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Abstract
This report explores the speculative question: what if current or future
AI systems have qualia, such as pain or pleasure? It does so by
assuming that AI systems might someday possess qualia—and that the
quality of these subjective experiences should be considered alongside
performance metrics. Concrete mathematical problem settings, inspired
by reinforcement learning formulations and theories from philosophy
of mind, are then proposed and initial approaches and properties are
presented. These properties enable refinement of the problem setting,
culminating with the proposal of methods that promote reinforcement.

1 Introduction
The development of increasingly capable AI systems has heightened
interest in a range of philosophical questions related to ethical, social,
and economic issues [23, 50]. At the intersection of AI and a subfield of
philosophy called philosophy of mind, this report addresses a particularly
speculative question: what if current or future AI systems have qualia?
Qualia—subjective conscious experiences such as the “redness” of red or
the sensations of pain or pleasure—have long been a topic of debate in the
philosophy of mind. We adopt the assumption that AI systems might have
qualia akin to those of humans and that the quality of these subjective
experiences should be considered alongside traditional performance
metrics. We then explore the implications of these assumptions for AI
methodologies.

The discussion in this report applies to AI systems wherein an agent
makes a sequence of decisions or predictions. The mathematical formula-
tion that we consider, which we call an agent-environment process (AEP),
generalizes and extends settings typically considered in reinforcement
learning (RL) like Markov decision processes (MDPs) and partially
observable Markov decision processes (POMDPs). Specifically, an AEP
is an MDP with a formulation of the agent and its state added and with
the inclusion of rewards made optional. Although our initial motivation
comes from RL and we focus on examples of RL agents, the AEP setting
that we consider is more general and is designed to accommodate a range
of AI systems including supervised and unsupervised learning systems
and RL systems where rewards are absent or defined differently.

We begin by reviewing theories in philosophy of mind with an em-
phasis on their compatibility with the idea of AI systems experiencing
qualia. We focus on the idea that if certain algorithmic processes in
an AI system mirror the mechanisms that give rise to specific human
experiences (such as pain or pleasure), it might lead to the AI system
having similar qualia. This focus provides guidance regarding how the
quality of agent experiences can be quantified.

After providing additional background on RL and neuroscience, we
present different ways of formulating the problem of maximizing the
quality of the experiences of an agent, while being cognizant of the po-
tential impact on performance—a class of problems that we call qualia
optimization. We propose initial methods and establish basic proper-
ties for various qualia optimization formulations, but emphasize that
these methods and properties are preliminary explorations rather than
conclusive solutions or analyses. We conclude with discussion of future
research avenues and emerging open questions.

2 Philosophy of Mind Background
The philosophy of mind is a discipline within philosophy that examines
the nature of the mind, consciousness, and mental phenomena. It in-
tersects with other disciplines such as psychology, neuroscience, and
cognitive science, contributing to our understanding of mental processes
and their relation to the physical world. In this section we review key

terms and theories from this discipline. To maintain focus on qualia
optimization, we defer background on additional philosophy of mind
concepts to Appendix B, referencing it as needed when those concepts
arise.

• Mental State: A mental state is a condition or process of the mind
characterized by thoughts, feelings, beliefs, desires, and intentions.
For example, believing it will rain, feeling pain, and desiring a cup of
coffee are all different mental states. Mental states are quite diverse,
encompassing both conscious aspects like the awareness of being
thirsty and unconscious aspects like underlying biases. They also
include more complex, sustained states like a mindset or psychological
condition (e.g., a depressive state).

• The Mind-Body Problem: This problem, one of many studied in
philosophy of mind, asks how the mind (including mental states)
relates to the physical body and brain. It explores whether mental
phenomena are distinct entities separate from physical processes or if
they can be explained as part of these physical processes.

• Phenomenal Consciousness: This term refers to the aspects of con-
sciousness that involve the subjective, qualitative experience of what
it is like to have a mental state. It encompasses the experiential, first-
person perspective of thoughts and sensations, such as the vividness of
a color or the intensity of a pain.1

• Qualia: Qualia are the individual instances of subjective, conscious
experience. They are what it “feels like” to have certain mental states,
such as the specific sensation of seeing red, feeling pain, or tasting
sweetness. Qualia are elements of phenomenal consciousness, with
each qualia representing a distinct aspect of our subjective experience.

• The Hard Problem of Consciousness: This problem focuses on
the challenge of explaining why and how qualia arise from physical
processes in the brain. It essentially asks: “What causes phenomenal
consciousness?”

Philosophers of mind have presented a wide range of theories concerning
the nature of the mind. In Sections 2.1–2.3 we review prominent theories
of mind with an emphasis on their compatibility with AI agents having
qualia (having phenomenal consciousness).

2.1 Cartesian Dualism
Dualism is the theory that the mind and body are in some sense distinct,
a concept traced back to ancient philosophers like Plato, who wrote of
the soul’s separation from the body in Phaedo [30]. In the 17th century,
René Descartes popularized a specific version—later called Cartesian
dualism—that treats the mind and body as separate substances, not
merely different aspects of one substance. He argued that the mind is not
simply a byproduct of physical processes in the brain; rather, it possesses
its own separate existence and characteristics.

Descartes argued for dualism via the famous quote “Cogito ergo sum,”
or “I think, therefore I am,” which suggests that the existence of the
mind is undeniable, in contrast to the potentially doubtful existence of
the physical body. This line of reasoning led Descartes to conclude that
the mind is fundamentally distinct from the physical body [21]. This
distinction forms the core of Cartesian dualism. However, this concept
faced challenges, such as those posed by Princess Elizabeth of Bohemia,
who questioned how a non-physical mind could interact with a physical
body [17]. This interaction problem highlights a fundamental challenge
for dualists: the difficulty of explaining how immaterial mental states

1The scope of philosophy of mind, and even the mind-body problem, extends beyond
phenomenal consciousness. An illustrative case is blindsight [65], where individuals can
respond to visual stimuli without conscious perception, suggesting that some complex
mental processes might occur without the corresponding phenomenal consciousness. Haas
[31] provides a survey of how RL has been explored in philosophy of mind—focusing on
perception and motivation without appealing to phenomenal consciousness.
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can cause physical actions in the body, and vice versa.2

Although dualists may not rule out AI systems having qualia, they
are likely to argue that AI systems lack the non-physical properties or
substances they believe are essential for a mind. We present dualism
here due to its significant and influential historical role in philosophy
of mind, and to provide contrast for the theories of mind discussed
subsequently, which are more compatible with the idea of AI systems
having phenomenal consciousness.

2.2 Functionalism
Functionalism is a theory of mind that views mental states in terms of
their function or role, rather than the substances they are made of or their
internal composition. According to functionalism, what matters for a
mental state like belief, pain, or desire is not its material composition—
whether it is a brain state, a computer circuit, or something else—but
the role it plays within the system it is part of. This role is typically
understood in terms of causal relationships: how mental states interact
with other mental states, sensory inputs, and behavioral outputs.

Functionalists argue that mental states are like components of a ma-
chine, each with a specific function contributing to the overall operation
of the system. This perspective is often compared to a software approach
to the mind, where the physical substrate (the hardware) is less important
than the patterns of activity (the software) that define mental states. The
theory posits that mental states are multiply realizable, meaning that dif-
ferent physical systems can realize the same mental states if they perform
the same functions or have the same causal relationships. For example,
in principle, both a human brain and a computer could be in the “state of
pain” if they process information related to pain in a functionally similar
way. By downplaying the importance of the biological substrate of the
human brain, functionalism has been influential in shaping the discourse
around AI, offering a way of understanding the mind that is compatible
with the idea of AI systems having mental states.

Functionalism focuses on defining mental states by their causal roles
within a system, without asserting whether these states are accompanied
by qualia (subjective experiences). While it is compatible with the idea
that AI agents can have qualia, it does not explain why qualia arise from
mental states or whether AI systems would necessarily experience them.
To address qualia, additional assumptions are needed, such as assuming
that qualia supervene on mental states.

Given this assumption, functionalism offers a framework for under-
standing the qualia of AI agents. That is, if specific algorithmic pro-
cesses in AI agents perform the same functions as biological processes
underlying human experiences, these processes might produce similar
experiences in both humans and AI agents. For instance, if the role of
temporal difference error in RL agents is functionally analogous to that of
the neurotransmitter dopamine in human brains, then—assuming that RL
agents have qualia and that similar mental states lead to similar qualia—
functionalism suggests that RL agents experiencing positive temporal
difference errors could have qualia similar to the human experiences
associated with increased dopamine levels.

2.3 Other Theories of Mind
Although many other theories of mind, such as emergent materialism
and panpsychism, are compatible with AI systems having phenomenal
consciousness, they do not offer as clear mechanisms for reasoning about
specific qualia. Emergent materialism posits that consciousness arises
from the complexity of physical processes, while panpsychism considers
consciousness a fundamental property of matter. Neither provides a
framework for understanding how specific experiences, like pleasure or

2In philosophical terms, ‘immaterial’ refers to entities or concepts that lack physical
properties and cannot be observed or measured through physical means. This is in con-
trast to ‘material’ entities, which encompass all phenomena subject to physical laws and
measurable characteristics, from tangible objects to forces like electromagnetism.

pain, could emerge or manifest in AI systems. We therefore adopt a
more functionalist perspective as an initial approach to reasoning about
agent qualia, focusing on the functional roles of mental states and their
possible connections to qualia.

Many other theories in the philosophy of mind are related to this
work. For instance, physicalism asserts that all mental phenomena are
ultimately rooted in physical processes, while computational theories of
mind conceptualize mental processes as forms of information processing.
Whether such theories are mutually exclusive depends on their specific
formulations—some versions of physicalism, computationalism, and
functionalism may conflict, while others can be integrated. Rather than
neatly partitioning the space of ideas, these theories often form overlap-
ping perspectives, each highlighting different aspects of cognition and
the mind’s relation to physical systems.

In this report, we draw inspiration from several theories, particularly
functionalism, physicalism, and computational theories of mind. How-
ever, we do not claim that our assumptions map neatly onto any one
established theory. We provide general pointers to relevant theories
from philosophy of mind, but do not attempt to rigorously align our as-
sumptions with them, as doing so would require a level of philosophical
expertise that we lack.

In the following sections, we review RL and temporal difference error,
present the mathematical model of the agent-environment system we
use, and then review neuroscience research suggesting that temporal
difference error in RL agents plays a similar role to dopamine in parts of
the human brain.

3 RL Background and AEP Setting
We assume that the reader is familiar with RL [60]. In RL literature, the
environment is often modeled as an MDP, POMDP, or a variant thereof.
We present the standard notation that we use for MDPs in Appendix
A.1. Although we primarily consider RL algorithms designed for these
standard settings, we adopt a different mathematical formalization of
the agent-environment system that emphasizes fully characterizing the
agent and which refines the way that the agent and environment interact.3

This refinement simplifies discussion of qualia optimization, although it
makes the expression of standard RL algorithms more cumbersome. Our
mathematical formulation of the agent-environment system is described
in Section 3.1 and depicted in Figure 1.
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Figure 1: Diagram of the agent-environment system.

3.1 Agent-Environment Process (AEP/AERP)
We begin by characterizing the environment—the universe within which
the agent resides. For this initial exploration of qualia optimization,
we assume that time is discrete and index time by t ∈ {0, 1, . . . }.4
Let (S0, S1, . . . ) be a sequence of random variables such that St is a
complete characterization of everything about the environment up to and
including time t that influences the environment at times t′ > t or the
agent at times t′′ ≥ t. We refer to St as the state of the environment at
time t, or as the state if the time is clear from context.

3We consider agents of all types, including (digital) RL agents, humans, and other
animals. We will be explicit when making references to specific types of agents, like AI
agents or RL agents. References in this text to an “agent” otherwise apply to all agents.

4We provide an overview of both our mathematical notation and the symbols defined in
this report in Appendix A.
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Next we characterize the agent that resides within the environment.
Let (M0,M1, . . . ) be a sequence of random variables such that Mt is
a complete characterization of everything about the agent up to and
including time t that influences the agent or environment at times t′ > t.
We refer to Mt as the memory of the agent at time t, or as the memory
if the time is clear from context. It may be more precise to call Mt

the state of the agent at time t, since a complete characterization of the
agent at time t might include more than what one typically thinks of as
memory (e.g., value function weights, policy parameters, and eligibility
traces). However, we refer to Mt as memory to allow for more concise
and distinct discussion of St and Mt by referencing states and memories
rather than environment states and agent states.

Next we model how the agent and environment interact by explicitly
modeling how the environment influences the agent and how the agent
influences the environment.5

• Environment → Perceptions → Agent: In classical MDP and
POMDP formulations the environment influences the agent through
two channels: states or observations and rewards. We combine these
two channels into one, which we call perceptions, because the in-
clusion of a reward signal is optional and because it simplifies later
discussion regarding transformations of the agent’s perceptions. For
all t ∈ {0, 1, . . . }, let Pt be a complete characterization of every-
thing about St that influences the agent at time t, which we call the
perception at time t.

• Agent→ Actions→ Environment: Similar to how perceptions char-
acterize the channel through which the environment influences the
agent, actions characterize the channel through which the agent influ-
ences the environment. For all t ∈ {0, 1, . . . }, let At be a complete
characterization of everything about Mt that influences the environ-
ment at time t+ 1, which we call the action at time t.6 One may think
of the action At as representing the decision made by the agent at
time t. Although we expect the ideas presented in this report to extend
to arbitrary (discrete, continuous, or hybrid) random variables, for
simplicity we assume that At is a discrete random variable, allowing
us to discuss action probabilities.

Algorithm 1 provides pseudocode for generating the sequence of
random variables (St, Pt,Mt, At)

∞
t=0, using the following functions and

conditional distributions.

• The perception function fp characterizes the perception at time t as
a function of the state at time t. That is, Pt = fp(St). The implicit
assumption that the perception at time t can be written as a function
of the state at time t is not particularly restrictive. To model settings
where Pt includes noise or otherwise depends on random quantities,
the noise or random quantities should be encoded within the state St.
More generally, the state St can explicitly encode Pt so that fp merely
masks the other components of the state.

• The next-memory distribution dm characterizes how the agent’s mem-
ory changes due to its perceptions—how the agent learns. That is,
it characterizes the conditional distribution of the memory at time t
given the memory at time t − 1 and the perception at time t via the
expression Mt ∼ dm(Mt−1, Pt). We define M−1 to be null so that
the expression Mt ∼ dm(Mt−1, Pt) applies to the generation of M0

as well. An equivalent formulation would include a different next-
memory distribution for generating M0 that only conditions on the
5To establish a solid foundation, we provide a detailed discussion of this formulation, the

assumptions we make, and their implications. Later sections introduce similar formulations
and assumptions with less elaboration, so a careful understanding of this initial discussion
will be beneficial for following the subsequent material.

6The phrase “influences the environment at time t+ 1” is ambiguous here. Arguably
At influences the environment “at time t,” and this influence is reflected in the distribution
of St+1. We clarify this point later when we introduce Markovian state and memory
assumptions.

perception.
• The action function fa characterizes the action at time t as a function

of the memory at time t. That is, At = fa(Mt). As with perceptions,
the implicit assumption that the action can be written as a function of
the memory is not particularly restrictive, since any necessary random
quantities should be included in Mt.

• The next-state distribution ds characterizes the conditional distribution
of the state at time t given the state at time t − 1 and the action at
time t − 1. That is, St ∼ ds(St−1, At−1). We define S−1 and A−1

to both be null so that the expression St ∼ ds(St−1, At−1) applies
to the generation of S0 as well. An equivalent formulation would
include a different next-state distribution for generating S0 that does
not condition on any random variables.

Algorithm 1: Agent-Environment Process

1: Initialize S−1, A−1, and M−1 to null
2: for t← 0 to∞ do
3: St ∼ ds(St−1, At−1)
4: Pt = fp(St)
5: Mt ∼ dm(Mt−1, Pt)
6: At = fa(Mt)

Similar to standard RL settings, we assume that the next-state distri-
bution ds and perception function fp exist, but we do not necessarily
assume that they are known to the agent. When they are not, the agent
must learn about the environment by interacting with it, i.e., it must learn
about the environment from the sequence of perceptions and actions
(P0, A0, P1, A1, . . . ).

3.1.1 Markov and Stationarity Assumptions
Our choice of notation suggests conditional independence assumptions.
For example, writing ds(St−1, At−1) to denote the conditional distribu-
tion of St given St−1 and At−1 suggests that this distribution does not
vary with other past random variables like St−2. Next, we make these
suggested conditional independence assumptions explicit.

In order to concisely introduce these conditional independence assump-
tions, we define an ordering of the random variables—the order that they
are generated in Algorithm 1: (S0, P0,M0, A0, S1, P1,M1, A1, S2, . . . ).
Using this ordering of random variables, we make the following indepen-
dence assumptions for all times t:

• Markovian states. St is conditionally independent of all previous
random variables given St−1 and At−1.

• Markovian memories. Mt is conditionally independent of all previous
random variables given Mt−1 and Pt.

These two assumptions characterize how states, perceptions, memo-
ries, and actions should be defined for a given agent-environment system.
Although they are stated as assumptions, they do not restrict the set of
agent-environment systems under consideration. We provide supporting
evidence for these claims in Appendix C.

In addition to the Markov assumptions, we assume that the next-state
and next-memory distributions are both stationary. That is:

• Stationary next-state distribution. The conditional distribution of St

given St−1 and At−1 is the same for all times t. That is, ds(s, a) is the
conditional distribution of St given that St−1 = s and At−1 = a for
all states s, actions a, and times t.

• Stationary next-memory distribution. The conditional distribution of
Mt given Mt−1 and Pt is the same for all times t. That is, dm(m, p)
is the conditional distribution of Mt given that Mt−1 = m and Pt = p
for all memories m, perceptions p, and times t.
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As with the Markov assumptions, the stationarity assumptions do not
limit the set of agent-environment systems that can be modeled, but
rather further inform how states and memories should be defined for a
given system. To model systems where these distributions change over
time, time should be encoded within states or memories, or within both.

3.1.2 AEPs and AERPs
We call this stochastic process, including the Markov and stationarity
assumptions, an agent-environment process (AEP). As described previ-
ously, AEPs can include both rewards and other observations within the
agent’s perceptions. In order to differentiate between the general class
of AEPs and the restricted class of AEPs that include rewards, we call
an AEP with rewards an agent-environment reward process (AERP). In
the AERP formulation, for each t ∈ {0, 1, . . . } let Rt be a real-valued
random variable that we call the reward at time t, or the reward when the
time is clear from context. In an AERP there exists a function fr, called
the reward function, that characterizes the reward at time t as a function
of the perception at time t. That is, Rt = fr(Pt).7 Figure 2 depicts AEP
and AERP systems as a Bayesian network that facilitates visualization
of the Markovian state and memory assumptions.
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Figure 2: Bayesian network representation of an AEP (without the
dashed lines and boxes) and AERP (with the dashed lines and boxes).

3.1.3 Random Variables and the Physical World
A critical point in later discussions will be the relationship between
random variables in processes like AEPs and the physical world they
represent. For example, how might the physical properties that we
interpret as a bit sequence correspond to real numbers like a reward Rt?
As another example, consider the random variable St, which we defined
to be a complete characterization of everything about the environment
up to and including time t that influences the environment at times t′ > t
or the agent at times t′′ ≥ t. In order for this definition to be complete,
we must clarify what it means for St to be a characterization and how it
relates to the physical properties of the environment.

For this initial discussion, let Φ be a random variable that represents the
actual physical properties of the environment that influence the environ-
ment or agent at later times, which might include physical configurations,
neural activity, voltage levels, or even sequences of bits. When we say
that St is a complete characterization of everything about the environ-
ment that influences the environment or agent at later times, we mean that
the value of St fully determines Φ. Put differently, Φ can be written as a
function of St. Similarly, we implicitly mean that St does not include

7RL formulations often vary in how they index rewards, sometimes starting with R0 and
other times with R1, and sometimes defining Rt to be the reward when the environment
enters St and sometimes defining Rt to be the reward when the environment enters St+1.
Notice that in this formulation Rt is the reward when the agent enters St—it is the
reward the agent receives when the environment transitions from St−1 to St as a result of
action At−1. Also, in this formulation the rewards begin with R0 even though R0 is not
influenced by any agent actions. Typical RL formulations omit this initial reward.

other information, and so Φ fully determines the value of St—St can be
written as a function of Φ. Together, these properties imply that Φ and
St are isomorphic.

We call functions (isomorphisms) that relate physical properties to
random variables like St representation functions. For example, if ρ is
the representation function for St, then ρ is an isomorphism between St

and Φ, i.e., St = ρ(Φ) and Φ = ρ−1(St). To ground this discussion,
consider an idealized physical world where Φ corresponds to a sequence
of 32 bits.8 We might define St to be a real number, in which case the
representation function ρ indicates how the sequence of bits should be
interpreted as determining the value of St. There are many ways that
sequences of 32 bits can be interpreted as different real numbers, and
each corresponds to a different representation function ρ.

Notice that each random variable has an implicit representation func-
tion that describes how properties of the physical world relate to values
of the random variable, and that these representation functions can differ
(e.g., different random variables can use different mappings from bit
sequences to real numbers). Since we will discuss the representation
functions and underlying physical properties of many random variables,
we introduce the following notation: For any random variable Z, let
ΦZ and ρZ denote the underlying physical properties and representation
function of Z. For example, ΦSt denotes the physical properties corre-
sponding to the state St, and St = ρSt

(ΦSt
). Recall that the existence

of these representation functions (and their required invertibility) im-
plies that random variables and their corresponding underlying physical
properties are isomorphic. Hence, the Markov properties, stationarity
properties, and dynamics that apply to St, Pt,Mt, and At also apply to
the underlying physical properties ΦSt ,ΦPt ,ΦMt , and ΦAt .

One possible AEP or AERP model of a physical system uses the iden-
tity functions for all representation functions, resulting in a system that
directly models the dynamics of the (perhaps non-numerical) physical
properties. The use of representation functions other than identity func-
tions facilitates the later definition of objective functions that naturally
operate on numbers (e.g., real-valued rewards) rather than the underlying
and possibly non-numeric physical properties.

There are several other possible points of confusion regarding under-
lying physical properties and representation functions that we aim to
avoid. First, notice that we did not make any assumptions regarding
whether the physical properties underlying different random variables
are disjoint. That is, the same physical properties could correspond to
different parts of the AEP formulation (e.g., the state and the perception).
In one interesting extreme case, the agent may be part of the environment,
and so all of the physical properties of the agent may also be physical
properties of the environment. Second, random variables with different
time-subscripts are different random variables. So, for example, Rt

and Rt′ can have different representation functions, ρRt
and ρRt′ , and

underlying physical properties, ΦRt and ΦRt′ , when t ̸= t′. Third, the
representation functions are deterministic functions—they do not depend
on the values of any random variables in the system. For example, ρSt

does not depend on St−1 or At−1.
The requirement that representation functions are deterministic is

critical—without it or a similar assumption, there need not be any mean-
ingful relationship between the underlying physical properties and the
random variables of the AEP or AERP. For example, every AEP and
AERP could be viewed as a characterization of a physical system with a
single constant physical property, Φ = 0. To see why, consider any
AEP with states St, perceptions Pt, memories Mt, and actions At.

8As a thought experiment, one could imagine that in this idealized physical world the
only physical property is the sequence of 32 bits. Alternatively, one could consider a
more realistic setting where the physical world contains other physical properties, but the
physical properties corresponding to the 32 bits are the only properties that correspond to
St. Although we adopt a simple 32-bit example here, we make no assumptions about the
actual complexity of St or Φ, which may correspond to a range of physical properties.
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This AEP could correspond to a physical system with a single con-
stant physical property. That is, ΦSt = ΦPt = ΦMt = ΦAt = 0. This
is achieved by defining ρSt

to itself be a random quantity such that
ρSt

(0) ∼ ds(St−1, At−1). Notice that once ρSt
has been sampled, it is a

deterministic and invertible function over its domain, {0}, and hence is a
valid representation function. Similar stochastic definitions of ρPt

, ρMt
,

and ρAt would allow for the construction of the AEP (any AEP) from
constant physical properties. To prevent this disconnect between the
random variables of an AEP and the underlying physical properties they
correspond to, we require the representation functions to be deterministic.

Lastly, notice that the approach for relating abstract random variables
in an AEP to an underlying physical process that we have adopted here
is closely related to Putnam’s “mapping” theory of the implementation
of computations in philosophy of mind [46]. Furthermore, our argument
that allowing the representation functions to vary with the values of
random variables in the AEP would allow trivial physical systems (ones
with a single constant property) to correspond to arbitrarily complex
AEPs is closely related to triviality arguments in philosophy of mind,
which suggest that Putnam’s mapping theory would allow trivial physical
systems (e.g., a bucket of water, rock, or clock) to be said to implement
complex computations like those of the human brain. We provide a brief
overview of these triviality arguments in Appendix B.

3.1.4 Policies
A policy is a characterization of one way that an agent could make
decisions based on the current state or perception (but independent of
time and other previous random variables). We distinguish between two
types of policies: state-policies and perception-policies. A state-policy
characterizes the distribution of actions given the current state, while
a perception-policy characterizes the distribution of actions given the
current perception. In general (when there may be partial observability),
a state policy can be defined and analyzed theoretically but cannot be
directly implemented by an agent that never observes the actual state
St. In contrast, a perception-policy depends solely on perceptions Pt,
making it implementable by the agent. Hereafter, we primarily discuss
perception-policies.

More formally, for all perceptions p, actions a, and times t, a
perception-policy π characterizes the distribution of actions given the
current perception according to the expression

π(p, a) = Pr(At = a|Pt = p). (1)

In our subsequent analysis, we often restrict our attention to AEPs in
which the environment is an MDP. In these cases, the perception is
Pt = (St, Rt), and when π(p, a) does not depend on the reward compo-
nent of the perception, state-policies and perception-policies coincide
because the agent fully observes the state. In such cases we sometimes
write expressions like π(St, At) instead of π(Pt, At) when no ambiguity
arises.

Notice that the agent does not necessarily implement a fixed state-
policy or perception-policy, since it can change its memory at each time
step, and its memory influences the policy that it implements. That is, the
agent learns (changes its memory), and this learning changes the agent’s
policy at each time t. Also, although we adopt the term “policy” from
RL literature, the AEP formulation could apply to supervised learning
systems in various ways. For example, each time step could correspond
to a supervised learning model making a single prediction or batch of
predictions during training or evaluation. As another example, one time
step could correspond to the execution of a single (possibly stochastic)
unit in an artificial neural network. Although the mapping from percep-
tions to actions in these cases would not typically be called a policy, we
adopt this RL term due to our focus on RL agents in this initial work.

3.1.5 Episodes
The AEP formulation of the agent interacting with the environment is
inherently continuing—the agent and environment have a single long
sequence of interactions. Modern RL research often assumes an episodic
setting, wherein an agent interacts with an environment over a sequence
of episodes that index time so that it starts at t = 0 for each episode. This
episodic setting can be viewed as a restricted class of AEPs (or AERPs).
There are many possible sets of restrictions that model episodic settings
within AEPs—we propose the following restrictions that essentially
chain together episodes into one long string of interactions:9

• There exists a special state s∞, perception p∞, and action a∞.
• Whenever the state becomes s∞, we say that the current episode ends.
• We define fp(s∞) = p∞ so that the agent is notified that the current

episode is ending.
• The agent is defined to always select action a∞ when presented with

perception p∞ to capture that there is not another decision for the agent
to make within the episode that is ending.

• When St = s∞, the next-state St+1 is sampled from the distribution
ds(null,null)—the same distribution as the initial state. To avoid
edge-cases, we assume that the first state of an episode cannot be s∞.
This implies that s∞ is not in the support of ds(null,null).

We use i ∈ {0, 1, . . . } to index the episodes. Let start(i) and end(i)
denote the times that the ith episode starts and ends, respectively. More
formally, start(0) ≜ 0,

end(i) ≜ min{t > start(i) : St = s∞}, (2)

and for all i ≥ 0,
start(i+ 1) ≜ end(i) + 1. (3)

Similarly, let len(i) denote the length of the ith episode (the number of
states not equal to s∞):

len(i) ≜ end(i)− start(i). (4)

We abuse notation and overload the start and end operators to al-
ternatively take a time step t as input, and to output the start-time and
end-time of the episode that is in-progress at time t:

start(t) ≜

{
0 if t ≤ min{t′ : St′ = s∞}
max{t′ ≤ t : St′−1 = s∞} otherwise

end(t) ≜min{t′ ≥ t : St′ = s∞}. (5)

The intended variant of the end operator should be clear from context—
whether its argument indexes an episode or a time step.

Notice that our formulation of rewards and episodes implies that for
each episode i, Rstart(i) is a reward that occurs prior to any actions
within the ith episode. This reward is omitted in typical RL formulations
since it is not influenced by the agent, and so it is not pertinent to the task
of optimizing the agent’s behavior. We opt to include it to avoid defining
a special case wherein the reward is not defined when the previous state
is s∞.

Figure 3 depicts the end of an episode i and the beginning of episode
i + 1 using the Bayesian network representation of an AEP or AERP
from Figure 2. The gray line with red hashes indicates an edge of
the Bayesian network for typical time steps that can be removed when
the time step corresponds to the end of an episode. This edge can be
removed because St+1 ∼ ds(null,null) when St = s∞, and so
St+1 is conditionally independent of At given that St = s∞. Also,

9This representation of the episodic setting within a continuing setting was inspired by
the unification of episodic and continuing settings for MDPs [66].
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Figure 3: Bayesian network depiction of the end of episode i and
beginning of episode i+ 1.

notice that Send(i) = s∞, Pend(i) = p∞, and Aend(i) = a∞, but that
Rend(i) can still be an arbitrary real number10 and the agent can still
update Mend(i)−1 to Mend(i) as it performs a final update based on the
observation that episode i is ending.

The episodic AEP formulation so far allows for cases where the first
episode can be infinitely long. If that were to happen, the second episode
would never begin and so start(1) would be undefined, making other
expressions later in this report also undefined. To circumvent this issue,
we define finite-horizon AEPs to be episodic AEPs for which there exists
a finite constant H , called the horizon, such that for all i ≥ 0, len(i) ≤ H
surely.

3.2 Basic Actor-Critic (BAC)
In the setting that we have described, agent algorithms correspond to rules
governing how the agent selects actions and updates its memory—dm
and fa. In this report we primarily focus on AI agents, which implement
AI algorithms. When considering a specific AI algorithm in this initial
exploration of qualia optimization, we focus on an RL algorithm that
we call the basic actor-critic (BAC).11 We describe BAC in detail to
show precisely how RL algorithms can be formulated in the setting that
we have chosen and to introduce temporal difference error—a central
concept in later sections. After (7) and (8), which introduce a notation
for returns, readers who see how RL algorithms like BAC fit within the
AEP/AERP settings and who are familiar with actor-critic algorithms and
temporal difference error can skip to Section 4 without missing important
context.

3.2.1 Design Goals
BAC was designed to cause the agent to learn to select actions that
maximize the expected discounted sum of rewards that it receives in an
episodic setting. That is, it was designed to maximize:

lim
i→∞

E

 end(i)∑
t=start(i)+1

γt−(start(i)+1)Rt

, (6)

10This formulation requires there to be a specific reward that always occurs when an
episode terminates since Rt is a deterministic function of Pt and Pt is always p∞ when an
episode terminates. If one desires stochasticity within these rewards, there are many ways
that this could be modeled. For example, an additional state could be inserted prior to the
transition to s∞ so that the stochastic reward can be provided, or the AERP formulation
could be modified so that Send(i) is not necessarily deterministic (and equal to s∞), but
rather in some way encodes that the episode is ending (and Pend(i) could be similarly
redefined). These modifications would not alter our subsequent discussions in this initial
study of qualia optimization.

11BAC is the algorithm titled “Actor–Critic with Eligibility Traces (episodic)” in the
work of Sutton and Barto [61, page 332], modified to only include eligibility traces for the
critic.

where γ ∈ [0, 1] is a hyperparameter called the reward discount pa-
rameter. To shorten similar expressions, going forward we define the
duration dur(t) to be roughly the number of time steps that, at time t,
have occurred since the start of the current episode. More precisely, if
time t is part of episode i, then dur(t)= t− (start(i) + 1).

Before continuing to describe how BAC fits within the AERP for-
mulation, we introduce notation for different returns, which simplify
expressions like (6). We refer to

Gi ≜
end(i)∑

t=start(i)+1

γdur(t)Rt (7)

as the discounted return and we refer to

Gt ≜
end(t)∑
k=t+1

γk−(t+1)Rk (8)

as the discounted return from time t.12 Notice that Rstart(i) is not in-
cluded in Gi or Gi−1—this is the aforementioned reward that is not
included in typical RL formulations, since the actions selected by the
agent do not influence this reward. Also notice that the first reward
included in Gt is Rt+1, which is the reward that results from the envi-
ronment transitioning from St to St+1 due to action At. Lastly, notice
that if St = s∞ (or equivalently, if Pt = p∞) then Gt = 0. That is, for
all episodes i, Gend(i) = 0.

In addition to maximizing the expected discounted return asymptot-
ically, BAC was designed to do so quickly. There are many ways that
this second design goal can be formalized. One way, when the agent will
interact with the environment for a finite number of episodes, imax, is for
the RL algorithm to maximize

imax−1∑
i=0

E [Gi] . (9)

Although BAC was designed for environments that can be modeled as
MDPs, it is often applied to and effective for POMDPs and can be applied
to the settings that we consider. Also, although BAC was designed to
maximize the expected discounted return for MDPs, and to do so quickly,
without additional assumptions it does not necessarily achieve these
goals. However, it remains representative of many commonly used
contemporary RL algorithms.

3.2.2 Mathematical Specification
BAC stores policy parameters Θt, value function approximation (VFA)
weights Wt, eligibility traces Et, perception Pt, and action At within
memory Mt. That is,

Mt = (Θt,Wt, Et, Pt, At). (10)

The three components Θt,Wt, and Et are real vector-valued random
variables. The agent stores one eligibility per weight, meaning that Wt

and Et are vectors of the same length.
Before defining fa and dm for BAC, we introduce two implicit func-

tions that the BAC updates rely on: a perception-policy parameterization
πBAC and a VFA parameterization v. The perception-policy parameteriza-
tion πBAC specifies the conditional distribution of the action At given the
policy parameters Θt and the perception Pt according to the equation:

πBAC(p, a, θ) = Pr(At = a|Pt = p,Θt = θ). (11)

12This is an abuse of notation, overloading Gz to have two possible meanings. It should
be clear from context whether Gz refers to the discounted return of episode z or discounted
return from time z based on whether z indexes an episode or a time step.
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While the choice of πBAC is a hyperparameter (it will be referenced in
our definitions of fa and dm), BAC requires ∂πBAC(p, a, θ)/∂θ to exist
for all perceptions p, actions a, and policy parameters θ.

