. Means and standard 
deviations of the evaluations were calculated with a sample size of N=30 evaluations. 

 

These two parameter sets both learn well on the BBT and FTT, though they use 

significantly different exploration. Parameter set A uses a massive amount of exploratory noise, 

allowing it to fully explore the state and action spaces, while Parameter set B exploits the current 

knowledge, with subtle exploration injected into the policy. In a typical episode on the control 

test, the average sum of the squared joint angle noise injected into the policy for parameter set A 
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was four orders of magnitude larger than that of parameter set B. Figure 5.2 depicts the 

difference between the exploration of the two parameter sets. For further discussion of these 

parameters and the effects of varying exploratory noise magnitude, see Section 5.6 and (Thomas 

et al., 2008a). 

 It was later realized that parameter set A does not conform to the constraint 0 .κ τ< ≤  

Experiments in which Nτ  was changed in parameter set A to 1Nτ =  led to results that were 

almost identical to those when .55.Nτ =  

 

 

 

Figure 5.2: Plot of the hand position when using learning parameter set A or B without noise 
(top), A with noise (bottom left), and B with noise (bottom right). All are attempting the same 
motion to the grey goal state. Dots, starting white and fading to black, map the hand position 
every 20ms. 

B with 

 noise 

A with 

 noise 

Without 

 noise 
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Though parameter set B exhibits little exploration and parameter set A exhibits excessive 

exploration, human trials would require exploration between the two. Current research by 

Kathleen Jagodnik and Dr. Antonie van den Bogert at the Lerner Research Institute involves the 

application of the controller developed herein to human trials in which the subject gives the 

rewards. For such a test to succeed, the explorational noise must be large enough for a human 

subject to discern the difference between a motion with and without exploration, and small 

enough that it does not largely obscure the motion of the current policy. 

 The explorational noise is defined by the parameters σ  and .Nτ  The values 9,000σ =  

and 2,400Nτ =  were found to produce exploration as desired. In order to ensure conformity with 

the constraint 0 ,κ τ< ≤  the values .1τ =  and .1κ =  were selected. The remaining parameter sets 

were found to fit into two categories: parameters that result in fast initial learning but an unstable 

system that diverges in the long-term; and parameters that learn slowly but remain stable in the 

long-term. Two prototypical examples of such parameters, the Fast parameters and the Slow 

parameters, are provided in Table 5.2. These parameters are analyzed in the following sections 

as well as in (Thomas et al., 2009a). Notice that the critic's learning rate for the Fast parameters 

is zero. The Fast parameters likely utilize the shape of the reward function and pre-trained critic 

for initial learning, though future work should be done to determine why the continuous actor-

critic learns with a fixed critic. 
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Parameters ηA ηC σ  
Nτ  τ  κ  

Slow 10 .344 9,000 2,400 .1 .1 
Fast 70 0 9,000 2,400 .1 .1 

 

Table 5.2: One of the best parameter sets found from optimization with manual tuning, the Fast 
parameters, and a derivation thereof, the Slow parameters. 

 

 Because these parameters have a more practical magnitude of exploration than 

parameters A and B, parameters A and B will only be considered in Section 5.6, and not included 

in results for the other tests. 

 

5.3 Control Test (CT) 

Using the Fast parameters on the CT, the system improves its evaluation before becoming 

unstable. Qualitatively, the arm movements begin to oscillate around the goal state within the 

first 1,000 episodes. Using the Slow parameters, learning is significantly slower, though stable. 

Figure 5.3 shows the short and long-term performance of both parameter sets on the control test. 

Notice the logarithmic scale of the horizontal axis, representing training time in terms of 

episodes. We desire rapid initial learning over the first few hundred episodes, as well as stability 

in the long-term, represented by the evaluation out to 10,000 episodes. This logarithmic scale of 

the horizontal axis will be utilized in all of the learning curves shown, except where emphasis is 

placed on the short-term performance. The initial evaluation is .21.−  

Figure 5.4 compares the joint angle trajectories on the CT for one movement before 

training and after training, which will be useful for comparison to other tests. 
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Figure 5.3: The actor-critic's mean evaluation (N=10) on the control test using both the Fast and 
Slow parameters with standard deviation error bars. Evaluations represent those just prior to the 
episode number marked on the horizontal axis. 

 

 

Figure 5.4: Joint angle trajectories before training (dotted) and after 500 training episodes (solid). 
The target movement is from ( ).35,1.57θ =  to ( )Goal 1.57,.35 .θ =  The horizontal axis spans one 
episode. 
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5.4 Baseline Biceps Test (BBT) 

Because the learning parameter sets were optimized using the BBT, the Fast parameters 

perform well on the BBT, quickly removing overshoot of the goal when the initial configuration 

is clockwise of the goal configuration, and generating a steady state close to the goal state. Once 

again, the Fast parameters are unstable in the long-term, though the Slow parameters remain 

stable, as shown in Figure 5.5. Trials using the Slow parameters for several million episodes 

confirmed empirically that the Slow parameters are stable in the long-term. 

 

 

Figure 5.5: The actor-critic's mean evaluation (N=10) on the BBT with standard deviation error 
bars. Evaluations represent those just prior to the episode number marked on the horizontal axis. 
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Figure 5.6 compares the joint angle trajectories on the BBT for the same movement 

before training and after training. The desired movement is identical to that of Figure 5.4. Notice 

the significant improvement in the elbow joint angle trajectory after training. 

 

 

Figure 5.6: Joint angle trajectories before training (dotted) and after 500 training episodes (solid) 
on the BBT. The target shoulder and elbow angles are provided as the thick blue and red lines 
near .35 and 1.57, respectively. The horizontal axis spans one episode. 

 

5.5 Fatigued Triceps Test (FTT) 

The learning parameter sets' ability to adapt to changing dynamics was then tested using 

the FTT. Because the parameters were optimized using the BBT, the FTT serves as a test of their 

generalizability to other changes in dynamics. The Fast parameters remove the overshoot within 
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200 episodes. Performance is consistent with the previous tests, with the Fast parameters initially 

learning rapidly, then diverging, while the Slow parameters learn more slowly, but remain stable 

as shown in Figure 5.7. Trials using the Slow parameters have empirically shown that the system 

remains stable after 1 million training episodes (not shown). 

 

 

Figure 5.7: The actor-critic's mean evaluation (N=10) on the FTT with standard deviation error 
bars provided. Evaluations represent those just prior to the episode number marked on the 
horizontal axis. As with Figure 5.3, notice the logarithmic horizontal axis. 

 

Figure 5.8 compares the joint angle trajectories on the FTT for the same movement 

before training and after training. The desired movement is identical to those of Figures 5.4 and 

5.6. Notice that, after training, the overshoot of the elbow joint angle has been significantly 

reduced. 
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Figure 5.8: Joint angle trajectories before training (dotted) and after 500 training episodes (solid) 
on the FTT. The horizontal axis spans one episode. 

 

5.6 Effects of Exploration 

This section discusses the results on the CT, BBT, and FTT when using parameter sets A 

and B, defined in Table 5.1. As discussed in Section 5.2, parameter set A includes significant 

exploration, while parameter set B has minor exploration. Both were found to perform similarly 

to the Fast parameters of Table 5.2 on the CT, BBT, and FTT. Neither is stable in the long-term. 

Though long-term plots are not provided, this instability will be evident in the following short-

term plots. Figure 5.9 shows performance on the CT, Figure 5.10 shows performance on the 

FTT, and Figure 5.11 shows performance on the BBT. 
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Figure 5.9: Mean performance (N=16) of parameter sets A and B on the CT with standard 
deviation error bars. Evaluations represent those just prior to the episode number marked on the 
horizontal axis. 

 

Figure 5.10: Mean performance (N=16) on the FTT with standard deviation error bars. 
Evaluations represent those just prior to the episode number marked on the horizontal axis. 
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Figure 5.11: Mean performance (N=16) on the BBT with standard deviation error bars. 
Evaluations represent those just prior to the episode number marked on the horizontal axis. 

 

Notice that parameter set B performs similarly to A on the BBT, but worse on the CT and 

FBT. This is likely because the optimization of the parameter sets judged parameter utility based 

on performance on the BBT. Parameter set B may have over fit the problem of learning on the 

BBT. 

The ability of the actor-critic to learn well with various amounts of exploration on the 

simulated arm is encouraging and potentially useful in clinical application. When used with a 

human arm, there will be unintentional noise introduced to the system by sensors, as in the NRT. 

Parameters for exploration ought to be chosen to have just enough exploration that the agent can 

distinguish between the intended exploratory noise and the unpredictable noise inherent to real-

world experiments. In the NRT, we only hypothesize about what such experimental noise will 
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be, while these tests show that parameter sets with more exploration, which may be required in a 

noisy environment, are also able to adapt rapidly to changing dynamics. 

 

5.7 Noise Robustness Test (NRT) 

The system performs well on the NRT using the Fast parameters, without significant 

changes to learning speed with noise in the inputs representative of those expected in real-world 

experiments. As with the Fast parameters on the BBT without sensor noise, the system is not 

stable in the long-term. Figure 5.12 shows the rapid initial learning of the Fast parameters on the 

NRT without bias, combined with the BBT. 

