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Abstract

We present RobinHood, an offline contextual bandit algorithm designed to satisfy
a broad family of fairness constraints. Our algorithm accepts multiple fairness
definitions and allows users to construct their own unique fairness definitions for the
problem at hand. We provide a theoretical analysis of RobinHood, which includes
a proof that it will not return an unfair solution with probability greater than a
user-specified threshold. We validate our algorithm on three applications: a user
study with an automated tutoring system, a loan approval setting using the Statlog
German credit data set, and a criminal recidivism problem using data released
by ProPublica. To demonstrate the versatility of our approach, we use multiple
well-known and custom definitions of fairness. In each setting, our algorithm is
able to produce fair policies that achieve performance competitive with other offline
and online contextual bandit algorithms.

1 Introduction

Machine learning (ML) algorithms are increasingly being used in high-risk decision making settings,
such as financial loan approval [7], hiring [37], medical diagnostics [12], and criminal sentencing [3].
These algorithms are capable of unfair behavior, and when used to guide policy and practice, can cause
significant harm. This is not merely hypothetical: ML algorithms that influence criminal sentencing
and credit risk assessment have already exhibited racially-biased behavior [3; 4]. Prevention of unfair
behavior by these algorithms remains an open and challenging problem [14; 20; 24]. In this paper,
we address issues of unfairness in the offline contextual bandit setting, providing a new algorithm,
designed using the recently proposed Seldonian framework [47] and called RobinHood, which is
capable of satisfying multiple fairness definitions with high probability.

Ensuring fairness in the bandit setting is an understudied problem. While extensive research has
been devoted to studying fairness in classification, recent work has shown that the decisions made by
fair ML algorithms can affect the well-being of a population over time [34]. For example, criminal
sentencing practices affect criminal recidivism rates, and loan approval strategies can change the
amount of wealth and debt in a population. This delayed impact indicates that the feedback used
for training these algorithms or defining fairness is more evaluative in nature, i.e., training samples
quantify the (delayed) outcome of taking a particular action given a particular context. Therefore, it
is important that fairness can be ensured for methods that are designed to handle evaluative feedback,
such as contextual bandits. For example, instead of predicting the likelihood of violent recidivism,
these methods can consider what actions to take to minimize violent recidivism.

Within the bandit setting, prior work has mostly focused on ensuring fairness in the online setting [24;
25; 27; 35], in which an agent learns the quality of different actions by interacting with the system of
interest. However, for many fairness applications, e.g., medical treatment suggestion [29], the online
setting is not feasible, as direct interaction might be too costly, risky, or otherwise unrealistic. Instead,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



these problems can be framed in the offline bandit setting, where a finite amount of data is collected
from the system over time and then used by the agent to construct a fair solution.

Issues of ensuring fairness in the offline contextual bandit setting are similar to those in other ML
settings. For instance, contextual bandit algorithms need to manage the trade-off between performance
optimization and fairness. Ideally, these algorithms should also be capable of handling a large set of
user-defined fairness criteria, as no single definition of fairness is appropriate for all problems [16].
Importantly, when it is not possible to return a fair solution, i.e., when fairness criteria are in conflict,
or when too little data is present, the algorithm should indicate this to the user. We allow our algorithm,
RobinHood, to return No Solution Found (NSF) in cases like this, and show that if a fair solution does
exist, the probability RobinHood returns NSF goes to zero as the amount of available data increases.

In summary, we present the first Seldonian algorithm for contextual bandits. Our contributions
are: 1) we provide an offline contextual bandit algorithm, called RobinHood, that allows users to
mathematically specify their own notions of fairness, including combinations of fairness definitions
already proposed by the ML community, and novel ones that may be unique to the application of
interest; 2) we prove that RobinHood is (quasi-)Seldonian: that it is guaranteed to satisfy the fairness
constraints defined by the user with high probability, 3) we prove that if a fair solution exists, as
more data is provided to RobinHood, the probability it returns NSF goes to zero; and 4) we evaluate
RobinHood on three applications: a tutoring system in which we conduct a user study and consider
multiple, unique fairness definitions, a loan approval setting in which well-known fairness definitions
are applied, and criminal recidivism. Our work complements fairness literature for classification
(e.g., [1; 8; 14; 50]), contextual bandits (e.g., [24; 25; 35; 14; 27; 22]), and reinforcement learning
(e.g., [40; 49]), as described in Section 7.