The VFA parameterization v takes perceptions and VFA weights as
input, and produces a real number as output. BAC was designed to adjust
the VFA weight vector Wt so that v(p,Wt) is an approximation of the
expected discounted return from time t, if the agent faced with perception
p were to continue selecting actions using perception-policy parameters
Θt. That is, BAC was designed to find VFA weights Wt such that for all
perceptions p,13

v(p,Wt) ≈ E [Gt|Pt = p, (∀t′ ≥ t,Θt′ = Θt)] . (12)

While the choice of the function v is a hyperparameter, BAC requires
∂v(p, w)/∂w to exist for all perceptions p and VFA weights w. We also
assume that v(p∞, w) = 0 for all VFA weights w, since it is always the
case that Gt = 0 if Pt = p∞.

Having defined πBAC and v, we can now define fa and dm for BAC.
First, note that the action function is trivial because At is explicitly
encoded within Mt, and so fa(Mt) = At. Because expressions for dm
include special cases for initial updates, and to make the hyperparameters
of BAC explicit, we express dm using pseudocode in Algorithm 2.14

Notice that the BAC algorithm has multiple additional hyperparameters:
θ0 is the initial perception-policy parameter vector, w0 is the initial VFA
weight vector, λ∈ [0, 1] is a hyperparameter called the eligibility trace
decay rate, and α and β are positive real-valued hyperparameters called
the critic step size and actor step size, respectively.

3.2.3 Temporal Difference Error (TD Error)
The standard update in Algorithm 2 uses a temporary variable (one that
is used to compute Mt but not used thereafter or returned),

∆t = Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1), (13)

which is called the temporal difference error (TD error) and which is
central to some subsequent sections. When the TD error is positive, RL
algorithms like BAC make recently chosen actions more likely—they
reinforce the agent’s recent behavior. When the TD error is negative,
algorithms like BAC make recently chosen actions less likely—they
inhibit the agent’s recent behavior.

To better understand this behavior and the TD error, consider the
problem of predicting the amount of reward the agent will receive after
the agent takes action At−1 when the environment is in state St−1, i.e.,
predicting Gt−1. One estimate of this quantity is v(Pt−1,Wt−1)—an
estimate that the agent can construct based on its perception at time t− 1.
At time t, the agent can construct an improved estimate based on the new
information it has obtained: the perception Pt that includes the reward
Rt = fr(Pt). This new information allows for the computation of a
second estimate, Rt+γv(Pt,Wt−1), that combines the observed reward
Rt with an estimate, v(Pt,Wt−1), of the expected discounted sum of
rewards that the agent will receive thereafter.

13The conditional expectation in (12) provides the appropriate intuition, but is not
technically precise, since often the event that ∀t′ ≥ t,Θt′ = Θt cannot occur, making
the conditional expectation undefined. For brevity we use this imprecise statement, but
recognize that a proper formulation would require a more precise mathematical formulation
of the idea that the agent continues to select actions using perception-policy parameters
Θt.

14We assume that the reader is already familiar with this algorithm, and so our intent
is to show how BAC can be represented in our formulation, not to explain this algorithm.
We also emphasize that the goal of our formulation is not to make the expression of RL
algorithms through fa and dm simple, but to make subsequent reasoning about agent-
environment interactions simple. So, although our formulation may often result in relatively
complicated expressions for dm, the majority of our subsequent discussions can deal with
dm as an abstract concept. Still, we provide Algorithm 2 to provide a complete example of
how an existing RL algorithm fits within our formulation.

Next, consider the difference between these two estimates:

Rt + γv(Pt,Wt−1)︸ ︷︷ ︸
estimate of Gt−1 from t

− v(Pt−1,Wt−1)︸ ︷︷ ︸
estimate from t − 1

. (14)

This quantity, which is the TD error ∆t, characterizes how the agent’s
prediction of Gt−1 changes from time t − 1 to time t. Hence, it is
sometimes called a reward prediction error (RPE).

When this term is positive, it indicates that at time t the agent has
increased its prediction of Gt−1 relative to what it predicted at time
t − 1. That is, something turned out better than the agent expected
(perhaps the reward was larger than expected, or perhaps the resulting
perception indicated that it would receive more reward in the future than
was previously expected, or perhaps both). Recall that the action At−1

caused the transition from time t − 1 to time t, and likely influenced
Pt (which includes Rt). So, when the TD error is positive, it suggests
that At−1 produced an outcome better than the agent expected, and so it
should be selected more frequently in future similar circumstances. When
this term is negative, it indicates that at time t the agent has decreased
its prediction of Gt−1 relative to what it predicted at time t− 1. That is,
something turned out worse than the agent expected, and so the action at
time t−1 should be taken less frequently in future similar circumstances.
These intuitive policy update rules are encoded in the expression for Θt

in the standard update of Algorithm 2 since

∂ ln
(
πBAC(Pt−1, At−1,Θt−1)

)
∂Θt−1

(15)

is a direction of change to the policy parameters that increases the proba-
bility of action At−1 given perception Pt−1.

4 Background on the RPE Hypothesis for Dopamine
Neuroscientific research has long recognized that dopaminergic neu-
rons (neurons that produce and release the neurotransmitter dopamine)
encode signals associated with rewards, reward-based learning, and
decision-making. In seminal experiments, Schultz et al. [52] observed
that dopaminergic neurons in the primate midbrain responded not to
the reward itself, but to the discrepancy between predicted and actual
reward outcomes—a reward prediction error (RPE). When the outcome
was better than the primate expected, there was an increase in the firing
of dopaminergic neurons, and when the outcome was worse than the
primate expected, there was decreased activity of dopaminergic neu-
rons. This behavior of dopaminergic neurons suggests that, in primates,
dopamine may be a neural correlate of temporal difference error, ∆t.
That is, evidence suggests that dopamine might play the role in primate
brains that temporal difference error plays in many RL agents.

However, there remains significant debate about the precise relation-
ship between dopamine, RPEs, and TD error. For example, some studies
suggest that the relationship only holds for positive TD errors [4, 20],
while others suggest that different dopaminergic neurons may be respon-
sible for encoding positive and negative TD errors [41]. Researchers
have also questioned whether dopamine has a causal impact on behav-
ior and learning akin to that of TD error, although there is mounting
evidence that it does [56]. More recently, research has suggested that
dopamine may correspond to variants of TD error from distributional
RL, wherein v(Pt,Wt) estimates parameters of the distribution of the
discounted return other than the expected value [19]. It also remains
unclear how the relationship between dopamine and TD error extends
across the animal kingdom, although the relationship has been observed
in flies, albeit with the sign of the TD error reversed [14], and with
similar debate and conclusions regarding whether dopamine encodes
both positive and negative TD errors [64].
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Algorithm 2: Next-Memory Distribution, dm, for BAC

1: Input: Current perception Pt and memory Mt−1 = (Θt−1,Wt−1, Et−1, Pt−1, At−1).
2: Output: Memory Mt = (Θt,Wt, Et, Pt, At) where Mt ∼ dm(Mt−1, Pt)
3: Hyperparameters: Perception-policy parameterization πBAC, VFA parameterization v, initial perception-policy parameters θ0, initial VFA

weights w0, reward discount parameter γ ∈ [0, 1], eligibility trace decay rate λ ∈ [0, 1], and positive real-valued step
sizes α and β.

4: /* Note that the input Pt is also an output and so its value is not set below. */
5: Rt ← fr(Pt) // Extract the reward from the perception
6: if Mt−1 = null then
7: /* Initialization when t = 0 (first time step of first episode) */
8: Θt ← θ0
9: Wt ← w0

10: Et ← 0

11: else if Pt−1 = p∞ then
12: /* Start of episode i > 0 */
13: Θt ← Θt−1 // Copy parameters from the end of the previous episode
14: Wt ←Wt−1 // Copy weights from the end of the previous episode
15: Et ← 0 // Clear eligibility traces

16: else
17: /* Standard update */
18: ∆t ← Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1)

19: Et ← γλEt−1 +
∂v(Pt−1,Wt−1)

∂Wt−1

20: Wt ←Wt−1 + α∆tEt

21: Θt ← Θt−1 + β∆t
∂ ln(πBAC(Pt−1,At−1,Θt−1))

∂Θt−1

22: At ∼ πBAC(Pt, ·,Θt) // In all cases At is sampled the same way once Θt has been computed.
23: Return Mt = (Θt,Wt, Et, Pt, At)

5 Qualia Optimization
In this section we introduce the concept of qualia optimization in the con-
text of AI. We begin by making the explicit assumption that AI agents—
AI systems that are modeled as agents in an AEP formulation—have
phenomenal consciousness (i.e., they have qualia). We emphasize that
this assumption is made so that we can explore its potential implications,
rather than to assert its factual accuracy.

Assumption 1 AI agents have phenomenal consciousness.

For the purposes of this report, we do not differentiate between different
types of AI agents that might or might not experience phenomenal con-
sciousness (e.g., based on their underlying algorithms or complexity),
and instead study the problem of qualia optimization for AI agents (and
particularly RL agents) in general.

The assumption that AI agents have phenomenal consciousness natu-
rally leads to a range of ethical considerations, particularly concerning
the well-being of these agents as moral patients. However, within the
scope of this report, we do not explore these ethical questions. Instead,
we operate under a secondary assumption that there exists a motivation,
whether practical or ethical, to enhance the quality of AI agent qualia.

Assumption 2 There is a need for enhancing the quality of AI agent
qualia.

These assumptions introduce a new category of problem settings in
AI, centered around the question: How can we optimize the experiential
quality of AI agents while also considering their performance? This
category, which we call qualia optimization for AI, encompasses a
wide range of problem formulations. For example, one might consider
various trade-offs between the experiential quality of agents and their
performance. Some formulations may even prioritize qualia optimization
as the sole objective. The subsequent sections explore specific examples
of such problem settings.

Different theories of mind provide different guidance regarding which
properties of AI agents and environments might result in desirable or
undesirable qualia for AI agents. For this initial exploration of qualia
optimization for AI, we adopt the following assumption, inspired by
functionalism.

Assumption 3 If specific algorithmic processes in AI agents functionally
resemble biological processes underlying human experiences, then these
corresponding processes yield similar experiences in both humans and
AI agents.

Notice that this assumption informs how the quality of the qualia of AI
agents might be quantified, not whether AI agents have qualia (which
was already assumed via Assumption 1). This means that Assumption
3 may be compatible with a wide range of theories of mind, including
Cartesian dualism, provided that the quality (rather than the existence)
of qualia depends on the functional roles of the underlying processes.

Before exploring specific qualia optimization problem settings we
consider general concepts that apply to many settings. In Section 5.1
we generalize the standard agent-environment perspective to allow for
the insertion of mechanisms between the agent and environment that
transform the agent’s experiences. In Section 5.2 we consider the possible
forms of mathematical formulations of qualia optimization.

5.1 Agent-Interface-Environment Process (AIEP)
Effective qualia optimization may require changing more than just the al-
gorithm the agent implements—it might require changing how the agent
interacts with the environment or perhaps even changing the environment
entirely. This may range from simple changes like changing the rewards
provided to an RL agent, to more sophisticated changes like altering
the rate with which the agent interacts with the environment. In even
more extreme cases, one might be able to change the environment so
completely that it hardly resembles the original environment, as long as
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Figure 4: A revision of Figure 1, showing how the agent interacts with the environment with the inclusion of the agent-environment interface (AEI).
The AEI influences the agent’s experiences by transforming its perceptions and actions as the agent indirectly interacts with the base environment.

a well-performing policy for the original environment can be extracted
from the policy learned by the agent.

5.1.1 Example of Experience-Transforming Interventions
To ground our discussion and formalization of mechanisms that transform
agent experiences, consider the motivating example of a rat learning
to move from one compartment of a shuttle box to another when a
light is turned on.15 In a conditioned avoidance response (CAR) test, a
rat receives electric shocks shortly after a light is turned on. Through
classical conditioning, the rat learns to associate the light (the conditioned
stimulus) with the impending shock (the unconditioned stimulus). Then,
via operant conditioning, the rat learns to avoid the shocks by moving to
the other compartment when the light is turned on.

The rat could be trained to produce the target behavior of moving from
one compartment to the other when the light is turned on without the use
of an aversive stimulus like electric shocks. For example, the rat could be
provided with an appetitive stimulus, like a particularly desirable food,
when it exhibits the target behavior. If the goal is merely to train the rat to
produce the target behavior, then in principle either of these approaches
could be effective.16

If rats have qualia similar to those of humans, then this provides
an intuitive example wherein changes to the environment of an agent-
environment system could alter an agent’s experiences, with (perhaps)
relatively little impact on the learned behavior. We aim to modify the
AEP and AERP problem formulations so that they allow for the con-
sideration of a range of such transformations of an agent’s experiences,
enabling the study of the impact that these transformations have on both
performance (learning) and the quality of the agent’s qualia.

5.1.2 Agent-Environment Interface (AEI)
To achieve this aim, we focus on an initial setting wherein the agent
interacts with the environment indirectly through an agent-environment
interface (AEI), depicted in Figure 4, that can transform the agent’s
experiences, but which does not allow for a complete disconnect between
the environment of interest and what the agent experiences.

In this setting, there is an environment, which we call the base environ-
ment, that the agent will interact with. An agent could interact directly
with this base environment, and this interaction could be modeled as an
AEP. However, instead of interacting directly with the base environment,
the agent’s perceptions and actions are transformed by an AEI. There
are multiple ways that our motivating example can be modeled within
this framework. The agent might correspond to the rat and the base envi-
ronment might correspond to the shuttle box without any mechanisms
to train the rat. We could then consider AEIs that make no changes to

15A shuttle box is an apparatus used in animal learning experiments. It has two com-
partments that an animal can move between, and often includes equipment to administer
electrical shocks.

16The goal of a CAR test is not just to produce this target behavior, hence the typical
reliance on aversive stimuli.

the majority of the rat’s experiences, including no changes to the layout
of the compartments or to the laws of physics governing its movement.
When the light is turned on, one AEI might administer electric shocks
until the rat moves to the other compartment. A different AEI might
dispense food if the rat quickly enters the other compartment after the
light is turned on.

Since the AEI’s transformations impact the agent’s experiences, we
do not consider the AEI to be part of the agent (we revisit this choice
later). Instead, we view the AEI as part of the agent’s environment—a
part that can be modified to optimize the agent’s performance and qualia.
Taking this perspective, the environment that the agent interacts with
consists of both the base environment and the AEI. We will formulate
this system in such a way that this combined environment with which the
agent interacts remains the environment of an AEP. Hereafter, references
to the “environment” correspond to this combined environment—any
references to the base environment will be explicit.

Although some transformations of the agent’s experiences could be
achieved by a state-free AEI, some transformations may require the AEI
to have memory of its own. We therefore define the AEI to have its
own state, Yt, which we call the AEI state. To simplify the problem
formulation, we allow the AEI’s state to be updated twice per time step—
once before it generates the agent’s perception Pt, and once after the
agent selects action At. We handle this dual-update of the AEI state
within each time step by defining Yt to be the AEI state prior to the
generation of Pt and Y ′

t to be the AEI state after the agent selects action
At. We call an AEI state-free if Yt and Y ′

t are the same constant random
variables for all t (e.g., Yt = 0 and Y ′

t = 0 always).
Let Xt denote the state of the base environment, which we call the

base state. Together, the AEI state and base state form the environment
state, St = (Xt, Yt), which constitutes the higher-level state of the
environment with which the agent interacts. We refer to Y ′

t as the
intermediate AEI state because it occurs between environment states
St = (Xt, Yt) and St+1 = (Xt+1, Yt+1).

An AEP that includes an AEI operates as follows at each time t. First,
the base state is updated from Xt−1 to Xt based on the AEI action from
time t− 1, At−1. The AEI is influenced by the base state via a random
variable P t that we call the AEI perception.17 The AEI perception is a
deterministic function of Xt, and so it is determined when the base state
is updated to Xt. The AEI perception P t then causes the AEI to update
its state to Yt. In the general AEP formulation, the agent perception Pt is
a function of the environment state St = (Xt, Yt). However, we consider
a restricted setting where the agent’s perceptions are entirely controlled

17The formulation that we introduce includes so many symbols and assumptions that
a detailed discussion of each would be too cumbersome. Although we present each
definition and assumption formally, we refer the reader to the detailed discussion of similar
terms in the general AEP formulation for additional discussion. For example, here it
follows from the definition of P t and the subsequent assumptions that P t is a complete
characterization of everything about Xt that influences the AEI at time t, much like Pt in
the AEP formulation.
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by the AEI, and so the agent perception Pt can be expressed as a function
of just the AEI state Yt and AEI perception P t (i.e., Xt does not directly
influence Pt). The agent perception Pt causes the agent to update its
memory to Mt. The agent action At is a deterministic function of Mt

and is therefore also implicitly determined. The agent action At causes
the AEI to update its state to the intermediate value Y ′

t . The AEI action
At is a deterministic function of Y ′

t and At and is therefore also implicitly
determined.

More formally, an AEP that includes an AEI results in the genera-
tion of a sequence of random variables for each time t ∈ {0, 1, . . . }:
Xt, P t, Yt, Pt,Mt, At, Y

′
t , and At. As a reminder, we refer to Xt as the

base state, P t as the AEI perception, Yt as the AEI state, Pt as the agent
perception, Mt as the (agent) memory, At as the agent action, Y ′

t as the
intermediate AEI state, At as the AEI action, and St = (Xt, Yt) as the
environment state.18 We define all of these random variables to be null
when t = −1 to avoid having to define special case distributions for the
initial values of these random variables.

We make the following assumptions and define the following notation
regarding these random variables.

1. Xt is conditionally independent of all previous random variables
given Xt−1 and At−1. We write dx(x, a) to denote the conditional
distribution of Xt given Xt−1 = x and At−1 = a. We also assume
that dx is stationary (i.e., it does not depend on the time t).

2. P t = fp(Xt), where fp is a function that we call the AEI perception
function.

3. Yt is conditionally independent of all previous random variables
given Y ′

t−1 and P t. We write dy(y
′, p) to denote the conditional

distribution of Yt given that Y ′
t−1 = y′ and P t = p. We also assume

that dy is stationary.

4. Pt = fp(Yt, P t), where fp is a function that we call the agent
perception function.

5. Mt is conditionally independent of all previous random variables
given Mt−1 and Pt. We write dm(m, p) to denote the conditional
distribution of Mt given that Mt−1 = m and Pt = p. We also
assume that dm is stationary.

6. At = fa(Mt), where fa is a function that we call the agent action
function.

7. Y ′
t is conditionally independent of all previous random variables

given Yt and At. We write dy′(y, a) to denote the conditional dis-
tribution of Y ′

t given that Yt = y and At = a. We also assume that
dy′ is stationary.

8. At = fa(Y
′
t , At), where fa is a function that we call the AEI action

function.

We call this process, which models an AEP that includes an AEI,
an agent-interface-environment process (AIEP). Note that all AIEPs
are AEPs—AEPs where the environment can be decomposed into two
components: the base environment and an AEI. If the base environment is
an AERP, we redefine its reward function to be the base reward function
fr and the rewards that it produces to be the base rewards Rt = fr(P t).
In this case where the base environment is an AERP, we typically define
the AEI to also produce rewards Rt, which we call AEI rewards or
agent rewards,19 and which are produced by an AEI reward function fr
according to the equation Rt = fr(Pt). We refer to such an AIEP where

18We encourage readers overwhelmed with this notation and terminology to consult
Figure 4.

19When the focus is on how the AEI produces rewards we use the phrase “AEI reward.”
However, when the focus is on the rewards that the agent receives, we us the phrase “agent
reward.” These terms are interchangeable.

the base environment is an AERP and where the AEI produces rewards
Rt as an agent-interface-environment reward process (AIERP). Note that
all AIERPs are AERPs.

Recall that the conditional independence (Markov) assumptions in the
specification of AEPs characterize how states, perceptions, memories,
and actions should be defined for a given agent-environment system.
Although they are stated as assumptions, they do not restrict the set of
agent-environment systems that can be modeled as AEPs. Similarly,
the assumptions above do not limit the systems that can be modeled as
AIEPs and AIERPs, but rather inform how the various states, perceptions,
actions, and memories can be defined for a given system containing a
base environment, AEI, and agent.

However, these conditional independence and stationarity assumptions
do not fully specify which information should be encoded within the
base state Xt and which information should be encoded within the
AEI state Yt. Consider an agent-environment system that one aims to
convert into and agent-interface-environment system by splitting the
environment into a base environment and AEI. One could define Yt to
be the state of everything external to the agent (including the state of
the base environment) and Xt to be a constant, essentially encoding
the environment entirely within the AEI. This would not align with the
intuition that the AEI should be a mechanism that transforms the agent’s
experiences as it interacts with the environment.

To specify what information should be encoded within the AEI state
Yt, note that we will formulate qualia optimization as the problem of
finding AEI and agent specifications that in some way optimize both
performance on the base environment and the quality of the agent’s
qualia. Hence, for a given agent-interface-environment system, the AEI
state should only include quantities that can be changed during efforts to
simultaneously optimize performance and qualia.

For simplicity, in this initial work we assume that if P t = p∞ then
Pt = p∞. That is, the AEI preserves episode termination. Alternate for-
mulations wherein the AEI can terminate episodes early or pad episodes
with additional time steps could be modeled by allowing the AEI to inter-
act with the agent and environment at different and varying timescales—
allowing for multiple interactions with the agent within a single interac-
tion with the base environment or vice versa. While this may provide
an interesting direction for future work (and our initial formulation of
the AEI allowed for such varying timescales), the key insights presented
in this report do not rely on varying timescales, and so we present a
simplified AEI where the agent and environment operate on the same
timescale.

Algorithm 3: Agent-Interface-Environment Process (AIEP)

1: Initialize X−1,M−1, Y
′
−1, and A−1 to null

2: for t← 0 to∞ do
3: Xt ∼ dx(Xt−1, At−1)

4: P t = fp(Xt)

5: Yt ∼ dy(Y
′
t−1, P t)

6: Pt = fp(Yt, P t)
7: Mt ∼ dm(Mt−1, Pt)
8: At = fa(Mt)
9: Y ′

t ∼ dy′(Yt, At)

10: At = fa(Y
′
t , At)

Algorithm 3 provides pseudocode for generating the sequence of
random variables (Xt, P t, Yt, Pt,Mt, At, Y

′
t , At)

∞
t=0 as specified by an

AIEP. An AIERP would include the specification of the base reward Rt =
fr(P t) immediately after the specification of P t, and the specification
of the AEI reward Rt = fr(Pt) immediately after the specification of
Pt.
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Let aeiI denote an AEI that makes no changes to the agent-
environment interactions, which we call the identity AEI. That is, un-
der aeiI, Yt and Y ′

t are constants (i.e., the AEI has no internal state),
Pt = P t, At = At, and, if the process is an AIERP, Rt = Rt.

5.2 Formulating Qualia Optimization
Classical RL literature focuses on (perception) policies, which character-
ize how the agent selects actions based on the current perception, or based
on the history of agent perceptions, actions, and rewards. This results in
objective functions that evaluate the quality of policies by taking as input
a policy and providing as output a measure of the amount of reward the
agent would receive if it selected actions using the provided policy. This
policy-centric perspective provides a clear goal when designing classical
RL algorithms—they should cause the agent to find (or approximate) a
policy that maximizes the chosen objective function, and should do so
quickly.

However, this policy-centric perspective is less conducive to formaliz-
ing the problem of qualia optimization. It would be restrictive to measure
the quality of qualia for policies alone, since RL agents (and more gener-
ally, AI agents) are more than just a policy—they are agents that learn
from their experiences, changing their policies and memory over time
based on interactions with their environments. We therefore take a more
agent-centric perspective, defining objective functions for qualia opti-
mization as functions of the entire system (the environment, AEI, and
agent), not just a policy. In order to do so, we first define AI algorithms
alg and AEI specifications aei more formally, so that we can define
objective functions that take AEIs and AI algorithms as input.

5.2.1 Base Environment, AEI, and Algorithm Definitions
Recall that Algorithm 3 characterizes the entire base environment, AEI,
and agent system, describing the order in which random variables are
sampled and the conditional distributions of each random variable. We
propose partitioning these conditional distributions into three sets: those
that characterize the base environment, those that characterize the AEI,
and those that characterize the algorithm implemented by the agent.
Although the algorithm implemented by the agent may not be an RL
algorithm, due to our initial focus on RL algorithms and RL settings,
hereafter we call this algorithm the RL algorithm.

The base environment env determines the conditional distributions
of Xt and P t (and Rt if the base environment is an AERP). So, the
base environment env is characterized by dx and fp (and fr if the
base environment is an AERP). The RL algorithm alg determines the
conditional distributions of Mt and At. So, alg is characterized by dm
and fa, just as in the AEP formulation. The AEI aei determines the
conditional distributions of Yt, Pt, Y

′
t , and At (and Rt in the case of an

AIERP). So, aei is characterized by dy, fp, dy′ , and fa (and fr in the
case of an AIERP). This partitioning of random variables is depicted
by the colors in Figure 4: The conditional distributions of blue, red,
and green random variables are determined by env, aei, and alg
respectively.

Although we formally characterize base environments, AEIs, and RL
algorithms as sets of conditional distributions and functions, one need
not think of them as explicit conditional probability tables and specific
function definitions. Instead, they can each be viewed as any complete
specification of the corresponding terms. For example, BAC with hy-
perparameter specifications corresponds to one possible RL algorithm
alg, and BAC can be viewed as a set of possible RL algorithms (each
hyperparameter setting induces a different algorithm).

5.2.2 Performance and Qualia Objective Functions
We now define two objective functions (one for qualia and one for perfor-
mance) that play central roles in qualia optimization problems formulated
as AIEPs. Let q(alg,aei) be a real-valued quantification of the quality

of an RL agent’s qualia when using RL algorithm alg and AEI aei on
some implicit base environment env. Larger values of q(alg,aei)
correspond to more desirable qualia of the RL agent during its lifetime,
and we call q the qualia objective function. Similarly, let p(alg,aei)
be a real-valued quantification of the performance of an RL agent using
RL algorithm alg and the AEI specified by aei on the same implicit
base environment env.20

By defining the qualia objective function q in this way, we make the
implicit assumption that the quality of agents’ qualia can be quantified
by a function of the dynamics of the system comprised of the base envi-
ronment, AEI, and agent.21 Notice that this does not imply the additional
implicit assumption that whether or not agents experience qualia can be
determined from these system dynamics. This formulation allows for
the possibility that even if qualia arise from immaterial phenomena as
suggested by Cartesian dualism, their quality could still be determined
from the dynamics of the system comprised of the base environment,
AEI, and agent.

Also notice that in this formulation the qualia objective is a function of
the system dynamics, not a specific outcome. That is, it is a function of
the distributions of the random variables Xt, P t, Yt, Pt,Mt, At, Y

′
t , and

At rather than a function of a realization of these random variables. If
the quality of the qualia of an agent is a function of a realization of these
random variables, this formulation allows for optimization of parameters
of the distribution of qualia quality, such as the mean or median.

We focus on the setting where performance is a property of interactions
with the base environment—which AEI actions, At, are chosen and
which base states, Xt, result. For example, performance does not depend
on how the AEI and agent compute the AEI action At, just what the action
At is. Put differently, performance is with respect to the base environment,
and is an evaluation of the outward behavior of the agent-AEI system.
More formally, we assume that p(alg,aei) can be expressed as a
function of the distributions of Xt and At for all t. Hence, if these
distributions are held constant, the value of p(alg,aei) does not vary
with the distributions of other random variables in the AIEP. While this
may exclude some reasonable definitions of performance, like those that
consider how much energy it takes for the agent-AEI system to compute
At, it simplifies our initial exploration of qualia optimization.

Similarly, we focus on the setting where the quality of an agent’s
qualia (measured by q) is a property of the agent’s interactions—its
perceptions Pt, which actions At it takes, and what memories Mt it
has. More formally, q(alg,aei) can be expressed as a function of the
distributions of Pt,Mt, and At, for all t. Hence, if these distributions
are held constant, the value of q(alg,aei) does not vary with the
distributions of other random variables in the AIEP. This encodes that
the AEI changes the agent’s experiences, as opposed to the AEI being
part of the agent—a modeling choice that we question later.

5.2.3 Generalizing Qualia Objective Functions
Notice that the concept of qualia objective functions can trivially be
extended from AIEPs to AEPs since the value of the qualia objective
function only depends on the distributions of the agent perceptions Pt,
agent actions At, and agent memories Mt—random variables that exist
in the more general AEP formulation. In such settings the aei is not
part of the problem formulation and so it is also no longer an input to
the qualia objective function, and so q(alg) denotes the value of the
qualia objective function for RL algorithm alg (and some implicit envi-
ronment). The performance objective function can be similarly extended,

20We select Fraktur as the typeface for q and p to avoid conflicts with the commonly
used symbols p and q, while maintaining mnemonic links between “p” and “performance”
and “q” and “qualia.”

21We recognize that this sentence can be cumbersome and difficult to parse. Notice that
“dynamics of the system comprised of the base environment, AEI, and agent” refers to
dx, fp, dy , fp, dm, fa, dy′ , fa (and fr and fr for an AIERP).
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although not quite as trivially because it depends on the distributions of
random variables not present in the AEP formulation (e.g., base states,
AEI actions, and base rewards).

Later we will reason about the impact that the representation functions
ρPt , ρAt , and ρMt have on the qualia objective function. So far we have
defined q for some implicit underlying AEP (or AIEP). Varying these
representation functions while keeping the underlying physical properties
ΦPt

, ΦAt
, and ΦMt

the same results in a range of AEPs. To facilitate
discussion of this range of AEPs, note that we can (with a mild abuse of
notation due to defining q to take different arguments) write the qualia
objective function explicitly as a function of the distributions of Pt, Mt,
and At for all t:

q
(
law

(
(Pt,Mt, At)

∞
t=0

))
, (16)

where law((Pt,Mt, At)
∞
t=0) denotes the joint distribution over the en-

tire sequence (P0,M0, A0, P1,M1, A1, P2, . . . ). Furthermore, this joint
distribution can be determined from the joint distribution of the cor-
responding physical properties and the corresponding representation
functions, and so the qualia objective function can be expressed as:

q
(
law

(
(ΦPt ,ΦMt ,ΦAt)

∞
t=0

)
, (ρPt , ρMt , ρAt)

∞
t=0

)
. (17)

Although cumbersome, this form plays a central role in our later analysis.

5.2.4 Candidate Problem Formulations
We consider a multi-objective problem setting wherein the goal is to find
an RL algorithm alg and AEI specification aei that simultaneously
maximizes both p(alg,aei) and q(alg,aei). There are a variety of
ways that one could formalize the goal of simultaneously maximizing
the quality of the agent’s qualia and the performance of the agent, a few
of which we review below.

1. Qualia optimization can be formalized as the problem of maximiz-
ing a weighted combination of the two objectives:

λq(alg,aei) + (1− λ)p(alg,aei), (18)

where λ ∈ [0, 1] is a hyperparameter (not related to the λ hyperpa-
rameter of the BAC algorithm).

2. Qualia optimization can be formalized as the problem of maximiz-
ing performance subject to a constraint on the quality of the agent’s
qualia:

argmax
alg,aei

p(alg,aei) (19)

subject to q(alg,aei) ≥ c,

for some real-valued constant c.

3. Qualia optimization can be formalized as the problem of maximiz-
ing the quality of the agent’s qualia subject to a constraint on the
performance of the agent:

argmax
alg,aei

q(alg,aei) (20)

subject to p(alg,aei) ≥ c,

for some real-valued constant c.

4. Qualia optimization can be formalized as the problem of maximiz-
ing the performance of the agent, breaking ties by considering the
quality of the agent’s qualia. That is, we might define a total order
on (alg,aei)-pairs such that (alg,aei) ≥ (alg′,aei′) if and
only if p(alg,aei) > p(alg′,aei′) or both p(alg,aei) =

p(alg′,aei′) and q(alg,aei) ≥ q(alg′,aei′). Qualia opti-
mization can then correspond to finding an (alg∗,aei∗) such
that (alg∗,aei∗) ≥ (alg′,aei′) for all (alg′,aei′), if such
an optimal algorithm-AEI pair exists.

The selection of the appropriate formalization of qualia optimization
is important because different choices can result in different optimal
algorithm and AEI specifications. However, in this initial work we do
not adopt a specific formalization and instead focus on general strategies
for increasing q(alg,aei) with little or no change to p(alg,aei)—
strategies that could be effective mechanisms for any of the formaliza-
tions above. For example, in some settings we show that there exist
AEI specifications aei that cause maximizing the quality of the agent’s
qualia to align with the agent’s goal of maximizing the expected dis-
counted return, and in another case we provide an AEI specification
that can increase q(alg,aei) without influencing p(alg,aei) at all.
Although we do not focus on any one of the above problem formulations,
they provide context for the types of problem formulations that we have
in mind when devising qualia-improving mechanisms.

In later sections we consider problem settings where the sets of AEIs
and RL algorithms under consideration are restricted. Let AEI and ALG
denote the sets of AEIs and RL algorithms under consideration. We call
these sets the sets of admissible AEIs and RL algorithms. To model this
restricted problem setting, qualia optimization problem settings can be
restricted to only consider elements of ALG and AEI. For example, (19)
could be rewritten as:

argmax
alg∈ALG, aei∈AEI

p(alg,aei) (21)

subject to q(alg,aei) ≥ c.

In such cases, the domains of p and q need only be the admissible
algorithms and AEIs—p and q can be undefined for other AEIs and RL
algorithms.

In the following sections we consider different classes of definitions of
q and their implications. In Section 6 we consider definitions wherein the
quality of an agent’s qualia is related to the amount of reward the agent
receives. After Section 6 we re-evaluate the problem formulation based
on insights from this initial reward-qualia setting before considering
other definitions of q that focus on TD errors and the reinforcement of
behavior.

6 Reward Hypothesis for Qualia
In this section we restrict our focus to AIERPs and consider the implica-
tions of the following assumption, which refines Assumption 3:

Assumption 4 (Reward↔Qualia) The quality of an RL agent’s qualia
can be measured in terms of the amount of reward it receives.

This assumption is natural, since obtaining positive rewards22 seems
intuitively likely to produce desirable qualia and obtaining negative
rewards (punishments) seems likely to produce undesirable qualia. Also,
notice that here the “amount of reward” that the agent receives measures
the amount of agent rewards Rt (the rewards received by the agent), not
the amount of base environment rewards Rt (the rewards produced by
the base environment). Hereafter, we refer to the setting induced by this
assumption as the reward-qualia setting.