Adding a bias of size .05Bμ =  to both joint angle measurements improves the initial 

evaluation on the BBT, but does not have a significant impact on learning, as shown in Figure 

5.13. Tests (not shown) have suggested that larger biases will often cause the system to 

immediately diverge. Researchers should therefore carefuly calibrate sensors prior to use. 
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Figure 5.12: The actor-critic's mean evaluation (N=16) on the NRT with .1,θσ =  .3,θσ =  and 

0,Bμ =  with standard deviation error bars provided. Evaluations represent those just prior to the 
episode number marked on the horizontal axis. Notice the logarithmic scale of the horizontal 
axis. 
 

 
Figure 5.13: The Fast parameters' mean performance (N=16) on the BBT combined with the 
NRT including a bias, with standard deviation error bars provided. Evaluations represent those 
just prior to the episode number marked on the horizontal axis. Notice the logarithmic scale of 
the horizontal axis. 
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5.8 Delayed Reward Test (DRT) 

 Running the DRT with 20τκ =  simulates a setting in which the user is only able to give 

rewards once every .4 seconds. For some amount of time, t, in seconds, the actor and critic would 

usually be updated t
t

⎢ ⎥
⎢ ⎥Δ⎣ ⎦

 times, however, on the DRT there would only be 
t

tκτ

⎢ ⎥
⎢ ⎥Δ⎣ ⎦

 updates, so 

it is expected that learning will be slower on the DRT. To some extent, this can be combated 

using larger learning rates in the actor, as shown in Figure 5.14. 

 

 

Figure 5.14: Typical runs of the Fast parameters on the DRT combined with the BBT using 
20.τκ =  Notice that the horizontal axis is episodes times ten, giving the plot a duration of 500 

episodes. Evaluations represent those just prior to the episode marked on the horizontal axis. The 
red (dotted) line is the actual Fast parameters ( 70),Aη =  the black (solid) line is the Fast 
parameters with 140,Aη =  and the blue (dashed) line is the Fast parameters with 1,400.Aη =  The 
latter reaches a minimum at 1.3−  after 80 episodes (not shown). 
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 In conclusion, we expected and observed slower learning when using delayed rewards, 

though this can be partially avoided by increasing the learning rates in the actor. During trials in 

which a human subject provides the rewards to the system, either the rewards must be provided 

frequently, or learning will be slow. One possibility for achieving rapid learning while 

maintaining human influence in the reward signal would be to allow the human to augment the 

computer signal, which is still provided every .02 seconds. 

 

5.9 Discrete Reward Test (DiRT) 

 The actor-critic performs well on the DiRT combined with the BBT, described in Section 

4.9. Figure 5.15 shows how learning is quite similar to that of the BBT alone when using the Fast 

parameters, though in the long-term the system diverges to an even lower evaluation on the 

DiRT. 
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Figure 5.15: Mean performance (N=16) of the Fast parameters on the BBT combined with the 
DiRT for 100,000 episodes, with standard deviation error bars. Evaluations represent those just 
prior to the episode number marked on the horizontal axis. Notice the logarithmic scale of the 
horizontal axis. 

 

5.10 Continuous Learning Modification (CLM) 

When training on the CLM, the eligibility traces in the critic were reset after each 

movement. This was done because the values of subsequent states are independent of the actions 

taken and states crossed during the previous movement. Figure 5.16 shows performance on the 

CLM combined with the BBT. Though the system is still learning, it is not as reliable as with the 

Fast parameters. Visualizing the policies after 500 episodes of training, they are not as smooth as 

those found without the CLM, and also include more oscillation about the target state. Though 

the actor-critic has accomplished its goal of increasing the accumulation of reward, the resulting 

policies would likely be considered worse by a human observer. 
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Figure 5.16: Mean performance (N=16) of the Fast parameters on the BBT with the CLM over 
100,000 episodes, with standard deviation error bars. Evaluations represent those just prior to the 
episode number marked on the horizontal axis. Notice the logarithmic scale of the horizontal 
axis. The maximum evaluation of .23−  occurs after approximately 500 episodes. 

 

5.11 An Unexplained and Unexpected Phenomenon  

 It was accidentally observed during trials using the Fast parameters on the BBT (Section 

5.4) that the system learned on the BBT and FTT whenever the TD-error (δ  from Equation 

2.39) is negative, though learning is less stable than when δ  is computed using Equation 2.39. 

To exemplify this, consider Figures 5.17 and 5.18, in which the Fast parameters were run on the 

BBT (Section 4.3). In Figure 5.17 the TD-error was selected randomly over the interval 

[ ].5,0 ,δ ∈ −  while Figure 5.18 is the unmodified actor-critic (similar to Figure 5.5, except using 

16 new trials and a different horizontal scale). 
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Figure 5.17: Mean performance (N=16) of the continuous actor-critic on the BBT using the Fast 
parameters with random negative TD-error. Standard deviation error bars are provided. 

 

 

Figure 5.18: Mean performance (N=16) of the continuous actor-critic on the BBT using the Fast 
parameters with TD-errors computed as described in Subsection 2.2.8. Standard deviation error 
bars are provided. 
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 Figure 5.19 shows that the TD-error initially has a negative bias during a typical run of 

the unmodified actor-critic using Fast parameters on the BBT (e.g., a run from Figure 5.5 or 

Figure 5.18). Over time, the bias decreases. Figure 5.19 spans 10,000 TD-error computations, 

which equates to 100 episodes. 

 

 

Figure 5.19: TD-errors from a typical run of the unmodified actor-critic using Fast parameters on 
the BBT. 

 

 Trials in which the TD-error was random with no bias or had a positive bias all diverged 

rapidly. We observed that the exploration has a slight positive bias because the requested 

stimulation of each muscle is near zero for most of each episode. When these small values are 

combined with the zero-bias exploration and put through the Sigmoid function to obtain the 

action (Equation 2.43), the result is a slightly positive bias in the exploration applied to the 
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muscle stimulations. One would expect this positive bias, combined with negative TD-errors, to 

result in a general decrease in muscle stimulation, which may improve performance on the BBT 

and FTT by reducing overshoot. However, empirical tests revealed that the sum of the muscle 

stimulations from each episode increased for all muscles but the triceps (short and long head) on 

the BBT when using the unmodified Fast parameters. 

It remains unknown why the system learns when the TD-error is negative and randomly 

selected.  
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CHAPTER 6:  

LONG-TERM STABILITY 

 

In all of the previous tests from Chapter 5, parameters were found to either be fast and 

unstable or slow and stable. This chapter presents several techniques applied in an attempt to 

achieve both in one controller. It begins in Sections 6.1 through 6.4 with simple modifications to 

the actor-critic architecture and implementation. Section 6.5 presents a system that achieves both 

rapid initial learning and long-term stability. Section 6.6 concludes the chapter with a summary 

of the results. 

 

6.1 TD-Error Cap 

In the previous tests, the magnitude of the TD-error was capped to .5 during training 

because larger TD-errors, though uncommon, could cause the critic to become unstable. This 

occurs because the magnitude of the TD-error scales the learning rate for the actor and critic 

linearly (see Equations 2.41 and 2.42). By lowering this cap, the system is forced to make 

smaller updates. This improves stability, but slows learning. 

Figure 6.1 shows that the tradeoff between stability and learning speed was not 

significantly improved by changes to the TD-error cap. Notice that the horizontal axis is scaled 

by 1,000, showing 100,000 episodes. 



130 
 

 

Figure 6.1: Evaluation on the BBT for 10,000 episodes using the Fast parameters with various 
TD-error magnitude caps. After 100,000 episodes, the curve for Cap=.01 reaches .3.−  The 
horizontal axis is scaled by 1,000. 

 

 A cap small enough to ensure stability would have to be lower than .01, which already 

adapts too slowly for practical applications. There is not a significant difference between a cap of 

1 and .5 because TD-errors were rarely larger than .5 in our trials. 

 

6.2 Muscle Force Weight 

When the system is diverging, it first begins to oscillate at high frequency around the goal 

state. A possible cause is an improper weighting of the squared muscle activation, which relates 

to muscle forces, in Equation 4.1. The constant W was changed to ' ,W kW=  with 

{ }.8,1,1.2,1.5,1.75,2,3,4,5,10 .k∈  The larger values result in a higher weighting on muscle 

forces, which encourages slower motions that require less muscle force, which may reduce the 
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jitter that precedes divergence. Figure 6.2 presents the performance with these k. Notice that 

none of the systems are stable in the long-term. 

 

 

Figure 6.2: Performance on the BBT with Fast parameters and with various muscle weight 
constants in the reward function. Notice that the line colors are graduated with respect to k, with 
darker lines corresponding to larger k. The horizontal axis is scaled by a factor of 1,000. 

 

If the constant, k, is made too much smaller, the evaluation may increase, but 

performance may not, as the controller will become more like a PD controller with excessive 

gains. Also, notice that the evaluation metric in Figure 6.2 differs for each curve. With a larger 

constant multiplying the muscle forces, the rewards are all more negative. Because the 

evaluation is based on the integral of the reward signal, this results in a worse evaluation for an 

identical policy. Initially all of the curves start with the same policy, so the difference in their 

evaluations is due to this discrepancy in evaluation. 
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In conclusion, changes to this constant were found to visually influence the magnitude 

and frequency of the jitter, though its onset was relatively constant and divergence properties 

remained unchanged, as seen in Figure 6.2. The critic was not pre-trained again for each k, which 

could be adversely affecting performance. 

