Towards Practical Mean Bounds for Small Samples Erratum

My Phan *[†]

November 2, 2021

Lemma 2.2 in our paper [Phan et al., 2021] has the following proof:

Lemma 2.2. Let X be a random variable with CDF F and $Y \stackrel{\text{def}}{=} F(X)$, known as the probability integral transform of X. Let U be a uniform random variable on [0, 1]. Then for any $0 \le y \le 1$,

$$\mathbb{P}(Y \le y) \le \mathbb{P}(U \le y). \tag{1}$$

If F is continuous, then Y is uniformly distributed on (0, 1).

Proof. Since $\mathbb{P}(U \leq y) = y$, we will show that $\mathbb{P}(Y \leq y) \leq y$.

We will first show that if $F(x) \leq y$, then $x \leq \sup\{z : F(z) \leq y\}$. Suppose that $x > \sup\{z : F(z) \leq y\}$. Then, F(x) > y. Therefore,

$$F(x) \le y \text{ implies } x \le \sup\{z : F(z) \le y\}.$$
(2)

Now we have

$$\mathbb{P}(Y \le y) = \mathbb{P}(F(X) \le y) \tag{3}$$

$$\leq \mathbb{P}(X \leq \sup\{z : F(z) \leq y\}) \tag{4}$$

$$= F(z^*)$$
 where $z^* = \sup\{z : F(z) \le y\}$ (5)

$$\leq y.$$
 (6)

If F is continuous, Angus [1994] shows that Y is uniformly distributed on (0, 1).

The proof is incorrect because the step from Eq. 5 to Eq. 6 $F(z^*) \leq y$ is not true if F is not left-continuous. The corrected proof should be:

Proof. Let $F^{-1}(y) = \inf\{x : F(x) \ge y\}$ for 0 < y < 1 and U be an uniform random variable on (0, 1). Since F is non-decreasing and right-continuous, $F(F^{-1}(y)) \ge y$. By Angus [1994], $F^{-1}(U)$ has CDF F. For 0 < y < 1, then:

$$\mathbb{P}(Y \le y) = \mathbb{P}(F(X) \le y) \tag{7}$$

$$= \mathbb{P}(F(F^{-1}(U)) \le y) \tag{8}$$

$$\leq \mathbb{P}(U \leq y) \tag{9}$$

$$= y. \tag{10}$$

If F is continuous, Angus [1994] shows that Y is uniformly distributed on (0, 1).

=

References

- John E. Angus. The probability integral transform and related results. *SIAM Rev.*, 36(4):652–654, December 1994. ISSN 0036-1445. doi: 10.1137/1036146. URL https://doi.org/10.1137/1036146.
- My Phan, Philip S. Thomas, and Erik Learned-Miller. Towards practical mean bounds for small samples. In *Proceedings of the 38th International Conference on Machine Learning (ICML-21)*, 2021.

^{*}College of Information and Computer Sciences, University of Massachusetts Amherst. †
myphan@cs.umass.edu.