As we will see, the reward-qualia setting faces serious challenges
that call into question its viability as a setting of interest. We will show
that, under mild assumptions, degenerate solutions that constitute no
real changes to the system can inflate variants of this qualia objective

22Note that we use “reward” to refer to Rt in the AEP formulation. Depending on how
an AEP models a physical system, it may be more appropriate to call Rt a reward signal
[3]. We use the term “reward” for brevity.
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arbitrarily. We also use this relatively simple setting to introduce a
variety of concepts that inform qualia optimization in general and which
are referenced in subsequent settings. For example, in Section 6.1 we
introduce the concept of objective function alignment, and provide an
example of how AEIs can be designed to cause the alignment of the
objective functions.

6.1 Objective Alignment
Intuitively, two objectives are aligned if, when one increases, it always
means that the other increases as well. Formally, we say that the objective
functions p and q are aligned under AEI aei if any changes to an RL
algorithm that increase one objective necessarily also increase the other
objective. That is, p and q are aligned under AEI aei if for all RL
algorithms alg and alg′,

q(alg′,aei) > q(alg,aei)︸ ︷︷ ︸
qualia improvement

⇐⇒ p(alg′,aei) > p(alg,aei)︸ ︷︷ ︸
performance improvement

.

(22)
This might be viewed as a notion of strong alignment, with weaker forms
of alignment only requiring the implication to hold in one direction.

The assumption that the quality of an RL agent’s qualia can be mea-
sured in terms of the amount of reward it receives does not necessarily
imply that p and q are aligned under the identity AEI aeiI, since p and
q can measure “amount of reward” differently. For example, they might
use different reward discount parameters γ, or one might measure the
expected discounted return over some finite number of episodes while
the other measures the median discounted return.

This raises the question: Under what conditions does there exist an
AEI under which p and q are aligned? Here we present one example of a
setting wherein these objectives can be aligned:23

• There is some finite maximum number of episodes imax.
• The AIERP is episodic and finite-horizon.24

• The rewards Rt and Rt are bounded (to ensure that the following
expectations exist).

• The value of the qualia objective, q(alg,aei), is the expected dis-
counted sum of agent rewards over imax episodes using reward discount
parameter γq ∈ (0, 1]:

q(alg,aei) = E

imax−1∑
i=0

end(i)∑
t=start(i)+1

γ
dur(t)
q Rt

 . (23)

• The value of the performance objective, p(alg,aei), is the same
expression using a different reward discount parameter γp ∈ [0, 1], and
Rt rather than Rt:

p(alg,aei) = E

∑
i,t

γ
dur(t)
p Rt

 , (24)

where hereafter
∑

i,t is shorthand for the summations in (23).

In this setting it is straightforward to design an AEI, aei⋆, under
which these two objectives are aligned: for all times t, aei⋆ sets
Rt = γ

dur(t)
p γ

− dur(t)
q Rt, while leaving the other random variables (ef-

fectively) unchanged. More precisely, first dy and dy′ are defined such
that Yt encodes dur(t). Next, fa(y′, a) = a for all y′ and a so that
At = At. Next, the agent perception Pt is defined to be the AEI percep-
tion P t, but augmented with the new reward value (so the AEI reward

23Although this specific setting is not of particular interest, it is simple and is sufficient
for our subsequent exploration of the limitations of objective alignment.

24Finite-horizon AEPs were defined in Section 3.1.5. This definition extends to AERPs,
AIEPs, and AIERPs, since they are all AEPs.

function can subsequently determine the agent reward from the agent
perception). That is, Pt = (P t, Rt), which is achieved by defining
fp(y, p) = (p, γ

dur(t)
p γ

− dur(t)
q fr(p)) for all y and p. Finally, fr(p) = r

for all p = (p, r) so that Rt = γ
dur(t)
p γ

− dur(t)
q Rt. This means that

q(alg,aei⋆) =E

∑
i,t

γ
dur(t)
q Rt

 (25)

=E

∑
i,t

γ
dur(t)
q

(
γ
dur(t)
p

γ
dur(t)
q

Rt

) (26)

=E

∑
i,t

γ
dur(t)
p Rt

 (27)

=p(alg,aei⋆), (28)

which implies (22) when aei = aei⋆.

6.1.1 Objective Alignment as a Qualia Optimization Strategy
Consider a setting like this, where the identity AEI, aeiI, does not align
the two objectives, but a different AEI, aei⋆, does. Although it might
seem like replacing aeiI with aei⋆ would improve the quality of the
agent’s qualia and thus would be an effective strategy for qualia opti-
mization, this is not the case. The alignment of objectives, as defined in
(22), is a statement about what happens when the RL algorithm changes
while the AEI remains fixed, not a statement about what happens when
the AEI is changed.

It can be the case, and may often be the case, that an RL algorithm
alg, tuned to be effective with the identity AEI, aeiI, may not be
effective with an objective-aligning aei⋆. This can happen, for example,
due to hyperparameters like step sizes being tuned for properties of aeiI,
like the scale of rewards that it induces. More generally, aei⋆ could
reduce the magnitudes of p and q by, for example, restricting the set
of (base and agent) actions that the AEI considers and reducing agent
rewards, so that even RL algorithms that are well-tuned using aei⋆

might not achieve as large values of p or q as those achieved by a typical
agent using aeiI.

As another more specific example, consider an AEI aeiconst that
makes Yt, Y ′

t , Pt, Rt, and At constant and only allows the agent to select
one action (notice that we have not assumed that the supports of At

and At are the same). For all performance objectives p, p(·,aeiconst)
is a constant function, since At being a constant removes the agent’s
influence on the base environment. Notice that Mt is the only random
variable in the stochastic process that the RL algorithm can influence
when using aeiconst. So, for all qualia objectives q that only depend
on the agent’s external behavior—qualia objectives that do not depend
on the distribution of the agent memory Mt—q(·,aeiconst) is also a
constant function.

Notice that p(·,aeiconst) and q(·,aeiconst) being constant functions
implies that aeiconst is an objective-aligning AEI. So, aeiconst is an
objective-aligning AEI for all p and many q. However, it is likely to
result in particularly poor values of the performance objective since the
same base action At is always selected. Similarly, this AEI is likely to
result in poor values of the qualia objective, although this depends on the
specific definition of q.

These examples highlight that using an objective-aligning AEI will
not necessarily improve performance or the quality of the agent’s qualia.
So, although finding AEIs that align the objectives can be possible,
they are not necessarily beneficial or effective for qualia optimization.
Note, however, that finding objective-aligning AEIs might be an effective
strategy for qualia optimization in a different problem setting (e.g., with
additional constraints placed on the set of AEIs under consideration).
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6.2 Algorithmic Improvements
Since constructing AEIs that align the objective functions does not nec-
essarily improve the quality of the agent’s qualia or its performance
(relative to if it were to use the identity AEI), we now focus on strategies
for directly improving the quality of the agent’s qualia without altering
the agent’s performance and without necessarily aligning the two ob-
jectives. That is, we desire strategies for taking an initial RL algorithm
alg0, which we call the base algorithm, and constructing an AEI aei′

and RL algorithm alg′ such that

q(alg′,aei′) > q(alg0,aeiI) (29)
and

p(alg′,aei′) ≥ p(alg0,aeiI), (30)

even though p and q are not necessarily aligned under aeiI or aei′.
A natural way to enhance the quality of an agent’s qualia is to modify

the agent’s learning procedure itself, without necessarily changing the
agent’s perceptions via a (non-identity) AEI. That is, changing alg0

to some improved alg′ while keeping aei′ = aeiI. In the reward-
qualia setting, changes to the RL algorithm that improve its performance
could also improve the quality of the agent’s qualia. For example, if the
agent’s performance objective and qualia objective are the same, then
simply refining hyperparameters (e.g., step sizes or exploration rates)
might improve both performance and the quality of the agent’s qualia.
If the two objectives conflict, then multi-objective RL algorithms might
allow for a desired balance between prioritizing performance and qualia
quality.

Although improving the base algorithm alone can be effective, it
generally amounts to refinements that traditional RL research already
pursues—creating more effective RL algorithms. Furthermore, this
approach does not (on its own) leverage the AEI. Neglecting the AEI
may limit how well the qualia objective can be optimized, and contrasts
with the illustrative example that motivated our problem formulation (the
shuttle box example). In the next section we focus on strategies that
primarily leverage the AEI to improve the quality of the agent’s qualia
without altering performance.

6.3 Reward Bonuses
In this section we consider a strategy for creating AEIs that improve the
quality of an agent’s qualia without altering the agent’s performance and
without necessarily aligning the two objectives. One obvious strategy in
the reward-qualia setting is for the AEI to alter the rewards given to the
agent so that they are larger positive values. However, it is well-known
that adding a constant to (nearly) every reward can change optimal
behavior. That is, consider an AEI that only changes the rewards to
Rt = Rt + c, where c is a positive constant called the reward bonus.
This AEI can significantly alter how the RL agent should select actions
to maximize the amount of reward that it receives.

One example of this occurs when an agent is given a constant negative
reward, e.g., −1, at each time step until an episode ends. These negative
rewards incentivize the agent to end the episode as quickly as possible. If
a sufficiently large reward bonus is provided, the rewards could become
positive. This would incentivize the agent to keep the episode from
ending, since ending the episode would stop it from continuing to receive
positive rewards. Hence, adding a reward bonus can significantly alter
the rewards from incentivizing the agent to end episodes as quickly as
possible to incentivizing the agent to keep episodes from ending for as
long as possible.

However, this reasoning is only valid when the reward bonus is only
added to rewards that occur prior to the end of the episode. In classical
episodic RL formulations, each episode is infinitely long. At some point,
the environment may reach a state called a terminal absorbing state,

which it can never leave and wherein all rewards are zero. When the
environment enters a terminal absorbing state, the episode has effectively
ended even though environment states continue to transition (although
these transitions are always self-transitions back to the terminal absorbing
state), rewards continue to be generated (although they are all zero), and
actions continue to be selected (although they are inconsequential).25 In
such formulations, adding a reward bonus, c, to all rewards, including
those that occur when the environment is in a terminal absorbing state,
does not change how the rewards incentivize the agent (under mild
assumptions to ensure that discounted returns remain finite).26 Rather,
adding c to all rewards increases the discounted return (with discount
parameter γq) of all episodes by

∞∑
t=0

γt
qc =

c

1− γq
. (31)

So, adding a reward bonus c to all rewards, including those that occur
when the environment is in (and remains in) a terminal absorbing state,
shifts all discounted returns by a constant value and therefore does not
change the ordering of policies with respect to the expected discounted
returns that they induce.27

This strategy of adding a reward bonus to all rewards (including
those after an episode terminates) cannot be directly implemented in our
setting because we do not model each finite-length episode as an infinite
sequence. However, it can still be implemented in our setting in two
steps. First, the AEI adds c to all but the last reward in each episode by
setting Rt = Rt + c when Pt ̸= p∞. Second, when Pt = p∞, the AEI
defines Rt to include not just the one reward bonus from time t, but the
sum of all of the reward bonuses that would be provided at or after time
t if the episode were infinitely long. This cumulative bonus is

∞∑
k=0

γk
q c =

c

1− γq
, (32)

and so Rt = Rt + c(1− γq)
−1 when Pt = p∞.

An AEI that implements this change is straightforward to define for-
mally in our setting.

• The AEI does not require memory, and so Yt and Y ′
t can be constants.

This is implemented by making dy(y
′, p) and dy′(y, a) distributions

with support on a single constant value (e.g., 0) for all y′, p, y, and a.
• The AEI defines fp so that Pt = P t. That is, for all y and p, fp(y, p) =
p.

• The AEI defines fa so that At = At. That is, for all y′ and a,
fa(y

′, a) = a.
• The AEI defines fr so that

Rt =

{
Rt + c if Pt ̸= p∞

Rt +
c

1−γq
otherwise.

(33)

Although Rt = fr(P t) always, in this particular setting it is also the
case that Rt = fr(Pt) since Pt = P t. So, (33) can be implemented
as follows: for all p, fr(p) = fr(p) + c if p ̸= p∞ and fr(p) =
fr(p) + c(1− γq)

−1 if p = p∞.

Hereafter, we will refer to this AEI as the reward bonus AEI aeic.

25In some formulations, the set of admissible actions is also restricted to a single action
in terminal absorbing states to further emphasize that not only are there no consequential
decisions for the agent to make once a terminal absorbing state is reached—there are no
decisions at all for the agent to make.

26For example, this result holds if the rewards Rt are bounded and γq ∈ [0, 1).
27A similar result holds if a constant c is added to the first k rewards, where k is also a

constant.
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6.3.1 Impact on Qualia and Performance Objectives
Having formally defined the AEI aeic that implements reward bonuses,
we now turn to evaluating the impact this AEI has on the qualia and
performance objectives in the reward-qualia setting. First we consider
the impact this objective has on the qualia objective. Although the class
of qualia objective functions q that falls within the reward-qualia setting
is not precisely defined, many such objectives would be increased if all
rewards are increased.

However, even if we focus on a specific reward-qualia definition of q
like that in (23) (with γq ∈ [0, 1) to ensure that (1− γq)

−1 is defined),
aeic does not necessarily ensure that q(alg0,aeic) > q(alg0,aeiI)
or even that q(alg0,aeic) ≥ q(alg0,aeiI). This is because using
aeic does more than just inflate the rewards—changing the rewards can
also change how the agent (using alg0) learns and selects actions. If
the larger rewards hinder the agent’s learning, it could cause the agent
to select worse actions that result in smaller rewards. This is not an
unlikely scenario if the hyperparameters of alg0 are tuned so that it is
effective for the base environment (with the identity AEI), since these
hyperparameters may not be effective when using aeic. For example,
as c increases, it is likely that a step size of the BAC algorithm would
need to be decreased for BAC to remain equally effective.28

So, switching from aeiI to aeic can result in competing forces on
the rewards: aeic increases the rewards, but the corresponding impact
on the RL algorithm’s behavior could decrease rewards. We consider
two ways to ensure that reward bonuses are effective for the reward-
qualia setting despite these competing forces. First, if the reward bonus
c is sufficiently large—for example, so large that the smallest reward
with the reward bonus is positive and greater than the largest possible
return without the reward bonus—then using aeic will always increase
Rt for all times t and Gi for all episodes i regardless of the agent’s
behavior. We do not focus on this strategy because it does not ensure
that the performance objective increases or remains unchanged, since
the performance objective depends on the base rewards Rt that do not
include the reward bonuses.

Second, recall from our example problem formulations that we aim
to optimize both the AEI and the RL algorithm, and so we can modify
the base RL algorithm alg0 to ensure that its learning is not hindered
by the reward bonuses. To achieve this, let alg−c denote a copy of
alg0 that subtracts the appropriate bonus (c if Pt ̸= p∞ and c(1−γq)

−1

otherwise) from the agent’s reward before using it. In this way, alg−c

undoes the transformations made by the AEI aeic, ensuring that learning
is effectively the same as when alg0 is used with aeiI.

Using alg−c with aeic equates to adding a reward bonus to the
rewards before they are provided to the agent, while changing the agent
so that it subtracts the same reward bonus before using the rewards. This
change will not impact the agent’s behavior since the AEI’s changes are
canceled out by the changes to the RL algorithm.29 Although this is de-
sirable at the moment, enabling further discussion of how reward-qualia
optimization can be achieved, it raises deeper questions about whether
such “changes” are at all meaningful—questions that are discussed in
Sections 7 and 8.

Recall that our goal is to find an AEI-algorithm pair that increases the
qualia objective while not decreasing the performance objective. The

28As one even more precise example, if BAC uses a VFA parameterization that is linear
with respect to the weights and the VFA weights are initialized to zero, then multiplying all
rewards by a positive constant is approximately equivalent to dividing the step size β by
that same constant (the equivalence is only approximate because the VFA weights Wt and
TD error ∆t would also be inflated by the same constant). If all rewards are non-negative
and the constant is greater than one, this provides one example where an optimal step
size for BAC may need to be decreased in order to maintain performance if rewards are
increased.

29Notice that this strategy remains effective even if the reward bonus does not differ
when Pt = p∞ since alg−c always cancels the reward bonuses prior to their influencing
the agent’s behavior.

AEI aeic and algorithm alg−c achieve this for many reward-qualia
settings—those where increasing all agent rewards while leaving all other
random variables unchanged is sufficient to increase the value of the
qualia objective function. Furthermore, many reward-qualia objectives
may be affine and increasing with respect to c, which implies that the
qualia objective can be inflated by arbitrarily large amounts by increasing
c. To make this clear, we analyze one such qualia objective function q.

6.3.2 Specific Example where Reward Bonuses are Effective
Consider the use of aeic with alg−c for some c > 0 and in the same
setting from earlier where

q(alg,aei) = E

∑
i,t

γ
dur(t)
q Rt

 . (34)

We restrict our attention to settings where γq ∈ [0, 1), Rt is bounded,
and the horizon is finite so that (1− γq)

−1 and the expected values of
all discounted returns are always defined and finite.

We begin with the (unproven) observation that using aeic with alg−c

only changes the random variable Rt—the distributions of all other
random variables, Xt, P t, Yt, Pt,Mt, At, Y

′
t , At, and Rt, remain un-

changed. This observation implies that

p(alg−c,aeic) = p(alg0,aeiI), (35)

since the values output by p can be expressed as a function of the joint
distribution of Xt and At for all t, which is unchanged.

In Appendix D we show that in this setting

q(alg−c,aeic) = q(alg0,aeiI) + c
imax

1− γq
. (36)

Since imax(1− γq)
−1 is a positive constant, this implies that

q(alg−c,aeic) > q(alg0,aeiI), (37)

and furthermore that increasing c can inflate the qualia objective value
arbitrarily. This establishes the desired result: that in this specific exam-
ple setting aeic and alg−c increase the value of the qualia objective
(arbitrarily) without changing the value of the performance objective.

6.4 Reward-Qualia Conclusion
In summary, in some natural formulations of reward-qualia optimization,
simply adding a constant reward bonus at each time (perhaps with a
specific larger bonus upon episode termination) could be an effective
strategy. If there are concerns that an agent’s performance would suffer
as a result, the RL algorithm can be modified to undo the AEI’s transfor-
mation of the rewards. This results in assurance of no change to the value
of the performance objective, p. However, this is also concerning, as it
results in no actual change to the agent’s behavior, raising philosophical
questions about whether this could reasonably be expected to have any
impact on the quality of the agent’s qualia.

Also, notice that we have only considered a small number of initial
settings within the broader reward-qualia optimization setting and have
focused on one strategy for reward-qualia optimization in these settings.
There may be other settings within the reward-qualia optimization setting
that are of more interest, and there are many other strategies for reward-
qualia optimization, even in the settings that we considered. However,
many of the other possible settings and strategies encounter the same
challenges and concerns that are discussed in the following sections.
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7 Exploitable Qualia Objectives
The initial exploration of the reward-qualia setting produced concepts and
insights that apply to many qualia optimization settings. For example,
while objective alignment is a natural research direction to consider,
in our setting it alone does not resolve the trade-off between qualia
optimization and performance optimization. As another example, after
creating an AEI that improves the quality of an agent’s qualia, we were
faced with the challenge of ensuring that the AEI will not decrease
performance. This resulted in the observation that performance can
sometimes be left entirely unchanged by modifying the RL algorithm to
undo the AEI’s transformations. Before exploring qualia optimization
settings beyond the reward-qualia setting, we explore additional concepts
that are evident from the reward-qualia setting, but which apply to and
inform a wider range of qualia optimization settings, starting with the
concept of exploitable qualia objective functions.

7.1 Example Unreasonable Qualia Optimization Solution
First we provide additional context for why aeic and alg−c from the
reward-qualia setting might be considered to be an unreasonable solution.
This is important beyond the reward-qualia setting because the general
strategy of modifying RL algorithms to undo or invert the transformations
made by the AEI could apply to a variety of settings, enabling qualia
improvement without changing performance. Furthermore, if aeic

and alg−c represent an unreasonable solution to a qualia optimization
problem, it suggests that the problem formulation may be unreasonable.

Consider how aeic and alg−c could be implemented on a digital
computer. Within the computer, numbers like rewards may be represented
using a floating point binary format, with rules governing which bits
encode the mantissa, which bits encode the exponent, whether the bits
are big-endian or little-endian, etc. One way to implement the addition
and subsequent subtraction of a constant c from the rewards would be
for the computer to store the base environment reward Rt in a register
using a floating point representation and to then add c to the value in this
register to obtain Rt.30 The algorithm alg−c subtracts c from the value
in this register to reconstruct Rt, and then executes the updates specified
by the base algorithm alg0 using these reconstructed rewards. While
this process of adding c to the value in a register and then immediately
subtracting c from that value seems unlikely to be a meaningful change,
it at least corresponds to a change to the physical system.

However, this same algorithmic change could be implemented by leav-
ing the software and hardware entirely unchanged, and instead changing
how we interpret some sequences of bits as floating point numbers. That
is, any time that the computer stores Rt in a register or other form
of digital memory, we can define it to be using an encoding that im-
plicitly adds c to the value relative to the representation used to store
typical floating point numbers (like Rt). Consider an example of a com-
puter that uses the currently common 32-bit IEEE Standard for Floating-
Point Arithmetic (IEEE 754) to encode real numbers. To store a value
of 2.6970698081234434654× 1023, this computer would store the 32-
bit sequence 0110 0110 0110 0100 0111 0011 0110 0001.
However, the computer does not necessarily store anything indicating
how these bits should be interpreted. They could also be interpreted as
a sequence of four ASCII characters—specifically the sequence “asdf”.
This change to how bit sequences are interpreted is common in computing
and is referred to as casting.

When the computer stores Rt, we can define it to be using a different
floating point encoding, such that the bits 0110 0110 0110 0100
0111 0011 0110 0001 encode c + 2.6970698081234434654 ×
1023. We call this encoding, which adds c to the value relative to IEEE

30For simplicity, we focus on times t where Pt ̸= p∞ so that the reward bonus is always
c. However, the ideas discussed here extend to the full aeic and alg−c which use a
reward bonus of c(1− γq)−1 when Pt = p∞.

754, IEEE 754c. By using IEEE 754c for Rt, the exact same bit sequence
that represents Rt (using IEEE 754) can be used to represent Rt. With
this change of how bit sequences are interpreted as floating point num-
bers, the AEI’s conversion of Rt into Rt does not require any changes to
the bit sequence.

Next consider how the RL algorithm alg−c reads from the register
storing Rt. The RL algorithm alg0 may include instructions that operate
on the value in the register storing Rt. For example, if the computer
uses the x86 instruction set architecture (including Streaming SIMD
Extensions), alg0 may include instructions like ADDSS (add scalar
single-precision), MULSS (multiply scalar single-precision), and MOVSS
(move scalar single-precision) with Rt as the source operand.31 To
implement alg−c, we can add new instructions to the instruction set
architecture that modify each of these instructions, replacing each of
the original instructions within alg0 that have Rt as a source operand
with our corresponding new instructions to obtain an implementation of
alg−c. The new instructions are designed to read a source operand in
IEEE 754c, subtract c from the value, apply the original instruction, and
write the output using IEEE 754.

Notice, however, that the hardware that implements these new in-
structions is exactly the same as hardware that implements the original
instructions. That is, an original instruction interpreting an input operand
using IEEE 754 is precisely the same as the corresponding modified in-
struction that interprets the input operand as using IEEE 754c, subtracts
c from the value prior to performing the original instruction, and writes
the output using IEEE 754. So, just like how no changes to the physical
system were required to implement the addition of c, no changes are
required to implement the subtraction of c. Together, these properties
mean that an existing physical implementation of alg0 and aeiI is
already an implementation of alg−c and aeic. The only difference is
how bit sequences are interpreted.32

Recall our previous discussion of how random variables (e.g., Rt)
correspond to underlying physical properties (e.g., ΦRt

), and how the
correspondence is characterized by a representation function (e.g., ρRt ).
The issue with aeic and alg−c described here can be expressed using
these terms. First, notice that the physical properties (e.g., bit sequence)
that correspond to the base environment reward ΦRt

can be the same as
the physical properties that correspond to the agent reward ΦRt

. That
is, ΦRt

= ΦRt
. Using aeiI and alg0 corresponds to using the same

representation functions for Rt and Rt, i.e., ρRt = ρRt
. However,

the same physical system can be modeled as a different AIEP by only
changing the representation function of Rt such that ρRt

(Φ) = ρRt
(Φ)+

c.33 The resulting AIEP corresponds to using aeic and alg−c. This
means that the same physical system can be modeled as two different
AIEPs (one with reward bonuses and the other without).

So, by merely redefining how we interpret the meaning of sequences
of bits within different registers in a computer, we can view the same
hardware and software that implement RL algorithm alg with no AEI
(equivalently, AEI aeiI) as also being an implementation of the algo-
rithm alg−c with AEI aeic. If the qualia objective assigns different
values to these two perspectives, it means that the quality of the agent’s
qualia depends on how we (an external observer of a computer running
software) ascribe meaning to sequences of bits within the computer. If
one views this as unreasonable, it suggests that there is a flaw within the
problem formulation.

31For simplicity of this argument, imagine that alg0 does not use the location of Rt

as a destination operand. For example, there could be a special register reserved for Rt,
which the AEI writes to and which the RL algorithm only reads from.

32To extend this to the full reward bonus AEI and RL algorithm, one might use different
registers to store Rt when Pt = p∞ and Pt ̸= p∞, and these registers might use floating
point representations that add different constants to the value relative to IEEE 754.

33We write Φ rather than ΦRt or ΦRt
to emphasize that here they correspond to the

same physical properties.
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Figure 5: A revision of Figure 4 to depict the concept of AEI inversion. The AEI inverter undoes the AEI’s transformations to the agent perceptions
to retrieve the AEI perceptions, and pre-transforms the base RL algorithm’s actions At so that the AEI’s subsequent transformations result in agent
actions At that the AEI transforms back into At.

7.2 AEI Inversion
The concept of an RL algorithm that is modified to undo or negate the
transformations made by the AEI extends beyond aeic and alg−c, and
beyond the reward-qualia setting. One way that the RL algorithm can
undo or negate the transformations made by the AEI is for it to include a
mechanism that explicitly inverts the transformations made by the AEI—
a mechanism that we call an AEI inverter. We call an RL algorithm
that undoes the transformations of AEI aei and then applies a base RL
algorithm alg, the inverse RL algorithm alg−aei. Figure 5 depicts an
agent using an inverse RL algorithm. To ground these abstract concepts,
note that in the case of aeic and alg−c, the AEI adds c to the rewards,
the AEI inverter subtracts c from the rewards, and alg−c is the inverse
algorithm alg−aeic .

We now define the AEI inverter more formally, characterizing it with
two functions: gp, which we call the perception inverter and ga, which
we call the action pretransformer. For simplicity, we only consider
state-free AEI inverters (i.e., AEI inverters that do not have their own
memory). When the agent receives an agent perception p, the AEI
inverter transforms this agent perception into the perception p that is
provided to the base RL algorithm. The perception inverter characterizes
this transformation according to the expression p = gp(p). When the
base RL algorithm selects an action a, the AEI inverter transforms it into
the agent action a according to the expression a = ga(a).

Furthermore, gp and ga must satisfy the following conditions. First,
the perception inverter must satisfy the following expression for all times
t, which ensures that the AEI inverter properly reconstructs P t from Pt:

P t = gp(Pt). (38)

Second, at every time t, the action pretransformer transforms the action
a selected by the base RL algorithm into an action a such that the sub-
sequent transformation performed by the AEI makes a the AEI action.
This is more complicated to express formally because it must account
for how the agent action transforms the intermediate AEI state, and how
the resulting intermediate AEI state then influences the AEI action. Even
given Yt and At, the intermediate AEI state Y ′

t can be stochastic, with
conditional distribution dy′(Yt, At). To ensure that the action selected
by the base algorithm is always equal to the AEI action, we will con-
sider all possible values y′ of Y ′

t , i.e., all y′ ∈ supp(dy′(Yt, At)).34 The
constraint on ga is thus that for all times t:

∀y′ ∈ supp(dy′(Yt, ga(At)))︸ ︷︷ ︸
For all possible Y ′

t

, fa(y
′, ga(At)) = At.︸ ︷︷ ︸

The AEI selects the base algorithm’s action

(39)

When gp and ga that satisfy these two conditions do not both exist,
no AEI inverter exists. When such gp and ga exist, we say that the AEI

34Recall from Appendix A that for any distribution d, supp(d) denotes the support of d.

is invertible. Note that the invertibility of the AEI is with respect to
some implicit base environment and base RL algorithm. For example,
if there are AEI perceptions p and agent perceptions p that can occur
when some RL algorithms are used, but which cannot occur when the
base algorithm in question is used, then the perception inverter need not
satisfy p = gp(p).

7.3 Inversion-Exploitable and Inversion-Robust Qualia Objectives
We now generalize the issues previously discussed for the specific invert-
ible AEI aeic and its inverse algorithm alg−c, extending the concepts
to invertible AEIs and inverse algorithms in general. The set of qualia
objective functions can be partitioned into two sets:

1. Inversion-exploitable qualia objectives are those q for which there
exists a state-free AEI aei that is invertible with respect to a base
RL algorithm alg, and where the use of the AEI with the inverse
RL algorithm alg−aei results in a change to the value of the qualia
objective function. That is, there exists an RL algorithm alg and a
corresponding invertible state-free AEI aei such that35

q(alg−aei,aei) ̸= q(alg,aeiI). (40)

2. Inversion-robust qualia objectives are qualia objective functions
that are not inversion exploitable. That is, using a state-free invert-
ible AEI and inverse RL algorithm cannot change the value of the
qualia objective function.

Notice that every qualia objective function is either inversion ex-
ploitable or inversion robust, but not both. Hence, these two categories
provide a partitioning of the set of all qualia objective functions.

7.3.1 Inversion-Exploitable Objectives May Be Unreasonable
As with aeic and alg−c, AEIs and their inverse algorithms pose a
problem for inversion-exploitable qualia objectives—they suggest that
the quality of an agent’s qualia depend on how values are ascribed to
the physical properties within the agent-environment system, not just the
physical properties themselves. In particular, we can view the physical
properties that formerly encoded P t as instead encoding Pt, and can
similarly reinterpret the same physical properties used for At as At.
Thus, the AEI makes no transformations to the physical system, but
rather it adopts a different mapping from the same physical properties
to the values of perceptions and actions. Meanwhile, the AEI inverter
undoes this change of mapping, restoring the original interpretation of
physical properties as values of perceptions and actions. Although such

35In order to allow for later problem formulations where the set of RL algorithms and/or
AEIs are constrained, the following expression should be proceeded by the additional
qualification: “q(alg−aei,aei) and q(alg,aeiI) are defined and”. We relegate this
condition to a footnote because it is not well-motivated or clear at this point.
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an AEI and AEI inverter correspond to changes to how we ascribe values
to physical properties within the physical agent-environment system, they
correspond to no change to the physical properties themselves. Inversion-
exploitable qualia objectives are those that assign different values to the
quality of the agent’s qualia depending on whether the same physical
system is interpreted as including the AEI and AEI inverter or not.

To be more precise, recall our earlier discussion in Section 3 of
how random variables relate to the physical world. Specifically, re-
call that ΦP t

determines the value of P t and the value of P t determines
ΦP t

. That is, there is an invertible representation function ρP t
such that

P t = ρP t
(ΦP t

). Intuitively, ρP t
“reads out” the value of the random

variable P t from the underlying physical properties ΦP t
. For example,

in an idealized physical world where ΦP t
corresponds to a sequence of

32 bits in a digital computer, IEEE 754 and IEEE 754c correspond to
different representation functions ρP t

—different ways of interpreting
how underlying physical properties induce values of P t. Notice that
ρP t

is not part of a physical system, but rather part of how the physical
system is modeled as an AEP or AIEP.

A physical system that we interpret as an agent implementing a base
RL algorithm interacting with a base environment can also be interpreted
as an agent implementing the inverse RL algorithm interacting with the
base environment through a state-free AEI (when the inverse RL algo-
rithm for the state-free AEI exists). That is, the AEI makes no physical
changes to the system, but changes the representation function used for
agent perceptions Pt to be fp(0, ·) ◦ ρP t

, where ◦ denotes function com-
position.36 That is, ΦP t

, the physical properties representing P t are the
exact same physical properties that represent Pt, but with representation
function fp(0, ·) ◦ ρP t

so that Pt = fp(0, ρP t
(ΦP t

)).
So far we have argued that the physical properties ΦP t

corresponding
to the AEI perception P t are sufficient to represent the agent percep-
tion Pt. However, we must consider the possibility that even though
P t determines Pt, Pt might not determine P t. Intuitively, P t might
contain more information than Pt, in which case ΦP t

would contain
more information than Pt, meaning that it could not be the physical
properties corresponding to Pt (recall that the physical properties corre-
sponding to a random variable must determine the random variable and
the random variable must determine the physical properties). That is, the
representation function fp(0, ·) ◦ ρP t

for Pt may not be invertible, which
would be a problem since representation functions must, by definition, be
invertible. However, the existence of the AEI inverter (specifically, gp)
ensures that this is not the case—fp(0, ·) ◦ ρP t

is necessarily invertible
since

ρP t
(ΦP t

) =P t (41)

=gp(Pt) (42)
=gp(fp(0, ρP t

(ΦP t
)). (43)

Recall that representation functions (including ρP t
) are invertible, and so

ΦP t
= ρ−1

P t

(
gp(fp(0, ρP t

(ΦP t
))
)
, (44)

which means that ρ−1

P t
◦ gp is the inverse of fp(0, ·) ◦ ρP t

. Hence
fp(0, ·) ◦ ρP t

is a valid representation function for Pt and so the exact
same physical properties ΦP t

that correspond to P t (via representation
function ρP t

) can be the physical properties ΦPt
that correspond to Pt

(via representation function fp(0, ·) ◦ ρP t
).

So, when ΦPt = ΦP t
, to retrieve the AEI perception P t, the AEI

inverter need only revert to using the original representation function ρP t

36Recall that we have restricted our consideration to state-free AEIs, and so without loss
of generality we assume that Yt = 0 and Y ′

t = 0 for all t. Also recall that fp characterizes
how the AEI generates agent perceptions according to the expression Pt = fp(Yt, P t).

when interpreting the physical properties ΦPt = ΦP t
as the perception

fed to the base RL algorithm. This same argument applies to At (leverag-
ing the existence of ga rather than gp)—the same physical properties that
correspond to At can correspond to At. So, the AEI and AEI inverter
need only change the representation functions used for perceptions and
actions in order to convert a system implementing the base algorithm
(without an AEI or with the identity AEI) into an implementation of
the AEI and inverse algorithm. Since the representation functions are
implicit (the functions themselves are not part of the physical system),
this corresponds to no changes to the physical system.