 

6.3 Monitor Critic 

Assuming that divergence occurs because of error in the value function, a possible 

solution is to only update the actor only when the TD-error over the previous k updates has been 

less than a manually tuned constant, .Δ  Tests showed the standard system to be relatively stable 

on the BBT when TD-errors had magnitude less than .1, suggesting .1.Δ ≈  The trade-off 

between stability and learning speed was again not significantly changed. For small Δ  and large 

k, the system was more stable, though learning was slow, while larger Δ  and smaller k learned 

faster but were more unstable. 

The learning curves in Figure 6.3 use a combination of the Fast and Slow parameters, in 

which 70Aη =  and .344,Cη =  when run on the BBT with varying Δ  and 20.k =  Though the 

smallest sΔ  are more stable, they require over 2,000 training episodes for initial adaptation, far 

more than the target 200 episodes. In addition, they too are unstable in the long-term. This is 

only a small sample of the trials run, which included various k and ANN sizes. 
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Figure 6.3: Performance of the merged Fast and Slow parameters on the BBT with various TD-
error caps and 20.k =  Notice the color gradient follows the value of ,Δ  and the horizontal axis 
is scaled by a factor of 1,000. The line with the best evaluation over most episodes corresponds 
to .01.Δ =  
 
 

A possible reason for the failure of this approach is the variance in TD-errors depending 

on arm motions and positions in the state space. A small average TD-error over an entire episode 

could either mean that the critic is accurate over the entire state space or that the critic is accurate 

only for the motion in the previous episode (e.g. a relatively small movement). However, a small 

TD-error over a duration less than an episode could mean that the critic is accurate only for 

certain regions of the state space (e.g., when the arm is near the goal, giving expected future 

reward near zero). To overcome these hurdles would require values of k that average TD-errors 

over more than one episode. 

Figure 6.4 shows results with 200,k =  which equates to 4 seconds, or two arm 

movements. As with the smaller value of k, the system remains unstable in the long-term. 
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Figure 6.4: Performance of the merged Fast and Slow parameters on the BBT with various TD-
error caps and 200.k =  Notice the color gradient follows the value of Δ  and the horizontal axis 
is scaled by a factor of 1,000. 
 

6.4 Weight Decay Term 

It is common to add a weight decay parameter to the objective function when training 

function approximators in order to improve generalization (Mitchell, 1997). This can be 

approximated for the continuous actor-critic by augmenting the actor and critic update equations 

(2.42 and 2.41 respectively) to 

 ( ) ( ) 2 ,i C i C iw t e t k wη δ= −  (6.1) 

and 
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respectively, where Ck  and Ak  are weighting constants. In some implementations, the expected 

magnitude of the vectors ( )n t  and ( )N t  are decayed over time. If the magnitude of the 

explorational noise term were not included in the weight decay term of Equation 6.2, it would 

dominate the equation as the magnitude of the exploration goes to zero, taking all weights to 

zero.
 

Previous tests can be thought of as having Ck  and Ak  both set to zero, resulting in no 

weight decay term. The General parameters are defined in Table 6.1 as a combination of the Fast 

and Slow parameters, with the addition of .0000002Ak =  and .000002.Ck =  These values were 

found through experimentation to result in weight magnitudes several orders smaller than those 

derived from training without a weight decay parameter, while the overall performance was not 

significantly changed on the control test. 

 

Aη Cη  Ak  Ck  
70 .344 2E 7− 2E 6−

 

Table 6.1: General parameters. Those not listed are identical to the Fast parameters, provided in 
Table 5.2. 

 

A new actor and critic were pre-trained using these parameters on the Control Test for 

10,000 episodes. The resulting actor and critic were then used as a starting point for the CT, 

BBT, and FTT. The General Parameters were given their name because the resulting policy of 

the newly pre-trained actor generalizes well to different arm dynamics. The pre-trained ANN's 

performance is provided in Table 6.2. 
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Test CT BBT FTT 
Evaluation –.192 –.22 –.197 

 

Table 6.2: General parameters' evaluations immediately after pre-training. 

 

 This result is expected, as weight decay terms are known in machine learning to improve 

generalization. These parameters use larger muscle forces, similar to a PD controller with larger 

gains, which improves initial performance on the BBT and FTT. Though these are mostly 

desirable traits, the long-term stability of the system remains unchanged. 

 Figure 6.5 depicts the General parameters' evaluation on the CT. Notice that the initial 

evaluation is .19,−  which is similar to that of the PD controller on the CT ( .18).−  Figure 6.6 

depicts the General parameters' performance on the FTT. Notice that the initial evaluation of the 

General parameters on the FTT ( .197)−  is better than that of the original pre-trained ANN of 

Chapter 5 for the Fast and Slow parameters on the CT ( .21).−  Figure 6.7 depicts the General 

parameters' performance on the BBT. Once again, notice that the initial evaluation of the General 

parameters ( .22)−  is only slightly worse than that of the pre-trained ANN for the Fast and Slow 

parameters on the CT ( .21).−  

 The good initial evaluations in Figures 6.5, 6.6, and 6.7 support the notion that the 

General parameters generalize well to variations in arm dynamics, though all figures display 

divergent properties after approximately 1,000 episodes. Due to the lack of improvement in 

stability, the General parameters were not investigated further.  
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Figure 6.5: General parameters' mean performance (N=16) on the CT with standard deviation 
error bars provided. The dotted lines represent the minimum and maximum values over all 16 
trials. Notice the logarithmic scale of the horizontal axis.  
 
 

 
Figure 6.6: General parameters' mean performance (N=16) on the FTT with standard deviation 
error bars provided. The dotted lines represent the minimum and maximum values over all 16 
trials. Notice the logarithmic scale of the horizontal axis. Also, notice the similarity of the line to 
that in Figure 6.5, and the differences in standard deviation. 
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Figure 6.7: General parameters' mean performance (N=16) on the BBT with standard deviation 
error bars provided. The dotted lines represent the minimum and maximum values over all 16 
trials. Notice the logarithmic scale of the horizontal axis. 
 

6.5 Hybrid Controller Achieving Fast Learning and Long-Term Stability 

For the FES control task, the agent must continuously adapt to changes in its 

environment, so decaying learning rates is not a viable option. However, the rapid initial learning 

with an inaccurate critic can be combined with the slower accurate-critic learning using a hybrid 

controller that toggles between learning styles. The Fast parameters (Table 5.2) can be used for 

rapid initial learning. Once learning has reached a plateau, or if performance begins to decrease, 

the agent can switch to the Slow parameters (Table 5.2). During this phase, the critic corrects 

errors in the value function, again becoming accurate. Whenever performance deteriorates 

beyond some performance threshold, the system can again switch to the Fast parameters for 

another burst of rapid learning. 



139 
 

 We are primarily interested in determining whether or not the Slow parameters will 

remain stable after beginning training with the Fast parameters, which results in an inaccurate 

critic. Also, in order to continuously adapt to changing dynamics, the system must be able to 

switch back to the Fast parameters and continue to learn when performance degrades. This 

toggling system will be referred to as the Hybrid Controller. 

In practical applications, the Fast parameters can be used for initial adaptation when the 

agent is first used on a subject, after which the Slow parameters can be used to maintain stability 

(e.g. Figures 6.8, 6.9, and 6.10). At any point, if a subject notices deteriorated performance of his 

or her arm due to muscle fatigue or other changes, the subject could activate a short-term switch 

to the Fast parameters to improve performance via shape-greedy learning. 

Figure 6.8 shows that this hybrid controller can learn quickly and remain stable in the 

long-term on the CT and FTT. The results of these two tests were combined into one figure 

because of their similar evaluation magnitudes. Notice that, on the FTT, the actor-critic's final 

evaluations are better than those of the pre-trained ANN on the CT. 

Figure 6.9 shows that the Hybrid Controller also performs well on the BBT with rapid 

initial learning and long-term stability. The slight decrease in performance around 10,000 

episodes is consistent throughout the tests, as shown by the error bars, but remains unexplained. 

Figure 6.10 shows the performance of the Hybrid Controller on the NRT ( .05).Bμ =  The 

rapid initial learning is identical to that of the Fast parameters, however, unlike Figures 6.8 and 

6.9, the system is not completely stable in the long-term, though it remains stable for nearly 

10,000 episodes. For real-world FES applications, instabilities that arise after 10,000 episodes 
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are irrelevant. However, the instability beyond 10,000 episodes is interesting from an academic 

standpoint, evincing that the system is not completely stable. 

 

 

Figure 6.8: The actor-critic's mean evaluation (N=16) over 50,000 episodes on the CT and FTT 
using the Fast parameters for the first 300 episodes and the modified Slow parameters thereafter, 
with standard deviation error bars provided. Evaluations represent those just prior to the episode 
number marked on the horizontal axis. Notice the logarithmic scale of the horizontal axis. 

 

For the Toggling Test (TT, Section 4.7), the parameters were switched to the Fast 

parameters whenever the environment switched dynamics between the BBT and the FBT. Figure 

6.11 shows how the system can rapidly converge to a policy with a reasonable evaluation on 

both the BBT and FBT while remaining stable. Before the switch to the Slow parameters, the 

learning curve for the Hybrid Controller is identical to that of the Fast parameters. For a better 

view of initial learning than is provided, refer to Figure 5.5, which presents the results of the Fast 

parameters on the BBT.  
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Figure 6.9: The actor-critic's mean evaluation (N=16) over 50,000 episodes on the BBT using the 
Fast parameters for the first 300 episodes, and the modified Slow parameters thereafter, with 
standard deviation error bars provided. Evaluations represent those just prior to the episode 
number marked on the horizontal axis. Notice the logarithmic scale of the horizontal axis. 
 