2 Contextual Bandits and Offline Learning

This section defines a contextual bandit, or agent, which iteratively interacts with a system. At each
iteration ι ∈ {1, 2, ...}, the agent is given a context, represented as a random variable Xι ∈ Rν for
some ν. We assume that the contexts during different iterations are independent and identically
distributed (i.i.d.) samples from some distribution, dX . Let A be the finite set of possible actions that
the agent can select. The agent’s policy, π : Rν × A → [0, 1] characterizes how the agent selects
actions given the current context: π(x, a) = Pr(Aι = a|Xι = x). Once the agent has chosen an
action, Aι, based on context Xι, it receives a stochastic real-valued reward, Rι. We assume that the
conditional distribution of Rι given Xι and Aι is given by dR, i.e., Rι ∼ dR(Xι, Aι, ·). The agent’s
goal is to choose actions so as to maximize the expected reward it receives.

For concreteness, we use a loan approval problem as our running example. For each loan applicant
(iteration ι), a single action, i.e., whether or not the applicant should be given a loan, is chosen. The
resulting reward is a binary value: 1 if the loan is repaid and −1 otherwise. The agent’s goal using
this reward function is to maximize the expected number of loan repayments.

This paper focuses on enforcing fairness in the offline setting, where the agent only has access to a
finite amount of logged data, D, collected from one or more different policies. Policies used to collect
logged data are known as behavior policies. For simplicity of notation, we consider a single behavior
policy, πb. D consists of the observed contexts, actions, and rewards: D = {(Xι, Aι, Rι)}mι=1, where
m is the number of iterations for which D was collected, and where Aι ∼ πb(Xι, ·).

The goal in the offline setting is to find a policy, π′, which maximizes r(π′) := E[Rι|Aι ∼ π′(Xι, ·)]
using samples fromD only. Algorithms that solve this problem are called offline (or batch) contextual
bandit algorithms. At the core of many offline contextual bandit algorithms is an off-policy estimator,
r̂, which takes as inputs D and a policy to be evaluated, πe, in order to produce an estimate, r̂(πe, D),
of r(πe). We call r̂(πe, D) the off-policy reward of πe.

3 Problem Statement

Following the Seldonian framework for designing ML algorithms [47], our goal is to develop a fair
offline contextual bandit algorithm that satisfies three conditions: 1) the algorithm accepts multiple
user-defined fairness definitions, 2) the algorithm guarantees that the probability it returns a policy
that violates each definition of fairness is bounded by a user-specified constant, and 3) if a fair solution
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exists, the probability that it returns a fair solution (other than NSF) converges to one as the amount of
training data goes to infinity. The first condition is crucial because no single definition of fairness is
appropriate for all problems [16]. The second condition is equally important because it allows the
user to specify the necessary confidence level(s) for the application at hand. However, if an algorithm
only satisfies the first two conditions, this does not mean it is qualitatively helpful. For example, we
can construct an algorithm that always returns NSF instead of an actual solution—this technically
satisfies 1) and 2), but is effectively useless. Ideally, if a fair solutions exists, a fair algorithm should
be able to (given enough data) eventually find and return it. We call this property consistency and
show in Section 5 that RobinHood is consistent.

Since condition 1) allows users to specify their own notions of fairness, the set of fair policies is not
known a priori. Therefore, the algorithm must reason about the fairness of policies using the available
data. We consider a policy to be either fair or unfair with respect to condition 2). For example, we
may say that a lending policy is fair if for all pairs of applicants who are identical in every way except
race, the policy takes the same action, i.e., approving or denying the loan for both. This criterion is
known as causal discrimination (with respect to race) [17; 30]. Then, a policy that adheres to this
definition is fair, and a policy that violates this definition is unfair. The algorithm that produces a
policy from data must ensure that, with high probability, it will produce a policy that is fair. Note that
the setting in which each action is fair or unfair can be captured by this approach by defining a policy
to be fair if and only if the probability it produces unfair actions is bounded by a small constant.

Formally, assume that policies are parameterized by a vector θ ∈ Rl, so that π(Xι, ·, θ) is the
conditional distribution over action Aι given Xι for all θ ∈ Rl. LetD be the set of all possible logged
data sets and D be the logged data (a random variable, and the only source of randomness in the
subsequent equations). Let a : D → Rl be an offline contextual bandit algorithm, which takes as
input logged data and produces as output the parameters for a new policy.