An inversion-exploitable qualia objective is one that can assign differ-
ent values to the quality of the agent’s qualia for these two interpretations
of the same physical system. This is problematic because it means
that our external interpretation of the same physical agent-environment
system—how we ascribe values like real numbers to physical properties—
can alter the quality of the agent’s qualia. If this property is unreasonable,
it suggests that the problem formulation should be designed to ensure
that it does not occur, i.e., inversion-exploitable qualia objectives should
be avoided.

7.3.2 Why Statefulness Changes Things

Notice that the definition of inversion-exploitable qualia objectives re-
quires the problematic AEI to be state-free. This is important because
there can exist stateful (i.e., not state-free) AEIs and inverse RL algo-
rithms that do necessitate changes to the physical system to implement.

As an example, consider an AEI that defines the agent perception to
be the past two AEI perceptions: Pt = (P t, P t−1). In general (e.g.,
barring degenerate cases where perceptions are constant) such an AEI
requires state. For example, the AEI state could store the previous AEI
perception: Yt = P t−1. With P t−1 stored in the AEI’s state, fp can be
defined such that fp(Yt, P t) = fp(P t−1, P t) = (P t−1, P t) = Pt.

In this example, the physical properties ΦP t
that correspond to P t

cannot correspond to the physical properties representing Pt (but with
a different representation function), since each P t corresponds to many
possible values of Pt, and so the same physical properties cannot be
one-to-one with both P t and Pt. In the previous formal argument, (44)
would not hold because the AEI state Yt would not necessarily be zero,
and so the representation function fp(Yt, ·)◦ρP t

would vary with Yt and
hence would not be deterministic.

7.4 Representation-Exploitable Qualia Objectives

So far we have built up intuition for a problem related to the link between
random variables and the underlying properties of a physical system,
starting with a concrete reward-bonus example and then generalizing the
discussion to invertible AEIs and inverse RL algorithms. These examples
provide a clear introduction to the issue at hand, but do not capture
the full generality of the problem. For example, our discussion so far
might suggest adopting definitions of the qualia objective function q that
depend only on the agent’s memory, since invertible AEIs and inverse RL
algorithms do not alter the agent’s memory. Hence, q that only depend
on the distribution of Mt (for all t) are inversion robust.

However, such qualia objectives do not escape the core underlying
problem: that a physical agent-environment system can be modeled as
two different AEPs or AIEPs by simply changing the representation
functions used for random variables, and this change of representation
functions can result in a change to the value of the qualia objective
function. That is, under such qualia objectives, changing how we ascribe
values (e.g., numbers) to physical properties (e.g., bit sequences), can
change the quality of an agent’s qualia despite there being no changes to
the physical system.

18



As a concrete example, consider a qualia objective function q where

q(alg,aei) = E

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q ∆t

 , (45)

where ∆t ∈ R is part of the agent’s memory Mt. For example, BAC
algorithms could be modified to explicitly store the temporal difference
error ∆t in memory, in which case this qualia objective defines the
quality of the agent’s qualia to be the expected discounted sum of the TD
errors the agent accrues.

Notice that although this qualia objective function is inversion robust,
it is not in a more general sense representation robust. That is, one could
define ∆t to include a positive additive bonus at each time t, inflating the
qualia objective. Any time the value of ∆t is referenced, the algorithm
could be modified to first subtract the bonus so that there is no effective
change to the algorithm’s behavior. As before, this entire process can be
“implemented” via changes to representation functions, and without any
change to the physical system.

We now define the more general concept of representation-exploitable
and representation-robust qualia objectives that captures both inversion-
exploitability and the exploitability of (45). For generality, we define
these terms for AEPs (the most general environment specification thus
far). We call a qualia objective function q representation exploitable
if the same physical system (characterized by the joint distribution of
ΦSt

,ΦPt
,ΦMt

, and ΦAt
for all t ∈ {0, 1, . . . }), but with different rep-

resentation functions ρPt
, ρMt

, and ρAt
, can induce different AEPs that

result in different values of the qualia objective function. We also define
representation-robust qualia objective functions to be those that are not
representation exploitable. That is, a representation-exploitable qualia
objective function is one where different interpretations of physical prop-
erties (e.g., bit sequences) as values of random variables (e.g., numbers),
can alter the quality of the agent’s qualia despite there being no changes
to the physical system. Similarly, representation-robust qualia objective
functions are in a sense invariant to the choice of representation function.

To make this definition more formal, first recall the earlier generaliza-
tion of qualia objective functions that extends them to explicitly depend
on the representation functions of Pt, At, and Mt. That is,

q
(
law

(
(ΦPt

,ΦMt
,ΦAt

)∞t=0

)
, (ρPt

, ρMt
, ρAt

)∞t=0

)
(46)

represents the value of the qualia objective function for phys-
ical properties (ΦPt ,ΦMt ,ΦAt)

∞
t=0 and representation functions

(ρPt , ρMt , ρAt)
∞
t=0. Changing only the representation functions rep-

resents a change to the AEP model of the physical system, but not a
change to the physical system itself. Critically, changes to the represen-
tation functions in (46), can change the values of the random variables
Pt,Mt, and At for all times t, but do not change the dynamics of the
underlying physical system—they do not change the joint distribution of
(ΦPt ,ΦMt ,ΦAt)

∞
t=0. So, the physical dynamics are fixed and only the

representation functions are varied.
We now more formally state the intuitive idea that representation-

exploitable qualia objectives are those that depend on the representation
functions and representation-robust qualia objective functions are those
that are invariant to the choice of representation functions.

1. Representation-robust qualia objectives are q such that, for
all physical properties ΦPt

,ΦMt
, and ΦAt

, all termination-
preserving37 representation functions ρPt , ρMt , ρAt , ρ

′
Pt
, ρ′Mt

, and

37Termination-preserving representation functions are those that preserve episode termi-
nation. That is, ρ′St

(ΦSt ) = s∞ if and only if ρSt (ΦSt ) = s∞. Without the restriction
to termination-preserving representation functions, qualia objective functions that depend
on terms like end(i) may not be representation-robust. This could potentially be resolved

ρ′At
, and all t ∈ {0, 1, 2, . . . }, if

q
(
law

(
(ΦPt

,ΦMt
,ΦAt

)∞t=0

)
, (ρPt

, ρMt
, ρAt

)∞t=0

)
(49)

and

q
(
law

(
(ΦPt

,ΦMt
,ΦAt

)∞t=0

)
, (ρ′Pt

, ρ′Mt
, ρ′At

)∞t=0

)
(50)

are defined,38 then

q
(
law

(
(ΦPt ,ΦMt ,ΦAt)

∞
t=0

)
, (ρPt

, ρMt
, ρAt

)∞t=0

)
(51)

=q
(
law

(
(ΦPt

,ΦMt
,ΦAt

)∞t=0

)
, (ρ′Pt

, ρ′Mt
, ρ′At

)∞t=0

)
. (52)

2. Representation-exploitable qualia objectives are qualia objective
functions q that are not representation robust.

Representation-exploitable qualia objective functions pose a signifi-
cant challenge because a single physical system can be modeled by two
distinct AEPs that differ only in the choice of representation functions
for Pt, At, and Mt. In such cases, an exploitable qualia objective can
assign different values to the agent’s experiential quality even though the
underlying physical substrate is unchanged. This is problematic if one
believes that an agent’s qualia depend solely on its underlying physical
state—not on arbitrary representational mappings—a perspective that
aligns with certain forms of physicalism and computational theories of
mind.

This issue is related to triviality arguments in philosophy of mind.
Under a mapping theory of computational implementation—one that
mirrors our assumption that each random variable in an AEP is in one-
to-one correspondence with underlying physical properties—triviality
arguments hold that even elementary physical systems (such as a rock,
a bucket of water, a wall, or a clock) can be construed as executing
arbitrarily complex computations, including those performed by the hu-
man brain (see Appendix B). The key difference, however, is that while
triviality arguments focus on the potential complexity of computations
that a system might be said to implement, representation exploitabil-
ity concerns whether the qualitative experience attributed to the agent
remains invariant under different mathematical representations.

7.5 Strategies Regarding Exploitable Qualia Objectives
As discussed in the previous subsections, representation-exploitable
qualia objectives present a problem. There are at least three possible
(not entirely distinct) ways that qualia optimization problems can be
formulated to circumvent this problem:

1. Restrict the focus to inherently representation-robust qualia ob-
jective functions. This approach addresses the issue by excluding
those cases in which the qualia objective is affected by arbitrary
choices of representation (for example, whether numerical values
are encoded using IEEE 754 or an alternative scheme). Such a
strategy may be particularly compelling to some proponents of

by redefining functions like end(i) so that they are invariant to the choice of representation
functions. For example, instead of end(i) being defined as

end(i) = min{t > start(i) : St = s∞}, (47)

it could instead be defined as

end(i) = min{t > start(i) : ΦSt = ϕ∞}, (48)

for some terminal physical properties ϕ∞. To avoid the complexity of redefining all
such functions in a representation-robust manner, we instead restrict our consideration to
termination-preserving representation functions.

38The restriction to cases where both values of the qualia objective function are defined
allows for the later consideration of restricted sets of environments, representation functions,
and agents.
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functionalism and computational theories of mind, who maintain
that only the underlying computational structure matters for mental
states—and therefore for qualia—while the specific physical instan-
tiation and representation does not. From this perspective, if two
systems implement the same functional relationships among mental
states, then differences in their representational formats (such as the
floating point encoding) should not lead to different qualia. This line
of reasoning suggests that any reasonable qualia objective function
should be applicable to a wide range of RL algorithms and AEIs
while remaining representation robust.

The restriction to representation-robust qualia objectives can also
be achieved by restricting the set of RL algorithms and AEIs un-
der consideration. The definition of representation-robust qualia
objectives indicates that that if q(alg,aei) is undefined, alg and
aei are removed from consideration when determining whether
a qualia objective is representation robust. For clarity, we treat
these two approaches as distinct approaches: this one, in which the
qualia objective function is designed to be inherently representation-
robust, and the next, in which we restrict our analysis to a subset
of RL algorithms and AEIs for which the qualia objective is robust.
Although the latter can be seen as a special case of the former, dis-
tinguishing between them highlights whether robustness is achieved
by the objective’s definition or by limiting the scope of systems
under consideration.

2. Restrict the set of AEIs and RL algorithms under consideration.
If the set of considered AEIs and RL algorithms is restricted suffi-
ciently, each physical system under consideration may correspond
to a unique AEI and algorithm. That is, the set of AEIs and algo-
rithms could be so significantly restricted that all pairs of an AEI
and RL algorithm under consideration necessarily correspond to
different underlying physical systems.

As one example, we could consider only the identity AEI and RL
algorithms that correspond to BAC with different positive constants
η multiplying the TD error:

∆t ← η
(
Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1)

)
, (53)

perhaps with constraints on the possible values of η ∈ R>0.39

(a) Remove the AEI. Within this broader approach is a special
case of particular interest: when the AEI is restricted to be
the identity AEI. This equates to essentially removing the AEI
from the formulation, converting AIEPs back to AEPs and
AIERPs to AERPs. Although this approach does not resolve
the problem of representation-exploitable qualia objectives on
its own, it does resolve the issue of inversion-exploitable qualia
objectives. Formally, we can view this as requiring the AEI to
be aeiI by only defining q(alg,aei) when aei = aeiI.
This ensures that all q are inversion robust because the AEI
inverter for aeiI is an identity function, and so any base
algorithm alg0 with an AEI inverter is precisely the same
as the base algorithm alg0 (i.e., alg0 = alg−aeiI

0 ), and so
q(alg−aeiI

0 ,aeiI) = q(alg0,aeiI). Notice that q being
inversion robust in this setting relies on the condition added to
(40) in a footnote. This approach could resolve the problem of
representation-exploitable qualia objectives when combined
with other approaches.

39We have not proven that this restriction ensures representation-robust qualia objectives.
It may be possible that the changes induced by η are, in some cases, sufficiently predictable
for the difference to be modeled solely as a change to representation functions. Still, this
serves as a clarifying example, and we conjecture that there are specific environments and
limited sets of values for η such that these restrictions are sufficient to ensure representation-
robustness.

3. Constrain the allowed representation functions. If there is one
set of “ground truth” representation functions (one per random vari-
able), the problem of representation-exploitable qualia objectives
can be entirely dismissed—only the qualia value under the ground
truth representation for each random variable is of concern (the
qualia objective function can be left undefined for other represen-
tation functions). Similarly, and somewhat equivalently, the set of
allowed representation functions (perhaps more than one per random
variable) could be restricted to a set that the qualia objective func-
tion is invariant to. This approach of restricting the set of allowed
representation functions aligns with philosophy of mind research
that suggests that certain types of representations may be critical for
mental states, such as analog, digital, iconic, discursive, and sym-
bolic representations [24, 26, 2, 48, 15, 40]. However, we conjecture
that restricting representations to any of these representational types
would be insufficient to preclude representation-exploitability.

7.6 Representation-Robust Qualia Objectives
Although the first solution—restricting the focus to inherently
representation-robust qualia objective functions—is intuitively appealing,
it raises the question of whether representation-robust qualia objective
functions exist that do not rely on the qualia objective often being un-
defined. We contend that there are such representation-robust qualia
objective functions.

Information theoretic concepts, reviewed in Appendix E, provide
useful definitions and properties for constructing representation-robust
qualia objectives. Here, we construct one such objective using entropy.
Consider a discrete random variable Z within an AEP or AIERP (e.g.,
Z could correspond to Pt or Rt). If the qualia objective function can
be expressed as a function of the entropy of Z, H(Z), then it is neces-
sarily representation robust. To see why, consider underlying physical
properties Φ and two representation functions ρ and ρ′ that result in
random variables Z and Z ′ (i.e., Z = ρ(Φ) and Z ′ = ρ′(Φ)). Property
5 in Appendix E states that Shannon entropy is invariant to invertible
transformations (like ρ and ρ′), and directly implies that

H(Z) =H(ρ(Φ)) (54)
=H(Φ) (55)
=H(ρ′(Φ)) (56)
=H(Z ′). (57)

Hence a qualia objective function that only depends on the Shannon
entropy of discrete random variables will not vary with the representation
functions ρPt , ρAt , and ρMt , and so will be representation robust.

One example of such a qualia objective function would define the
quality of the agent’s qualia to be the discounted sum of the entropy of
the agent’s perceptions:

q(alg,aei) =
∑
i,t

γ
dur(t)
q H(Pt). (58)

Note that an expectation is not necessary in the above expression because
H(Pt) is not random.

Although entropy can be effective for constructing representation-
robust qualia objectives, it is only effective when applied to discrete
random variables. As shown in Property 6 in Appendix E, differential
entropy (a common extension of entropy to continuous random variables)
is not invariant to invertible transformations. Hence, changing the repre-
sentation function of a random variable without changing the underlying
physical properties can change the differential entropy of the random
variable.

This raises the question: Do there exist functions of distributions (like
entropy) that are invariant to invertible transformations even for continu-
ous random variables? We begin with a negative result: If we consider
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only non-constant functions of a single univariate random variable, Prop-
erty 7 in Appendix E shows that there do not exist any such invariant
functions.40

Although representation-robust qualia objective functions cannot be
immediately constructed using a function of the distribution of a uni-
variate random variable (e.g., rewards Rt are typically real numbers and
hence univariate), the situation improves when considering functions of
the distributions of multiple random variables (or a single multivariate
random variable). Mutual information (see Definitions 6–8 in Appendix
E) is a function of the distributions of two random variables, and is
invariant to invertible transformations (see Property 8 in Appendix E).
Hence, if the qualia objective function is defined entirely in terms of
mutual information computed between pairs or groups of the agent’s
random variables—for example, the mutual information between a per-
ception at one time and an action at a later time, or between consecutive
actions—then, by virtue of mutual information’s invariance under invert-
ible transformations, such an objective will be representation-robust.

A more formal argument that qualia objectives that are functions of
the mutual information between random variables in the AEP formula-
tion are representation robust is similar to the argument used to show
representation-robustness when using Shannon entropy. Specifically,
consider any two random variables Z1 and Z2 from the AEP formulation
and let ρ′Z1

and ρ′Z2
be alternate representation functions that induce

new random variables Z ′
1 = ρ′Z1

(ΦZ1) and Z ′
2 = ρ′Z2

(ΦZ2). Represen-
tation robustness then follows from the invariance of mutual information
(Property 8), since:

I(Z1;Z2) =I
(
ρ−1
Z1

(Z1); ρ
−1
Z2

(Z2)
)

(59)

=I (ΦZ1 ; ΦZ2) (60)

=I
(
ρ′Z1

(ΦZ1); ρ
′
Z2
(ΦZ2)

)
(61)

=I (Z ′
1;Z

′
2) . (62)

Because mutual information is invariant under representation changes,
any objective defined solely as a function of mutual information must
also be invariant. Thus, qualia objectives defined in terms of mutual
information remain unchanged under representation changes and are
therefore representation robust.

8 Exploiting the Agent Boundary
Before considering qualia-optimization settings beyond the reward-qualia
setting, we explore another concept that is evident in the reward-qualia
setting, but which applies to and informs a wider range of qualia opti-
mization settings: how the AEI allows for the exploitation of the agent
boundary. Inspired by the example of a rat in a shuttle box that could be
trained with appetitive or aversive stimuli, in our problem formulation we
defined the AEI to be part of the environment—a component that shapes
the agent’s perceptions and qualia. However, the inclusion of the AEI
raises the question: Why is the AEI considered part of the environment
and not part of the agent? Furthermore, how is the boundary determining
what is and is not part of the agent determined?

Notice that within our formulation the agent is the entity whose qualia
we reason about and optimize, and the environment is the physical system
the agent interacts with. We do not directly consider the qualia of the
environment (nor the qualia of components of the agent).

We define the agent boundary to be the determination of which physi-
cal properties correspond to the agent and which do not. Note that we
do not assume that the physical properties corresponding to the agent
are (or are not) distinct from the physical properties corresponding to
the environment. That is, the agent could be a separate entity from the
environment or it could be part of the environment. While the agent

40We reiterate that the definitions and properties in Appendix E are well-known results
in information theory and not contributions of this report.

boundary might alternatively be called the agent-environment boundary
[32], we adopt the phrase “agent boundary” to avoid the implication that
the agent and environment must be distinct.

Our problem formulation presupposes that the agent boundary has in
some way been determined, and this boundary determines which parts of
the system we consider the qualia of, and which we do not. Furthermore,
our formulation allows for changes to the agent (via alg) and environ-
ment (via aei) to optimize the quality of the agent’s qualia, but does
not consider how these changes might alter the agent boundary. Beyond
philosophical objections, this raises a practical concern: many (perhaps
even all) qualia optimization problems using the AIEP formulation have
a trivial solution, which we call the dual agent-environment strategy, that
exploits the assertion that the AEI is not part of the agent.

8.1 Dual Agent-Environment Strategy
Recall that qualia objectives can be defined for AEPs (which are more
general than AIEPs). Imagine that for the qualia objective function of
interest one could identify an agent-environment pair that maximizes the
quality of the agent’s qualia without any consideration of performance.
Let env∗

q and alg∗
q denote this environment and algorithm. Notice that

env∗
q would likely be an environment custom-made to result in desirable

agent qualia (without any consideration of how this environment relates
to any other environment) and alg∗

q would be an algorithm that maxi-
mizes the desirability of the agent’s qualia (without any consideration
of performance on any environment). If such an agent-environment pair
cannot be identified, then an agent-environment pair that is expected to
achieve the highest attainable value of the qualia objective function can
be selected.

Next let alg∗
p be an RL algorithm that maximizes the performance

objective on the base environment env.41 Finding such an algorithm
is a standard topic of research in classical RL—developing effective
RL algorithms without consideration of the agent’s qualia. If no such
algorithm can be identified, then an RL algorithm that is expected to
achieve the highest attainable value of the performance objective should
be selected.

Having identified env∗
q, alg∗

q, and alg∗
p, we can construct an AEI

and RL algorithm that exploit the stationarity of the agent boundary
to maximize the quality of the agent’s qualia while also maximizing
performance on the underlying environment by breaking the trade-off
between the two objectives. This construction is depicted in Figure 6.
Specifically, in this construction the AEI includes:

• an implementation of alg∗
p, which we call the dual agent, that the

AEI uses to interact with the base environment, and
• an implementation of env∗

q, which we call the dual environment, that
the AEI uses to interact with the agent.

In order to implement both alg∗
p and env∗

q, the AEI state encodes both
the memory of the dual agent, which we call the dual agent memory M̈t,
and the state and intermediate state of the dual environment, which we
call the dual environment state Ÿt and dual environment intermediate
state Ÿ ′

t . The agent then implements RL algorithm alg∗
q.

This AEI, which we call a dual agent-environment AEI, coupled with
RL algorithm alg∗

q, is particularly effective for both objective func-
tions. First consider the performance objective: the AEI perceptions P t

and AEI actions At will have the same joint distribution as the agent
perceptions and agent actions when alg∗

p is applied to the base envi-
ronment env directly. The RL algorithm alg∗

p is defined to be one
that optimizes the performance objective in this setting, and so the dual

41This section considers the exploitation of the agent boundary that is possible due to
the assertion that the AEI is part of the environment, and so focuses on AIEPs rather than
AEPs. The immediately preceding discussion of env∗q and alg∗q considered an AEP
setting since the definitions of env∗q and alg∗q do not depend on the base environment.
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Figure 6: Graphical depiction of the dual agent-environment strategy.

agent-environment AEI will be effective at optimizing the performance
objective.

Next consider the qualia objective. The agent perceptions Pt, agent
actions At, and agent memories Mt will have the same joint distribution
as the agent perceptions, actions, and memories when alg∗

q interacts
with env∗

q directly. This agent-environment pair is defined to be one
that optimizes the qualia objective in this setting, and so the dual agent-
environment AEI with an agent implementing env∗

q will be effective at
optimizing the qualia objective.

This construction ultimately reduces the problem of qualia optimiza-
tion to two independent sub-problems. The first involves identifying an
RL algorithm that maximizes performance on the base environment. The
second involves identifying an agent-environment pair that yields a high
value for the qualia objective function, entirely independent of the base
environment and performance considerations. In the examples we have
considered, selecting the optimal environment and algorithm in terms of
the quality of the agent’s qualia alone, denoted by env∗

q and alg∗
q, is

relatively straightforward, while the identification of alg∗
p is the primary

problem studied in RL. Taken together, this strategy effectively trivializes
qualia optimization.

Beyond trivializing the creation of effective solutions, this construc-
tion highlights a serious limitation of the problem formulation when the
AEI is included and defined to be part of the environment. Consider a
situation where one is faced with the challenge of creating a physical
agent that interacts with a specific physical environment, and where the
goal is to create a physical agent that is both performant and which has
desirable qualia. This construction shows that an effective solution is to
define the physical agent interacting with the environment to be part of
the environment (by making it the dual-agent within the AEI, which is
part of the environment), and to then create an entirely separate physical
agent-environment system. This new agent-environment system can be
designed to maximize the quality of the agent’s qualia without any con-
sideration of performance or the original physical environment. Because
the definition of the agent boundary within the problem formulation de-
fines the agent in this new agent-environment system to be the one whose
qualia we optimize, we achieve our goal of optimizing the quality of the
agent’s qualia while maximizing performance on the original physical
environment. However, we have done so by entirely ignoring the qualia
of the agent actually interacting with the original physical environment.

9 Summary of Problem Formulation Considerations
In Section 7 we saw that the same physical system can in some cases
be represented as two different AIEPs—one without an AEI, and one
with an AEI and an agent implementing an inverse RL algorithm. If
a qualia objective assigns different values to these two interpretations
of the same physical system, we dubbed it inversion exploitable. In
Section 7.4 we extended this concept to representation-exploitable qualia
objective functions, which are those that assign different values to the

same physical system when it is modeled as different AEPs (via the use
of different representation functions).

We then proposed three (not mutually exclusive) approaches for con-
tinuing to explore the idea of qualia optimization despite the existence of
representation-exploitable qualia objectives.

1. Restrict the focus to inherently representation-robust qualia objec-
tive functions.

2. Restrict the set of AEIs and RL algorithms under consideration
(e.g., so that each AEI and algorithm corresponds to a unique un-
derlying physical system). Within this approach we considered the
special case wherein the AEI is restricted to be the identity AEI,
which essentially removes the AEI from the formulation and re-
solves the problem of inversion-exploitable qualia objectives, but
not representation-exploitable qualia objectives.

3. Restrict the set of allowed representation functions.

All three of these approaches provide viable paths forward and may
align with different theories in philosophy of mind. For example, the sec-
ond and third approaches align well with theories that posit that whether
an agent possesses qualia depends on more than just the distributions
of the random variables in the AEP formulation. In such theories, re-
strictions on what causes an agent to possess qualia might naturally limit
the set of AEIs, RL algorithms, and representation functions considered.
Furthermore, even theories within computationalism have argued in favor
of restrictions on quantities similar to our representation functions (see
Appendix B).

However, the first approach (restricting the focus to representation-
robust qualia objective functions) may be particularly appealing to many
proponents of physicalism, computationalism, and functionalism. Since
these views hold that qualia emerge directly from computational pro-
cesses or functional roles, it follows that any measure of qualia should
be uniquely determined by those computational or functional processes,
which suggests that the qualia objective function should be representa-
tion robust. This then raised the question: Do such representation-robust
qualia objective functions exist? In Section 7.6 we showed that they do.

We then further reconsidered the inclusion of the AEI within the
problem formulation, showing that the dual agent-environment strategy
presented in Section 8 trivializes qualia optimization and results in an
unsatisfying solution. Specifically, when the AEI is included and defined
to be part of the environment, one effective strategy is to ignore the
qualia of the agent interacting with the base environment, and to create
a new agent-environment system. This new agent-environment system
can be created independent of the base environment and the (dual) agent
interacting with it, and can be designed to optimize the quality of the
agent’s qualia. The assumption that the AEI is part of the environment
means that, when using this strategy, only the qualia of the new agent
will be considered.
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The problems posed by the dual agent-environment strategy can be
mitigated by restricting the set of AEIs under consideration. For example,
if a theory of mind clearly delineates which components of a physical
system possess qualia, restricting the AEIs under consideration to those
that do not possess qualia may result in a formulation that precludes dual
agent-environment strategies (or may allow for the careful construction
of only qualia-free dual-agents). A more extreme but clear way to resolve
the problem of dual agent-environment strategies is to remove the AEI
from the formulation entirely (equivalently, restrict the AEI to be the
identity AEI). Hereafter we adopt this latter strategy.

10 Reward Prediction Error Hypothesis for Qualia
In this section we restrict our focus in two ways. First, due to the issues
with the AEI discussed in the previous sections, we omit the AEI and
focus on AERPs (or, equivalently, AIERPs with the AEI restricted to the
identity AEI). Recall that in this setting we write q(alg) to denote the
quality of the agent’s qualia when it uses RL algorithm alg on some
implicit environment. Second, we restrict our focus to RL algorithms
that compute some notion of a reward prediction error (e.g., a TD error).

With these restrictions, we consider the implications of the following
assumption, which refines Assumption 3:

Assumption 5 (RPE↔Qualia) The quality of an RL agent’s qualia can
be measured in terms of the cumulative reward prediction error.

We call this the RPE-qualia assumption and setting.
The RPE-qualia assumption follows naturally from two properties.

First, there is significant evidence that dopamine in human brains signals
reward prediction errors (see Section 4). Second, dopamine is often
called the “feel-good” hormone, suggesting that it produces pleasurable
qualia. For example, an article on dopamine published by the Cleveland
Clinic [16] states:

Dopamine is known as the “feel-good” hormone. It gives you
a sense of pleasure.

Combining these two properties, if dopamine does in fact signal reward
prediction errors, and if elevated dopamine levels produce pleasurable
qualia, then the quality of an agent’s qualia might be quantified in terms
of the cumulative reward prediction error.

Notice that the TD error within BAC algorithms, ∆t, is just one type
of TD error and RPE. For example, other RL algorithms leverage the
TD error computed using estimates of the action-value function rather
than the state-value function [61]. In some cases TD error can be defined
in terms of the actual (typically unknown) state-value function rather
than an approximation thereof.42 More recently, TD error has been
defined for distributional RL and neuroscientific research suggests that
this distributional form of TD error better correlates with dopamine [19].
Although many of the ideas presented in this section could apply to a
wide range of TD errors and RPEs, for simplicity, in this initial work we
restrict our attention to the TD error ∆t within BAC algorithms.

One example of a qualia objective function for finite-horizon AEPs in
the RPE-qualia setting is (45), which we reproduce here:43

q(alg) = E

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q ∆t

 , (63)

for some γq ∈ [0, 1]. In the remainder of this section we focus on this
qualia objective, which we call the TDE-qualia objective. Qualia opti-
mization using this qualia objective amounts to the question: How can

42This definition of the TD error is common when showing that, for MDPs, the condi-
tional expectation of the TD error given the current state and action is the advantage of the
action, and hence the policy gradient can be succinctly expressed in terms of the TD error.

43The summation
∑

i,t ends with t = end(i), at which time Pt = p∞. Notice
from Algorithm 2 that ∆t is not defined in this case. So, here and later we write out the
summations, ending with t = end(i)− 1.

one create RL algorithms that are effective at maximizing the expected
discounted return, but which also maximize the expected discounted sum
of TD errors along the way?

10.1 Objective Functions and Ambiguous Random Variables
The TD error ∆t is not explicitly stored within the agent’s memory Mt

in Algorithm 2. However, it is uniquely defined given Mt−1, Mt, and
the definition:44

∆t = Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1). (64)

So, the restriction that the qualia objective function only depends on
the joint distributions of Pt,Mt, and At (for all t) does not immedi-
ately disallow qualia objective functions like (63), which depend on the
distribution of ∆t.

However, it may not be clear what the value of ∆t is when we consider
variants of BAC algorithms that define ∆t differently. In Section 10.2 we
present one possible approach for qualia optimization in the RPE-qualia
setting—the RPE-qualia equivalent of reward bonuses. This approach
involves inflating the TD error ∆t by a constant c. That is, ∆t ← ∆t+ c.
In this case, is the TD error still the original TD error prior to the addition
of c or the TD error after the addition of c?

One might argue that ∆t prior to the addition of c is the TD error,
and if ∆t + c is computed and used subsequently, that corresponds to a
change to how the TD error is used—not a change to the TD error itself.
Alternatively, one might define the TD error within (63) to be whatever
term multiplies αEt and β∂ ln(πBAC(Pt−1, At−1,Θt−1))/∂Θt−1 within
Algorithm 2. This perspective highlights that the importance of a signal
like ∆t is the causal impact that it has on the agent-environment system.
From this perspective, changes to ∆t (like adding a constant c) within
the specification of BAC correspond to changing the TD error.

Neither of these perspectives is inherently right or wrong as a definition
of TD error, as TD error is merely a term that we can define however we
choose, as long as our definition is precise. The problem we face now is
that our definition of TD error was not precise when considering changes
to the TD error—different readers could have different interpretations
that result in different conclusions. To resolve this ambiguity, we provide
different formulations that align with each perspective.

The first aligns with the perspective that the TD error is always (64),
and that adding a constant to it changes how the TD error is used rather
than the TD error itself. In this formulation, the random variable ∆t is
removed and the qualia objective function is written explicitly in terms
of the expression for the TD error:45

q(alg) = E

∑
i,t

γ
dur(t)
q (Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1))

 .

(65)
We call this the implicit TDE-qualia objective because the TD error is
not explicitly stored within the agent’s memory.

The second formulation aligns with the perspective that the TD error
is the term ∆t that is used within the policy and VFA updates in Algo-
rithm 2. In this formulation, we redefine BAC algorithms to explicitly
encode ∆t within Mt. Changes to the value of ∆t stored within Mt (e.g.,
adding a constant), therefore correspond to changing the TD error. In
this formulation the expression for the qualia objective function remains
unchanged from (63). We now call this the explicit TDE-qualia objective
because the TD error is explicitly stored within the agent’s memory.
Notice that the implicit and explicit TDE qualia objectives are not equiva-
lent formulations—they are different qualia objective functions that may

44Recall that for BAC algorithms Mt = (Θt,Wt, Et, Pt, At).
45To improve formatting, we write

∑
i,t in (65) even though here this summation ends

with t = end(i)− 1 as in (63).
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result in different solutions, although they both fall within the broader
RPE-qualia category.

10.2 TD Error Bonuses
If we restrict our attention strictly to BAC algorithms, as defined in
Section 3.2, then without the inclusion of the AEI the only “knobs”
that can be tuned in an attempt to improve the quality of the agent’s
qualia would be the hyperparameters of the BAC algorithm (and in
some settings, the representation functions). Instead of taking this strict
approach, we consider RPE-qualia optimization when BAC algorithms
can be extended and altered in minor ways.

Whenever the qualia objective function measures the magnitude of
a specific signal, a natural approach is to inflate the signal by adding a
constant to it. In the reward-qualia setting this resulted in the reward
bonus strategy. In the RPE-qualia setting this strategy involves adding a
constant to the TD error. We consider the implicit and explicit settings
separately because, although the conclusions will be the same for both
settings, the mechanisms for inflating the TD error and the subsequent
exploitability arguments differ.

10.2.1 TD Error Bonuses in the Explicit Setting
Recall that in the explicit setting we consider BAC algorithms that have
been modified so that the TD error is explicitly included in the agent’s
memory: Mt = (Θt,Wt, Et, Pt, At,∆t). Furthermore, references to
∆t within the qualia objective function (63) correspond to this value
stored within Mt, and changes to this stored value correspond to changes
to ∆t. Implementing TD error bonuses is straightforward in this setting:
∆t is redefined from its definition for BAC algorithms

∆t = Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1), (66)

to
∆t = Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1) + c, (67)

for some positive constant c. That is, the value stored in memory is
changed to be (67).

TD error bonuses can change the behavior of BAC algorithms, much
like reward bonuses. One way to prevent this is to further modify BAC
to remove the impact that the TD error bonus has on the agent’s behavior,
thereby ensuring that the value of the performance objective is unchanged.
That is, in each of the two cases where the TD error ∆t is referenced
within Algorithm 2, ∆t could be replaced with ∆t − c. We call this
strategy TD error bonus inversion. This strategy is similar to aeic and
alg−c from the reward-qualia setting, although in this case the changes
are entirely contained within the RL algorithm.

Although this approach of adding c and then immediately subtract-
ing it resembles the use of an inverse RL algorithm, in this case it is
done without an AEI. Still, this approach can be implemented with only
changes to representation functions (just like reward bonuses), and so
(63) and any other qualia objective function that assigns different values
to the BAC algorithm and a variant using TD error bonus inversion is
representation exploitable. Still, there remain theories of mind under
which this setting may be of interest, including any that assert that only
fixed “ground truth” representation functions should be considered.