 

 
Figure 6.10: The actor-critic's mean evaluation  (N=16) over 50,000 episodes on the NRT 
combined with the BBT, with standard deviation error bars. It used the Fast parameters for the 
first 300 episodes, and the modified Slow parameters thereafter. Evaluations represent those just 
prior to the episode number marked on the horizontal axis. Notice the logarithmic scale of the 
horizontal axis. 
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Figure 6.11: The hybrid controller's evaluation, where the environment starts as the BBT, then 
switches to the FBT after 1,100 episodes, then back to the BBT after 2,200 episodes, etc. The 
parameters also switch from the Fast parameters for the first 100 episodes on each test to the 
modified Slow parameters for the remaining 1,000 episodes on each test. The top plot shows 
long-term performance while the bottom shows short-term performance. 

 

6.6 Conclusion 

 The initial attempts in Sections 6.1 (TD-Error Cap), 6.2 (Muscle Force Weight), 6.3 

(Monitor Critic), and 6.4 (Weight Decay Term) all failed to improve long-term stability, though 

the addition of the weight decay term did result in improved generalizability of the policy to 

environments with variations in dynamics. In Section 6.5, we devised the Hybrid Controller, 
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which takes advantage of both the rapid initial learning of the Fast parameters and the long-term 

stability of the Slow parameters. 
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CHAPTER 7: 

DAS1 ILWR-CRITIC RESULTS 

 

 When using ANNs for both the actor and the critic, applied to the Adaptive RL FES 

Controller Task (Section 1.2), the continuous actor-critic failed to accomplish the necessary 

conditions for success. We require the controller to have both rapid initial learning, as well as 

long-term stability. In Chapter 5, where we presented the results when using ANNs for both the 

actor and the critic, only one of these two conditions could be satisfied at a time. In Section 6.5, 

we accomplished both by modifying the continuous actor-critic to allow for well-timed switches 

between two different parameter sets. 

 The long-term instability of any one parameter set, when using ANNs for the actor and 

critic, may stem from the critic's inability to remain accurate as the actor changes. The critic's 

accuracy can be improved by changing the critic function approximator to one that is better able 

to accurately track a non-stationary function. Results from Chapter 3 suggest that Incremental 

Locally Weighted Regression (ILWR) would perform better than an ANN as the critic, allowing 

for more rapid changes to the actor with the critic remaining accurate. This chapter therefore 

focuses on implementing ILWR as the continuous actor-critic's critic, while using the same pre-

trained ANN actor from Chapter 5. 

 Local actor updates may also improve the critic's ability to accurately represent the value 

function because changes to the policy would better reflect the local exploration. Though tests 
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with an ILWR actor were out of the scope of this thesis, it would be an interesting topic for 

future research. 

 

7.1 Pre-Training 

The ILWR critic was pre-trained to be accurate for the policy of the ANN actor from 

Section 5.1, which was trained via supervised learning to mimic the PD controller. To train the 

ILWR critic, the actor-critic was run using the ILWR-Pretrain parameters, provided in Table 7.1, 

with the actor's learning rate set to zero for 100,000 episodes on the CT. SI-ILWR was used due 

to constraints on computational time. Recall from Equation 2.56 that a typical state of the arm is 

1 21 2 1 2 Goal Goal( , , , , , ),θ θ θ θ θ θ  which resides in [ 2,4] [ 1,4] [ 5,5] [ 5,5] [ 2,4] [ 1,4].− × − × − × − × − × −  The 

initial knowledge points were distributed in a Sukharev Grid over this domain with 4 points 

across each dimension, resulting in 64 4,096=  total points. The initial output values for the 

knowledge points were chosen with a uniform distribution over [ ]10,0 .−  

 

Aη  Cη  D  σ Nτ  τ κ  
0 .1 ( ).5,.5,.3,.3,.5,.5diag 9,000 2,400 .1 .1 

 

Table 7.1: ILWR-Pretrain parameters. The critic's learning rate is the output learning rate. The 
input learning rate was zero. 

 

 All points with a weight larger than .1 were included in the regression, so long as no 

fewer than 10 points and no more than 1,000 points were included in each regression. The 
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average TD-error magnitude (Equation 2.39) over the second 50,000 episodes was .22, which is 

larger than the ANN critic from Section 5.1's average of .1. Figure 7.1 depicts the average TD-

error magnitude over each of the first 32,000 of the 100,000 training episodes, and suggests that 

the system was nearly converged well before 50,000 episodes. 

 

 

Figure 7.1: Average TD-error magnitude over the first 32,000 episodes when pre-training the 
ILWR critic. Notice the logarithmic scale of the vertical axis. 

 

7.2 Parameter Optimization 

 Parameter optimizations for ,Aη  ,σ  ,Nτ  ,τ  and κ  were performed in Section 5.1, and 

are relatively independent of the function approximator chosen for the critic. Their values were 
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therefore left unchanged, as in Table 7.1. The values for ,Cη  D, and the number of knowledge 

points were tuned manually. Unlike the optimizations of Chapter 5, here we are interested in 

finding parameters that result in both rapid initial learning as well as long-term stability.  

There is no clear heuristic to allow a minimization algorithm to optimize both short and 

long-term performance because the tradeoff between the two is not yet known when using ILWR 

for the critic. Therefore, the optimizations were done manually by initially selecting reasonable 

parameter values and observing the system's behavior. Given the results of several tests, we 

determined what parameter changes would most likely result in improved performance. The best 

parameters found, called the ILWR parameters, are provided in Table 7.2. 

 

Aη  Cη  D  σ Nτ  τ κ  
70 .1 ( ).5,.5,.3,.3,.5,.5diag 9,000 2,400 .1 .1 

 

Table 7.2: ILWR parameters. The critic's learning rate, ,Cη  is the output learning rate. The input 
learning rate was zero. 

 

 Figure 7.2 gives some meaning to the values selected for D. If the relative weighting 

between dimensions were significantly off, discrete steps would appear. If the overall magnitude 

were too large, only a few points would have significant weights, and if it were too small, too 

many points would have significant weights. In order for the matrix inversion in LWR to 

succeed, at least 6 independent points must be included in each regression. In order to ensure that 

the system maintains real-time, we desire less than 1,000 points be included in each linear 

regression. As previously stated, points were included in the regression if their weights were 

above .1, so we desire between 6 and 1,000 points have weight above .1. 
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Figure 7.2: The weight of each knowledge point in the ILWR critic for the state (.82, .52, –.25, 
.78, .38, 1.5), which resides near the center of the query space. The knowledge points have been 
sorted along the horizontal axis from largest weight to smallest. 

 

7.3 Control Test (CT) 

 The continuous actor-critic, when using the ANN-actor (Section 5.1) and ILWR-critic 

(Section 7.1) with the parameters from Section 7.2, achieves rapid initial learning on the CT, as 

well as improved long-term stability over the Fast parameters of Chapter 5. As mentioned in 

Section 6.5, long-term stability for practical applications requires observing performance out to 

10,000 episodes. Stability after this point is interesting only as a case study of the continuous 

actor-critic. Figure 7.3 depicts performance on the CT. Notice that the system maintains 

improved performance out to 10,000 episodes, after which the system continues to improve on 

average, though some trials became unstable. 
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Figure 7.3: Mean performance (N=16) of the actor-critic with the ILWR-critic on the CT. 
Standard deviation error bars are provided. The dotted lines represent the minimum and 
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.  

 

7.4 Baseline Biceps Test (BBT) 

 The actor-critic, when using the ANN-actor and ILWR-critic, excels on the BBT, 

achieving both rapid initial learning and significantly improved stability relative to the Fast 

parameters of Chapter 5. Performance is depicted in Figure 7.4. Although the system is not 

entirely stable out to 50,000 episodes, it is a vast improvement over the Fast parameters (Figure 

5.5). Further observation of the 16 trials to create Figure 7.4 revealed that the runs were split into 

two classes: in one, the system remained completely stable with an evaluation around .2;−  in the 

other, the system diverged to a final evaluation no worse than .35.−  The majority of runs 

( 11)N ≈  fell into the former category, with the remainder in the latter.  
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Figure 7.4: Mean performance (black solid line; N=16) of the actor-critic with the ILWR-critic 
on the BBT. In order to emphasize that most trials remained stable, all 16 trials are displayed as 
transparent red lines. Notice the dark red resulting from the majority of the trials maintaining an 
evaluation around –.2 after 50,000 training episodes. Standard deviation error bars are not 
provided. Notice the logarithmic scale of the horizontal axis.  

 

7.5 Fatigued Triceps Test (FTT) 

The actor-critic, when using the ANN-actor and ILWR-critic, excels on the FTT as well, 

achieving both rapid initial learning and significantly improved stability relative to that of the 

Fast parameters of Chapter 5. Performance is depicted in Figure 7.5. All 16 trials to create Figure 

7.5 terminated with evaluations above .22.−  
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 Figure 7.5: Mean performance (N=16) of the actor-critic with the ILWR-critic on the FTT. 
Standard deviation error bars are provided. The dotted lines represent the minimum and 
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.  

