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Lemma 2.2 in our paper [Phan et al., 2021] has the following proof:

Lemma 2.2. Let X be a random variable with CDF F and Y
def
= F (X), known as the probability

integral transform of X. Let U be a uniform random variable on [0, 1]. Then for any 0 ≤ y ≤ 1,

P(Y ≤ y) ≤ P(U ≤ y). (1)

If F is continuous, then Y is uniformly distributed on (0, 1).

Proof. Since P(U ≤ y) = y, we will show that P(Y ≤ y) ≤ y.
We will first show that if F (x) ≤ y, then x ≤ sup{z : F (z) ≤ y}. Suppose that x > sup{z :

F (z) ≤ y}. Then, F (x) > y. Therefore,

F (x) ≤ y implies x ≤ sup{z : F (z) ≤ y}. (2)

Now we have

P(Y ≤ y) = P(F (X) ≤ y) (3)

≤ P(X ≤ sup{z : F (z) ≤ y}) (4)

= F (z∗) where z∗ = sup{z : F (z) ≤ y} (5)

≤ y. (6)

If F is continuous, Angus [1994] shows that Y is uniformly distributed on (0, 1).

The proof is incorrect because the step from Eq. 5 to Eq. 6 F (z∗) ≤ y is not true if F is not
left-continuous. The corrected proof should be:

Proof. Let F−1(y) = inf{x : F (x) ≥ y} for 0 < y < 1 and U be an uniform random variable on
(0, 1). Since F is non-decreasing and right-continuous, F (F−1(y)) ≥ y . By Angus [1994], F−1(U)
has CDF F . For 0 < y < 1, then:

P(Y ≤ y) = P(F (X) ≤ y) (7)

= P(F (F−1(U)) ≤ y) (8)

≤ P(U ≤ y) (9)

= y. (10)

If F is continuous, Angus [1994] shows that Y is uniformly distributed on (0, 1).
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