Let gi : Rl → R be a user-supplied function, called a constraint objective, that measures the fairness
of a policy. We adopt the convention that if gi(θ) ≤ 0 then the policy with parameters θ is fair, and
if gi(θ) > 0 then the policy with parameters θ is unfair. Our goal is to create a contextual bandit
algorithm that enforces k behavioral constraints, where the ith constraint has the form:

Pr
(
gi(a(D)) ≤ 0

)
≥ 1− δi, (1)

where δi ∈ [0, 1] is the required confidence level for the ith constraint. Together, the constraint
objective gi and the confidence level δi constitute a behavioral constraint. Any algorithm that
satisfies (1) is called Seldonian, or quasi-Seldonian if it relies on reasonable but false assumptions,
such as appeals to the central limit theorem [47].

Some constraints might be impossible to enforce if, for example, the user provides conflicting
constraints [28], or if δi cannot be established given the amount of data available. Algorithms that
provide high-probability guarantees are often very conservative [26]; if only a small amount of data
is available, it may be impossible for the algorithm to produce a policy that satisfies all behavioral
constraints with sufficiently high confidence. In such cases, RobinHood returns NSF to indicate that it
is unable to find a fair solution. When this occurs, the user has control over what to do next. For some
domains, deploying a known fair policy may be appropriate; for others, it might be more appropriate
to issue a warning and deploy no policy. We define gi(NSF) = 0, so that NSF is always fair.

Notice that the creation of an algorithm that satisfies each of the three desired conditions is difficult.
Condition 1) is difficult to enforce because the user must be provided with an interface that allows
them to specify their desired definition of fairness without requiring the user to know the underlying
data distribution. Condition 2) is difficult to achieve because of the problem of multiple comparisons—
testing b solutions to see if they are fair equates to performing b hypothesis tests, which necessitates
measures for avoiding the problems associated with running multiple hypothesis tests using a single
data set. Condition 3) is particularly difficult to achieve in conjunction with the second condition—
the algorithm must carefully trade-off the maximizing expected reward with predictions about the
outcomes of future hypothesis tests when picking the candidate solution that it considers returning.

4 RobinHood Algorithm

This section presents RobinHood, our fair bandit algorithm. At a high level, RobinHood allows
users to specify their own notions of (un)fairness based on statistics related to the performance of a
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potential solution. It then uses concentration inequalities [36] to calculate high-probability bounds on
these statistics. If these bounds satisfy the user’s fairness criteria, then the solution is returned.

Constructing Constraint Objectives. Users can specify their desired fairness definitions with
constraint objectives, {gi}ki=1, that accept a parameterized policy θ as input and produce a real-valued
measurement of fairness. For simplicity of notation, we remove the subscript i and discuss the
construction of an arbitrary constraint objective, g. In our loan approval example, we might define
g(θ) = CDR(θ)−ε, where CDR(θ) indicates the causal discrimination rate of θ. However, computing
g for this example requires knowledge of the underlying data distribution, which is typically unknown.
In practice, each g might depend on distributions that are unavailable, so it is unreasonable to assume
that the user can compute g(θ) for an arbitrary g.

Instead of explicitly requiring g(θ), we could instead assume that the user is able to provide unbiased
estimators for g. However, this is also limiting because it may be difficult to obtain unbiased
estimators for certain constraint objectives, e.g., unbiased estimators of the standard deviation of a
random variable can be challenging (or impossible) to construct. Importantly, our algorithm does not
explicitly require an unbiased estimate of g(θ). Instead, it computes high-probability upper bounds
for g(θ). Even if the random variable of interest does not permit unbiased estimators, if it is a function
of random variables for which unbiased estimators exist, then valid upper bounds can be computed.

With this in mind, we propose a general interface in which the user can define g by combining d
real-valued base variables, {zj}dj=1, using addition, subtraction, division, multiplication, absolute
value, maximum, inverse, and negation operators. Base variables may also be multiplied and added
to constants. Instead of specifying the base variable zj(θ) explicitly, we assume the user is able to
provide an unbiased estimator, ẑj , of each base variable: zj(θ) := E[Average(ẑj(θ,D))]. That is,
each function ẑj takes a parameterized policy θ and a data set D and returns an arbitrary number of
i.i.d. outputs, ẑj(θ,D). In the definition of zj , the average of the outputs is taken so zj(θ) is a scalar.