 

7.6 Noise Robustness Test (NRT) 

Performance of the actor-critic, when using the ANN-actor and ILWR-critic, is mediocre 

on the NRT with bias ( .05).Bμ =  Though rapid initial learning is preserved, the maximum 

evaluations achieved are significantly diminished compared to the BBT without the NRT. It is 

possible that the noise added to sensor readings makes it impossible to perform better, though 

this is not known. The learning curve, provided in Figure 7.6, is similar to that of the BBT, with 

rapid initial learning and a significant improvement in long-term stability over the ANN-only 

actor-critic of Chapter 5. This system is also more stable than the Hybrid Controller on the NRT 

(cf. Figure 6.10). All 16 trials to create Figure 7.6 terminated with evaluations above .33.−  
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Figure 7.6: Mean performance (N=16) of the actor-critic with the ILWR-critic on the NRT. 
Standard deviation error bars are provided. The dotted lines represent the minimum and 
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis. 

 

7.7 Conclusion 

Replacing the ANN-critic in Chapter 5 with an ILWR-critic drastically improved 

performance. The resulting system achieved rapid initial learning on the CT, BBT, FTT, and 

NRT, as well as improved long-term stability, without the need for toggling parameter sets as in 

the Hybrid Controller (Section 6.5). We suspect the improvement in performance is primarily 

due to the locality of ILWR updates. However, the system still remains unstable in the extremely 

long-term, beyond the timeframe considered for practical applications to FES control. This 

instability may be inherent to the continuous actor-critic itself, as discussed in Subsection 2.2.10. 
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In this chapter, the input learning rate of ILWR (see Chapter 3) was zero due to time 

constraints. As higher dimension control tasks are tackled, the ability to switch from SI-ILWR to 

DI-ILWR may be an effective means of combating the curse of dimensionality. Future research 

should be done to test DI-ILWR as the critic in control tasks of higher dimension. Work should 

also be done to determine the influence of using ILWR for the actor as well as the critic. Finally, 

work should be done to compare the results of using ILWR to those of kernel based methods 

such as RBFs. RBFs were not included in this work because preliminary tests failed to achieve 

acceptable performance as the critic during pre-training. This is likely due to an insufficient 

granularity of the search for optimal parameters.  
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CHAPTER 8:  

CONCLUSION 

 

 This chapter is divided into two parts. Section 8.1 reviews the results and contributions of 

the previous chapters. Section 8.2 discusses possible future work. 

 

8.1 Results and Contribution 

This thesis, as a whole, serves as documentation of the application of the continuous 

actor-critic to the real-world problem of FES control of a human arm, discussing difficulties and 

the methods used to overcome them. The primary difficulties in FES control are that the 

dynamics of each subject's arm differ and the dynamics can change during trials due to muscle 

fatigue. The adaptive abilities of the controllers created herein were tested by requiring the 

controllers to adapt to changes in the arm model, which were inspired by variations in arm 

dynamics that were observed in actual human subjects. 

We introduced the Adaptive RL FES Controller Task in Section 1.2, which requires a 

controller for DAS1, the arm simulator, be created that achieves rapid initial learning and long-

term stability, while remaining robust to noise in sensor readings. In Section 2.1, we showed that 

two basic closed-loop controllers, PDs and PIDs, are insufficient for this task. We then proposed 

using RL methods to create an adaptive controller. 
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 After reviewing RL in the beginning of Section 2.2, we analyzed the continuous actor-

critic in Subsection 2.2.10, and showed its relation to the SRV algorithm (Subsection 2.2.9). We 

also discussed the lack of convergence guarantees, and provided intuition about how local the 

updates to the actor and critic should be. After reviewing function approximators in Section 2.3, 

we reproduced Doya's implementation (Doya, 2000) of the continuous actor-critic on the 

pendulum swing-up task in Section 2.4. We observed that the system learns even when the critic 

is not yet accurate. 

 In Chapter 3, we introduced ILWR and compared it to ANNs on several test problems, 

ranging from a simple function with one input and output (Sigmoid Environment, Subsection 

3.1.1) to the non-linear FitzHugh-Nagumo environment (Subsections 3.1.3 and 3.1.4). We also 

compared ILWR and ANN's abilities to track a non-stationary function, which emulates the task 

of representing the critic in the continuous actor-critic. In all of the tests in Chapter 3, ILWR 

outperformed ANNs. 

 In Chapter 4, we introduced a slew of different tests to evaluate a controller's ability to 

adapt to clinically relevant changes in arm dynamics. These tests were dubbed the Control Test 

(CT, Section 4.2), Baseline Biceps Test (BBT, Section 4.3), Fatigued Triceps Test (FTT, Section 

4.4), Noise Robustness Test (NRT, Section 4.5), Fatigued Biceps Test (FBT, Section 4.6), 

Toggling Test (TT, Section 4.7), Delayed Reward Test (DRT, Section 4.8), Discrete Reward 

Test (DiRT, Section 4.9), and Continuous Learning Modification (CLM, Section 4.10). The CT 

serves as a control, with the DAS1 arm model remaining unchanged. The BBT and FTT 

introduce changes to the arm dynamics, which mimic those expected in some FES subjects. The 

NRT tests the controller's ability to learn in the presence of sensor noise. The FBT is used in the 

TT as a specific test for the Hybrid Controller of Section 6.5. The DRT, DiRT, and CLM provide 
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additional insight into the controller's performance if humans were to provide the reward signal 

during actual trials. 

In Chapter 5 we found that the continuous actor-critic, when using ANNs for both the 

actor and the critic on the tests from Chapter 4, could achieve either rapid initial learning or long-

term stability, but not both. This was observed on the CT (Section 5.3), BBT (Section 5.4), and 

FTT (Section 5.5). Rapid initial learning was also observed to be robust to various amounts of 

exploration (Section 5.6), sensor noise (NRT, Section 5.7), a discretization of the reward signal 

(DRT, Section 5.8), and a delay in the reward signal (DiRT, Section 5.9). 

 We then attempted to improve long-term stability in the system devised in Chapter 5 by 

tweaking the cap on the TD-error (Section 6.1), by altering the muscle activation weight in the 

reward signal (Section 6.2), by only allowing updates to the actor when the critic is accurate 

(Section 6.3), and by adding a weight decay term to the ANN updates (Section 6.4). None of 

these improved long-term stability while preserving rapid initial learning, though the weight 

decay term did result in policies that generalized better to variations in arm dynamics, which was 

observed as improved initial performance on the BBT and FTT. Chapter 6 concludes by 

combining unstable rapid initial learning and slow but stable learning to create the Hybrid 

Controller of Section 6.5. 

 In Chapter 7, we attempt to achieve rapid initial learning and long-term stability without 

the need to toggle between various parameter settings as in the Hybrid Controller. After finding 

the proper parameters for training, ILWR is used to pre-train a critic. This critic is then used to 

replace the ANN-critic of Chapter 5. The remainder of Chapter 7 presents results on the CT 

(Section 7.3), BBT (Section 7.4), FTT (Section 7.5), and NRT (Section 7.6). In all cases, rapid 
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initial learning is preserved, while long-term stability is improved relative to the ANN critic of 

Chapter 5. 

 Though both the continuous actor-critic with an ANN actor and ILWR critic and the less 

elegant Hybrid Controller have achieved all the requirements of the Adaptive RL FES Controller 

Task, neither is completely stable. The instability, which presents beyond 10,000 arm 

movements, remains unexplained. It may be due to the gradient descent steps of the actor-critic 

being too large, or it may arise from the use of function approximators. 

 We have successfully completed the Adaptive RL FES Controller Task (Section 1.2) in 

two ways. The Hybrid Controller uses ANNs for both the actor and critic, though it requires 

changes to the parameters of the actor-critic, which may be either automated or manual. The 

second solution uses ILWR for the critic and an ANN for the actor. It achieves both rapid initial 

learning as well as long-term stability without the need for dynamic parameters. 

 Other than contributing to the FES literature by presenting an argument for the feasibility 

of RL for use in FES control, as discussed in Section 1.3, this thesis also contributes novel 

methods and theory to the RL literature. In Chapter 3, we introduced a novel function 

approximator, Incremental Locally Weighted Regression (ILWR), which outperforms ANNs in 

all tests executed in Chapters 3 and 7. In Section 6.4 we introduced a weight decay term to the 

continuous actor-critic, which resulted in policies that performed better when faced with minor 

variations to the environment. In Section 2.4, Chapter 5, and Chapter 6, we observed two 

different types of learning by the actor-critic: unstable rapid initial learning, and slow but stable 

learning. 
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8.2 Future Work 

Because this work is among the first of its kind, applying RL to FES control, there is still 

significant room for further research. For example, research should be done to compare the 

performance of policy gradient methods to that of the continuous actor-critic, with a focus on 

stability and ability to scale to problems of higher dimension. 

In Section 5.11, the continuous actor-critic with the pre-trained ANN actor and critic 

from Section 5.1, using the Fast parameters, learned on the BBT when the TD-error was replaced 

with a random negative signal. This remains unexplained. Further research should be performed 

to determine the reason for this learning, and whether it is common when using RL to adapt to a 

changing environment. 

In Section 6.4, we introduced a weight decay term to the update equations for the 

continuous actor-critic (Subsection 2.2.8). For the task of FES control using the DAS1 model, 

this resulted in the actor-critic learning policies that performed better when the environment 

changed. In machine learning (e.g., classification), weight decay terms are known to improve the 

generalizability of results. Similarly, in RL, the weight decay term has increased the 

generalizability of a policy to similar environments. Further research should be done to 

determine whether this is a fluke of our particular system, or a trend throughout RL. 