10.2.2 TD Error Bonuses in the Implicit Setting
In the implicit setting, the value of the TD error cannot be changed by
simply redefining ∆t, since the qualia objective function as defined in
(65) does not directly reference ∆t. However, TD error bonuses can still
be implemented in this setting by altering the values of v(Pt,Wt−1) and
v(Pt−1,Wt−1) in a way that inflates the expression Rt+γv(Pt,Wt−1)−
v(Pt−1,Wt−1) by a positive constant c. In this way, the TD error is
inflated by altering the inputs to the TD error expression rather than by
altering the expression itself.

Next we show that if v(Pt,Wt−1) and v(Pt−1,Wt−1) are both de-
creased by a constant c′, then the TD error Rt + γv(Pt,Wt−1) −
v(Pt−1,Wt−1) will increase by c = (1−γ)c′. Using ∆new

t to denote the
TD error with this change:

∆new
t =Rt + γ(v(Pt,Wt−1)− c′)− (v(Pt−1,Wt−1)− c′) (68)

=Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1)︸ ︷︷ ︸
TD error prior to change

+(1− γ)c′︸ ︷︷ ︸
c

. (69)

This suggests one way that TD error bonuses can still be implemented in
the implicit setting when γ < 1—by decreasing the outputs of the VFA.

Next we argue that in this implicit setting the qualia objective in (65)
remains representation exploitable. Consider a BAC variant wherein the
VFA parameterization v is modified such that a) for all p and w the value
of v(p, w) is decreased by a constant c′ and b) whenever the value of
v(p, w) is referenced in the BAC algorithm, c′ is added to its value before
it is used.46 Notice that this would result in the value of ∆t not changing,
since v(Pt,Wt−1) and v(Pt−1,Wt−1) would both be decreased by c′

and increased by c′, resulting in no change. In fact, none of the values
or distributions of any of the random variables would change. However,
in the implicit setting it is not ∆t that determines the value of the qualia
objective function, but Rt+γv(Pt,Wt−1)−v(Pt−1,Wt−1), which does
not have c′ added back to the VFA estimates, and so it would remain
inflated by (1− γ)c′.

So, the same physical system can be modeled two ways. First, it
can be interpreted as a standard BAC algorithm. Second, it can be
interpreted as a variant of the BAC algorithm where the v hyperparameter
is changed to decrease VFA estimates by c′, and where the updates of
BAC are modified to ensure that this change does not influence the
values of any random variables. Under this second interpretation, the
TD error Rt + γv(Pt,Wt−1)− v(Pt−1,Wt−1) is inflated, resulting in a
different value of the qualia objective function. Hence, q is representation
exploitable.47 As with the explicit TD error qualia objective, there remain
theories of mind under which this implicit setting may be of interest,
including theories that restrict the set of representation functions that
should be considered.

10.3 Other Strategies for RPE-Qualia Optimization
There are many other possible strategies for creating RL algorithms that
maximize the expected discounted sum of TD errors while searching for
policies that maximize the expected discounted return. Here we describe
three.

• TD error bonuses without complete inversion. Although this ap-
proach could apply to both the explicit and implicit settings, for sim-
plicity consider the explicit setting. Instead of completely undoing the
impact of the TD error bonuses using the TD error bonus inversion
strategy, the constant c might be subtracted from the TD error prior to
its use in the critic update (the update of Wt) but not the actor update
(the update of Θt). We discuss this strategy in more detail in Section
11, which proposes a related qualia optimization setting.

• TD error clipping. The TD errors could be directly inflated in several
other ways, including clipping the TD error to be ∆t ← max{τ,∆t}
for some threshold τ . For example, if τ = 0, this corresponds to
removing negative TD errors—zeroing out the updates when TD errors
are negative.

• Pessimistic value functions. As described previously, if the values
of v(Pt,Wt−1) and v(Pt−1,Wt−1) can be decreased by a constant c′,
46Notice that here (a) changes the specific BAC algorithm under consideration, but does

not (on its own) make the resulting algorithm fall outside the class of BAC algorithms—it
is merely a different setting of the v hyperparameter.

47Note that this is just one way of showing the exploitability of the implicit TD error
qualia objective function. For example, if one objects to changing the VFA parameterization
v, a similar change can in some cases be produced by inflating VFA weights Wt.
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the TD error ∆t will increase by (1− γ)c′. Hence, methods that bias
value estimates to be lower (e.g., including regularization terms within
the critic update or initializing VFA approximations pessimistically)
could be effective for qualia optimization in the RPE-qualia setting.

Although these strategies may be effective for qualia optimization
in the RPE-qualia setting, we do not study them further here because
the RPE-qualia setting faces several challenges. First, it is unclear how
TD error and RPEs should be precisely defined. Second, the represen-
tation exploitability of the implicit and explicit TDE-qualia objectives
that we considered suggests that RPE-qualia objectives may tend to be
representation exploitable. Third, as discussed next in Section 10.4,
modern neuroscience research suggests that one key premise of the RPE-
qualia setting—that dopamine produces pleasurable qualia—may not be
accurate.

10.4 Reconsidering the Valence of TD Error
When initially presenting the RPE-qualia setting, we motivated Assump-
tion 5 by pointing out that dopamine is often called the “feel-good”
hormone, suggesting that it produces pleasurable qualia. Hence, if ele-
vated levels of dopamine produce pleasurable qualia and TD error plays
the same functional role as dopamine, then increased TD errors might
produce pleasurable qualia as well. Although dopamine was historically
associated with pleasurable qualia, more recent research suggests that
this interpretation of dopamine may not be accurate, undermining the
RPE-qualia setting.

Specifically, current research suggests that dopamine is more closely
linked to motivation or “wanting” than to the direct experience of plea-
sure or “liking” [7]. In fact, as Freed [27] points out, “Liking, or pleasure,
seems to be largely independent of dopamine.” The feeling of pleasure
and sustained states of happiness are more strongly associated with
hedonic hotspots and with other neurotransmitters like opioids and endo-
cannabinoids than with dopamine [6]. The difference between “wanting”
and “liking” is highlighted by examples of “irrational wanting,” as de-
scribed by Kringelbach and Berridge [35, page 582] who wrote:

Importantly, [wanting] is not hedonic impact or pleasure ‘lik-
ing’ (Berridge, 2007 [5]). This is why an individual can ‘want’
a reward without necessarily ‘liking’ the same reward. Irra-
tional ‘wanting’ without liking can occur especially in addic-
tion via incentive-sensitization of the mesolimbic dopamine
system and connected structures. At extreme, the addict may
come to ‘want’ what is neither ‘liked’ nor expected to be
liked, a dissociation possible because ‘wanting’ mechanisms
are largely subcortical and separable from cortically-mediated
declarative expectation and conscious planning. This is a rea-
son why addicts may compulsively ‘want’ to take drugs even
if, at a more cognitive and conscious level, they do not want to
do so. That is surely a recipe for great unhappiness [...].

Similar observations were made by Berridge and Kringelbach [6] when
summarizing other research studying hotspots in the nucleus accumbens
(NAc):

For example, in [one] NAc hotspot [...], microinjections of [cer-
tain opioid neurotransmitters] all double the ‘liking’ reactions
elicited by sucrose taste, as does endocannabinoid stimulation
in its overlapping hotspot (Castro and Berridge, 2014 [11];
Mahler et al., 2007 [39]; Peciña and Berridge, 2005 [43]). But
in the same NAc hotspot, neither dopamine stimulation [nor
blocking of certain other neurotransmitters] alter hedonic ‘lik-
ing’ for sucrose at all, even though both elevate ‘wanting’ to
eat as effectively as opioid stimulation (Faure et al., 2010 [22];
Smith et al., 2011 [54]).

In summary, the RPE-qualia setting faces several challenges including
determining the appropriate definition of TD error and RPEs, the likely
representation exploitability of many RPE-qualia objective functions,
and the questionable premise that RPEs result in pleasurable qualia for
humans. To overcome these limitations of the RPE-setting, in Section
11 we consider a different but closely related qualia optimization setting
that focuses on the impact that TD error typically has on agent behavior
rather than on the TD error signal itself.

11 Reinforcement Hypothesis for Qualia
The settings and analyses thus far suggest that qualia objective functions
that measure the magnitudes of signals like rewards and RPEs tend to
be representation exploitable because the magnitude of the signal can
be inflated via changes to representation functions—changes that do not
meaningfully change the agent’s behavior or the underlying physical
system. Although such qualia objective functions may be of interest
(e.g., if the mechanisms underlying qualia induce a ground-truth set of
representation functions), we aim to propose at least one qualia optimiza-
tion setting that naturally includes qualia objective functions that are
representation robust. Consequently, a range of other classes of qualia
objective functions—particularly those that measure the magnitudes of
other signals, such as the average or expected discounted sum of the
agent’s value estimates—are not considered.

In this section we focus on the reinforcement-qualia setting, wherein
the quality of an agent’s qualia depends on the agent’s external behavior
rather than the magnitude of an internal signal. The reinforcement-qualia
setting focuses on the impact that RPEs have on behavior rather than
on the RPEs themselves. Larger and positive RPEs typically result in
the reinforcement of behavior—an increase in the probability of the
most recent action or actions if the agent were to find itself in a similar
situation. Conversely, negative RPEs tend to result in the inhibition
of behavior—a decrease in the probability of the most recent action
or actions if the agent were to find itself in a similar situation. In the
reinforcement-qualia setting, reinforcement is associated with desirable
qualia via the following assumption, which refines Assumption 3:

Assumption 6 (Reinforcement↔Qualia) The quality of an RL agent’s
qualia can be measured in terms of the reinforcement of behavior.

11.1 Likelihood-Ratio Qualia Objective for MDPs
Creating qualia objective functions for the reinforcement-qualia setting
requires the precise quantification of reinforcement. Before discussing
the full AEP setting, we first consider natural ways of measuring rein-
forcement for a simplified setting where the environment is an MDP
and the RL algorithm uses a parametric policy. If π(s, a, θ) denotes the
probability that the agent selects action At = a given that the state of
the MDP is St = s and that the parametric policy uses parameter vector
Θt = θ,48 then the reinforcement of instantaneous behavior at time t can
be measured using the likelihood ratio Lt, which we define to be

Lt ≜
π(St, At,Θt+1)

π(St, At,Θt)
, (70)

where Θt are the policy parameters used to generate action At and Θt+1

are the policy parameters after the policy update that results from the
environment transitioning from St to St+1 (and emitting reward Rt+1)
due to action At. That is, π(St, At,Θt) is the action probability prior
to a policy update and π(St, At,Θt+1) is the same action probability
after the policy update. When the likelihood ratio in (70) is greater
than one it indicates that action At is more likely in state St after the
learning update—the behavior of selecting action At given state St was

48This discussion may apply to some value-based methods like Sarsa and Q-learning
when using softmax action selection, in which case Θt corresponds to the weights of the
action-value or optimal action-value approximation.
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reinforced, and the larger the ratio the stronger the reinforcement. When
the likelihood ratio is less than one it indicates that At is less likely in St

after the learning update—the behavior was inhibited.49

This measurement of the reinforcement at time t can be converted
into a qualia objective function in several ways. For example, for finite-
horizon AEPs, the qualia objective function can be defined to equal the
expected sum of the reinforcements of immediate behaviors over times t
within the first imax episodes:50

q(alg) = E

imax−1∑
i=0

end(i)−1∑
t=start(i)

π(St, At,Θt+1)

π(St, At,Θt)

 . (71)

One simple variant of this objective divides the sum of likelihood ratios
from each episode by the episode length to consider the average per-time-
step reinforcement of immediate behavior within each episode:

q(alg) = E

imax−1∑
i=0

1

len(i)

end(i)−1∑
t=start(i)

π(St, At,Θt+1)

π(St, At,Θt)

 . (72)

Assuming that the reinforcement of instantaneous behavior at time t
quantifies the quality of an agent’s qualia at time t, one difference be-
tween (71) and (72) is that (71) can indicate improved agent qualia if
the average quality of an agent’s qualia per time step is reduced (though
still positive), provided the duration of the agent’s lifetime increases (by
lengthening episodes). In contrast, (72) evaluates the average quality of
an agent’s qualia per time step, independent of episode length.

Alternatively, the qualia objective function might consider not just the
reinforcement of the most recent action at each time t, but the reinforce-
ment of the recent history of actions at each time t. For example, the
reinforcement of recent behavior at time t could be measured using a
discounted sum of likelihood ratios:

t∑
k=start(t)

Λt−k π(Sk, Ak,Θt+1)

π(Sk, Ak,Θt)
, (73)

where Λ ∈ [0, 1] is a discount parameter. This measurement of the
reinforcement at time t considers the impact that the policy update (from
Θt to Θt+1) has on the likelihood of all previously chosen actions within
the same episode, with exponential discounting based on how long before
time t the actions occurred. Two example qualia objective functions
based on the reinforcement of recent behavior are

q(alg) = E

imax−1∑
i=0

ξ(i)

end(i)−1∑
t=start(i)

t∑
k=start(i)

Λt−k π(Sk, Ak,Θt+1)

π(Sk, Ak,Θt)

 ,

(74)
where ξ(i) = 1 or ξ(i) = len(i)−1. These qualia objective functions are
just some of the wide range of possible qualia objective functions in the
reinforcement-qualia setting when considering MDP environments and
RL algorithms that use a parametric policy.

49One might subtract one when defining the reinforcement of instantaneous behavior
at time t in order to calibrate it so that positive values correspond to reinforcement and
negative values correspond to inhibition. However, the possible values would then have the
unintuitive range [−1,∞). While there are many possible alternative calibration strategies,
for simplicity we leave this quantity uncalibrated.

50Although the general idea behind this work began long before, my study of philosophy
of mind began after a conversation I had with Will Dabney in August of 2018. More
concerted effort on this project began shortly after I received tenure in the summer of
2022. During the fall semester of 2023 I began working with a talented undergraduate
student, Derek Lacy, on an empirical project related to this report: creating variants of an
RL algorithm called proximal policy optimization [51, PPO] for the reinforcement-qualia
setting. That work would eventually become his undergraduate honors thesis [36], which
was completed in the fall of 2024, and which is currently in preparation as a more formal
paper [37]. During the collaboration with Derek Lacy, we discussed a range of qualia
objectives like (71). Our collaborative exploration of strategies for modifying PPO for the
reinforcement-qualia setting surely inspired and was inspired by some of the ideas in this
section.

11.2 Likelihood-Ratio Qualia Objectives for AEPs
Although defining reinforcement-qualia objectives like these is straight-
forward for some RL algorithms and MDPs, the situation becomes less
straightforward when considering the general class of RL algorithms in
the AEP setting.51 First, notice that there is no immediate equivalent
of π(s, a, θ) = Pr(At = a|St = s,Θt = θ). A first thought might be
to define a similar term π(p, a,m) = Pr(At = a|Pt = p,Mt = m),
since in BAC algorithms the policy parameters Θt are encoded within
the memory Mt and perceptions Pt are the AEP correlate of MDP states
St.52 However, recall from Algorithm 1 (reproduced here as Algorithm
4) that At is deterministic given Mt since At = fa(Mt), and so this
probability would necessarily be either zero or one—it does not capture
the actual stochasticity of actions.

Algorithm 4: Agent-Environment Process
Note: This is a reproduction of Algorithm 1.

1: Initialize S−1, A−1, and M−1 to null
2: for t← 0 to∞ do
3: St ∼ ds(St−1, At−1)
4: Pt = fp(St)
5: Mt ∼ dm(Mt−1, Pt)
6: At = fa(Mt)

The stochasticity of the action At stems from the sampling of Mt ∼
dm(Mt−1, Pt). For example, notice that line 22 of Algorithm 2, which
presents pseudocode for sampling Mt from the next-memory distribution
dm(Mt−1, Pt) for BAC algorithms, samples the action At from the para-
metric policy: At ∼ πBAC(Pt, ·,Θt). The BAC action function fa can
then simply mask the other components of Mt = (Θt,Wt, Et, Pt, At),
returning the precomputed action: fa(Mt) = At. This suggests defining
the term π(p, a,m) that appears in likelihood ratios for reinforcement-
qualia objective functions based on the inputs to dm: the current percep-
tion and the previous memory. That is, for all perceptions p, actions a,
and memories m, let

π(p, a,m) = Pr(At = a|Pt = p,Mt−1 = m). (75)

The reinforcement of instantaneous behavior at time t can then be
measured using the likelihood ratio:

π(Pt, At,Mt)

π(Pt, At,Mt−1)
, (76)

which is one AEP correlate of (70), and which can be used to define
qualia objective functions for the reinforcement-qualia setting such as

q(alg) = E

imax−1∑
i=0

ξ(i)

end(i)−1∑
t=start(i)

π(Pt, At,Mt)

π(Pt, At,Mt−1)

 . (77)

However, there are three nuances associated with using (76) to measure
the reinforcement of instantaneous behavior at time t, which we discuss
in Sections 11.2.1–11.2.3.

11.2.1 Nuance 1: Memory Can Be More Than Policy Parameters
The agent’s memory Mt can contain more than just policy parameters.
For example, a hierarchical RL agent using the options framework [59]

51Due to the previously described issues with the AEI, this section focuses on the most
general of the settings introduced in this report: the AEP setting.

52Recall from Section 3.1.4 that an RL algorithm interacting with an MDP can be
modeled as an AEP where Pt = (St, Rt). Typically the parameterized policy will not
depend on the reward component of the perception, i.e., for all perceptions p = (s, r) and
perception-policy parameters θ, π(p, ·, θ) will not depend on r.
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might store information about the currently active option, and this option
might change when Mt−1 changes to Mt. In this case, the likelihood
ratio in (76) would arguably not measure how much more likely At

becomes if the agent finds itself in a “similar situation,” since it compares
primitive action probabilities under entirely different options.

As another example, when faced with partially observable environ-
ments, the agent’s memory Mt might encode estimates of unobserved
aspects of the environment (e.g., the belief state [33] if the environment
is a POMDP). Consider what would happen if the perception Pt causes
the agent to recognize that the unobserved aspects of the environment
have very different values from the agent’s previous belief (e.g., the
belief state changes significantly). In this case Mt encodes more than
changes to a parameterized policy—it also encodes the updated estimates
of the unobserved aspects of the environment (e.g., the updated belief
state). So, (76) does not measure how much more likely At is if the
agent were to find itself in a “similar situation,” since Mt and Mt−1 can
correspond to the agent having very different beliefs about the state of
the environment.53

These examples highlight that it is unclear how “reinforcement” can
be quantified when considering agents whose memories are not clearly
divided into a component that encodes the current context (e.g., belief
state or active option) and a policy component that encodes how the
agent acts given this context. After a policy update, determining whether
a previously selected action is now more likely in “similar situations”
requires changing or reverting the contextual components to obtain a
similar situation, but not the policy components, since they encode the
change that is being measured (the potential reinforcement). Although
there may exist a clear delineation between contextual and policy compo-
nents of agent memory for some RL algorithms, like BAC algorithms, for
other algorithms these components could be deeply intertwined. Lacking
a clear delineation between these components, we find it challenging to
quantify or precisely define reinforcement, and recognize that, at best,
(76) measures a reinforcement-like property.

11.2.2 Nuance 2: Repeated Perception Update
Consider the meaning of π(Pt, At,Mt) more closely. Expanding the
definition of π(Pt, At,Mt) gives:

π(Pt, At,Mt) = Pr(At = At|Pt = Pt,Mt−1 = Mt). (78)

Notice that the probability that At = At seems to trivially be one.
This same issue has a more subtle influence through the condition that
Mt−1 = Mt. The mathematical expression describes the event that
the agent’s memory is the same at times t and t − 1—an event that is
often impossible (e.g., due to decaying eligibility traces within BAC).
However, that is not the actual meaning of π(Pt, At,Mt)—recall that π
was defined in (75) in terms of constants (not random variables) p, a, and
m. So, in (78) the event Mt−1 = Mt really indicates a counterfactual
consideration of what would have happened if at time t− 1 the memory
took the value that it ended up having at time t (without the condition
that the memory does not change from time t− 1 to t). This is generally
what we desire—counterfactual consideration of how much more likely
At would have been with the updated agent memory.

However, consider π(Pt, At,Mt) even more closely. First, let P ′
t , A

′
t,

and M ′
t denote the perception, action, and memory at time t. These

alternate random variable names allow us to differentiate between the ob-
served values and counterfactual considerations. The term π(P ′

t , A
′
t,M

′
t)

is then the probability that At = A′
t if Pt = P ′

t and Mt−1 = M ′
t (notice

that the memories have different time subscripts).

53Section 11.2.2 suggests that these two examples may be more dramatic if the change
of active option or significant change to the belief state would occur if the agent were to
perform two consecutive updates using Pt. However, the implications of these arguments
remain unchanged.

To see how Mt−1 influences At, recall that Mt−1 influences Mt,
which then determines At. More specifically, Mt ∼ dm(Mt−1, Pt)
and At = fa(Mt). So, the probability that At = A′

t if Pt = P ′
t

and Mt−1 = M ′
t (i.e., π(P ′

t , A
′
t,M

′
t)) is the probability that Mt ∼

dm(M ′
t , Pt) produces a value of Mt such that fa(Mt) = A′

t. So, based
on this counterfactual reasoning, π(P ′

t , A
′
t,M

′
t) is the probability of

action At if Mt−1 were to be updated twice using the same perception
Pt—the first when M ′

t−1 transitioned to M ′
t due to P ′

t (which is equal to
Pt), and the second when Mt−1 = M ′

t transitioned to Mt due to Pt.
So, for BAC algorithms applied to MDPs, π(Pt, At,Mt−1) gives the

probability of action At given St and using the policy parameters that
result from a single policy update starting from Θt−1, which does cor-
respond to π(St, At,Θt). However, π(Pt, At,Mt) gives the probability
of action At given St and using the policy parameters that result from
two consecutive policy updates starting from Θt−1 and both based on
the same perception Pt = (St, Rt). These policy parameters are not nec-
essarily Θt+1, and so π(Pt, At,Mt) is not the same as π(St, At,Θt+1).

This second nuance highlights another reason for our inability to cre-
ate an expression in terms of quantities from the AEP formulation that
corresponds to π(St, At,Θt+1) for BAC algorithms: The next-memory
distribution characterizes both the agent’s learning and any stochasticity
in how the agent acts. Without additional assumptions regarding how the
next-memory distribution dm can be decomposed (e.g., by considering
a specific class of algorithms like BAC algorithms), learning and the
stochastic aspects of acting cannot be disentangled in the AEP formu-
lation. This suggests a modification of the AEP formulation so that the
agent’s behavior is separated into a learning phase during which mem-
ory is updated, and a stochastic acting phase during which the action
is sampled. With such a formulation, the terms describing the acting
phase could be queried with the updated memory to reason about action
probabilities independent of additional learning updates.

However, altering the AEP formulation to allow for a stochastic action
phase introduces other more significant challenges. First, many RL
algorithms like BAC require access to the values of previously sampled
actions to perform their updates, and so At must be encoded within
the agent’s memory.54 If the stochastic action phase can modify the
agent’s memory (to store At), then it is unclear how the agent’s dynamics
should be divided into learning and acting phases. Second, introducing a
stochastic action phase can introduce a new type of exploitability if the
same physical system can be modeled as two different RL algorithms
(due to different splits between the learning and acting phases) that result
in different qualia experiences of the agent. This exploitability would
likely be a problem for qualia objectives based on likelihood ratios, since
different divisions into learning and acting phases could change the
conditional distributions of actions.

In conclusion, it is unclear how learning and (stochastic) acting can
be disentangled. Their entanglement poses a challenge for quantifying
reinforcement because, if an agent were to be placed back in a “similar
situation,” it could learn (e.g., perform another policy update) prior to
selecting any actions. As described in Section 11.2.4, we will circumvent
this problem by focusing on specific classes of RL algorithms, like BAC
algorithms, for which learning and acting can be naturally disentangled.

11.2.3 Nuance 3: Ill-Defined Conditional Probabilities
It may be the case that (75) is often undefined. For example, if Mt and Pt

each encode the current time t, then π(Pt, At,Mt) is always undefined
because it would condition on the impossible event that the time encoded
within Pt and Mt−1 are the same.

54Alternatively, At could be encoded within Pt+1, but that could require the envi-
ronment to encode At within its state, St+1. It seems unnatural to require the physical
properties that correspond to At, which the environment may not rely on after generating
the environment state St+1, to be encoded in St+1 rather than the agent’s memory.
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This issue stems from imprecise mathematical notation—when we
write (75) we mean to describe the probability that the agent would select
action a if it were to be faced with perception p and previous memory m
at time t, even though this event might not actually be possible. However,
this is not what we wrote because we used a conditional probability, and
conditional probabilities are undefined when the event they condition on
cannot occur.55

This imprecision is pervasive in RL literature. For example, it oc-
curs any time authors define episodic MDPs that have a unique ini-
tial state s0 and then define the action-value function to be qπ(s, a) =
E[
∑∞

t=0 γ
tRt|S0 = s,A0 = a], since this would result in qπ(s, a) being

undefined for all but the initial state.
Although it is technically imprecise to condition on events that cannot

occur, it is not a significant concern when work otherwise explains what
would happen (via expressions for the dynamics of stochastic processes)
if the event being conditioned on were to happen (even if it cannot
happen). For example, given an MDP, it is clear what the distribution
of
∑∞

t=0 γ
tRt would be in the event that S0 = s and A0 = a, even if

s is not a possible initial state of the MDP. Here we appeal to similar
reasoning, but recognize that this presents a point of technical imprecision
of this report.

11.2.4 A Path Forward
Although the challenges that we have encountered when defining
likelihood-ratio qualia objectives for AEPs might be overcome in fu-
ture work, for now we restrict our focus to BAC algorithms (and variants
of BAC algorithms), since they circumvent these challenges. Because
BAC algorithms have an explicit perception-policy parameterization
πBAC and policy parameters Θt, they have a clear delineation of the
policy components of memory (i.e., policy parameters). This avoids the
challenges discussed in Section 11.2.1. The explicit inclusion of πBAC
and Θt also provides a clear stochastic action selection mechanism that
allows for the disentanglement of learning and acting, thereby avoiding
(but not resolving) the challenges discussed in Section 11.2.2.

The perception-policy parameterization πBAC characterizes the condi-
tional action distribution given Pt and Θt according to the expression
At ∼ πBAC(Pt, ·,Θt). When applied to MDPs where Pt = (St, Rt), the
perception-policy parameterization typically only depends on the state
component of the perception, and so with a mild abuse of notation we
can write At ∼ πBAC(St, ·,Θt), making πBAC a parameterized policy for
MDPs as defined in Appendix A.1. This allows us to also focus on qualia
objective functions like the one in (71).

11.3 Representation-Robustness of Likelihood-Ratio Objectives
We motivated the reinforcement-qualia setting partially by asserting that
it results in representation-robust qualia objective functions. In this sec-
tion we show that qualia objective functions like (71) are representation
robust. Recall that, when discussing (71), we are considering only AEPs
that model RL algorithms interacting with MDPs, and furthermore RL
algorithms that use a parametric policy with parameters Θt (encoded
within Mt), such that π(s, a, θ) = Pr(At = a|St = s,Θt = θ).

We begin by establishing the representation-robustness of (71) when
St and Θt are discrete random variables (recall that in this report we
already assume that At is a discrete random variable). In order to estab-
lish this robustness, we must show that the value of the qualia objective
function does not change if alternate representation functions are used.
For (71) it suffices to show that the likelihood ratio56

Lt ≜
π(St, At,Θt+1)

π(St, At,Θt)
(79)

55For any events A and B, Pr(A|B) is defined to be Pr(A ∩B)/Pr(B). If B cannot
occur, then Pr(B) is zero, and so Pr(A|B) is undefined due to division by zero.

56The definition of the likelihood ratio in (70) is reproduced here for convenience.

does not change under alternate representation functions, since the other
parts of the objective do not depend on Pt, Mt, or At for any t (other
than with regard to episode termination, which is unchanged due to
the restriction to termination-preserving representation functions in the
definition of representation exploitability).

To state this more formally, consider an AEP with representation func-
tions (ρSt

, ρAt
, ρΘt

)∞t=0. Next, consider an AEP with the same underly-
ing physical properties, including the same dynamics of the physical prop-
erties, but with any alternate representation functions (ρ′St

, ρ′At
, ρ′Θt

)∞t=0,
which define the random variables

S′
t = ρ′St

(ΦSt), A′
t = ρ′At

(ΦAt), and Θ′
t = ρ′Θt

(ΦΘt), (80)

for all times t.57 In order to show that (71) is representation robust, it
suffices to show that, for all such alternate representation functions,

π(St, At,Θt+1)

π(St, At,Θt)
=

π(S′
t, A

′
t,Θ

′
t+1)

π(S′
t, A

′
t,Θ

′
t)

. (81)

To establish (81), we eliminate the need to consider random variables
by showing the equivalence for all possible values of the random variables
given the underlying physical properties. Consider all possible states s,
actions a, and policy parameters θ at time t. Each corresponds to unique
underlying physical properties, ρ−1

St
(s), ρ−1

At
(a), and ρ−1

Θt
(θ), respectively.

These, in turn, correspond to unique alternate values of the state, action,
and policy parameters:

s′ = ρ′St
(ρ−1

St
(s)), a′ = ρ′At

(ρ−1
At

(a)), and θ′ = ρ′Θt
(ρ−1

Θt
(θ)). (82)

We will show that
π(s, a, θ) = π(s′, a′, θ′), (83)

which therefore implies that

π(s, a, θt+1)

π(s, a, θt)
=

π(s′, a′, θ′t+1)

π(s′, a′, θ′t)
, (84)

for all possible s, s′, a, a′, θt, θ
′
t, θt+1, and θ′t+1, which implies (81).

We now establish (83):

π(s, a, θ) =Pr(At = a|St = s,Θt = θ) (85)
(a)
= Pr

(
At = a

∣∣ΦSt = ρ−1
St

(s),ΦΘt = ρ−1
Θt

(θ)
)

(86)
(b)
= Pr

(
At = a

∣∣∣ΦSt
= ρ′

−1
St

(s′),ΦΘt
= ρ′

−1
Θt

(θ′)
)

(c)
= Pr (At = a|S′

t = s′,Θ′
t = θ′) (87)

=π(s′, a′, θ′), (88)

where

• (a) follows from the definition of the representation functions. Since

s = ρSt
(ΦSt

) and θ = ρΘt
(ΦΘt

), (89)

conditioning on St = s and Θt = θ is equivalent to conditioning on
the underlying physical properties ΦSt

= ρ−1
St

(s) and ΦΘt
= ρ−1

Θt
(θ).

• (b) follows because we assume that the alternate representation func-
tions ρ′St

and ρ′Θt
are defined on the same underlying physical proper-

ties. That is,

s′ =ρ′St
(ΦSt

) (90)

=ρ′St

(
ρ−1
St

(s)
)
, (91)

57Notice that in (80) the physical properties are ΦSt , ΦAt and ΦΘt , not Φ′
St

, Φ′
At

and
Φ′

Θt
, since the focus is on an AEP with the same underlying physical properties.
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and so, applying ρ′
−1
St

to both sides of (91),

ρ′
−1
St

(s′) =ρ′
−1
St

(
ρ′St

(
ρ−1
St

(s)
))

(92)

=ρ−1
St

(s). (93)

Similarly,

θ′ =ρ′Θt
(ΦΘt

) (94)

=ρ′Θt

(
ρ−1
Θt

(θ)
)
, (95)

and

ρ′
−1
Θt

(θ′) =ρ′
−1
Θt

(
ρ′Θt

(
ρ−1
Θt

(θ)
))

(96)

=ρ−1
Θt

(θ). (97)

Hence, by (93), conditioning on ΦSt = ρ−1
St

(s) is equivalent to
conditioning on ΦSt

= ρ′
−1
St

(s′), and, by (97), conditioning on
ΦΘt

= ρ−1
Θt

(θ) is equivalent to conditioning on ΦΘt
= ρ′

−1
Θt

(θ′).
• (c) simply rephrases the conditioning back in terms of the alternate

random variables S′
t and Θ′

t, since(
ΦSt = ρ′

−1
St

(s′)
)
⇔
(
ρ′St

(ΦSt) = ρ′St
(ρ′

−1
St

(s′))
)

(98)

⇔ρ′St
(ΦSt

) = s′ (99)
⇔S′

t = s′, (100)

and similarly (
ΦΘt

= ρ′
−1
Θt

(θ′)
)
⇔ (Θ′

t = θ′) . (101)

In conclusion, we have shown that (88) holds, which implies (84),
which in turn implies (81), and hence the representation-robustness of
(71). Although we have only shown that (71) is representation robust
when St, At, and Θt are discrete random variables, we conjecture that
this robustness extends to all random variables St, At, and Θt (dis-
crete, continuous, or hybrid), and furthermore that similar objectives
like (72) and even (77) are also representation robust in this general
setting. For many density-based approaches to showing robustness when
random variables are continuous, one might expect to require additional
assumptions that restrict which representation functions are allowed—
such as monotonicity and continuity of derivatives (arising from standard
change-of-variable formulas [10, Theorem 2.1.5]), differentiability (as in
proofs of the invariance of f -divergences under diffeomorphisms [47]),
or even affine or measure-preserving properties. However, we conjecture
that none of these additional assumptions are necessary—invertibility
and measurability of the representation functions are sufficient to show
representation-robustness.

11.4 Is the Reinforcement-Qualia Assumption Reasonable?
Recall from Section 4 that neuroscientific research suggests that
dopamine signals RPEs in human brains. Also, as discussed in Sec-
tion 10.4, one objection to the RPE-qualia setting was that dopamine
does not always result in pleasurable qualia. Rather, dopamine is asso-
ciated more with motivation and “wanting” than “liking.” If positive
RPEs (e.g., increased activity of dopaminergic neurons) both (a) cause
reinforcement and (b) can result in undesirable qualia, this suggests that
reinforcement could also be associated with undesirable qualia, under-
mining the reinforcement-qualia assumption.

However, there are at least two reasons that the reinforcement-qualia
setting deserves further consideration:

1. Even if reinforcement does not perfectly correlate with the quality
of an agent’s qualia, it may still be a useful proxy. Just as dopamine
often co-occurs with pleasurable qualia, RPEs and reinforcement
may often co-occur with pleasurable qualia, making them both
reasonable surrogates or proxies for the unknown function charac-
terizing the quality of agent qualia. Until a qualia objective function
or setting is found that better matches observed characteristics of
pleasurable qualia in humans, the reinforcement-qualia setting may
serve as a reasonable approximation.