A base variable estimator ẑj for our loan approval example could be defined as an integer indicating
whether or not causal discrimination is satisfied for applicable data points in D. To do this, ẑ(θ,D)
should produce 1 if for points h and f that differ only by race, θ chooses the same action, and 0
otherwise. Defining ẑ in this way gives us an unbiased estimate of the CDR. We could then define
g(θ) = z(θ)− ε, requiring the CDR to be within some value ε, with probability at least 1− δ.

There may be some base variables that the user wants to use when defining fairness that do not have
unbiased estimators, e.g., standard deviation. To handle these cases, we also allow the user to use base
variables for which they can provide high-probability upper and lower bounds on z(θ) given any θ
and data D. As an example, in Appendix G we show how the user can define a base variable to be the
largest possible expected reward for any policy with parameters θ in some set Θ, i.e., maxθ∈Θ r(θ).

In summary, users can define constraint objectives that capture their desired definitions of fairness.
Constraint objectives are mathematical expressions containing operators (including summation,
division, and absolute value) and base variables (any variable, including constants, for which high-
confidence upper and lower bounds can be computed). In Section 6, we construct constraint objectives
for different fairness definitions and find solutions that are fair with respect to these definitions. In
Appendix A, we provide more examples of how to construct constraint objectives for other common
fairness definitions used in the ML community.

Pseudocode. RobinHood (Algorithm 1) has three steps. In the first step, it partitions the training
data into the candidate selection set Dc and the safety set Ds. In the second step, called candidate
selection, RobinHood uses Dc to construct a candidate policy, θc ∈ Θ, that is likely to satisfy the
third step, called the safety test, which ensures that the behavioral constraints hold. Algorithm 1
presents the RobinHood pseudocode. Because the candidate selection step is constructed with the
safety step in mind, we first discuss the safety test, followed by candidate selection. Finally, we
summarize the helper methods used during the candidate selection and safety test steps.

The safety test (lines 3–4) applies concentration inequalities using Ds to produce a high-probability
upper bound, Ui := Ui(θc, Ds), on gi(θc), the value of the candidate solution found in the candidate
selection step. More concretely, Ui satisfies Pr(gi(θc) ≤ Ui) ≥ 1− δi. If Ui ≤ 0, then θc passes the
safety check and is returned. Otherwise, RobinHood returns NSF.

The goal of the candidate selection step (line 2) is to find a solution, θc, that maximizes expected
reward and is likely to pass the safety test. Specifically, θc is found by maximizing the output of
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Algorithm 1 RobinHood (D,∆ = {δi}ki=1, Ẑ{ẑij}dj=1, E = {Ei}ki=1)

1: Dc, Ds = partition(D)

2: θc = arg maxθ∈Θ CandidateUtility(θ,Dc,∆, Ẑ, E) . Candidate Selection
3: [U1, ..., Uk] = ComputeUpperBounds(θc, Ds,∆, E , inflateBounds=False) . Safety Test
4: if Ui ≤ 0 for all i ∈ {1, ..., k} then return θc else return NSF

Algorithm 2 CandidateUtility(θ,Dc,∆, Ẑ, E)

1: [Û1, ..., Ûk] = ComputeUpperBounds(θ,Dc,∆, Ẑ, E , inflateBounds=True)
2: rmin = min

θ′∈Θ
r̂(θ′, Dc)

3: if Ûi ≤ −ξ for all i ∈ {1, ..., k} then return r̂(θ,Dc) else return rmin −
k∑
i=1

max{0, Ûi}

Algorithm 2, which uses Dc to compute an estimate, Ûi, of Ui. The same concentration inequality
used to compute Ui in the safety test is also used to compute Ûi, e.g., Hoeffding’s inequality is used
to compute Ui and Ûi. Multiple comparisons are performed on a single data set (Dc) during the
search for a solution. This leads to the candidate selection step over-estimating its confidence that
the solution it picks will pass the safety test. In order to remedy this issue, we inflate the width of
the confidence intervals used to compute Ûi (this is indicated by the Boolean inflateBounds in
the pseudocode). Another distinction between the candidate selection step and the safety test is that,
in Algorithm 2, we check whether Ûi ≤ −ξ for some small constant ξ instead of 0. This technical
assumption is required to ensure the consistency of RobinHood, and is discussed in Appendix E.