 We observed, in Section 2.4, Chapter 5, and Chapter 6, that the actor-critic had two 

different types of learning. In the first type, the critic is accurate, and learning is slow but stable 

in the long-term, and Gullapalli's intuition (Subsection 2.2.10) applies. In the second, the critic is 

not yet accurate, so Gullapalli's intuition does not apply, and yet rapid initial learning occurs. 



159 
 

Future work should be done to develop an intuition for why the actor-critic learns under these 

conditions. 

 In Subsection 2.2.10, we suggested increasing the locality of updates to the critic as 

learning progresses in the continuous actor-critic architecture. Though our analysis suggested 

that this may improve performance, its application fell outside the scope of this work because the 

Adaptive RL FES Controller Task requires that learning parameters not be decayed. 

 In Chapter 3, we presented Incremental Locally Weighted Regression (ILWR), and 

compared it to other function approximators. In all of our tests, it outperformed Artificial Neural 

Networks (ANNs), especially when tracking a non-stationary function. In Chapter 7, we used it 

as the critic in the continuous actor-critic on a real-world problem, resulting in a significant 

improvement in stability over ANNs. Implementing ILWR for the actor as well as the critic 

could also lead to an additional improvement. Further research should be done into the 

performance of ILWR, with additional comparisons to ANNs and RBFs. An analysis should be 

performed of the differences between ILWR and RBFs with moving kernel centers. Most 

importantly, ILWR should be considered by researchers for use as an incremental function 

approximator. Additionally, an approximation or randomized algorithm for DI-ILWR updates 

(Chapter 3 and Appendix C) could improve runtimes for ILWR. 

 Throughout this thesis, the continuous actor-critic was found to be sensitive to its 

parameter settings, primarily the learning rates, the eligibility decay rate, exploration magnitude 

and time scale, reward decay rate, and the function approximators selected to represent the actor 

and the critic. A comparison of the sensitivity of different RL methods with respect to their 



160 
 

parameter settings would have been useful, providing additional information for consideration 

when initially selecting a learning algorithm. 

 The policies learned by the continuous actor-critic in Chapters 5 through 7 have unnatural 

muscle stimulations, as depicted in Figure 8.1. Because muscles and inertia act as a low-pass 

filter, movement is not sensitive to high frequencies in muscle stimulation. This, combined with 

the negative reward for muscle forces, ought to result in smooth muscle activations such as the 

PD's. Future work should be done including constraints on the derivatives of muscle stimulations 

requested by the controller. This may help to remove the high-frequency fluctuations that are not 

present in natural movements nor the PD controller's policy. 

 

 

Figure 8.1: Requested biceps stimulation over an episode on the BBT before training and after 
500 training episodes with the Fast parameters (Table 5.2).  
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 Lastly, future research should be done into the application of RL controllers to FES, both 

in simulation and on human subjects. As this is one of the first attempts to apply RL techniques 

to FES, the research area is still open for significant development. The encouraging results from 

this thesis have inspired further work in the application of RL to FES control. At the Lerner 

Research Institute (LRI) of the Cleveland Clinic Foundation, researchers Kathleen Jagodnik and 

Dr. Antonie van den Bogert are preparing for human trials of this controller for planar arm 

movement, in which able-bodied subjects provide the reward signal. They will investigate how 

the learned policies will differ when the reward signal is provided by a human rather than 

generated automatically via Equation 4.1. If these tests are successful, the controller may be used 

for human trials using FES on a patient with spinal cord injury. 

 Researchers at the LRI have also created a detailed three-dimensional musculoskeletal 

model of a human arm (Chadwick et al., 2009). Pending successful results from the real-world 

application of RL for planar control, the RL controllers from Section 6.5 and Chapter 7 could be 

applied to the three-dimensional model, and eventually three-dimensional human trials. The 

primary difficulty in the switch will be the increase in the dimension of the action space, as the 

three-dimensional model includes over 100 muscles, though this can be overcome by clustering 

similar muscles into groups that are all given equal stimulation. Additionally, the ability of 

ILWR to cluster knowledge points around interesting areas of the domain, combined with its 

planar local model, may help combat the increases in state and action space dimensions. 

 This thesis has shown that RL is a viable approach for adaptive control tasks, specifically 

FES control of a human arm, and will hopefully open up a vein of further research in the area, 

with the long-term goal of restoring natural motor function to people with spinal cord injury. 
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APPENDIX A 
 

This appendix contains a derivation of Equation 3.5, which states 

 ( )
1,

1

,
1,

0, when ,

, otherwise.
i

i

d k
T T

i j
d i

j k

y
+

−

+

≠⎧∂ ⎪= ⎨⎡ ⎤∂ ⎪⎢ ⎥⎣ ⎦⎩

β
X WX X W

 (3.5) 

Recall from (Schaal, Atkeson, and Vijayakumar, 2002) that  

 ( ) 1
.T T−

=β X WX X Wy  (A1) 

Therefore, 

 ( ) 11,
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1,1, ,

,i

i

p
d k T T

k
di j i jy y α

αα

−+

+=

∂ ∂ ⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ⎝ ⎠
∑

β
X WX X W y  (A2) 

by the definition of matrix multiplication. The summation is from one to p because 

( ) 1T T−⎡ ⎤
⎢ ⎥⎣ ⎦

X WX X W  has p columns and y  has p rows. When ,j k≠  the right hand side is not a 

function of yi,j, so 
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+
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X WX X W  (A6) 

Together, Equations A3 and A6 imply Equation 3.5. 
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APPENDIX B 
 

This appendix contains derivations of Equations 3.6 and 3.7, which state 

 ( ) ( ) ( )1 1 11,

, , , , , ,
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i
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  (3.6) 

and 

 ( ), , , ,
, ,

.i i j j q j i j
i j i i

x x
x

⎡ ⎤∂
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦

W W D  (3.7) 

Recall from (Schaal, Atkeson, and Vijayakumar, 2002) that 

 ( ) 1
.T T−

=β X WX X Wy  (B1) 

Also recall the following rules from matrix calculus (Edwards and Penney, 2002): 

 Inverse Rule: ( )1 1 1− − −∂ = ∂A A A A  (B2) 

 Transpose Rule:  ( ) ( )TT∂ = ∂A A  (B3) 

 Summation Rule:  ( )∂ + = ∂ + ∂A B A B  (B4) 

 Product Rule: ( ) ( ) ( )∂ = ∂ + ∂AB A B A B  (B5) 

Also recall that matrix multiplication is associative, but not commutative. This appendix uses the 

following notations: xi,j is the jth input of xi, the ith knowledge point; there are p knowledge 
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points; the inputs are of dimension di; and the outputs are of dimension do. Any other notation 

not specified is consistent with that of Chapter 3. 

First, we expand 1,id k+β  to obtain 
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By solving for  
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 (B7) 

we can easily extract the element at 1,id k+  for each k. When performing gradient descent on 

the error term, the results for 1 ok d≤ ≤  will be computed. We can expand Equation B7 using the 

product and inverse rules to obtain 
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For simplicity, we will let ( ) 1
.T −

=θ X WX  This value was computed during the approximation 

stage in the LWR algorithm, and can be stored so it need not be recomputed during the weight 

update stage. Substituting and applying the transpose rule, Equation B10 may be written as 

 
( )

, , ,

.
T T

T T

i j i j i jx x x

⎡ ⎤ ∂⎛ ⎞∂ ∂⎢ ⎥+ −⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

X WXWy Xθ X Wy θ θX Wy  (B11) 

Applying the product rule twice results in 
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Applying the transpose rule, product rule, and removing the term 
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we obtain the simplification, 
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Notice that ,/ i jx∂ ∂X  is a matrix with all zeros except , 1.i j =X  If using an unweighted 

version of LWR where W is not a function of xi,j, then ,/ .i jx∂ ∂ =W 0  If using LWR with 

weights, as is normal, ,/ ,i jx∂ ∂ =W 0  except for  
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Converting out of vector notation, this becomes 
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Moving the derivative into the exponent, we obtain 
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Substituting in 
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Applying calculus, we obtain 
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which is Equation 3.7. Note that this assumes D is independent of , .i jx  
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APPENDIX C 
 

This appendix contains directions for efficiently computing , ,ˆ / .q k i jy x∂ ∂  Recall Equation 

3.6, which may be rewritten as follows: 
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First, recall that ( ) 1T −
=θ X WX  was already computed during the approximation step in the 

incremental LWR algorithms. Substituting in ,θ  we obtain 
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Also notice that the entire matrix need only be computed once for each i,j, not for each distinct k. 

,/ i jx∂ ∂W  and ,/ i jx∂ ∂X  can be computed efficiently, as both have at most one non-zero entry.  