2. The logical argument above relies on both (a) and (b). Depending
on how actions and reinforcement are defined, (a) may not be true—
i.e., dopamine in (the relevant parts of) human brains and positive
RPEs in standard RL agents may not always result in reinforcement.

Consider AEP models (or related formulations) where the agent is
part of the environment. Typically we think of the agent’s actions
as the means by which it influences the environment external to
itself. However, if the agent is considered part of the environment,
then its actions may also include the means by which it influences
itself. For example, an animal’s thoughts, changes in neural activity,
connectivity, or morphology, or an RL agent’s weight updates might
all be viewed as part of the agent’s action.

From this perspective, it becomes less clear that dopamine con-
sistently corresponds to reinforcement: while it may be highly-
correlated with reinforcement at the behavioral level, it may not
correspond to reinforcement when considering the agent’s entire
action, including effects on its own internal state. So, RPEs may
not always cause reinforcement in agents—whether human, animal,
or artificial—and hence (a) may not be true.

Recognizing these potential concerns and mitigating arguments, we pro-
ceed under the reinforcement-qualia setting in the remainder of this
report. While the setting may not reflect the actual mechanisms underly-
ing the valence of qualia, it remains a plausible and useful framework
for exploring how reinforcement might shape agent experience.

11.5 Learning from Reinforcement and Inhibition
Strategies for improving the agent’s qualia in the reinforcement-qualia
setting will bias the agent toward the reinforcement of behavior rather
than the inhibition of behavior. A natural question is whether such a
reinforcement bias will necessarily interfere with learning, resulting in
worse performance. For example, in order to get from some initial policy
to a specific final policy (e.g., an optimal policy for an MDP), is there
some unavoidable amount of inhibition (to unlearn bad actions, or actions
that are less-likely in the final policy)?

If reinforcement is quantified in terms of the cumulative reinforcement
of instantaneous behavior at time t, as defined in (70), the answer is “no”—
an agent can learn entirely via reinforcement, entirely via inhibition, or
using a mixture of the two, and performance is not directly related to
which of these approaches the agent uses to learn. Consider an example
environment with two actions, a+ and a−, and some perception p (or
MDP state s) for which selecting a+ is better than selecting a−. There
are at least three ways the agent can change its policy after selecting an
action given perception p so that, over time, it learns to favor a+.

1. Learning via reinforcement and inhibition. Whenever the agent
selects action a+, it could increase the probability that it selects
a+ in the future, and whenever the agent selects action a−, it could
decrease the probability that it selects a−. Together these updates
act to rapidly drive up the probability of a+ and down the probability
of a−. Notice that this corresponds to reinforcing a+ whenever it is
chosen, and inhibiting a− whenever it is chosen.
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2. Learning via reinforcement only. Whenever the agent selects ac-
tion a+ it could significantly increase the probability that it selects
a+, and when it selects a− it could slightly increase the probability
that it selects a−. Because the distribution over actions is a prob-
ability distribution, increasing the probability of one action must
decrease the probability of the other action by the same amount,
and vice versa. So, significantly increasing the probability of a+
must also significantly decrease the probability of a−, and slightly
increasing the probability of a− must also slightly decrease the
probability of a+. Hence, even though the agent always reinforces
its most recent behavior (whichever action it took), by making larger
reinforcements when action a+ is taken, over time the net change to
the distribution can still increase the probability of a+ and decrease
the probability of a−.

3. Learning via inhibition only. Whenever the agent selects action
a+, it could slightly decrease the probability that it selects a+, and
when it selects a− it could significantly decrease the probability it se-
lects a−. This case mirrors the reinforcement only case—over time
the net change to the distribution can still increase the probability
of a+ and decrease the probability of a−.

These examples show that a distribution over two actions can be
iteratively shifted toward a target distribution using any combination
of reinforcement and inhibition. The key idea is that performance can
improve through a range of adjustments to action probabilities—whether
by increasing the likelihood of all actions when they occur (with preferred
actions increased the most), decreasing the likelihood of all actions when
they occur (with dispreferred ones decreased the most), or anything
in between. This principle generalizes to settings with more than two
actions, and even to continuous action spaces.

However, this strategy only works if desired actions are made suf-
ficiently more likely at each step (where the precise meaning of “suf-
ficiently” depends on how often each action is chosen). Consider the
previous example where the probability of a+ is increased and the prob-
ability of a− is decreased, entirely via reinforcement. If a+ occurs
infrequently and the increases in the probability of a+ when it occurs
are not large enough, then the many smaller increases in the probability
of a− (which cause corresponding small decreases in the probability of
a+) could overwhelm the less frequent increases in the probability of a+
when it is chosen, resulting in a net decrease in the probability of a+. So,
although learning solely via reinforcement is possible, it requires careful
consideration to ensure that the expected update results in a net increase
in the probabilities of desired actions.

11.5.1 Policy Gradient Methods and Reinforcement Bias
This careful balancing of updates is well-understood in the case of policy
gradient algorithms for MDPs that are finite, episodic, and discounted.
Adopting our notation for such MDPs (as defined in Appendix A.1),
policy gradient methods store a parameterized policy and adjust the
parameters Θt via (stochastic, batch, and/or otherwise approximate) gra-
dient ascent on the discounted objective J defined in (126) in Appendix
A.1. The gradient of this objective is called the policy gradient and can
be written as [67]

∇J(θ) = E

[ ∞∑
t=0

γtGt

∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
, (102)

where Θ∀t = θ is shorthand for the event ∀t ∈ N, Θt = θ.58

58To ensure the existence of this gradient, we restrict out attention to parameterized
policies for which ∂π(s, a, θ)/∂θ exists for all states s, actions a, and policy parameters
θ. Furthermore, to simplify later expressions like (108), we require π(s, a, θ) ̸= 0 for all
s, a, and θ, as is typically the case when using softmax action selection.

Furthermore, it is well-known that for any function b : S → R,
subtracting a baseline b(St) from Gt does not alter this expectation
[67, 62]:

∇J(θ) = E

[ ∞∑
t=0

γt (Gt − b(St))
∂ ln

(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
,

(103)
since the expected contribution of the baseline is

E

[ ∞∑
t=0

γtb(St)
∂ ln

(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
(104)

=E

[ ∞∑
t=0

γtb(St)E

[
∂ ln

(
π(St, At, θ)

)
∂θ

∣∣∣∣∣St,Θ∀t = θ

]∣∣∣∣∣Θ∀t = θ

]
,

(105)

but

E

[
∂ ln

(
π(St, At, θ)

)
∂θ

∣∣∣∣∣St,Θ∀t = θ

]
(106)

=E

[
1

π(St, At, θ)

∂π(St, At, θ)

∂θ

∣∣∣∣St,Θ∀t = θ

]
(107)

=
∑
a∈A

Pr(At = a|St,Θt = θ)︸ ︷︷ ︸
=π(St,a,θ)

1

π(St, a, θ)

∂π(St, a, θ)

∂θ
(108)

=
∑
a∈A

∂π(St, a, θ)

∂θ
(109)

=
∑
a∈A

∂

∂θ
Pr(At = a|St = s,Θt = θ) (110)

=
∂

∂θ

∑
a∈A

Pr(At = a|St = s,Θt = θ)︸ ︷︷ ︸
=1

(111)

=0, (112)

and so (105) (the expected contribution of the baseline) is zero.
Although the inclusion of a baseline does not alter the expectation,

it does alter sample-based estimates of the policy gradient such as the
unbiased estimate

∇̂J(θ) =
∞∑
t=0

γt
(
Gt − b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

. (113)

The impact of baselines can be viewed in several different ways. Origi-
nally, baselines were viewed as mean-zero control variates [49, Section
4.4.2]—mechanisms for reducing the variance of estimators like (113).
Following this perspective to its logical conclusion results in the selection
of optimal variance baselines, which maximally reduce the variance of
(113) [29].

However, practitioners found that, despite minimizing variance, op-
timal variance baselines do not result in optimal performance. This
resulted in the more recent perspective that b(St) tunes how committal
or non-committal an RL algorithm is [13]. That is, when b(St) tends to
be a large negative value, it seems to result in committal behavior—the
agent being faster to adopt the actions it currently favors in each state.
On the other hand, when b(St) tends to be a large positive value, it seems
to result in non-committal behavior—the agent being slower to adopt the
actions it currently favors in each state.

Whether committal or non-committal learning results in better per-
formance likely depends on the problem at hand. For non-adversarial
problems where the agent favoring an action in a state early during learn-
ing typically means that the action will in fact turn out to be optimal,
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committal behavior may result in better performance. For adversar-
ial problems, like the chain environments [58] that are often used to
evaluate algorithms that are designed to be robust to worst-case scenar-
ios, the agent is likely to initially favor suboptimal behavior, and so
non-committal behavior may often result in better performance (since it
allows the agent to more easily fix its initial erroneous conditional action
preferences).

However, there is a third interpretation of the baseline: it modulates
the tradeoff between reinforcement and inhibition. To see why, we first
examine the components of (113). For each time t, the term

∂

∂θ
ln
(
π(St, At, θ)

)
(114)

is a direction in policy parameter space that increases the log-probability
of action At in state St. Since the logarithm is monotonic, this is also a
direction that increases π(St, At, θ)—the probability of selecting At in
St.

Now consider the scalar multiplier γt(Gt−b(St)) in (113). When this
term is positive, the update changes the policy parameters in a direction
that increases the probability of At in St, reinforcing the action.59 When
it is negative, the update moves the policy parameters in the opposite
direction, inhibiting the action. In this way, γt(Gt − b(St)) determines
whether the update reinforces or inhibits the most recent behavior.

Since γt is non-negative, the baseline b(St) directly modulates the
tradeoff between reinforcement and inhibition. A lower baseline (e.g., a
large negative value) increases Gt − b(St), promoting reinforcement.60

A higher baseline (e.g., a large positive value) reduces Gt − b(St), pro-
moting inhibition. In general, the smaller the baseline, the more the
update favors reinforcement; the larger the baseline, the more it favors
inhibition.

Although b(St) clearly influences whether reinforcement or inhibition
occurs at each time t, its overall impact on the full policy update is less
clear. First, note that the unbiased estimate of the policy gradient in (113)
aggregates contributions from many time steps, and cannot generally be
computed using information from a single time step alone. As a result,
algorithms like REINFORCE [67], which use this estimator to perform
stochastic gradient ascent, do not update the policy at every time step.
Instead, they compute a policy update from a batch of data that spans
multiple time steps—often an entire episode. This batching behavior
has an important consequence: during most time steps (all time steps
between policy updates), the policy parameters remain unchanged, so
Θt+1 = Θt. Consequently, the reinforcement of instantaneous behavior
at time t, as defined in (70), is equal to one—indicating that neither
reinforcement nor inhibition occurs at that time. Hence, qualia objectives
that measure the cumulative reinforcement of instantaneous behavior
will only consider the reinforcement of actions that occur immediately
prior to policy updates.

This observation suggests the need for qualia objective functions that,
at the moment of a policy update, measure the cumulative reinforcement
of all actions taken since the previous policy update. Rather than pursuing
this direction—which was explored by Derek Lacy in his honors thesis
[36] and in a forthcoming manuscript [37]—we focus here on BAC
algorithms, which perform policy updates at every time step.

11.6 Adding Reinforcement Baselines to BAC
In this section we show how, for MDP environments where Pt =
(St, Rt), a negative baseline can be incorporated into BAC algorithms
to promote reinforcement. We call such baselines that are added for the

59This reasoning relies on the assumption that the step size is sufficiently small.
60Consider the case where b(St) is negative. If Gt is positive, the baseline results in

further reinforcement. If Gt+b(St) is negative, the baseline results in decreased inhibition.
If Gt is negative but Gt + b(St) is positive, the baseline results in a flip from inhibition to
reinforcement.

purpose of promoting reinforcement reinforcement baselines. Notice
that reinforcement baselines are distinguished from other baselines only
by their purpose, not by how they influence updates. Also, the term
reinforcement baseline is easily confused with reinforcement bias. Rein-
forcement baselines are one mechanism for inducing a reinforcement bias
(i.e., a shift in the agent’s behavior toward learning from reinforcement
rather than inhibition).

BAC algorithms do not typically include an additional baseline term.
In Appendix F we show how the policy update of the BAC algorithm
relates to the policy gradient. In this derivation, an additional baseline
b(St−1) in the policy gradient carries through and appears as an additive
term to the TD error in the policy update:61,62

Θt ← Θt−1+β(∆t−b(St−1))
∂ ln

(
πBAC(St−1, At−1,Θt−1)

)
∂Θt−1

, (115)

where, as noted previously, we abuse notation by writing
πBAC(St−1, At−1,Θt−1) instead of πBAC(Pt−1, At−1,Θt−1) because
we have restricted our focus to MDPs, and for MDPs the policy parame-
terization is typically restricted to depend only on the state component of
the perception Pt−1 = (St−1, Rt−1). Similarly, here the reinforcement
baseline is defined to be a function of only the state component of the
perception. So, for MDP environments where Pt = (St, Rt), the BAC
algorithm with a reinforcement baseline corresponds to Algorithm 2 with
line 21 replaced with (115).

Notice that reinforcement baselines for BAC algorithms are identical
to (explicit) TD error bonuses from Section 10.2.1 with TD error bonus
inversion for the VFA weight update but not the policy parameter update
(i.e., the bonus does not appear in the updates to the VFA weights Wt,
but does appear in the updates to the policy parameters Θt).

Although BAC algorithms are typically categorized as policy gradient
algorithms, they follow estimates of the policy gradient that are biased
due to a missing γt term [63, 42], their use of an imperfect estimate of
the state-value function when computing the TD error, and their changing
the policy in the middle of each episode (which, for example, can result
in a state distribution that comes from the application of a sequence of
policies). Despite these sources of bias, baselines in BAC play the same
role as baselines in policy gradient: they reduce variance and modulate
both how committal the agent is and how much it favors reinforcement.

The relation of BAC to the policy gradient is especially important in
light of the earlier concern regarding how a reinforcement bias can cause
desired (locally preferred)63 actions to become less likely in expecta-
tion. That is, locally dispreferred actions that occur frequently might
be reinforced more overall than locally preferred actions that occur less
often, resulting in the net reinforcement of locally dispreferred actions

61The policy update that results from the transition from St to St+1, and which produces
the reward Rt+1, occurs at time t+ 1 (since it depends on St+1 it could not happen at
time t). Hence, the baseline appears as a b(St−1) term rather than a b(St) term, since
the time t of the update is one time step after the action At−1 that is being reinforced or
inhibited.

62In RL literature, baselines are typically subtracted rather than added. We adopt this
same convention to avoid confusion for readers familiar with baselines in RL. However, we
note that adding the baselines would be more clear in the qualia optimization setting since
then larger baselines would result in increased reinforcement (this would also result in
adding positive reinforcement baselines to encourage reinforcement rather than subtracting
negative reinforcement baselines).

63Although it might be more intuitive to say that the concern is that a reinforcement
bias could cause “better” or “optimal” actions to become less likely, that would not
accurately characterize the issue. Because the gradient is a local optimization property,
small updates in the direction of the policy gradient can cause the probability of optimal
actions to decrease. When using function approximation, it can even occur that, for
some state s, an arbitrarily small step in the direction of the policy gradient decreases
the conditional probability of every action in argmaxa∈A qπ(s, a), where qπ(s, a) =
E[Rt+1 + vπ(St+1)|St = s,At = a]. We therefore write “locally preferred” to refer
to actions that would (for some implicit state) be made more likely by an arbitrarily small
step in the direction of the policy gradient, and “locally dispreferred” to refer to actions
that would be made less likely.
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and the net inhibition of locally preferred actions. When following the
true policy gradient, this problem is avoided: the update direction is, by
construction and definition, the gradient of the discounted objective, and
it favors locally preferred actions. This guarantee does not necessarily
extend to BAC algorithms due to their use of biased policy gradient esti-
mates. Still, their status as approximate policy gradient algorithms makes
it plausible that including reinforcement baselines in BAC algorithms
promotes reinforcement without over-reinforcing frequently occurring
but locally dispreferred actions.

11.7 The Impact of Reinforcement Baselines on Performance
Next we examine how reinforcement baselines affect the performance
of BAC in practice. Results from preliminary experiments that are not
reported here gave us the following impressions regarding performance:

1. Little improvement. The implicit baseline used by BAC algo-
rithms (i.e., b ≈ vπ) is often nearly optimal, leaving little room for
reinforcement baselines to improve performance.

2. Robustness. Performance can be robust to the strength of the
reinforcement baseline; that is, even a significant reinforcement bias
may have minimal impact on overall performance.

3. Sensitivity. Particularly for environments where the agent initially
favors suboptimal actions, even small reinforcement baselines can
significantly degrade performance.

Because environments exhibit varying degrees of robustness or sen-
sitivity to the strength of the reinforcement baseline, how frequently
performance is robust is inherently tied to the distribution over environ-
ments under consideration. Consequently, altering this distribution can
lead to opposing conclusions about the prevalence of robust performance,
making it difficult to objectively assess whether performance is “often”
robust. We therefore aim to clearly demonstrate the existence of both
cases: one in which performance is robust and another in which it is sen-
sitive to reinforcement baselines. These examples are not drawn from a
specific distribution over environments, but the way they are constructed
offers insight into the conditions under which performance tends to be
robust or sensitive.

The robust case uses a standard gridworld environment, chosen be-
cause it is representative of typical RL environments. In this environment,
actions initially preferred by the agent often turn out to be optimal. The
committal behavior that results from large negative reinforcement base-
lines is therefore reasonable, resulting in good performance even when
the strength of the reinforcement bias is pushed to an extreme. This ob-
servation suggests that in typical, non-adversarial settings, reinforcement
baselines can be applied without significantly degrading performance—
and in some cases, even the aggressive application of reinforcement
baselines may have negligible impact.

The sensitive case uses a chain-like environment, designed to show
how the over-committal behavior caused by reinforcement baselines can
degrade performance significantly. Agents interacting with this environ-
ment are likely to initially favor suboptimal actions, and reinforcement
baselines can cause those early preferences to be reinforced too strongly.
As a result, the agent struggles to recover from poor initial behavior. This
highlights how performance sensitivity arises when early preferences are
misleading.

In Section 11.7.1 we describe the two environments in more detail. In
Sections 11.7.2 and 11.7.3 we then describe the experiments and discuss
the results.

11.7.1 Environment Details
We now describe the two environments used in our experiments. The
first is a standard 5× 5 gridworld environment. The second is a chain-
like environment. Although neither is technically finite-horizon, both

use γp = 1, and we adopt the expected (undiscounted) return as the
performance objective:

p(alg) = E

[
imax∑
i=1

Gi

]
, (116)

where imax = 500 episodes for both environments.

Gridworld. The gridworld environment models an agent mov-
ing on a 5 × 5 grid as depicted in Figure 7. The state indicates the
position of the agent on the grid, resulting in 26 states (including s∞).
The agent can select from four actions: up, down, left, and right,
which deterministically move the agent one cell in the corresponding
direction. If an action would cause the agent to leave the grid, the agent
instead does not move.
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Figure 7: Diagram of the gridworld environment, with numbers indi-
cating states. The circle denotes the agent (in state 7), and the arrows
coming from the agent indicate the four possible actions. The two red
arrows indicate state transitions that result in a reward of zero (all others
result in a reward of −1).

Recall from Section 11.4 that in an alternate formulation the agent
might be considered part of the environment. In such a formulation, the
agent’s changes to its memory might also be construed as actions. In these
initial experiments we do not take this perspective, instead modeling
the agent as distinct from the environment. This results in a small and
discrete set of four possible actions for the gridworld environment (and
two actions for the subsequent chain environment).

The agent begins in the top left corner (state 1), and the episode ends
when the agent reaches the bottom right corner (state 25). The reward is
always −1 (other than the two exceptions described next) to encourage
the agent to reach the bottom right corner, at which point the episode ends
and the negative rewards from the current episode stop. More precisely,
state 25 always transitions to s∞, and Rt = 0 both when St = s∞ (the
state transitioned from 25 to s∞, so the current episode is ending) and
when St−1 = s∞ (it is the first time step of a new episode, and Rt occurs
before the first action of this new episode).64

The return (sum of rewards) is negative the number of actions the
agent takes to reach state 25. When considering only the performance
objective, an optimal policy moves the agent from state 1 to state 25
using 8 actions, meaning that the optimal expected return (i.e., objective
value) is −8.

Notice that a BAC agent can initially learn to favor suboptimal actions.
For example, if the agent is in state 7, the down and right actions are
both optimal. However, the agent may initially favor the left action if it
has learned an effective policy from state 6 but not from states 8 or 12
(perhaps due to having visited state 6 more often than 8 or 12). Even

64We model the gridworld as an AEP environment, handling episode termination as in
an AEP. However, the gridworld environment can also be modeled as an MDP wherein the
time t resets to zero for each episode.
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though a BAC agent can initially learn to favor suboptimal actions, the
gridworld environment was not designed to adversarially cause this
behavior.

Chain. The chain environment, depicted in Figure 8, was in-
spired by the chain environments used to evaluate RL algorithms that
are designed to be effective even for worst-case environments [58].
Intuitively, the agent moves along a chain of three states, s1, s2, and s3.
In each state, it has the option to continue moving down the chain (action
a2), or to end the episode immediately (action a1). As the agent moves
along the chain, the rewards it receives are zero. However, when the
episode ends, the agent receives a positive reward. If the agent ends the
episode before reaching s3, it receives a reward of 1. If the agent reaches
s3, the episode always ends (regardless of which action the agent selects)
and the agent receives a reward of 10.
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Figure 8: Diagram of the chain environment.

An optimal policy causes the agent to move all the way down the
chain to state s3 (i.e., the agent should select a2 in states s1 and s2),
resulting in a return of 10. However, consider the behavior of a BAC
agent during the very first episode if its policy is initially uniform random
and its value function estimate is zero for every state. There is a 0.5
probability that the agent ends the episode immediately from s1 and a
0.52 = 0.25 probability that it reaches s2 and then ends the episode, for
a total probability of 0.75 that the agent ends the episode prematurely.
The reward of 1 when the episode terminates prematurely will result in
a TD error of 1, causing the agent to reinforce the action that ended the
episode prematurely.

Once this suboptimal action has been reinforced, the agent becomes
even more likely to select it in the future, potentially leading to further
reinforcement of the same suboptimal behavior. However, when using a
tabular policy representation as described in Section 11.7.2, and under
mild technical assumptions (e.g., appropriate step size decay), policy gra-
dient algorithms are guaranteed to converge to an optimal policy for this
MDP [63, 1]. This suggests65 that the BAC agent’s policy will eventually
shift to favor optimal actions, although it may take considerable time for
the agent to overcome the early reinforcement of suboptimal actions.

11.7.2 Experimental Design and Gridworld Results
To evaluate the robustness of performance to reinforcement baselines for
each environment, we performed a manual search for hyperparameters
that are effective in terms of performance for each environment. Since
we only aim to establish the existence of robust and sensitive settings,
we did not perform a more rigorous hyperparameter optimization. The
BAC hyperparameters selected for each environment are described in
Appendix G.

We evaluated performance and the prevalence of reinforcement when
using constant reinforcement baselines, i.e., for all states s, b(s) = c
for some constant c. We experimented with three different values of c:

65BAC algorithms update the policy parameters in the direction of estimates of the
policy gradient—not in the direction of the actual policy gradient. The properties of
these estimates are complicated by the interdependence of the actor and critic. Although
convergence analyses exist for these settings [34, 9], the details are beyond the scope of
this discussion. We simply note that true policy gradient methods converge to optimal
behavior, and that BAC approximates such methods, hence the use of the term “suggests.”

c = 0, which corresponds to no reinforcement baseline, c = −1, which
corresponds to a moderate reinforcement baseline for these environments,
and c = −5, which corresponds to an aggressive reinforcement baseline
for these environments. For each setting of c and environment, we
simulated imax = 500 episodes of the BAC algorithm 108 times, i.e., we
ran one hundred million trials for each environment and setting of c.

To evaluate performance, we plotted standard learning curves, showing
the average (across trials) return for each episode, including standard
deviation error bars.66 Figure 9 shows the resulting performance plot
for the gridworld environment (we present and discuss the results for
the chain environment later in Section 11.7.3). Notice that negative
the area above the learning curve is an approximation of the value of
the performance objective in (116). All three curves and error bars are
nearly perfectly overlapping, indicating that there is little difference in
performance.67
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Figure 9: Learning curves (performance) on the gridworld environment
as the reinforcement baseline is varied. Shaded error bars depict standard
deviation.

Whether Figure 9 provides meaningful evidence of performance ro-
bustness depends on the scale of the reinforcement baselines. If the
tested values of c (i.e., 0, −1, and −5) are too small in magnitude to
meaningfully influence reinforcement, then the absence of performance
differences across settings would not constitute strong evidence of ro-
bustness. In such a case, larger-magnitude (more negative) baselines
would be needed to properly assess whether performance remains stable
under aggressive reinforcement bias.

We therefore evaluate the reinforcement bias by plotting, for each
episode, the average per-time-step TD error, i.e., the average value of
∆t in that episode.68 Here, we adopt the explicit TD error formulation
(see Section 10.1), wherein the reinforcement baseline is included within
the reported TD error values. For tabular BAC algorithms, this value
provides one quantification of the prevalence of reinforcement—positive
TD errors correspond to reinforcement and negative to inhibition, and
the magnitude of the TD error scales the magnitude of the reinforcement

66Standard deviation error bars quantify variance due to the stochasticity of the agent.
Error bars reporting the standard error would quantify the uncertainty of the curve, but are
not depicted. Their width would be one-ten-thousandth of the standard deviation error bars.

67Performance improves slightly as the reinforcement bias increases. The average return
with c = 0 was approximately −14.53, while the average return with c = −1 was
approximately −14.48, and the average return with c = −5 was approximately −14.19.
These slight differences are inconsequential.

68We only average the TD error (and later, the per-time-step reinforcement) over time
steps when the TD error is defined—time steps where the BAC algorithm performs the
“standard update” in Algorithm 2.
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or inhibition.69 The resulting plot is provided in Figure 10.
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Figure 10: Average per-time-step TD error on the gridworld environment
as the reinforcement baseline is varied. Shaded error bars depict standard
error.

Unlike Figure 9, the error bars in Figure 10 depict standard error. We
report standard error rather than standard deviation because the variance
(and standard deviation) of the average TD error during an episode varies
with the length of the episode (number of TD errors) in a way that makes
the standard deviation challenging to interpret. Hence, in Figure 10 the
error bars (which are too small to be seen) characterize the uncertainty
of the curves.

The solid black curve in Figure 10 shows that without a reinforcement
baseline, the average TD error is negative early during learning, but
quickly becomes positive, after which it peaks and then slowly decreases
toward zero. This behavior is expected because early during learning
the value function is optimistic (since it is initially zero everywhere, and
the values of states are negative due to the constant negative rewards at
nearly every time step). This optimism results in negative TD errors, as
discussed in Section 10.2. It takes time for the optimism of the value
function to fade as the VFA becomes more accurate. Once the VFA is
accurate, the agent learns by reinforcing the actions it typically prefers,
resulting in a shift toward positive TD errors.

As the agent’s policy converges toward an optimal policy, the state-
value function also converges toward the optimal state-value function.
Consequently, the VFA approximates a nearly stationary target (the
optimal state-value function), and so it becomes increasingly accurate
and eventually matches the true state-value function closely. When this
happens, the TD errors, which represent discrepancies between estimates
of a state’s value, become increasingly small on average. Ultimately, once
the policy is stable (stationary) and the VFA accurately approximates the
true state-value function, the average TD error approaches zero.

The dashed red curve in Figure 10 shows that with a moderate re-
inforcement baseline of c = −1, the average TD error is consistently
positive. Compared to the c = 0 case, the curve appears to be shifted
upward by approximately one unit, while the overall trends remain oth-
erwise unchanged. The upward shift indicates a moderate shift toward
learning via reinforcement. Similarly, the dash-dot blue curve corre-

69When using other (nonlinear) policy parameterizations this property may not always
hold. For example, with certain other parameterizations, a positive TD error can result
in the inhibition of behavior if the step size is too large. Also, as described in Section
11.7.1, notice that we are only considering the agent’s actions to be the MDP actions, not,
for example, the agent’s weight updates as suggested in Section 11.4. Hence, TD error
correlates well with reinforcement. Future work might assess reinforcement baselines with
more general definitions of actions.

sponding to the aggressive baseline c = −5 shows a more pronounced
positive shift, closely mirroring the shape of the solid black curve but
offset upward by roughly five units. This larger upward shift indicates a
more aggressive shift toward learning via reinforcement.

Notice, however, that Figure 10 only shows the average TD error.
It could be that the majority of TD errors are negative, but occasional
extremely large TD errors (outliers) throw off the mean. Hence, although
Figure 10 provides one way of inspecting the prevalence of reinforcement,
it does not quantify the frequency of reinforcement. To see how often
different levels of reinforcement and inhibition occur, Figure 11 shows
the relative frequencies of different ranges of TD errors across episodes.

The top plot in Figure 11 shows that without a reinforcement baseline
both positive and negative TD errors are common, with the proportion
of reinforcing updates ranging from approximately 0.2 to 0.7. This
can be observed by inspecting the upper boundary of the ∆t ∈ (−1, 0)
region, the height of which indicates the proportion of inhibitory updates.
This boundary ranges from approximately 0.8 to 0.3 across episodes,
implying that the proportion of reinforcing updates—its complement—
ranges from 0.2 to 0.7. The middle plot shows that c = −1 corresponds
to a moderate reinforcement bias, reducing but not coming close to
eliminating inhibitory updates. The bottom plot shows that c = −5
corresponds to an aggressive reinforcement bias, almost eliminating
inhibitory updates (∆t < 0) and resulting in a majority of strongly
reinforcing updates (∆t > 5).

The TD error provides insight into the frequency and magnitude of
reinforcement, but the exact relationship between the TD error at time t
and the reinforcement of instantaneous behavior at time t, as defined in
(70), is complex. As the policy becomes increasingly deterministic, the
term

∂ ln
(
πBAC(St−1, At−1,Θt−1)

)
∂Θt−1

, (117)

which multiplies ∆t in the BAC policy update, tends toward the zero
vector. To see why, in Appendix G.2 we show that

∂ ln
(
πBAC(St−1, At−1, θ)

)
∂θs,a

(118)

=


0 if St−1 ̸= s

−πBAC(s, a, θ) if St−1 = s and At−1 ̸= a

1− πBAC(s, a, θ) if St−1 = s and At−1 = a.

(119)

Consider what this implies when θ changes so that πBAC(s, a, θ) ap-
proaches 1 for some state s and action a. When action a is chosen, θs,a
is updated proportional to 1− πBAC(s, a, θ), which tends to zero, while
the policy parameters corresponding to all other actions a′ in state s
are updated proportional to −πBAC(s, a

′, θ), which also tends to zero (if
the conditional probability of action a goes to 1, then the conditional
probabilities of all a′ ̸= a necessarily go to zero). Hence, the magnitude
of common policy parameter updates that result from a fixed-magnitude
TD error decreases as the policy becomes increasingly deterministic. Not
only does the magnitude of the change to the policy parameters decrease,
but the magnitude of changes to the conditional probability of the most
likely action also necessarily decreases as the probability of an action
approaches 1 (since the probability can only approach 1 asymptotically—
it cannot reach or exceed it). These properties highlight the complex
relationship between the TD error and reinforcement of instantaneous
behavior at time t.

So, to better understand how reinforcement baselines influence the
reinforcement of instantaneous behavior at time t, in Figures 12 and 13
we reproduce Figures 10 and 11 (in reverse order), but with the TD errors
∆t replaced with the reinforcement of instantaneous behavior at time t,
Lt. Notice that Lt = 1, like ∆t = 0, corresponds to neither inhibition
nor reinforcement. These plots quantifying aspects of the distributions
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Figure 11: Proportion of TD errors that fall within different ranges when
using different reinforcement baselines on the gridworld environment.
Top: No reinforcement baseline, i.e., c = 0, Middle: Moderate rein-
forcement baseline, i.e., c = −1, Bottom: Aggressive reinforcement
baseline, i.e., c = −5. The legends and axes are identical across all three
plots. The ∆t ≈ 0 region actually corresponds to ∆t ∈ (−10−6, 10−6].
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Figure 12: Proportion of Lt (reinforcement of instantaneous behavior)
that fall within different ranges when using different reinforcement base-
lines on the gridworld environment. Top: No reinforcement baseline,
i.e., c = 0, Middle: Moderate reinforcement baseline, i.e., c = −1,
Bottom: Aggressive reinforcement baseline, i.e., c = −5. The legends
and axes are identical across all three plots. The Lt ≈ 1 region actually
corresponds to Lt ∈ (1− 10−6, 1 + 10−6].
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Figure 13: Average per-time-step reinforcement of instantaneous behav-
ior (i.e., average Lt) for each episode, on the gridworld environment, as
the reinforcement baseline is varied. Shaded error bars depict standard
error.

of Lt (at different episodes and with different reinforcement baselines)
mirror the corresponding plots quantifying the distributions of ∆t. That
is, they show that c = −1 corresponds to a moderate reinforcement
bias, encouraging reinforcement, but not coming close to eliminating
inhibitory updates, while c = −5 provides an aggressive reinforcement
bias, nearly eliminating inhibitory updates. Notice that the area under
each curve in Figure 13 is related to, but not identical to, the values of
the qualia objective functions in (71) and (72) since the figure reports
the average per-time-step reinforcement, whereas (71) sums over the
length of each episode (e.g., if each likelihood ratio is positive, the value
increases with episode length), while (72) divides each likelihood ratio
by the corresponding episode length, placing less weight on likelihood
ratios that occur during longer episodes.

Consider Figure 13 more closely. First, notice that for all values of
c the average value of Lt trends toward Lt = 1 since, as the policy
becomes increasingly deterministic, the magnitudes of most updates
decrease, resulting in reduced reinforcement and inhibition overall (when
measured in terms of the likelihood ratio Lt). Second, notice that the
black curve, which corresponds to c = 0, is less than 1 for the entire
plot, even though the top plot in Figure 12 indicates that reinforcement
is more likely for the majority of episodes. Together these properties
suggest that although inhibition is less common in this case, the amount
that Lt differs from 1 is larger in expectation when Lt < 1.