We define the input E = {Ei}ki=1 in the pseudocode to be analytic expressions representing the
constraint objectives {gi}ki=1. For example, if we had the constraint objective g(θ) = z1(θ)× z2(θ) +
z3(θ) − ε, then E = E1 × E2 + E3 − ε, where E1 = z1(θ), E2 = z2(θ), and E3 = z3(θ) . Each
expression Ei is used in ComputeUpperBounds (Algorithm 3) and related helper functions, the
pseudocode for which is located in Appendix B. At a high level, these helper functions recurse
through sub-expressions of each Ei until a base variable is encountered. Once this occurs, real-valued
upper and lower (1 − δi)-confidence bounds on the base variable’s estimators are computed and
subsequently propagated through Ei. Using our example from earlier, bounds for E1,2 = E1 ×E2

would first be computed, followed by bounds for E1,2 + E3.

5 Theoretical Analyses

This section proves that given reasonable assumptions about the constraint objectives, {gi(θ)ki=1},
and their sample estimates, {Average(ĝi(θ,D))}ki=1, 1) RobinHood is guaranteed to satisfy the
behavioral constraints and 2) RobinHood is consistent.

To prove that RobinHood is Seldonian [47]: it is guaranteed to satisfy the behavioral constraints, i.e.,
that RobinHood returns a fair solution with high probability, we show that the safety test only returns
a solution if the behavioral constraints are guaranteed to be satisfied. This follows from the use of
concentration inequalities and transformations to convert bounds on the base variables, zj(θc), into a
high-confidence upper bound, Ui, on gi(θc). We therefore begin by showing (in Appendix C) that the
upper bounds computed by the helper functions in Appendix B satisfy Pr(gi(θ) > Ui) ≤ δi for all
constraint objectives. Next, we show that the behavioral constraints are satisfied by RobinHood. We
denote RobinHood as a(D), a batch contextual bandit algorithm dependent on data D.

Theorem 1 (Fairness Guarantee). Let {gi}ni=0 be a sequence of behavioral constraints, where
gi : Θ→ R, and let {δi}ni=0 be a corresponding sequence of confidence thresholds, where δi ∈ [0, 1].
Then, for all i, Pr(gi(a(D)) > 0) ≤ δi. Proof. See Appendix D.

We define an algorithm to be consistent if, when a fair solution exists, the probability that the
algorithm returns a solution other than NSF converges to 1 as the amount of training data goes to
infinity. We state this more formally in Theorem 2.
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Theorem 2 (Consistency). If Assumptions 1 through 5 (specified in Appendix E) hold, then
lim
n→∞

Pr(a(D) 6= NSF, g(a(D)) ≤ 0) = 1. Proof. See Appendix E.

In order to prove Theorem 2, we first define the set Θ̄, which contains all unfair solutions. At a high
level, we show that the probability that θc satisfies θc 6∈ Θ̄ converges to one as n→∞. To establish
this, we 1) establish the convergence of the confidence intervals for the base variables, 2) establish
the convergence of the candidate objective for all solutions, and 3) establish the convergence of the
probability that θc 6∈ Θ̄. Once we have this property about θc, we establish that the probability of the
safety test returning NSF converges to zero as n→∞.

In order to build up the properties discussed above, we make a few mild assumptions, which we
summarize here. To establish 1), we assume that the confidence intervals on the base variables
converge almost surely to the true base variable values for all solutions. Hoeffding’s inequality and
Student’s t-test are examples of concentration inequalities that provide this property. We also assume
that the user-provided analytic expressions, E , are continuous functions of the base variables. With
the exception of division, all operators discussed in Section 4 satisfy this assumption. In fact, this
assumption is still satisfied for division when positive base variables are used in the denominator. To
establish 2) and 3), we assume that the sample off-policy estimator, r̂, converges almost surely to
r, the actual expected reward. This is satisfied by most off-policy estimators [46]. We also make
particularly weak smoothness assumptions about the output of Algorithm 2, which only requires the
output of Algorithm 2 to be smooth across a countable partition of Θ. Lastly, we assume that at least
one fair solution exists and that this solution is not on the fair-unfair boundary.