 Next, we write ,/ i jx∂ ∂β  in terms of r1 and r2, which are defined as 
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After computing r1 and r2, ,/ i jx∂ ∂β  can be computed as 

 1 2
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∂
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β r r  (C5) 

 Let ,i j  denote a real-valued number in the ith row and jth column, while 1i,j denotes a 1 

in the ith row and jth column. We begin by analyzing the computation of r1 by following the 

matrix operations to compute it, simplifying using the known forms of ,/ i jx∂ ∂W  (See Equation 

3.6), ,/ ,i jx∂ ∂X  and W: 
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 The first step in computing r1 is computing 
,

:T

i jx
∂
∂

WX  

 

( ) ( ) ( )

, ,

1,1,1 1,

2,

,

,

1,1 1, 1,

0 0

,

0 0

1 1

i

i i i

T T

i j i j

ip

i

i i

d i

d d p d i

i i

x x

d p p p d p
+ + +

∂ ∂
∂ ∂

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ × × + ×

W WX X

0 0  (C9) 

where 0  represents a submatrix with all entries equal to zero. The result can be expressed as  
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where 11, .id +∈0 v  v1 can be written as 
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The next step in computing r1 is computing 
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Note that the elements in ( ),
T

i jx∂ ∂X W y  are a function of only v1 and the ith row of y. As such, 

we can write an equation for each element in ( ), ,T
i jx∂ ∂X W y  
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 Next we must solve for the second half of r1, ( ), .
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0 00 0 0 0

1 1

T
T

i j i j

j i

p p j i

p p

i i

x x

d p p p d p

− −

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW W

W
W

W
W

 (C14) 

The real number in the jth row and ith column of 
,

T

i jx
∂
∂
X W  can be expressed as 
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 ,
, ,

.
T

i i
i j j i

x
⎡ ⎤∂

=⎢ ⎥
∂⎢ ⎥⎣ ⎦

X W W  (C15) 

 The next step is to compute ( ), :
T

i jx∂ ∂X Wy  

( ) ( ) ( )

, ,

1,1 1,

,1 ,2 , 1 ,,

,1 ,

0 00 0

.

0 0 0 0

1 1

o

o o

o

T T

i j i j

d

j j j d j dj i

p p d

i o i o

x x

d p p d d d

−

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW y Wy

 (C16) 

The jth row of ( ),

T

i jx∂ ∂X Wy  can be written as a row vector, v2, each element of which can be 

expressed as 

 2
, , for 1 1.i i i odα α α= ≤ ≤ +v W y  (C17) 

Combining this with Equation C13, we can compute r1, by first building 1̂r  as a ( )1i od d+ ×  

matrix with 

 

[ ]
, ,

, ,
1 ,

, , , ,
, ,

, ,

ˆ

, ,

T
t i i u

i j i i

t u
T
t i i u i i i u

i j i i

t j
x

W y t j
x

⎧ ⎛ ⎞∂
≠⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠⎪= ⎨

⎛ ⎞∂⎪
+ =⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪⎩

WX y

r
WX y

 (C18) 

and then multiplying 1̂r  by θ  ( 1 1)i id d+ × +  on the left-hand side, giving the 1i od d+ ×  result: 
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 1 1̂.=r θr  (C19) 

The time to compute r1 is ( )2 .i o o iO d d d d+  The 2
i od d  term comes from the cost of the final 

multiplication by .θ  

 Next, we compute r2, defined in Equation C4, using the same method. We first simplify 

the end by computing the 1i od d+ ×  matrix .T=φ X Wy  This term is independent of i, j, and k 

and need not be computed more than once for each query. Substituting in ,φ  we obtain 

 
2

, , ,

.
T

T

i j i j i jx x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

X W Xr θ X W X WX θφ  (C19)

 

Next we compute the ( ),i jx∂ ∂W X  term: 

 

( ) ( ) ( )

, ,

1,1

2,2

1, 1 , ,

,

0 0 0 0 0 0
0

.
0 1

0 0 0 0 0 0

1 1

i j i j

p p i j i j

p p

i i

x x

p p p d p d

− −

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

× × + × +

X XW W

W
W

W
W

 (C20) 

The ,i j  term is Wi,i. Next we compute the ( ),i jx∂ ∂W X  term: 
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( ) ( ) ( )

, ,

1,1 1, 1, 1

,

,1 ,2 , , 1

,1 , , 1

1 0 00 0

.

0 0 1 0 0

1 1

i i

i i

i i

i j i j

d d

i i

i i i d i d

p p d p d

i i

x x

x x

x x

p p p d p d

+

+

+

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

× × + × +

W WX X

 (C21) 

The ith row of ( ),i jx∂ ∂W X  can be expressed as a row vector, 13 ,id +∈v  which can be 

described as 

 3
,

, ,

.i
i j i i

x
xα α

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

Wv  (C22) 

 Using Equations C20 and C22, ( ) ( ), ,i j i jx x∂ ∂ + ∂ ∂W X W X  can now be computed as 

 

( )

,1 ,2 , , 1, ,

0 0

,

0 0
1

i ii i i d i di j i j

i

x x

p d

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂

+ = ⎢ ⎥
∂ ∂ ⎢ ⎥

⎢ ⎥⎣ ⎦
× +

X WW X  (C23) 

where the ith row can be expressed as row vector v3 (Equation C22) plus Wi,i in the ith row and jth 

column. We will call this row vector v4, defined as 
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,
, ,4

, ,
, ,

, when ,

, otherwise.

i
i j i i

i i i
i j i i

x j
x

x
x

α

α

α

α
⎧⎛ ⎞∂

≠⎪⎜ ⎟⎜ ⎟∂⎪⎝ ⎠⎪= ⎨
⎛ ⎞∂⎪

+⎜ ⎟⎪⎜ ⎟∂⎝ ⎠⎪⎩

W

v
W W

 (C24) 

We can now compute ( ) ( ), , :T
i j i jx x⎡ ⎤∂ ∂ + ∂ ∂⎣ ⎦X W X W X  

 

( ) ( ) ( )

, , , ,

1,1 1, 11,1 1,

4

1,1 1, 1,1 1, 1

.

1 1 1 1

i

i i i i i

T T

i j i j i j i j

dp

i

d d p d d d

i i i i

x x x x

d p p d d d

+

+ + + + +

⎛ ⎞∂ ∂ ∂ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ × × + + × +

X W X WX W X X W X

0

v

0

 (C25) 

Each element in ( ) ( ), ,
T

i j i jx x⎡ ⎤∂ ∂ + ∂ ∂⎣ ⎦X W X W X  can be expressed as
 

 
4

.,
, , ,

T T
t i u

i j i j t u
x x

⎡ ⎤⎛ ⎞∂ ∂
+ =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

X WX W X X v  (C26)
 

 Next, we must compute ( ), ,
T

i jx∂ ∂X W  as described in Equation C14, reproduced below 

for convenience: 
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( ) ( ) ( )

, ,

1,1

2,2

,

1, 1 ,

,

0 00 0 0 0
0

,1
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0 00 0 0 0

1 1

T
T

i j i j

j i

p p j i
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i i
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d p p p d p
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⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW W

W
W

W
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 (C14) 

where , , .j i i i= W  Next, we must multiply by X: 

( ) ( ) ( )

, ,

1,1 1, 1, 1

,1 ,2 , , 1,

,1 , , 1

1 0 00 0

.

0 0 1 0 0

1 1 1 1

i i

i i

i i

T T

i j i j

d d

j j j d j dj i

p p d p d

i i i i

x x

x x

x x

d p p d d d

+

+

+

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + + × +

X XW X WX

 (C27) 

The jth row of the result can be expressed as a row vector, 15 ,id +∈v  which can be computed as 

 5
, , .i i ixα α=v W  (C28) 

 We can now compute M, defined as 

 
, , ,

.
T

T

i j i j i jx x x
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

X W XM X W X WX  (C29) 
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The left side of the summation is provided in Equation C26, and the right side is provided in 

Equations C27 and C28. The algorithm for computing M is defined in Algorithm C1. 

 

 

Algorithm C1: Algorithm for computing M. 

 

 We can now compute r2, as 

 2 .=r θMθφ  (C30) 

This step takes ( )3 2
i i o i o o i oO d d d d d d d pd+ + + +  time, most of which is accrued during the 

calculation of Equation C30. Using r1, provided in Equation C18 and r2, provided in Equation 

C30, we can compute the final result, 

 1 2
,

.
i jx

∂
= −

∂
β r r  (C31) 

Algorithm for Computing M = ( )1 1 :i id d+ × +  

1. For all ,t u∈  where 1 , 1it u d≤ ≤ +  

   If u j≠  
Then  

Set , , ,
, ,

T
t u t i i u

i j i i

X x
x

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

WM  

Else 

  Set , , , ,
, ,

T
t u t i i u i i

i j i i

X x
x

⎛ ⎞⎛ ⎞∂⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

WM W  

2. For 1α =  to 1id +  

Do , , , ,j j i i ixα α α= +M M W  
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Computing r1 took ( )2 ,i o o iO d d d d+  which is dwarfed by the ( )3 2 2
i i o i i oO d d d d p d pd+ + +  time 

to compute r2, making the time to compute the final result ( )3 2 2
i i o i i oO d d d d p d pd+ + +  which is 

polynomial with respect to the dimension of the inputs, outputs, and the number of knowledge 

points included in the regression. 

 Recall that only the bottom row of ,i jx∂ ∂β  is needed, so a slight performance increase 

can be achieved by only computing the bottom rows of r1 and r2. When computing r1, this means 

only computing the bottom row in the last step of multiplying by θ  on the left-hand side (step 3 

in Algorithm C2). When computing r2, (step 5 in Algorithm C2) this means that only the bottom 

rows of θM  and ( )( )θM θφ  must be computed. The complete algorithm for computing ,i jx∂ ∂β  

is provided as Algorithm C2. 
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Algorithm C2: Algorithm for computing 
,

,
i jx
∂

∂

β  which is required for DI-ILWR (Chapter 3). 

  

Algorithm C2 for computing :
,i jx

∂
∂
β   

Given: i, j, ,X  ,W  id  (input dimension), od  (output dimension) 

1. [ ] [ ] [ ]
, ,

, ,
1 ,

, , , ,
, ,

, ,

ˆ1, 1 , 1, ,

, .