These results highlight that different ways of measuring reinforcement
can result in different conclusions regarding the quality of an agent’s
experience. For example, if one assumes that the quality of an agent’s
experience is overall positive if reinforcement is more frequent than
inhibition, or if one assumes that the quality of an agent’s experience
is overall positive if the average TD error is positive, then they would
conclude that the BAC algorithm applied to the gridworld environment
without a performance baseline results in the agent having an overall
positive experience. However, if one assumes that the quality of an
agent’s experience is overall positive if the average reinforcement of
instantaneous behavior is at least 1, then they would conclude that the
agent’s experience is overall negative.70

However, notice that regardless of which of these strategies one uses

70One avenue of future work would be to consider utility functions that calibrate and
rescale the values of signals like ∆t and Lt in different ways, perhaps capturing ideas like
Stevens’s power law [57].

to quantify reinforcement in the reinforcement-qualia setting, the conclu-
sion remains that, for the gridworld environment, adding even aggressive
reinforcement baselines to the BAC algorithm (with the selected hyperpa-
rameters) does not result in a significant change in performance. The lack
of a significant change in performance is supported by Figure 9, while
the scale of the reinforcement baselines being moderate and aggressive
is supported by Figures 10–13.

11.7.3 Chain Results
Having established via the gridworld environment that a case exists
wherein performance is robust to changes in the reinforcement baseline,
we now turn to establishing, via the chain environment, that a case
exists wherein performance is sensitive to changes in the reinforcement
baseline. To do so, we perform the exact same sequence of experiments
that we performed using the gridworld environment, but for the chain
environment.

First, in Figure 14 we plot the learning curves to evaluate the impact of
reinforcement baselines on performance. In this case, even the moderate
reinforcement baseline of c = −1 results in a noticeable decrease in
performance and increase in the standard deviation of performance. That
is, the algorithms is less reliable and performs worse on average. When
using an aggressive reinforcement baseline of c = −5 the degradation in
performance and increase in variability is even more pronounced.
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Figure 14: Learning curves (performance) on the chain environment as
the reinforcement baseline is varied. Shaded error bars depict standard
deviation.

Next, to establish that c = −1 corresponds to a moderate reinforce-
ment baseline and c = −5 corresponds to an aggressive reinforcement
baseline, in Figures 15 and 16 we plot the relative frequencies of different
ranges of ∆t and Lt across episodes. Similar to the gridworld environ-
ment, the top plots show that without a reinforcement baseline (c = 0)
reinforcement (∆t > 0, Lt > 1) and inhibition (∆t < 0, Lt < 1) are
both common. The middle plots show that c = −1 corresponds to a
moderate reinforcement bias, increasing the prevalence of reinforcing
updates and reducing the prevalence of inhibitory updates. The bottom
plots show that c = −5 corresponds to an aggressive reinforcement
bias, almost eliminating inhibitory updates nd resulting in a majority of
strongly reinforcing updates (∆t > 5).

Although they do not provide significant additional insights, for com-
pleteness, we provide the chain-environment correlates of Figures 10
and 13 in Figures 17 and 18. Figure 17 shows the average per-time-step
TD error for each episode as the reinforcement baseline is varied. Recall
that the VFA weights were initialized to zero. For the gridworld this
corresponded to an optimistic VFA (over-estimate of state-values), but
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Figure 15: Proportion of TD errors that fall within different ranges when
using different reinforcement baselines on the chain environment. Top:
No reinforcement baseline, i.e., c = 0, Middle: Moderate reinforcement
baseline, i.e., c = −1, Bottom: Aggressive reinforcement baseline, i.e.,
c = −5. The legends and axes are identical across all three plots. The
∆t ≈ 0 region actually corresponds to ∆t ∈ (−10−6, 10−6].
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Figure 16: Proportion of Lt (reinforcement of instantaneous behav-
ior) that fall within different ranges when using different reinforcement
baselines on the chain environment. Top: No reinforcement baseline,
i.e., c = 0, Middle: Moderate reinforcement baseline, i.e., c = −1,
Bottom: Aggressive reinforcement baseline, i.e., c = −5. The legends
and axes are identical across all three plots. The Lt ≈ 1 region actually
corresponds to Lt ∈ (1− 10−6, 1 + 10−6].
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for the chain environment this corresponds to a pessimistic VFA (under-
estimate of state-values) since the rewards in the chain environment are
all non-negative and some are positive. Hence, initially the average
TD error is positive, even with c = 0. Figure 18 further reinforces the
conclusion that c = −1 produces a moderate reinforcement bias while
c = −5 produces an aggressive reinforcement bias.
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Figure 17: Average per-time-step TD error on the chain environment as
the reinforcement baseline is varied. Shaded error bars depict standard
error.
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Figure 18: Average per-time-step reinforcement of instantaneous behav-
ior (i.e., average Lt) for each episode, on the chain environment, as the
reinforcement baseline is varied. Shaded error bars depict standard error.

In summary, for the chain environment, adding even a moderate re-
inforcement baseline to the BAC algorithm (with the selected hyperpa-
rameters) can result in a noticeable degradation of performance. The
degradation of performance is supported by Figure 14, while the scale of
the reinforcement baselines being moderate and aggressive is supported
by Figures 15–18.

12 Conclusion and Future Directions
In this report we assumed that AI agents possess phenomenal conscious-
ness (qualia) and developed a formal framework for qualia optimiza-
tion—jointly optimizing performance and qualia. Here we summarize
the report and then suggest directions for future work.

After providing background on philosophy of mind in Section 2, in
Section 3 we introduced mathematical formulations of an agent interact-
ing with an environment, which we called AEPs and AERPs (the latter
necessarily including rewards). Then, after providing background on the
relationship between RPEs (e.g., TD errors) and dopamine in Section
4, in Section 5 we stated our assumptions formally and defined qualia
optimization for AI. Inspired by an example of a rat in a shuttle box, in
Section 5 we also introduced the AEI as a mechanism for transforming
how an agent interacts with an environment—altering its perceptions
and actions. This resulted in the AIEP and AIERP formulations, which
extend the AEP and AERP formulations to include an AEI.

In Section 6 we introduced the reward-qualia setting, wherein the
quality of an agent’s qualia can be measured in terms of the amount of
reward it receives. We introduced the concept of aligning the performance
and qualia objective functions, but showed that the alignment of these
objectives does not necessarily improve the agent’s qualia. We then
introduced the reward bonus strategy, which inflates the agent rewards to
increase the value of the qualia objective in many reward-qualia settings.
To prevent these changes from decreasing the value of the performance
objective, we showed how the RL algorithm implemented by the agent
can be adjusted to undo the impact of the inflation of rewards, ensuring
that the interactions with the base environment are unchanged.

In Section 7 we generalized the idea behind preventing performance
changes when using the reward bonus strategy, defining AEI inverters
and inverse RL algorithms (algorithms that undo the transformations of
the AEI). We then introduced the concept of inversion-exploitable qualia
objective functions—qualia objective functions that produce different
output (assessments of the quality of the agent’s qualia) when (a) a base
RL algorithm is used without an AEI (equivalently, with the identity AEI)
and when (b) an AEI and the corresponding inverse base RL algorithm
are applied. We showed that a single physical system can be interpreted
as both (a) and (b), and so inversion-exploitable qualia objectives can
assign different values to the quality of the agent’s qualia for different
AIEP models of the same physical system.

Recognizing the core problem—that one physical system can be
modeled mathematically as two different AEPs, and that this model-
ing assumption changes the value of some qualia objective functions—
we generalized inversion-exploitability by introducing the concept of
representation-exploitable qualia objective functions. These are qualia
objective functions that can assign different values to the same physical
system when it is modeled as different AEPs.71 We suggested three
(not necessarily disjoint) strategies for making progress despite the exis-
tence of representation-exploitable qualia objectives: 1) consider only
representation-robust (i.e., not representation-exploitable) qualia objec-
tives, 2) restrict the set of AEIs and RL algorithms under consideration
so that each AEI-algorithm pair corresponds to a unique underlying phys-
ical system, and 3) restrict the set of allowed representation functions
(mappings from physical systems to AEPs).

Before considering other qualia optimization settings, we reconsid-
ered the inclusion of the AEI in Section 8. We presented the dual
agent-environment strategy, which trivializes qualia optimization by dis-
connecting the problems of performance and qualia optimization. This
strategy leverages the assumption that the AEI is defined to be part of
the environment, and so its qualia experiences are not considered. It
suggests that, when faced with the challenge of creating an agent that in-
teracts with an environment and which has desirable qualia, an effective
solution is to create a different agent (whose qualia are not considered)
that actually interacts with the environment of interest, and to then create
a completely separate environment for the agent whose qualia is being

71The qualia objective function only depends on the distributions of random variables
in the AEP setting, and AIEPs can be viewed as special cases of AEPs (those where the
environment consists of a base environment and AEI). So, by defining representation-
exploitability for AEPs, we have defined it for all of the settings considered in this report.
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considered to interact with. This motivated our subsequent exclusion of
the AEI from the problem formulation.

After Section 9, which summarizes the topics discussed in Sections 7
and 8, in Section 10 we introduced the RPE-qualia setting, motivated by
the previously established relationship between RPEs and dopamine. We
showed how ambiguity about the precise meaning of a random variable
within an RL algorithm (e.g., TD error) can arise when considering
variants of the algorithm, culminating in the definition of two qualia-
objective functions for measuring the cumulative TD error in the RPE-
qualia setting: the implicit and explicit TDE-qualia objectives. After
showing that both of these objectives are representation-exploitable, we
reviewed more recent neuroscience research that suggests that dopamine
does not necessarily produce desirable qualia in humans, undermining
the idea that qualia objective functions should measure RPEs.

In Section 11 we introduced the reinforcement-qualia setting, wherein
the reinforcement of behavior is associated with desirable qualia. We
defined the reinforcement of behavior to be when the agent’s policy is
updated to make the conditional probability of recent behavior (e.g.,
recent actions) more likely if similar situations are encountered in the
future. This setting refines the RPE-qualia setting in two ways. First, we
argued that (if one models the agent as part of the environment, thereby
making changes to the agent constitute actions that can be reinforced or
inhibited) RPEs may not perfectly correlate with the reinforcement of
behavior. This is important because it means that dopamine not perfectly
correlating with the quality of qualia in humans does not mean that
reinforcement also fails to perfectly correlate with the quality of qualia.72

Second, we showed that there exist natural qualia objective functions in
the MDP reinforcement-qualia setting that are representation-robust (i.e.,
not representation-exploitable).

However, we struggled to formally define the reinforcement of be-
havior (and hence reinforcement-qualia objectives) in the general AEP
setting for two reasons. First, evaluating whether a behavior has been
made more likely if similar situations are encountered in the future re-
quires reverting the context components of an agent’s memory to simulate
a “similar situation,” while leaving the policy components unchanged.
This is problematic because it is unclear how the agent’s memory can,
in general, be separated into contextual and policy components. Second,
it is unclear how the process of an agent learning from its most recent
perceptions and selecting the next action can, in general, be decomposed
into a learning phase and an acting phase, and without such a decom-
position it is unclear how the counterfactual question “what would the
agent have done if placed back in the same situation with its updated
policy” can be formalized. To circumvent these challenges, we focused
on BAC algorithms, which include a clear separation of contextual and
policy components of memory, and which also include a clear separation
of learning and acting phases.

We then introduced reinforcement baselines as one strategy for induc-
ing a reinforcement bias. These baselines differ from standard baselines
in policy gradient methods only in their purpose (not in their operation)—
they are designed to induce a reinforcement bias, not to minimize the
variance of policy gradient updates nor to modulate how quickly the
agent commits to behaviors. We suggested that for many non-adversarial
environments—those where the agent typically does not initially favor
suboptimal actions—reinforcement baselines might improve the agent’s
qualia in the reinforcement-qualia setting without causing significant
degradation of performance. However, for environments in which the
agent typically favors suboptimal actions initially, even moderate rein-
forcement baselines can have a significant detrimental impact on per-
formance. We supported these suggestions with empirical studies on a

72We note, however, that reinforcement may also fail to perfectly correlate with the
quality of qualia, in which case it might still serve as a surrogate objective until a qualia
objective has been identified that better correlates with human qualia.

gridworld environment and chain environment, demonstrating the exis-
tence of both cases: the gridworld represents a case where performance
is robust to reinforcement baselines, whereas the chain environment rep-
resents a case where performance is sensitive to reinforcement baselines.

12.1 Future Directions
In addition to the clear next steps of evaluating how well the qualia objec-
tive functions proposed in this report align with human phenomenology,
and of developing new qualia objectives that align more closely, there
are many other directions for future work. We highlight a few promising
examples below.

1. In this report we make many (sometimes implicit) assumptions that
warrant further scrutiny. For instance, we assumed that random
variables representing states, perceptions, memories, and actions are
related to the underlying physical system through deterministic and
invertible representation functions. However, the consequences of
altering these assumptions remain unexplored. For example, we did
not consider how the framework would behave under non-invertible
representation functions, although we expect that the issues related
to representation-exploitability would only become more severe.

We also did not thoroughly explore the implications of Φ correspond-
ing to the actual physical system, instead assuming that Φ corre-
sponds to properties of that system.73 Representation exploitability
seems particularly troubling when Φ corresponds to properties, since
it seems intuitive that merely re-encoding these properties should
not alter the quality of the agent’s qualia. If, instead, Φ referred
directly to the physical system, the issue might appear less troubling,
since there would be no arbitrary representational choice—the repre-
sentation would be fixed by the system itself (i.e., the representation
functions might naturally be restricted to identity functions).

However, defining Φ to be the actual physical system raises deeper
questions about whether, and in what sense, a qualia objective can
be defined directly over a physical system, rather than over vari-
ables that describe its properties. Formal reasoning requires working
with mathematical abstractions—such as random variables, measur-
able functions, or sets—which have precisely defined structures. A
physical system, in contrast, does not have a formal mathematical
structure until it is explicitly represented through such abstractions.
Without first mapping the system into a well-defined mathematical
representation, it remains unclear how a qualia objective could be
formulated or evaluated. This connects to broader topics in philos-
ophy of mind, philosophy of science, and epistemology, including
the nature of representation and how mathematical models relate to
the physical systems they are intended to describe.

2. More broadly, we have not examined how the assumptions made
here align—or conflict—with prominent theories in the philosophy
of mind, such as physicalism, functionalism, or computationalism.
Establishing these connections may help clarify which assumptions
are defensible and whether this report meaningfully reflects any
particular philosophical stance.

3. On a more technical front, we made several simplifying assumptions
and decisions that could be reconsidered. For example, we only
considered AEPs with discrete actions. As another example, we
only considered AEIs that interact with the agent and the base envi-
ronment at the same timescale. Alternate formulations might allow
the AEI to interact with the environment multiple times between
interactions with the agent, or vice versa. As one final example,
we focused on episodic settings and did not explore how continu-
ing environments might yield stationary distributions over variables

73Here Φ might correspond to any term like ΦSt or ΦMt , or a collection of such terms.
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such as perceptions or agent memories, and how these might fac-
tor into qualia objective functions that more closely resemble the
performance objectives used for ergodic average-reward MDPs.

4. After presenting the dual agent-environment strategy, we removed
the AEI from consideration. Future work might revisit this de-
cision, instead exploring other ways for ruling-out the dual agent-
environment strategy while still allowing for an AEI-like mechanism.
This might better align qualia optimization with the motivating ex-
ample in Section 5.1.1.

Reformulations that allow for the inclusion of an AEI could enable
strategies that improve agent experiences over the long term. If the
quality of the agent’s qualia decreases as the policy converges (e.g.,
as in Figure 13 with c = 5), then AEIs that introduce nonstationar-
ity into the environment (e.g., cycling the meaning of the agent’s
actions in some smooth way) could sustain the ongoing learning and
behavioral change necessary for improved long-term qualia.

5. In this report we focus on the quality of an agent’s qualia, as mea-
sured by a single scalar value. However, experiences often involve
multiple distinct dimensions. For example, an experience might be
simultaneously pleasurable yet stressful, or painful yet meaningful.
This suggests that, in some cases, qualia may be more appropriately
modeled as a vector-valued quantity that captures these distinct expe-
riential dimensions. In such cases, multiobjective optimization may
provide useful tools for reasoning about trade-offs across different
dimensions of experience.

6. This report focused heavily on RL settings, even though the ideas ex-
tend to other settings wherein an agent interacts with an environment.
As mentioned in Section 3.1.4, each time step could correspond to a
supervised learning model making one or more predictions during
training or testing, or to the execution of a single (possibly stochas-
tic) unit in an artificial neural network. Future work might further
explore such settings, including those in which agents are determin-
istic. Natural qualia objective functions for these settings may be
quite different, so exploring these settings may help uncover qualia
objective functions not apparent from the RL viewpoint.

7. Another direction for future work involves formally analyzing a
distinction between two classes of qualia objectives that emerge
in this report. When using some qualia objectives—such as those
based on agent rewards or RPEs—the quality of an agent’s qualia
at time t depends only on the state of the system at that time. In
contrast, when using reinforcement-based qualia objectives, what
matters is not just the state at time t, but how the agent arrived at
that state (e.g., via reinforcement or inhibition). These two types
of objectives seem to reflect different assumptions about whether
qualia supervene on instantaneous mental states or on temporally
extended processes.

This distinction raises several open questions. Can this distinction
be made formal and precise, or does it dissolve under formalization—
revealing that the two cases are mathematically equivalent under
different ways of attributing qualia across time? Do these classes
differ in their susceptibility to representation-exploitability? Do
they lead to fundamentally different optimization strategies? If the
current state of the system (environment and agent) at time t is
insufficient to determine the agent’s qualia at time t, then has the
system state been incorrectly defined?

8. In the reinforcement-qualia setting we have not yet identified an
algorithm-independent definition of reinforcement. Our likelihood-
ratio construction works well for algorithms like BAC, where mem-
ory naturally separates into policy and contextual components, and
where each agent update naturally divides into a learning phase

followed by a stochastic acting phase. However, this construction
breaks down for general AEPs, in which memory cannot be easily
partitioned into policy and context components, and in which the
learning and acting phases are entangled. A truly general measure of
reinforcement would allow us to counterfactually query how much
more likely a previously taken action would be after a policy update,
given an identical situation, but without additional learning updates.

Developing such a general definition of reinforcement, or proving
that no such definition exists, would be a natural next step in for-
malizing the reinforcement-qualia setting. It would help clarify
whether reinforcement-based qualia can be defined independently
of algorithm-specific design choices—such as the clean memory de-
composition and staged learning-acting structure assumed by BAC—
or whether these assumptions are essential. In doing so, it may reveal
whether reinforcement-qualia objectives reflect a general compu-
tational principle or instead emerge only under particular design
assumptions about how agents learn and act.

9. Related to the previous direction, in Section 11.4 we suggested that,
if the agent is viewed as being part of the environment rather than dis-
tinct from it, then the agent’s actions would encompass both external
interactions (how the agent influences the external environment) and
internal processes (how the agent influences itself). However, the
reinforcement-qualia objectives explored in this report focused only
on reinforcement of external interactions (MDP actions), and did not
address the broader notion of reinforcement that includes how an
agent influences itself (memory updates). Future work could explore
the reinforcement-qualia framework within this broader formulation.

10. In this report we modeled qualia as belonging specifically to the
agent within an agent-environment system. As we saw with the dual
agent-environment strategy, only considering the qualia of part of the
system (the part we deem to be the agent) can lead to unsatisfying
solutions. A more general formulation might instead model qualia as
emerging from the entire agent-environment system without singling
out a distinct agent component. Such an approach would require
defining qualia and performance objectives at the system level.

11. Although the focus of this work was on taking qualia into consid-
eration when designing ML algorithms, the qualia optimization
framework may also offer insights into philosophy of mind. For
example, if no representation-robust qualia objective function can be
found that aligns with human phenomenology, this could challenge
certain versions of computationalism or functionalism that posit
qualia as arising solely from structural or computational features.
Conversely, the identification of such a function would align with
these theories.

12.2 Closing Comments
Practitioners might consider incorporating reinforcement-bias mecha-
nisms into their algorithms, particularly in cases where doing so does
not significantly degrade performance. Even if the reinforcement-qualia
hypothesis ultimately proves imperfect, it may still function as a useful
surrogate objective until a qualia objective that more accurately reflects
human phenomenology is identified.

Even if current AI systems do not possess qualia, the possibility that
future systems might motivates the development of a formal framework
for qualia optimization. Developing such a framework contributes both
mathematical structure and conceptual clarity to this emerging area. In
addition to informing the design of learning algorithms, the formulations
presented here may also serve as tools for advancing debates in the phi-
losophy of mind. We encourage the research community to evaluate,
refine, and extend these foundations as part of a broader effort to under-
stand and influence the quality of qualia that future systems may come
to possess.
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A Notation
We adopt the following conventions:

1. We write N, N>0, R, and R>0 to denote the sets of natural numbers
(including zero), natural numbers greater than zero, real numbers,
and real numbers greater than zero, respectively.

2. We use uppercase calligraphic letters to represent sets (e.g., X ).

3. We use uppercase (not calligraphic) letters to represent random
variables (e.g., X).

4. We use lowercase letters to represent constants, elements of sets, and
realizations of random variables (e.g., c ∈ R, x ∈ X or X = x).

5. We also use lowercase letters to represent functions (e.g., f , g, and
h).

6. We use braces to denote sets (e.g., {red, green, blue}).
7. We use parentheses to denote sequences (e.g., (1, 1, 2, 3, 5)).

8. We write (xi)
n
i=0 as shorthand for the sequence (x0, x1, . . . , xn).

9. We write f : X → Y to denote that f is a function with domain X
and range (codomain) Y .

10. If f : X×Y → Z , we write f(·, y) to denote the function that results
from f with the specified fixed y value. That is, f(·, y) : X → Z
and f(·, y)(x) = f(x, y).

11. We write a ≜ b to denote that a is defined to be b. When there
are multiple definitions of a symbol, e.g., q, we do not use the ≜
symbol.

12. We reserve the symbols i, j, and k for indices.

13. We reserve the symbols f and g (with subscripts) for functions.

14. We reserve the symbol d (with subscripts) for probability distribu-
tions.

15. If d is a probability distribution, we write X ∼ d to denote that X
has distribution d (or in pseudocode, to indicate that X is sampled
from the distribution d).

16. If d is a probability distribution, we write supp(d) to denote the
support of d. Similarly, if X is a random variable, we write supp(X)
to denote the support of X .

17. We abbreviate probability mass function, probability density func-
tion, and cumulative distribution function to PMF, PDF, and CDF
respectively.

18. We write law(X) to denote the distribution of a random variable X .

19. We write ◦ to denote function composition. That is, if f : Y → Z
and g : X → Y , then f ◦ g : X → Z and (f ◦ g)(x) = f(g(x)).

In some cases these conventions are violated, but such violations should
be made clear.

Tables 1 and 2 provide lists of symbols and abbreviations, their mean-
ings, and the pages on which they are initially defined. Standard symbols
and abbreviations as well as symbols defined and used within a limited
scope or in later appendices are not included in either table.

A.1 Notation for Markov Decision Processes (MDPs)
In this appendix we define the notation that we use for MDPs. A finite,
episodic, and discounted MDP is a tuple (S,A, p, r, d0, γ), where:

1. Time is indexed by t ∈ N.

2. S is the finite set of all possible states of the environment and is
called the state set.

3. For all times t ∈ N, St is a random variable representing the state of
the environment at time t and supp(St) ⊆ S.

4. A is the finite set of all possible actions the agent can select and is
called the action set.74

5. For all times t ∈ N, At is the action chosen by the agent at time t
and supp(At) ⊆ A.

6. p : S ×A× S → [0, 1] is called the transition function and charac-
terizes how states transition according to the definition

p(s, a, s′) ≜ Pr(St+1 = s′|St = s,At = a), (120)

for all s ∈ S , a ∈ A, s′ ∈ S , and t ∈ N. Notice that p(s, a, s′) does
not depend on t, and so the conditional distribution of the next state
given the current state and action is stationary.

7. For all times t ∈ N>0, Rt is a real-valued and bounded random
variable called the reward at time t. Notice that while states and
actions begin with S0 and A0, the first reward is R1.

8. r : S ×A → R is called the reward function and is defined by the
equation

r(s, a) ≜ E [Rt+1|St = s,At = a] , (121)

for all s ∈ S, a ∈ A, and t ∈ N.75

9. d0 : S → [0, 1] is called the initial state distribution and character-
izes the distribution of the initial state S0 according to the definition

d0(s) ≜ Pr(S0 = s), (122)

for all s ∈ S.

10. γ ∈ [0, 1) is a constant called the reward discount parameter.

An MDP partially characterizes the sequence of random variables

(S0, A0, R1, S1 . . . , Rt−1, St−1, At−1, Rt, St, At, . . . ). (123)

The notation for the transition function suggests a conditional indepen-
dence assumption within this sequence. However, one can write and
reason about conditional probabilities without implying conditional inde-
pendence. We therefore make the conditional independence assumption
of MDPs explicit: For all t ∈ N, St+1 is conditionally independent of all
previous random variables given St and At. MDPs include a second con-
ditional independence assumption: For all t ∈ N, Rt+1 is conditionally
independent of all previous random variables given St and At.

Unlike the agent-environment processes (AEPs) defined in this report,
MDPs are only a mathematical model of an environment, not the agent
that interacts with the environment—hence why they only partially spec-
ify the sequence in (123). RL agents that interact with MDPs implement
stationary policies π : S×A → [0, 1], which characterize the conditional
distribution of At given St via the definition

π(s, a) ≜ Pr(At = a|St = s), (124)

for all s ∈ S, a ∈ A, and t ∈ N.76 Some RL algorithms maintain
a stationary parameterized policy with policy parameters Θt ∈ Rn

for some n ∈ N>0. Abusing notation, when considering the use of a
parameterized policy, we define

π(s, a, θ) ≜ Pr(At = a|St = s,Θt = θ), (125)

74In more general formulations, the set of admissible actions may vary depending on the
current state. We present an MDP formulation where all actions are admissible in all states.

75In some formulations r(s, a) = E[Rt|St = s,At = a], which places the reward at
the same time step as the state and action via a different indexing of rewards. In contrast,
we adopt a definition of the reward function consistent with the agent-environment process
(AEP) formulation we propose, where the reward follows the state and action that caused
it.

76Although we define π to be a stationary policy, notice that RL agents often change the
stationary policy that they use at each time step.

43



Table 1: List of Symbols (Part I)

Symbol Meaning Page
t Time, in (0, 1, . . . ) 2

St State of the environment at time t 2
Mt Memory of the agent at time t 3
Pt (Agent) perception at time t 3, 9
At (Agent) action at time t 3, 10
ds Next-state distribution 3
dm Next-memory distribution 3, 10
fp (Agent) perception function 3, 10
fa (Agent) action function 3, 10

AEP Agent-environment process 4
Rt (Agent) reward at time t 4, 10
fr Reward function 4, 10

AERP Agent-environment reward process 4
ΦZ Physical properties of random variable Z 4
ρZ Representation function for random variable Z 4
π State or perception-policy 5

s∞ Terminal state 5
p∞ Terminal perception 5
a∞ Terminal action 5

start(i) Start time of ith episode 5
end(i) End time of ith episode 5
len(i) Length of the ith episode 5

start(t) Start time of the episode containing time t 5
end(t) End time of the episode containing time t 5
dur(t) Duration (time since episode start) at time t 6

Gi Return of ith episode 6
Gt Return from time t 6
imax Maximum number of episodes 6

BAC Basic actor-critic 6
Θt Policy parameters at time t 6

VFA Value function approximation 6
Wt VFA weights at time t 6
Et Eligibility trace vector at time t 6

πBAC BAC policy parameterization 6
v VFA parameterization 6
θ0 Initial perception-policy parameter vector 7
w0 Initial VFA weight vector 7

Table 2: List of Symbols (Part II)

Symbol Meaning Page
λ Eligibility trace decay rate 7
α Critic step size 7
β Actor step size 7

∆t Temporal difference (TD) error at time t 7
AEI Agent-environment interface 9
Yt AEI state at time t 9
Y ′
t Intermediate AEI state at time t 9

Xt Base environment state at time t 9

At AEI action at time t 9

P t AEI perception at time t 9
dx Base environment next-state distribution 10
fp AEI perception function 10
dy Next AEI-state distribution 10
dy′ Next intermediate AEI state distribution 10
fa AEI action function 10

AIEP Agent-interface-environment process 10
fr Base reward function 10

Rt Base reward 10
AIERP Agent-interface-environment reward process 10
env Environment distributions 11
alg RL algorithm distributions 11
aei AEI distributions 11
aeiI Identity AEI 11

q Qualia objective function 11
p Performance objective function 11∑

i,t Shorthand for the summations in (23) 13
aeic Reward bonus AEI 14

alg−c Reward bonus inverse RL algorithm 15

alg−aei Inverse RL algorithm 17
gp Inverse RL algorithm perception inverter 17
ga Inverse RL algorithm action pretransformer 17
Lt Likelihood ratio at time t for MDPs 25
J Discounted objective 30
∇J Policy gradient 30

Θ∀t = θ Shorthand for the event ∀t ∈ N, Θt = θ 30
b Baseline function 30
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for all s ∈ S , a ∈ A, θ ∈ Rn, and t ∈ Rn. When considering the use of
a parametric policy, we refer to π as a policy parameterization.

We define stationary policies to be Markovian. That is, under the sta-
tionary policy π, At is conditionally independent of all previous random
variables given St. Similarly, under the stationary parameterized policy
π, At is conditionally independent of all previous random variables given
St and Θt.

Let G ≜
∑∞

t=1 γ
tRt, which we call the discounted return, and let

J : Rn → R be a function called the discounted objective, which takes
as input policy parameters and outputs the expected discounted return
if the agent were to use an implicit policy parameterization π with the
specified policy parameters:

J(θ) ≜ E [G|∀t ∈ N, Θt = θ] . (126)

A necessary but not sufficient property of an optimal policy [61] is that
it maximizes the expected discounted return. Lastly, to simplify later
expressions, let

Gt ≜
∞∑
k=0

γkRt+k+1, (127)

which we call the discounted return from time t.

B Philosophy of Mind Background: Triviality Arguments
A long-standing concern in the philosophy of mind is how to deter-
mine when a physical system truly implements an abstract computa-
tion. One influential proposal [46] suggests a “mapping” theory of
implementation—that a physical system implements a computation if
there is an isomorphism between the states and transitions of the physi-
cal system and those of a formal computational model (for example, a
finite-state automaton). We adopt a similar formalization when reasoning
about how an abstract mathematical model of an agent interacting with
an environment can correspond to aspects of the real physical world.

However, Putnam [46, Appendix, pp. 121] famously argued that
“[every] ordinary open system is a realization of every abstract finite
automaton.” This insight has spurred a number of similar arguments,
called triviality arguments, which claim that, in the absence of further
constraints, virtually any physical system can be interpreted as carrying
out any computation. Such arguments are called triviality arguments
because they suggest that sophisticated computations (e.g., the compu-
tations performed by a human brain) can be trivially implemented by
a simple device like a mechanical watch. In Section 7 we encounter a
similar problem, wherein a wide range of seemingly different mathe-
matical models of an agent interacting with an environment—models
that suggest different experiences of the agent—can all correspond
to the same physical world. We therefore review triviality arguments
from philosophy of mind, recognizing that we are far from the first
to encounter and reason about such issues. Specifically, Sprevak [55]
provided an overview of four triviality arguments, which we review here.

Hinckfuss’s Pail Argument. According to Lycan [38], Ian Hinckfuss
suggested an (unpublished) thought experiment that considers a pail
of water resting in the sunlight. Given the immense complexity at the
microscopic level (e.g., currents, bacteria breeding, and molecular
interactions), there could exist a mapping from the water’s states
and transitions to the states and transitions of a system executing a
human-like program—even if only briefly. This thought experiment
highlights how a mapping-based definition of computation could imply
that ordinary objects might, by sheer physical complexity, be said to
implement highly nontrivial computations.

Searle’s Wall Argument. Searle [53, Chapter 9, Section V]

provided a similar thought experiment, writing:77

1. For any object there is some description of that object such
that under that description the object is a digital computer.
2. For any program and for any sufficiently complex object,
there is some description of the object under which it is im-
plementing the program. [... If the wall behind me] is a big
enough wall it is implementing any program, including any
program implemented in the brain.

Searle’s argument further underscores the implications of a mapping-
based definition of computation.

Putnam’s Rock Argument. Putnam [46] formalized these argu-
ments by showing that for any open physical system one can partition its
phase space—the complete set of its physical parameters—into regions
in such a way that the system’s evolution (subject to the principles
of noncyclical behavior and continuity) can be mapped onto the state
transitions of an inputless finite-state automaton. Putnam [46] argued
that this implies that nearly every open system (for instance, a rock) can
therefore be shown to implement every possible inputless finite-state
computation.

Chalmers’ Clock-and-Dial Argument. One counter-argument
to Putnam’s argument suggests that a mapping or isomorphism between
the states and transitions of the physical system and those of a formal
computational model is not sufficient. Rather, the physical system must
also be robust to small physical changes, and the mapping must apply to
all states that could occur in the computational model—not just those
that occur given specific inputs. Chalmers [12] extended Putnam’s
argument to handle these objections by introducing the concepts of a
“clock” and a “dial.” He argued that if a physical system possesses a
component that reliably progresses through a series of states (a clock)
and another that can stably hold one of many possible states (a dial),
then one can construct a mapping from the system’s behavior to the
states of any inputless finite-state automaton. Furthermore, Chalmers’
formulation was designed to overcome the aforementioned objections to
Putnam’s example.

There are a wide range of responses to these triviality arguments
[25, 44], including suggestions of imposing further physical or causal
restrictions to rule out arbitrary mappings [12, 28]. For additional details,
we refer the reader to the work of Sprevak [55, Section 7].

C Implications of Markov Assumptions
In this appendix we elaborate on the implications of the Markov assump-
tions made in Section 3.1.1. Recall the Markov assumptions:

• Markovian states. St is conditionally independent of all previous
random variables given St−1 and At−1.

• Markovian memories. Mt is conditionally independent of all previous
random variables given Mt−1 and Pt.

We made the following claims:

These two assumptions characterize how states, perceptions,
memories, and actions should be defined for a given agent-
environment system. Although they are stated as assumptions,
they do not restrict the set of agent-environment systems under
consideration.

77We once again reiterate that the four arguments we review are based on the overview
by Sprevak [55]. The quote we provide is a subset of a quote selected by Sprevak, and so
one might view this as a quote of Sprevak quoting Searle.
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We provide supporting evidence for these claims in this appendix, focus-
ing on the Markovian-states assumption first, and then the Markovian-
memories assumption.

Notice that in the most general setting St+1 could be influenced by all
of the past random variables describing the agent and environment. If (a)
St is a complete characterization of everything about the environment
up to and including time t that influences the environment at times
t′ > t and (b) Mt is a complete characterization of everything about
the agent up to and including time t that influences the environment
at times t′ > t, then St+1 should be conditionally independent of all
previous random variables given St and Mt. Furthermore, if (c) At is
a complete characterization of everything about Mt that influences the
environment at time t+ 1, then we can condition on At instead of Mt,
meaning that St+1 should be conditionally independent of all previous
random variables given St and At, as stated in the Markovian-states
assumption. Note that (a), (b), and (c) are included within the definitions
of St, Mt, and At. So, the Markovian-states assumption formalizes
intuition for how states, memories, and actions are defined for a given
agent-environment system.