Note that consistency does not provide bounds on the amount of data necessary for the return of a fair
solution. Although a high-probability bound on how much data our algorithm requires to return a
solution other than NSF would provide theoretical insights into the behavior of our algorithm, our
focus is on ensuring that our algorithm can return solutions other than NSF using practical amounts
of data on real problems. Hence, in the following section we conduct experiments with real data
(including data that we collected from a user study).

6 Empirical Evaluation

We apply RobinHood to three real-world applications: tutoring systems, loan approval, and criminal
recidivism. Our evaluation focuses on the three research questions. 1) When do solutions returned by
RobinHood obtain performance comparable to those returned by state-of-the-art methods? 2) How
often does RobinHood return an unfair solution, as compared to state-of-the-art methods? 3) In
practice, how often does RobinHood return a solution besides NSF?

6.1 Experimental Methodology and Application Domains

To the best of our knowledge, no other fair contextual bandit algorithms have been proposed in
the offline setting. We therefore compare to two standard offline methods: POEM [44] and Offset
Tree [6]. In Appendix F, we also compare to Rawlsian Fairness, a fair online contextual bandit
framework [23]. Existing offline bandit algorithms are not designed to adhere to multiple, user-
defined fairness constraints. One seemingly straightforward fix to this is to create an algorithm that
uses all of the data, D, to search for a solution, θ, that maximizes the expected reward (using a
standard approach), but with the additional constraint that an estimate, ĝ(θ,D), of how unfair θ is, is
at most zero. That is, this method enforces the constraint ĝ(θ,D) ≤ 0 without concern for how well
this constraint generalizes to future data. We construct this method, called NaïveFairBandit, as a
baseline for comparison. In RobinHood and NaïveFairBandit, we use Student’s t-test to calculate
upper and lower confidence bounds on base variables for a particular θ.

Note that Algorithm 1 relies on the optimization algorithm (and implicitly, the feasible set) chosen
by the user to find candidate solutions. If the user chooses an optimization algorithm incapable
of finding fair solutions, e.g., they choose a gradient method when the fairness constraints defined
make it difficult or impossible for it to find a solution, then RobinHood will return NSF. We chose
CMA-ES [19] as our optimization method. Further implementation details, including pseudocode for
NaïveFairBandit, can be found in Appendix F.
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Tutoring Systems. Our first set of experiments is motivated by intelligent tutoring systems (ITSs),
which aim to teach a specific topic by providing personalized and interactive instruction based on a
student’s skill level [38]. Such adaptations could have unwanted consequences, including inequity
with respect to different student populations [13]. We conduct our experiments in the multi-armed
bandit setting—a special case of the contextual bandit setting in which context is the same for every
iteration. To support these experiments, we collected user data from the crowdsourcing marketplace
Amazon Mechanical Turk. In our data collection, users were presented with one of two different
versions of a tutorial followed by a ten-question assessment. Data including gender, assessment score,
and tutorial type was collected during the study. Let Rι be the assessment score achieved by user ι
and Sι ∈ {f, m} represent the gender of user ι. (Due to lack of data for users identifying their gender
as “other,” we restricted our analysis to male- and female-identifying users.) D was collected using a
uniform-random behavior policy. Further details are provided in Appendix F.

To demonstrate the ability of our algorithm to satisfy multiple and novel fairness criteria, we develop
two behavioral constraints for these experiments: gf (θ) := |F |−1

∑|D|
ι=0RιI(f)− E[R|f]− εf and

gm(θ) := |M |−1
∑|D|
ι=0RιI(m) − E[R|m] − εm, where |F | and |M | denote the respective number

of female- and male-identifying users, I(x) is an indicator function for the event Xι = x, where
x ∈ {f,m}, and E[R|x] is the expected reward conditioned on the event Xι = x for x previously
defined. In words, for the constraint gf to be less than 0, the expected reward for females may only
be smaller than the empirical average for females in the collected data by at most εf . The second
constraint gm is similarly defined with respect to males. Note that different values of εf and εm
can allow for improvement to female performance and decreased male performance and vice versa.
Defining the constraints in this way may be beneficial if the user is aware that bias towards a certain
group exists, and then hypothesizes that performance towards this group may need to decrease to
improve performance of a minority group, as is the case in this data set. We also highlight that a fair
policy for this experiment is one such that gf (θ) ≤ 0 and gm(θ) ≤ 0.