T
t i i u

i j i i
i o t u

T
t i i u i i i u

i j i i

t j
x

t d u d

W y t j
x

⎧ ⎛ ⎞∂
≠⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠⎪∀ ∈ + ∀ ∈ = ⎨

⎛ ⎞∂⎪
+ =⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪⎩

WX y

r
WX y

 
2. ( ) 1T −

=θ X WX  

3. 1 1̂←r θr  
4. Execute Algorithm C1, to compute M 
5. Compute T=φ X Wy  
6. 2 =r θMθφ  

7. 1 2
,i jx

∂
= −

∂
β r r  
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APPENDIX D 
 

 This appendix contains the derivation of Equation 3.4, from Equations 3.2 and 3.3: 

 ( )w E wηΔ = − ∇  (3.2) 

 ( ) ( )2

, ,
1

1 ˆ
2

od

q i q i
i

E w y y
=

≡ −∑  (3.3) 

 
( ) ,

, ,
1

ˆ
ˆ .

od
q

i i q q
i

y
w w y y

w
α

α α
α

η
=

∂⎡ ⎤
← − ⋅ −⎢ ⎥∂⎣ ⎦

∑
 (3.4) 

We start by writing Equation 3.2 as an update for each individual weight, 

 ( ).i iw E wηΔ = − ⋅∇  (D1) 

Next we compute the gradient of ( ) :iE w  

 ( ) ( )2

, ,
1

1 ˆ
2

od

i q q
i

E w y y
w α α

α=

⎛ ⎞∂
∇ = −⎜ ⎟∂ ⎝ ⎠

∑  (D2) 
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1

ˆ1
2
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q q

i

y y
w

α α

α=

∂ −
=

∂∑  (D3) 

 ( ) ( ), ,
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1

ˆ1 ˆ2
2
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q q

q q
i

y y
y y

w
α α

α α
α =

⎡ ⎤∂ −
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦
∑  (D4) 

 ( )( ) ,
, ,

1

ˆ
ˆ 1

od
q

q q
i

y
y y

w
α

α α
α=

∂⎡ ⎤
= − −⎢ ⎥∂⎣ ⎦
∑  (D5) 
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 ( ) ,
, ,

1

ˆ
ˆ .

od
q

q q
i

y
y y

w
α

α α
α=

∂⎡ ⎤
= −⎢ ⎥∂⎣ ⎦
∑  (D6) 

Substituting Equation D6 into Equation 3.2, we obtain Equation 3.4. 
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APPENDIX E 
 

The parameters used by the DAS1 simulations are provided in the following setup files. 

First, arm.bio reads: 

# arm.bio 
# muscles 
# 
# six muscles for the planar arm model 
# Fmax and moment arms from Bhushan & Shadmehr, Biol Cybern 1999 
 
verbose_level 0 
 
joint SHOULDER 
 distal_body upperarm 
 limits -90 180 
 end 
 
joint ELBOW 
 distal_body forearm 
 limits 0 180 
 end 
 
muscle default 
 a 0.25 
 vmrel 10 
 umax 0.04 
 fecmax 1.5 
 krel 0.0 
 slopfac 2.0 
 PEEslack 1.0 
 time_constants 0.040 0.060 
 end 
 
# note: the following values of lceopt and lslack were 
#   taken from  
#     Garner, B.A., Pandy, M.G. "Estimation of Musculotendon  
#     Properties in the Human Upper Limb." Annals of  
#     Biomedical Engineering, February 2003, vol. 31,  
#     no. 2, pp. 207 - 220. 
#        Specifically, the values were taken from the  
#        "model" column of Table 3 (p. 216). 
       
 
muscle ANT_DELTOID 
 fmax 800 
 lceopt 0.1280 lslack 0.0538 width 1.0 
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 geometry pulley 0.1840 SHOULDER 0.05 end 
 end 
 
muscle POST_DELTOID 
 fmax 800 
 lceopt 0.1280 lslack 0.0538 width 1.0 
 geometry pulley 0.1840 SHOULDER -0.05 end 
 end 
 
muscle BRACHIALIS 
 fmax 700 
 lceopt 0.1028 lslack 0.0175 width 1.0 
 geometry pulley 0.1210 ELBOW 0.03 end 
 end 
 
muscle TRICEPS_SH 
 fmax 700 
 lceopt 0.0877 lslack 0.1905 width 1.0 
 geometry pulley 0.2858 ELBOW -0.03 end 
 end 
 
muscle TRICEPS_LH 
 fmax 1000 
 lceopt 0.0877 lslack 0.1905 width 1.0 
 geometry pulley 0.2858 SHOULDER -0.03 ELBOW -0.03 end 
 end 
 
muscle BICEPS 
 fmax 1000 
 lceopt 0.1422 lslack 0.2298 width 1.0 
 geometry pulley 0.3812 SHOULDER 0.03 ELBOW 0.03 end 
 end 
 
end 
 
 

Next, arm.torques.bio reads: 

# arm.bio 
# torques  // this line necessary for reinforcement learning 
program, and it must be the 2nd line! 
# 
# six muscles for the planar arm model 
# Fmax and moment arms from Bhushan & Shadmehr, Biol Cybern 1999 
 
verbose_level 0 
 
joint SHOULDER 
 distal_body upperarm 
 limits -90 180 
 end 
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joint ELBOW 
 distal_body forearm 
 limits 0 180 
 end 
 
muscle default 
 a 0.25 
 vmrel 10 
 umax 0.04 
 fecmax 1.5 
 krel 0.0 
 slopfac 2.0 
 PEEslack 1.0 
 time_constants 0.040 0.060 
 end 
 
# note: the following values of lceopt and lslack were 
#   taken from  
#     Garner, B.A., Pandy, M.G. "Estimation of Musculotendon  
#     Properties in the Human Upper Limb." Annals of  
#     Biomedical Engineering, February 2003, vol. 31,  
#     no. 2, pp. 207 - 220. 
#        Specifically, the values were taken from the  
#        "model" column of Table 3 (p. 216). 
      
 
end 
 

Finally, arm_info reads: 

SD/FAST Information File: arm.sd 
Generated 30-May-2004 12:33:04 by SD/FAST, Kane's formulation 
(sdfast B.2.8 #30123) on machine ID unknown 
 
ROADMAP (arm.sd) 
 
Bodies        Inb 
No  Name      body Joint type  Coords q 
--- --------- ---- ----------- ---------------- 
 -1 $ground                                     
  0 upperarm   -1  Pin           0              
  1 forearm     0  Pin           1              
 
 
STATE INDEX TO JOINT/AXIS MAP (arm.sd) 
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 Index 
  q|u   Joint  Axis   Joint type    Axis type    Joint Name 
 -----  -----  ----   -----------   ----------   ---------- 
  0|2       0     0   Pin           rotate        
  1|3       1     0   Pin           rotate        
 
 
SYSTEM PARAMETERS (arm.sd) 
 
Parameter  Value  Description 
 
nbod           2  no. bodies (also, no. of tree joints) 
njnt           2  total number of joints (tree+loop) 
ndof           2  no. degrees of freedom allowed by tree joints 
nloop          0  no. loop joints 
nldof          0  no. degrees of freedom allowed by loop joints 
 
nq             2  no. position coordinates in state (tree 
joints) 
nu             2  no. rate coordinates in state (tree joints) 
nlq            0  no. position coordinates describing loop 
joints 
nlu            0  no. rate coordinates describing loop joints 
 
nc             0  total no. constraints defined 
nlc            0  no. loop joint constraints 
npresc         0  no. prescribed motion constraints 
nuserc         0  no. user constraints 
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APPENDIX F 

Table F1 provides a complete listing of the parameter sets utilized by the continuous 

actor-critic throughout this thesis. Table F2 provides comments on each parameter set. 

 

 Fast Slow A B ILWR ILWR-
Pretrain 

General Pendulum 
Swing-Up 

Aη  70 10 0.001 99.5 70 0 70 5 

Cη  0 0.344 0.0001 34.4 0.1 0.1 0.344 1 

σ  9,000 9,000 74.5 7991 9,000 9,000 9,000 N/A 

Nτ  2,400 2,400 0.55 2,500 2,400 2,400 2,400 1 

τ  0.1 0.1 1 1 0.1 0.1 0.1 1 
κ  0.1 0.1 0.55 71.5 0.1 0.1 0.1 1 

Ak  0 0 0 0 0 0 0.0000002 0 

Ck  0 0 0 0 0 0 0.000002 0 

D  N/A N/A N/A N/A (.5, .5 , .3, .3, .5 , .5 )diag (.5 , .5 , .3, .3, .5 , .5 )diag N/A N/A 
 

Table F1: A complete listing of parameter sets for the continuous actor-critic implementations in 
this thesis. 

 

 

Fast Uses pre-trained ANN actor and ANN critic-10 
Slow Uses pre-trained ANN actor and ANN critic-10 
A Uses pre-trained ANN actor and ANN critic-20 
B Uses pre-trained ANN actor and ANN critic-20 
ILWR Uses pre-trained ANN actor and ILWR critic 
ILWR-
Pretrain 

Uses pre-trained ANN actor and random initial ILWR critic 

General Uses pre-trained ANN actor and ANN critic-10 
Pendulum 
Swing-Up 

Uses random initial ANNs for the actor and critic 
 

Table F2: Comments on the usage of each parameter set from Table F1. 
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