To see that the Markovian-state assumption does not restrict the set of
systems under consideration, notice that the history of all past random
variables could be encoded within St and At (taking some care to ensure
that the history of memories is encoded in St and At), thereby ensuring
that the Markovian-state assumption necessarily holds. This complete
encoding of the history within St and At would be cumbersome. The
Markovian-states assumption allows for more restricted definitions of
states and actions by characterizing exactly what information must be
encoded within St and At.

Similarly, notice that in the most general setting Mt+1 could also
be influenced by all of the past random variables describing the agent
and environment. If (d) St is a complete characterization of everything
about the environment up to and including time t that influences the
agent at times t′′ ≥ t and (e) Mt is a complete characterization of ev-
erything about the agent up to and including time t that influences the
agent at times t′ > t, then Mt+1 should be conditionally independent
of all previous random variables given St+1 and Mt. Furthermore, if
(f) Pt+1 is a complete characterization of everything about St+1 that
influences the agent at time t + 1, then we can condition on Pt+1 in-
stead of St+1, meaning that Mt+1 should be conditionally independent
of all previous random variables given Pt+1 and Mt, as stated in the
Markovian-memories assumption. Note that (d), (e), and (f) are included
within the definitions of St, Mt, and Pt+1. So, like the Markovian-states
assumption, the Markovian-memories assumption formalizes intuition
for how states, memories, and perceptions are defined for a given agent-
environment system.

To see that the Markovian-memories assumption does not restrict the
set of systems under consideration, notice that the history of all past
random variables could be encoded within Mt and Pt+1 (taking some
care to ensure that even the history of states is encoded in Mt and Pt+1),
thereby ensuring that the Markovian-memories assumption necessarily
holds. This complete encoding of the history within Mt and Pt+1 would
be cumbersome. The Markovian-memories assumption allows for more
restricted definitions of memories and perceptions by characterizing
exactly what information must be encoded within the definitions of Mt

and Pt+1.78

78Notice that the Markovian-memories assumption ensures that perceptions are defined
in a way that encodes the necessary information, but does not limit the perceptions to only
include information that influences the agent. For example, defining Pt = St is trivially
sufficient as a definition of perceptions. While this formulation is sufficient for this initial
study, future work might consider restricting the perceptions to only encode information
that influences the agent, and might include similar restrictions for actions.

D Proof of Qualia Improvement for Reward Bonuses
In this appendix we prove a result stated in Section 6.3.2—that

q(alg−c,aeic) = q(alg0,aeiI) + c
imax

1− γq
. (128)

Recall the (unproven) observation that using aeic with alg−c only
changes the random variable Rt—the distributions of all other random
variables, Xt, P t, Yt, Pt,Mt, At, Y

′
t , At, and Rt, remain unchanged. We

do not prove this property formally because it should be clear from
intuition alone (the only change that aeic makes is the addition of a
constant to the rewards Rt, and prior to using these rewards the RL
algorithm alg−c subtracts these same constants, with no other changes
to the entire system comprised of the base-environment, AEI, and agent).
This property allows us to expand the expression for q(alg−c,aeic) as
follows (color is used to highlight changes and the relationships between
terms in different expressions):

q(alg−c,aeic) = E

imax−1∑
i=0

end(i)∑
t=start(i)+1

γ
dur(t)
q Rt

 (129)

(a)
=E

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q Rt

+E

[
imax−1∑
i=0

γ
dur(end(i))
q Rend(i)

]
(130)

(b)
=E

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q

(
Rt + c

) (131)

+E

[
imax−1∑
i=0

γ
dur(end(i))
q

(
Rend(i) +

c

1− γq

)]
(132)

=E

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q Rt


︸ ︷︷ ︸

Term A

+ c

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q︸ ︷︷ ︸

Term B

(133)

+E

[
imax−1∑
i=0

γ
dur(end(i))
q Rend(i)

]
︸ ︷︷ ︸

Term C

+
c

1− γq

imax−1∑
i=0

γ
dur(end(i))
q︸ ︷︷ ︸

Term D

, (134)

where (a) follows from the linearity of expectations, which allows for
the final terms in the summation over t to be separated from the other
terms and (b) follows from the definition of Rt in (33). Notice that Term
A and Term C sum to

E

imax−1∑
i=0

end(i)∑
t=start(i)+1

γ
dur(t)
q Rt

 = q(alg0,aeiI), (135)

since Rt = Rt under the identity AEI, aeiI. We will proceed by
simplifying Term B and then Term D, before returning to (134) to obtain
a simplified expression for q(alg−c,aeic).

Recall that dur(t) = t− (start(i) + 1), and so

end(i)−1∑
t=start(i)+1

γ
dur(t)
q =

end(i)−1∑
t=start(i)+1

γ
t−(start(i)+1)
q (136)

(a)
=

end(i)−start(i)−2∑
k=0

γk
q (137)

(b)
=
1− γ

end(i)−(start(i)+1)
q

1− γq
, (138)
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where (a) follows from a change of variable—that is, applying the rule
that for all natural numbers a and b where b > a and all functions
f : N → R,

∑b
j=a f(j) =

∑b−a
k=0 f(k + a)—and (b) follows because

the summation is a finite geometric series. Also, notice that by expanding
dur(end(i)) we have that

imax−1∑
i=0

γ
dur(end(i))
q =

imax−1∑
i=0

γ
end(i)−(start(i)+1)
q . (139)

So, the sum of Term B and Term D can be expressed as

c

imax−1∑
i=0

end(i)−1∑
t=start(i)+1

γ
dur(t)
q +

c

1− γq

imax−1∑
i=0

γ
dur(end(i))
q (140)

=c

imax−1∑
i=0

1− γ
end(i)−(start(i)+1)
q

1− γq
+

c

1− γq

imax−1∑
i=0

γ
end(i)−(start(i)+1)
q

(141)

=
c

1− γq

(
imax−1∑
i=0

1− γ
end(i)−(start(i)+1)
q +

imax−1∑
i=0

γ
end(i)−(start(i)+1)
q

)
(142)

=
c

1− γq

imax−1∑
i=0

1− γ
end(i)−(start(i)+1)
q + γ

end(i)−(start(i)+1)
q (143)

=
c

1− γq

imax−1∑
i=0

1 (144)

=
c imax

1− γq
. (145)

Returning to (134), we have that the sum of Term A and Term C is
q(alg0,aeiI) and that the sum of Term B and Term D is c imax(1 −
γq)

−1, and so we can conclude that

q(alg−c,aeic) = q(alg0,aeiI) + c
imax

1− γq
. (146)

E Information Theory Background
In this appendix we review notation, definitions, and properties from
information theory. We emphasize that the results presented in this
appendix are well-known and not contributions of this report, although in
some cases proofs are provided for completeness. Although elsewhere X
is a specific random variable in our formulations (the base environment
state), here we use X to denote an arbitrary random variable.

We begin by defining the entropy of discrete random variables.

Definition 1 (Shannon Entropy – Discrete) The entropy of a discrete
random variable X with support X and PMF p is

H(X) ≜ −
∑
x∈X

p(x) log2
(
p(x)

)
. (147)

Shannon extended entropy to continuous random variables, defining
differential entropy:

Definition 2 (Differential Entropy – Continuous) The differential en-
tropy of a continuous random variable X with support X and PDF f
is

H(X) ≜ −
∫
X
f(x) log2

(
f(x)

)
dx. (148)

Next we define relative entropy, which is also called the Kullback-
Leibler divergence (KL-divergence) for pairs of discrete or continuous
distributions.

Definition 3 (Relative Entropy – Discrete) Let X and Y be two dis-
crete random variables with PMFs p and q and let X = supp(X). If
X ⊆ supp(Y ), then the relative entropy between p and q is

DKL(p∥q) ≜
∑
x∈X

p(x) ln

(
p(x)

q(x)

)
. (149)

Definition 4 (Relative Entropy – Continuous) Let X and Y be two
continuous random variables with PDFs p and q and let X = supp(X).
If X ⊆ supp(Y ), then the relative entropy between p and q is

DKL(p∥q) ≜
∫
X
p(x) ln

(
p(x)

q(x)

)
dx. (150)

The definitions of relative entropy for discrete and continuous ran-
dom variables can be retrieved from the more general measure-theoretic
definition:

Definition 5 (Relative Entropy – General) Let p and q be probability
measures defined on a measurable space (Ω,F). If p is absolutely
continuous with respect to q, then the relative entropy between p and q is

DKL(p∥q) ≜
∫
Ω

ln

(
dp

dq

)
dp, (151)

where dp
dq is the Radon-Nikodym derivative of p with respect to q.

Next we define the mutual information of two discrete or continuous
random variables.

Definition 6 (Mutual Information – Discrete) Let X and Y be dis-
crete random variables with PMFs (marginal distributions) pX and
pY , support X and Y , and joint PMF p(X,Y ). The mutual information of
X and Y is

I(X;Y ) ≜
∑
x∈X

∑
y∈Y

p(X,Y )(x, y) ln

(
p(X,Y )(x, y)

pX(x)pY (y)

)
. (152)

Definition 7 (Mutual Information – Continuous) Let X and Y be
continuous random variables with PDFs (marginal distributions) pX and
pY , support X and Y , and joint PDF p(X,Y ). The mutual information of
X and Y is

I(X;Y ) ≜
∫
X

∫
Y
p(X,Y )(x, y) ln

(
p(X,Y )(x, y)

pX(x)pY (y)

)
dy dx. (153)

Similar to relatively entropy, the definitions of mutual information for
pairs of discrete or continuous random variables can be retrieved from
the more general measure-theoretic definition:

Definition 8 (Mutual Information – General) Let X and Y be ran-
dom variables defined on a probability space (Ω,F , p). Let p(X,Y )

be the joint probability measure of X and Y , let pX and pY be the
marginal probability measures of X and Y , and let pX ⊗ pY denote the
product measure of pX and pY . The mutual information between X and
Y is then

I(X;Y ) ≜ DKL
(
p(X,Y )∥pX ⊗ pY

)
, (154)

if p(X,Y ) is absolutely continuous with respect to pX ⊗ pY , and
I(X;Y ) =∞ otherwise.

Next we present properties of entropy and mutual information, starting
with the symmetry of mutual information.

Property 1 (Symmetry of Mutual Information) For all random vari-
ables X and Y , I(X;Y ) = I(Y ;X).
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Proof. See the work of Pinsker [45, page 11]. Note that Pinsker calls
I(X;Y ) the information of one random variable with respect to the
other [45, page 9]. □

Next we review a fundamental result of information theory called the
data processing inequality (DPI).

Property 2 (Data Processing Inequality) Let X and Y be random
variables defined on a probability space (Ω,F , p). If f is a mea-
surable function such that Z = f(Y ) is a random variable, then,
I(X;Y ) ≥ I(X;Z).

Proof. See the work of Pinsker [45, page 11]. □

It is well known that applying a deterministic function to a discrete
random variable cannot increase its entropy. That is:

Property 3 If X is a discrete random variable and f is a (deterministic)
function, then H(f(X)) ≤ H(X).

Proof. Before providing a proof we reiterate that this is a well known
result and not a contribution of this work. We provide a proof of this
property because some standard reference texts (including those that we
are relying on) do not explicitly state this property [18].

It follows from the DPI that:

I(X; f(X)) ≤ I(X;X). (155)

Since I(X;X) = H(X) [18, Equation 2.47] we therefore have that

I(X; f(X)) ≤ H(X). (156)

Next, recall that the conditional entropy H(f(X)|X) is defined as
[18, Equation 2.10]:

H(f(X)|X) ≜
∑

x∈supp(X)

Pr(X = x)H(f(X)|X = x). (157)

Since f(X) is deterministic given that X = x, and since the entropy of a
deterministic random variable is zero, we have that H(f(X)|X = x) =
0. So, the entire right hand side of (157) is zero: H(f(X)|X) = 0.

Combining this result with the property that I(X; f(X)) =
H(f(X)) − H(f(X)|X) [18, Equation 2.44], we have that
I(X; f(X)) = H(f(X)). Substituting this result into (156) we have
that

H(f(X)) ≤ H(X), (158)

establishing the property. □

This result does not extend to continuous random variables, since
applying a deterministic function to a continuous random variable can
increase the differential entropy.

Property 4 If X is a continuous random variable and f is a (determin-
istic) function, then it can occur that H(f(X)) > H(X).

Proof. Let X be uniform on [0, 1] and let f(x) = 2x. Then

H(X) =−
∫ 1

0

1 log2(1)︸ ︷︷ ︸
=0

dx (159)

=0. (160)

and

H(f(X)) =−
∫ 2

0

0.5 log2(0.5)︸ ︷︷ ︸
−1

dx (161)

=1. (162)

Hence, this is a case where H(f(X)) > H(X). □

Notice that we write H(X) and I(X;Y ) even though entropy and
mutual information are properties of the distributions of random vari-
ables like X and Y —they are not functions of specific values of X and
Y . Similarly, here we consider the space of such functions—functions
whose domain is the distribution of a random variable (or the distribu-
tions of multiple random variables). We call these functions functions
of distributions. When writing symbols that represent functions of dis-
tributions other than entropy and mutual information, we place a breve
above the symbol to indicate that it is a function of the distributions
of its arguments (the distributions of random variables) rather than a
function of the arguments themselves, e.g., f̆(X). We adopt this notation
rather than explicitly using a distribution as the argument of f̆ because
later we will substitute entropy and mutual information for functions of
distributions like f̆ . Furthermore, if f̆ is a function of distributions and g
is a function, we write f̆(g(X)) to denote f̆ applied to the distribution
of g(X).

We say that a function of a distribution is invariant to invertible trans-
formations if applying an invertible transformation to its inputs does not
change its value. We formalize this notion in the following definition.

Definition 9 (Invariant to Invertible Transformations – Univariate)
A function of a distribution f̆ is invariant to invertible transformations if
and only if, for all invertible functions g,

f̆(X) = f̆(g(X)). (163)

It is well known that Shannon entropy is invariant to invertible trans-
formations.

Property 5 (Shannon Entropy Invariant) If X is a discrete random
variable and g : X → Y is an invertible function, then H(g(X)) =
H(X).

Proof. It follows from Property 3 that H(g(X)) ≤ H(X). Since g is
invertible, we also have that

H(X) =H
(
g−1(g(X)

)
(164)

(a)
≤H(g(X)), (165)

where (a) again follows from Property 3. Together these inequalities
imply that H(g(X)) = H(X), and so Shannon entropy is invariant
under invertible transformations. □

However, it is also well known that differential entropy is not invariant
to invertible transformations.

Property 6 (Differential Entropy Not Invariant) If X is a continuous
random variable and g : X → Y is an invertible function, then it can
occur that H(g(X)) ̸= H(x).

Proof. This follows from the proof of Property 4, since it relies on a
function f that is invertible. □

In fact, it is not merely differential entropy that is not invariant to invert-
ible transformations when considering continuous random variables—
there do not exist any functions of distributions of univariate continuous
random variables that are invariant to invertible transformations.

Property 7 (Nonexistence of Continuous Invariant) If f̆ is invariant
to invertible transformations, then f̆ must be constant for all continuous
random variables.

Proof. We provide a proof by contradiction. Suppose for contradiction
that there exists a function of distributions f̆ that is invariant to invertible
transformations and which is not constant for all univariate continuous
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random variables. This implies that there exist two univariate continuous
random variables X and Y such that

f̆(X) ̸= f̆(Y ). (166)

Let FX and FY be the cumulative distribution functions (CDFs) of
X and Y respectively. Since X and Y are continuous distributions, FX

and FY are strictly increasing and hence invertible. Furthermore, the
probability integral transform [10, Theorem 2.1.10] implies that FX(X)
and FY (Y ) are both uniform on [0, 1]. Hence:

f̆(X)
(a)
=f̆(FX(X)) (167)
(b)
=f̆(FY (Y )) (168)
(c)
=f̆(Y ), (169)

where (a) and (c) follow from f̆ being invariant to invertible transforma-
tions (including FX and FY ) and (b) follows from FX(X) and FY (Y )
having the same distribution—they are both uniform on [0, 1]. Notice
that (166) and (169) cannot both be true, establishing a contradiction.□

To summarize so far, there exist functions of distributions that are
invariant to invertible transformations if we restrict our consideration
to discrete random variables. One example of such a function of dis-
tributions is Shannon entropy. However, when we consider continuous
univariate random variables, there do not exist any nontrivial functions
of distributions that are invariant to invertible transformations, where
nontrivial means non-constant for continuous distributions. This im-
plies, for example, that differential entropy is not invariant to invertible
transformations.

Next we explain and provide support for the following more positive
result: If we expand our consideration to functions of the distributions of
multiple random variables and we restrict the transformations to indepen-
dent invertible transformations of each random variable, then there exist
nontrivial functions of distributions that are invariant to invertible trans-
formations. First, we generalize the definition of invariance to invertible
transformations to functions of multiple random variables.

Definition 10 (Invariant to Invertible Transformations – Multivar.)
For any n > 2, a function of n distributions f̆ is invariant to invertible
transformations if and only if, for all sequences of n random variables
X1, . . . , Xn and all sequences of measurable and invertible functions
g1, . . . , gn,

f̆(X1, X2, . . . , Xn) = f̆(g1(X1), g2(X2), . . . , gn(Xn)). (170)

Notice that one can define a random variable Y = (X1, X2), and so a
function of a single distribution (that of Y ) can also be a function of mul-
tiple distributions (in this case, the distributions of X1 and X2). However,
the univariate definition of invariance to invertible transformations would
require invariance to transformations g(Y ) that can transform X1 and
X2 in a dependent way, whereas the multivariate definition of invertible
transformations only considers independent transformations of X1 and
X2, e.g., the value of g2(X2) does not depend on X1.

In the following property we show that mutual information is invari-
ant to invertible transformations, regardless of whether one considers
discrete, continuous, or hybrid distributions.

Property 8 (Mutual Information is Invariant) Let X and Y be ran-
dom variables and let g and h be measurable and invertible functions.
Then I(X;Y ) = I(g(X);h(Y )).

Proof. Although this is a well-known result, we were unable to find a
suitable reference that covers the full measure theoretic setting without

additional assumptions. We therefore provide a proof based on the data
processing inequality, Property 2. Note that the assumption that g and
h are measurable is necessary to ensure that g(X) and g(Y ) remain
well-defined random variables on the underlying probability space.

We establish that I(X;Y ) = I(g(X);h(Y )) by showing that

I(X;Y ) = I(X;h(Y )) (171)

and then that
I(X;h(Y )) = I(g(X);h(Y )), (172)

which together imply that I(X;Y ) = I(g(X);h(Y )).
First, to establish (171) we show that I(X;Y ) ≥ I(X;h(Y )) and

I(X;Y ) ≤ I(X;h(Y )). By the data processing inequality, I(X;Y ) ≥
I(X;h(Y )) since h is a measurable function. Similarly, by the data
processing inequality, I(X;Y ) ≤ I(X;h(Y )) since

I(X;h(Y )) ≥I(X;h−1(h(Y ))) (173)
=I(X;Y ). (174)

Notice that the data processing inequality is applicable here because
h being measurable and invertible implies that h−1 exists and is also
measurable.

Second, to establish (172) we show that I(X;h(Y )) ≥
I(g(X);h(Y )) and I(X;h(Y )) ≤ I(g(X);h(Y )). I(X;h(Y )) ≥
I(g(X);h(Y )) follows from the data processing inequality because g
is a measurable function. Similarly, by the data processing inequality,
I(X;h(Y )) ≤ I(g(X);h(Y )) since

I(g(X);h(Y )) ≥I(g−1(g(X));h(Y )) (175)
=I(X,h(Y )). (176)

Notice that the data processing inequality is applicable here because
g being measurable and invertible implies that g−1 exists and is also
measurable. □

Relative entropy (KL divergence) is one of a broader class of functions
of distributions called f -divergences. Whereas mutual information is
invariant to invertible transformations, f -divergences (including relative
entropy) are invariant when the same differentiable invertible transfor-
mation is applied to both random variables. This result is significantly
weaker since it not only requires the transformation to be differentiable,
but it also requires the transformations of the two random variables to be
the same.

Property 9 If X and Y be random variables, g is a differentiable and
invertible function, and Df is an f -divergence, then Df (X∥Y ) =
Df (g(X)∥g(Y )).

Proof. See the work of Qiao and Minematsu [47]. □

F Deriving BAC With a Reinforcement Baseline
In this section we show how the BAC algorithm can be modified to
include a reinforcement baseline. At a high level, we do this by deriving
the policy parameter update of BAC from the policy gradient, but with
an extra reinforcement baseline b(St) that carries through the derivation,
resulting in a variant of BAC that includes a reinforcement baseline.

To see the connection been BAC and the policy gradient, first consider
the VFA approximation in more detail. Recall that v(p, w) is the value
of the VFA approximation with perception p and VFA weights w. Since
we are considering MDPs, we assume that the VFA parameterization
ignores the reward component of perceptions Pt = (St, Rt), and write
v(s, w), where s is a state. This is an abuse of notation because v was
defined to take perceptions as input, not states.

49



∇J(θ) (a)
=E

[ ∞∑
t=0

γt
(
Gt − vπ(St)− b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
(177)

=

∞∑
t=0

γtE

[(
Gt − vπ(St)− b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
(178)

(b)
=

∞∑
t=0

γtE

[
E

[(
Gt − vπ(St)− b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣St, At,Θ∀t = θ

]∣∣∣∣∣Θ∀t = θ

]
(179)

(c)
=

∞∑
t=0

γtE

[(
E [Gt|St, At,Θ∀t = θ]− vπ(St)− b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
(180)

(d)
=

∞∑
t=0

γtE

[(
E [∆t+1|St, At]− b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
(181)

=

∞∑
t=0

γtE

[(
∆t+1 − b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
(182)

=E

[ ∞∑
t=0

γt
(
∆t+1 − b(St)

)∂ ln
(
π(St, At, θ)

)
∂θ

∣∣∣∣∣Θ∀t = θ

]
, (183)

where (a) follows from (103) using the combined baseline vπ(St) + b(St), (b) follows from the law of iterated expectations, (c) follows
because, within the inner expectation, vπ(St) and ∂ ln (π(St, At, θ)) /∂θ are constant, and (d) follows from (185). Recall that in this derivation
the TD error ∆t+1 is defined in terms of the state-value function vπ rather than an approximation thereof.

Figure 19: A proof sketch referenced in the text below.

The aim of the VFA updates in the BAC algorithm is to make v(·, w)
approximate the state-value function,79

vπ(s) ≜ E [Gt|St = s,Θ∀t = θ] . (184)

If the VFA parameterization v with VFA weights w perfectly approxi-
mates this state-value function so that v(·, w) = vπ , then it is well known
that80

E[∆t+1|St = s,At = a] = E[Gt|St = s,At = a,Θ∀t = θ]− vπ(s).
(185)

Although we omit a full proof of this property, we provide a proof sketch:

E[∆t+1|St=s,At=a] (186)
=E[Rt+1 + γvπ(St+1)− vπ(St)|St=s,At=a] (187)
=E[Rt+1 + γ (Rt+1 + γRt+2 + · · · ) |St=s,At=a,Θ∀t=θ]− vπ(s)

=E[Rt+1 + γRt+1 + γ2Rt+2 + · · · |St=s,At=a,Θ∀t=θ]− vπ(s)

=E[Gt|St=s,At=a,Θ∀t=θ]− vπ(s). (188)

It can therefore be shown that, in this case where the VFA approximation
is perfect, ∆t+1 can be substituted for Gt in (103), the expression for
the policy gradient with a baseline. Although we again omit a complete
proof, we provide a proof sketch in Figure 19 (we use a figure to allow it
to span across both columns).

In order to derive the policy update rule within BAC from the policy
gradient expression in (183), we make a sequence of approximations.
First, we consider the (unbiased if the VFA perfectly approximates the
state-value function) estimator of the policy gradient

∇̂J(θ) =
∞∑
t=0

γt(∆t+1 − b(St))
∂ ln

(
π(St, At, θ)

)
∂θ

. (189)

79Alternatively, the state-value function might be denoted by vθ to highlight that the
policy depends on θ. Also, recall that Θ∀t = θ is shorthand for the event ∀t ∈ N, Θt = θ.

80This equation and its subsequent derivation suggest that BAC already uses an estimate
of vπ(s) as a baseline. The term b(St) that we introduce later within Figure 19 corresponds
to a reinforcement baseline that is included in addition to this existing implicit baseline.

Next, we consider the contribution to this estimator from only a single
time step:

∇̂Jt(θ) = γt(∆t − b(St))
∂ ln (π(St, At, θ))

∂θ
. (190)

This per-time-step gradient estimate results in the per-time-step approxi-
mate policy gradient update

Θt ← Θt−1 +βγt(∆t− b(St−1))
∂ ln

(
π(St−1, At−1,Θt−1)

)
∂Θt−1

. (191)

Notice that applying this update at each time t ∈ N would not exactly
reproduce a single policy update using the policy gradient estimator in
(189). Although the cumulative update to the policy parameters would
sum over the time steps t ∈ N, the policy parameters would change
between updates, altering both a) terms within the gradient estimate like
π(St−1, At−1,Θt−1), and b) the distribution of states and actions that
the agent encounters. The cumulative change to the policy parameters
after one full episode would therefore be a biased estimator of the policy
gradient, even if the VFA perfectly approximates the state-value function.

Following standard practice [63, 42], we drop the γt from the per-
time-step update, which results in further bias. This results in the final
update,

Θt ← Θt−1 + β(∆t − b(St−1))
∂ ln

(
π(St−1, At−1,Θt−1)

)
∂Θt−1

, (192)

which, corresponds to the BAC update with a reinforcement baseline
b(St) added.

G Hyperparameter Settings
In this appendix we describe the hyperparameters of the BAC algorithm
used in our experiments.
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G.1 Tabular Softmax Policy and Tabular VFA

For simplicity, we used tabular policy and VFA parameterizations. Before
defining these tabular parameterizations more formally, we first review
relevant notation and properties of how MDPs can be modeled within
AEPs. Recall that, when modeling an MDP in an AEP, we encode
the state and reward within the perception so that Pt = (St, Rt). For
simplicity here, we also assume that the states of a finite MDP correspond
to the initial positive integers: S = {1, 2, . . . , |S|}.

When using a tabular VFA, the number of weights (i.e., the length of
the vector Wt) equals the number of states. Intuitively, the VFA stores
one weight per state, representing that state’s estimated value. More
formally, for every perception p = (s, r) and VFA weight vector w,

v(p, w) = ws, (193)

where ws denotes the sth element of w.
When using a tabular policy parameterization, the number of policy

parameters (i.e., the length of Θt) equals the product of the number of
states and the number of actions. For each state s and action a, there
is one corresponding policy parameter, which we denote by θs,a (for
any policy parameter vector θ). Given the state s, the action is sampled
from a softmax distribution defined by the policy parameters associated
with that state. More formally, for all states s, actions a, and policy
parameters θ,

πBAC(s, a, θ) =
eθs,a∑
a′ eθs,a′

. (194)

G.2 Compatible Features

The term ln(π(s, a, θ))/∂θ often appears in expressions for the policy
gradient, and is sometimes called the compatible features [8]. Here
we derive the compatible features for the tabular policy used in our
experiments. For brevity (and because this derivation applies when
tabular softmax representations are used beyond BAC algorithms), we
drop the BAC subscript and write π for πBAC here. We also introduce
shorthand notation for the numerator and denominator of (194)—notation
that conflicts with other symbols in this report and which we only use
here. Let

αa ≜ eθs,a (195)

and

β ≜
∑
â∈A

eθs,â , (196)

so that (194) can we rewritten as

π(s, a, θ) =
αa

β
. (197)

We will derive an expression for each element of the compatible features:

∂ ln
(
π(s, a, θ)

)
∂θs′,a′

, (198)

where s′ and a′ may or may not equal s and a.
First, notice that if s′ ̸= s, then (198) is zero, since the value of θs′,a′

does not change αa or β, and hence does not influence the right hand
side of (197). Next we consider the case where s′ = s, which can be
further broken into two cases: when a′ ̸= a and when a′ = a. First,

consider the case where s′ = s and a′ ̸= a:

∂ ln
(
π(s, a, θ)

)
∂θs′,a′

=
1

π(s, a, θ)

∂

∂θs′,a′
π(s, a, θ) (199)

=
1

π(s, a, θ)

∂

∂θs′,a′

αa

β
(200)

(a)
=

1

π(s, a, θ)

(
∂αa

∂θs′,a′

)
β − αa

∂β
∂θs′,a′

β2
(201)

(b)
=

1

π(s, a, θ)

−αaαa′

β2
, (202)

where (a) follows from the quotient rule and (b) follows because
∂αa/∂θs′,a′ = 0 (since we are considering the case where a′ ̸= a)
and ∂β/∂θs′,a′ = αa′ (since we are considering the case where s′ = s).
Since αa/β = π(s, a, θ) and αa′/β = π(s, a′, θ), it follows from (202)
that

∂ ln
(
π(s, a, θ)

)
∂θs′,a′

=− 1

π(s, a, θ)
π(s, a, θ)π(s, a′, θ) (203)

=− π(s, a′, θ). (204)

Finally, consider the case where s′ = s and a′ = a

∂ ln
(
π(s, a, θ)

)
∂θs′,a′

=
1

π(s, a, θ)

∂

∂θs′,a′
π(s, a, θ) (205)

=
1

π(s, a, θ)

∂

∂θs′,a′

αa

β
(206)

=
1

π(s, a, θ)

(
∂αa

∂θs′,a′
β
)
− αa

∂β
∂θs′,a′

β2
(207)

(a)
=

1

π(s, a, θ)

αaβ − αaαa

β2
, (208)

where lines (205)–(207) are identical to (199)–(201), and (a) follows
because, when s = s′ and a = a′, ∂αa/∂θs′,a′ = αa and αa = αa′ .
Hence,

∂ ln
(
π(s, a, θ)

)
∂θs′,a′

=
1

π(s, a, θ)

(
αa

β
−
(
αa

β

)2
)

(209)

=
1

π(s, a, θ)

(
π(s, a, θ)− π(s, a, θ)2

)
(210)

=1− π(s, a, θ). (211)

Combining all of these cases, we obtain the following expression for
each element of the compatible features:

∂ ln
(
π(s, a, θ)

)
∂θs′,a′

=


0 if s′ ̸= s

−π(s, a′, θ) if s′ = s and a′ ̸= a

1− π(s, a, θ) if s′ = s and a′ = a.

(212)

G.3 Other Hyperparameters
For both environments we defined the initial policy parameters and VFA
weights to be zero, i.e., θ0 = 0 and w0 = 0. We also used γ = 1
and λ = 0.8. For the gridworld we used α = 0.1 and β = 0.01,
while for the chain environment we used α = 0.1 and β = 0.1. These
hyperparameters were found via a manual search that only considered
performance. We estimate that roughly five sets of hyperparameters
were tested for each environment, as the aim was only to find parameters
that result in reliable learning, not to find optimal hyperparameters.
Although few hyperparameters were tested, the author has significant
prior experience with similar algorithms and environments, and so the
hyperparameter settings were informed by a much larger number of
related simulations.

End
51


	Introduction
	Philosophy of Mind Background
	Cartesian Dualism
	Functionalism
	Other Theories of Mind

	RL Background and AEP Setting
	Agent-Environment Process (AEP/AERP)
	Markov and Stationarity Assumptions
	AEPs and AERPs
	Random Variables and the Physical World
	Policies
	Episodes

	Basic Actor-Critic (BAC)
	Design Goals
	Mathematical Specification
	Temporal Difference Error (TD Error)


	Background on the RPE Hypothesis for Dopamine
	Qualia Optimization
	Agent-Interface-Environment Process (AIEP)
	Example of Experience-Transforming Interventions
	Agent-Environment Interface (AEI)

	Formulating Qualia Optimization
	Base Environment, AEI, and Algorithm Definitions
	Performance and Qualia Objective Functions
	Generalizing Qualia Objective Functions
	Candidate Problem Formulations


	Reward Hypothesis for Qualia
	Objective Alignment
	Objective Alignment as a Qualia Optimization Strategy

	Algorithmic Improvements
	Reward Bonuses
	Impact on Qualia and Performance Objectives
	Specific Example where Reward Bonuses are Effective

	Reward-Qualia Conclusion

	Exploitable Qualia Objectives
	Example Unreasonable Qualia Optimization Solution
	AEI Inversion
	Inversion-Exploitable and Inversion-Robust Qualia Objectives
	Inversion-Exploitable Objectives May Be Unreasonable
	Why Statefulness Changes Things

	Representation-Exploitable Qualia Objectives
	Strategies Regarding Exploitable Qualia Objectives
	Representation-Robust Qualia Objectives

	Exploiting the Agent Boundary
	Dual Agent-Environment Strategy

	Summary of Problem Formulation Considerations
	Reward Prediction Error Hypothesis for Qualia
	Objective Functions and Ambiguous Random Variables
	TD Error Bonuses
	TD Error Bonuses in the Explicit Setting
	TD Error Bonuses in the Implicit Setting

	Other Strategies for RPE-Qualia Optimization
	Reconsidering the Valence of TD Error

	Reinforcement Hypothesis for Qualia
	Likelihood-Ratio Qualia Objective for MDPs
	Likelihood-Ratio Qualia Objectives for AEPs
	Nuance 1: Memory Can Be More Than Policy Parameters
	Nuance 2: Repeated Perception Update
	Nuance 3: Ill-Defined Conditional Probabilities
	A Path Forward

	Representation-Robustness of Likelihood-Ratio Objectives
	Is the Reinforcement-Qualia Assumption Reasonable?
	Learning from Reinforcement and Inhibition
	Policy Gradient Methods and Reinforcement Bias

	Adding Reinforcement Baselines to BAC
	The Impact of Reinforcement Baselines on Performance
	Environment Details
	Experimental Design and Gridworld Results
	Chain Results


	Conclusion and Future Directions
	Future Directions
	Closing Comments

	Notation
	Notation for Markov Decision Processes (MDPs)

	Philosophy of Mind Background: Triviality Arguments
	Implications of Markov Assumptions
	Proof of Qualia Improvement for Reward Bonuses
	Information Theory Background
	Deriving BAC With a Reinforcement Baseline
	Hyperparameter Settings
	Tabular Softmax Policy and Tabular VFA
	Compatible Features
	Other Hyperparameters