In our first experiment, which we call the similar proportions experiment, males and females are
roughly equally represented in D: |F | ≈ |M |. In our second ITS experiment, which we call the
skewed proportions experiment, we simulate the scenario in which females are under-represented in
the data set (and elaborate on the process for doing this in Appendix F). We perform this experiment
because 1) biased data collection is a common problem [9] and 2) methods designed to maximize
reward may do so at the expense of under-represented groups.

In the skewed proportions experiment we introduce a purposefully biased tutorial that responds
differently to users based on their gender identification in order to experiment with a setting where
unfairness is likely to occur. This tutorial provides information to male-identifying users in an
intuitive, straightforward way but gives female-identifying users incorrect information, resulting in
high assessment scores for males and near-zero assessment scores for females. The average total
score for the biased tutorial in D is higher than that of the other tutorials—because of this, methods
that optimize for performance without regard for gm and gf will often choose the biased tutorial
for deployment. In practice, a similar situation could occur in an adaptive learning system, where
tutorials are uploaded by different sources. The introduction of a bug might compel a fairness-unaware
algorithm to choose an unfair tutorial.

Loan Approval. Our next experiments are inspired by decision support systems for loan approval.
In this setting, a policy uses a set of features, which describe an applicant, to determine whether the
applicant should be approved for a loan. We use the Statlog German Credit data set, which includes a
collection of loan applicants, each one described by 20 features, and labels corresponding to whether
or not each applicant was assessed to have good financial credit [32]. A policy earns reward 1 if it
approves an applicant with good credit or denies an applicant with bad credit (the credit label of each
applicant is unobserved by the policy); otherwise the agent receives a reward of −1. We conduct two
experiments that focus on ensuring fairness with respect to sex (using the Personal Status and
Sex feature of each applicant in the data set to determine sex). Specifically, we enforce disparate
impact [51] in one and statistical parity [14] in the other. In Appendix F we define statistical parity
for this domain and discuss experimental results.

Disparate impact is defined in terms of the relative magnitudes of positive outcome rates. Let
f and m correspond to females and males and let A = 1 if the corresponding applicant was
granted a loan and A = 0 otherwise. Disparate impact can then be written as: g(θ) :=
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max {E[A|m]/E[A|f],E[A|f]/E[A|m]} − (1+ε). To satisfy this, neither males nor females may
enjoy a positive outcome rate that is more than 100ε% larger than that of the other sex.

Criminal Recidivism. This experiment uses recidivism data released by ProPublica as part of their
investigation into the racial bias of deployed classification algorithms [3]. Each record in the data
set includes a label indicating if the person would later re-offend (decile score), and six predictive
features, including juvenile felony count, age, and sex. In this problem, the agent is tasked with
producing the decile score given a feature vector of information about a person (the decile score label
of each applicant is unobserved by the policy). The reward provided to the bandit is 1 if recidivism
occurs and 0 otherwise. We apply approximate statistical parity here, where features of interest are
race (Caucasian and African American). A policy exhibits statistical parity if the probability with
which it assigns a beneficial outcome to individuals belonging to protected and unprotected classes is
equal: g(θ) := |Pr(A = 1|Caucasian)− Pr(A = 1|African American)| − ε.

6.2 Results and Discussion

Figure 1 shows our experimental results over varying training set sizes. The leftmost plots in each
row show the off-policy reward of solutions returned by each algorithm, and the middle plots show
how often solutions are returned by each algorithm. The solution rate for each baseline is 100%
because RobinHood is the only algorithm able to return NSF. The purpose of plotting the solution
rate is to determine how much data is required for solutions other than NSF to be returned by our
algorithm. The rightmost plots show the probability that an algorithm violated the fairness constraints.
The dashed line in these plots denotes the maximum failure rate allowed by the behavioral constraints
(δ = 5% in our experiments).

In all of our experiments, unless a certain amount of data is provided to NaïveFairBandit, it returns
unfair solutions at an unacceptable rate. This seems workable at first glance—one could argue that
so long as enough data is given to NaïveFairBandit, it will not violate the behavioral constraints.
In practice, however, it is not known in advance how much data is needed to obtain a fair solution.
NaïveFairBandit’s failure rate varies considerably in each experiment, and it is unclear how to
determine the amount of data necessary for NaïveFairBandit’s failure rate to remain under δ. In
essence, RobinHood is a variant of NaïveFairBandit that includes a mechanism for determining
when there is sufficient data to trust the conclusions drawn from the available data.

In some of our experiments, the failure rates of the fairness-unaware baselines (Offset Tree and
POEM) approach δ as more data is provided. To explain this behavior, note that when reward
maximization and fairness are nonconflicting, there may exist fair high-performing solutions. In the
case that only high-performing solutions meet the fairness criteria, the failure rate of these algorithms
should decrease as more data is provided. Importantly, while these baselines might be fair in some
cases, unlike RobinHood, these approaches do not come with fairness guarantees.

In the similar proportions experiment, fairness and performance optimization are nonconflicting. In
this case, RobinHood performs similarly to the state-of-the-art—it is able to find and return solutions
whose off-policy reward is comparable to the baselines. The same pattern can be seen in the loan
approval and criminal recidivism experiments. In these applications, when high-performing fair
solutions exist, RobinHood is able to find and return them. In the skewed proportions experiment,
the biased tutorial maximizes overall performance but violates the constraint objectives. As expected,
POEM and Offset Tree frequently choose to deploy this tutorial regardless of the increase in training
data, while RobinHood frequently chooses to deploy a tutorial whose off-policy reward is high (with
respect to the behavioral constraints). In summary, in each of our experiments, RobinHood is able to
return fair solutions with high probability given a reasonable amount of data.

7 Related Work

Significant research effort has focused on fairness-aware ML, particularly classification algorithms [1;
8; 14; 50], measuring fairness in systems [17], and defining varied notions of fairness [33; 17; 14].
Our work complements these efforts but focuses on the contextual bandit setting. This section
describes work related to our setting, beginning with online bandits.

Recall (from Section 2) that in the standard online bandit setting, an agent’s goal is to maximize
expected reward, ρ(a) = E[Rι|Aι = a], as it interacts with a system. Over time, estimates of ρ are
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Figure 1: Each row presents results for different experiments generated over 30, 30, 50, and 50 trials respectively.
Top row: tutoring sytsem, similar proportions with εm = 0.5, εf = 0.0. Second row: tutoring system, skewed
proportions with εm = 0.5, εf = 0.0. Third row: enforcing disparate impact in the loan approval application
with ε = −0.8. Fourth row: enforcing statistical parity in the criminal recidivism application with ε = 0.1. The
dashed line denotes the maximum failure rate allowed by the behavioral constraints (δ = 5% in our experiments).

computed, and the agent must trade-off between exploiting, i.e., taking actions that will maximize ρ,
and exploring, i.e., taking actions it believes are suboptimal to build a better estimate of ρ for taking
that action. Most fairness-unaware algorithms eventually learn a policy that acceptably maximizes ρ,
but there are no performance guarantees for policies between initial deployment and the acceptable
policy, i.e., while the agent is exploring. These intermediate polices may choose suboptimal actions
too often—this can be problematic in a real-world system, where choosing suboptimal actions could
result in unintended inequity. In effect, fairness research for online methods has mostly focused on
conservative exploration [24; 25; 35; 14; 27; 22]. The notion of action exploration does not apply in
the offline setting because the agent does not interact iteratively with the environment. Instead, the
agent has access to data collected using previous policies not chosen by the agent. Because of this,
fairness definitions involving action exploration are not applicable to the offline setting.

Related work also exists in online metric-fairness learning [18; 41], multi-objective contextual bandits
(MOCB) [45; 48], multi-objective reinforcement learning (MORL) [40; 49], and data-dependent
constraint satisfaction [11; 47]. RobinHood can address metric-based definitions of fairness that can
be quantitatively expressed using the set of operations defined in Section 4. MOCB and MORL largely
focus on approximating the Pareto frontier to handle multiple and possibly conflicting objectives,
though a recent batch MORL algorithm proposed by Le et al. [31] is an exception to this trend—this
work focuses on problems of interest (with respect to fair policy learning) that can be framed as
chance-constraints, and assumes the convexity of the feasible set Θ. RobinHood represents a different
approach to the batch MOCB setting with high probability constraint guarantees. The interface for
specifying fairness definitions (presented in Section 4) makes RobinHood conceptually related to
algorithms that satisfy data-dependent constraints [11]. In fact, RobinHood can more generally be
thought of as an algorithm that ensures user-defined properties or behaviors with high probability, e.g.,
properties related to fairness. Finally, RobinHood belongs to a family of methods called Seldonian
algorithms [47]. This class of methods satisfies user-defined safety constraints with high probability.
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