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Abstract—Functional Electrical Stimulation (FES)
employs neuroprostheses to apply electrical current to the
nerves and muscles of individuals paralyzed by spinal cord
injury to restore voluntary movement. Neuroprosthesis
controllers calculate stimulation patterns to produce
desired actions. To date, no existing controller is able
to efficiently adapt its control strategy to the wide range
of possible physiological arm characteristics, reaching
movements, and user preferences that vary over time.
Reinforcement learning (RL) is a control strategy that
can incorporate human reward signals as inputs to allow
human users to shape controller behavior. In this paper,
ten neurologically intact human participants assigned
subjective numerical rewards to train RL controllers,
evaluating animations of goal-oriented reaching tasks
performed using a planar musculoskeletal human arm
simulation. The RL controller learning achieved using
human trainers was compared with learning accomplished
using human-like rewards generated by an algorithm;
metrics included success at reaching the specified target;
time required to reach the target; and target overshoot.
Both sets of controllers learned efficiently and with
minimal differences, significantly outperforming standard
controllers. Reward positivity and consistency were found
to be unrelated to learning success. These results suggest
that human rewards can be used effectively to train
RL-based FES controllers.

Index Terms— Artificial intelligence, human-machine
teaming, Functional Electrical Stimulation, rehabilitation,
reinforcement learning.
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|. INTRODUCTION

UNCTIONAL Electrical Stimulation (FES) involves the
application of electrical current to nerves and muscles to
restore voluntary movement to individuals paralyzed by spinal
cord injury (SCI) [1], [2]. Our work aims to restore upper-
extremity function to those affected by high-level SCI, who are
paralyzed below the neck. Neuroprostheses consist of the stim-
ulating hardware and control software that generate movement.
FES control algorithms calculate muscular stimulation patterns
required to achieve desired movements. Effective FES control
algorithms are challenging to develop, due to a wide range
of pathological physiological characteristics of individuals
with SCI, including spasticity [3] and joint contractures [4].
The arm is particularly difficult to control because a
large variety of reaching movements must be restored.
Unlike the lower extremity, which typically requires cyclical
(e.g. walking) or stereotyped (e.g. sit-to-stand) stimulation
patterns, the upper extremity must be controlled using a
wide range of uniquely specified stimulation patterns. Con-
trollers have been developed for a range of upper-extremity
functions including elbow extension [5], wrist stabiliza-
tion [6], and hand grasp [7]. The feedback-controlled hybrid
neuromuscular electrical stimulation (NMES)-exoskeleton of
Klauer et al. [29] shows robust adaptation to new users and
use conditions; it employs lockable joints so that only one
joint is controlled at a particular time. In contrast, the present
work aims to control two joints simultaneously to achieve
the specified reaching movements, and does not employ an
exoskeleton; this method is more similar to normal phys-
iological function and is likely to produce more natural-
looking movements. Iterative learning control (ILC) [30]-[32]
achieves accurate performance for FES-related control of the
triceps and anterior deltoid muscles when tested on a set
of unimpaired test subjects, although this method requires
repetitive learning to track specific, pre-defined trajectories
and does not perform well unless tasks are very similar to
those used for training [33], [34]. In contrast, for the present
work that aims to restore a diversity of arm movements for
FES applications, it will be important to train on a wide range
of tasks to ensure that the resulting controller is generalizable.
ILC has been shown to work well to control planar arm
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trajectories via triceps stimulation in hemiparetic stroke
patients [34]-[36]; however, this method involved 18 hours of
training per subject, and efficiency in controller training is an
important consideration when aiming to develop an effective
and practical control method. Despite the progress that has
been made, no upper-extremity FES controller has been able
to effectively and efficiently produce natural-looking reaching
movements for a multiple-joint FES arm that includes the
shoulder. Control techniques that are flexible and able to adapt
to time-variant and user-specific physiological properties and
user preferences will be needed to achieve this goal.

Reinforcement learning (RL) describes a class of control
algorithms that learn by trial-and-error search to maximize a
numerical reward signal by mapping situations to actions [8].
The RL controller explores a range of actions and, based
upon the rewards that result, selects future actions according
to these experiences. Interaction with a dynamic environment
is fundamental to the RL controller training process [9].
Micera et al. [37] developed a fuzzy logic controller that
uses RL to tune parameters for control of a simulated
elbow-like system. Sigmoidal and sinusoidal trajectories were
successfully tracked in the sagittal plane using this controller.
An action-space constraint and relaxation technique was
employed by Izawa et al. [38] to accelerate the learning
of their simulated planar arm controller, and to facilitate
stable learning. However, between 2,500 and 8,000 train-
ing trials, depending on arm stiffness, were required
to achieve significant learning. In human FES systems,
this large number of trials to achieve good controller
behavior would be unacceptably high. Thomas [21] and
Thomas et al. [20], [22] applied RL control to a planar arm
simulation, achieving good performance within a few hundred
episodes of training.

One feature of RL control is that it can incorporate human-
generated reward signals to shape controller learning. Human-
generated rewards have the potential to tailor RL controller
performance to the preferences of each individual user, which
may change over time. Rewards provided by human users have
also been shown to increase RL controller learning speed for
some domains [10]. RL controller training may benefit from
human-generated reward signals because human trainers are
able to perceive high-level performance characteristics that
may be difficult for a computer program to recognize [11],
such as planning long-term strategy or judging the natural
appearance of simulated arm movements.

RL control shaped by human rewards has been explored
for a number of systems with continuous state and action
spaces. Vien and Ertel [39] and Vien et al. [40] demonstrated
successful learning on two computer games with continuous
state and action spaces, via human feedback signals using
the ACTAMER (Actor-Critic Training an Agent Manually
via Evaluative Reinforcement) framework, which employs
function approximation of this signal. Continuous actor-critic
RL with a sparse, human-generated training signal was used by
Pilarski et al. [41] to successfully complete a 2-joint velocity
control task in a simulated robotic arm. Most recently,
Mathewson and Pilarski [42] compared the wuse of
environmentally-derived rewards, human-generated rewards,

and the combination of both to control a humanoid robot.
They found that rewards assigned by humans augmented
performance beyond rewards strictly derived from the
environment.

Although the use of human rewards has the potential to
improve RL controller learning, they also represent a challeng-
ing addition to RL systems. While computers can update state
information and generate rewards on a millisecond timescale,
humans typically have a reaction time of 0.3 to 0.8+ s to press
a button (as when assigning a reward) when responding to a
visual stimulus [49]. Such delays in rewards necessitate that
the RL controller assess to how much of the preceding action
the reward should be applied. This temporal credit assignment
problem [8] is a challenge of RL control that is amplified
when human-generated rewards, with their significant delays,
are used.

Furthermore, human attention is finite, and humans are not
able to train the RL controller by a constant sequence of
viewing controller action and immediately assigning a reward;
such an all-consuming training protocol would not permit
useful integration into the daily life of the FES user. Instead,
RL controllers should be designed to use sparse rewards
from human trainers to effectively learn useful policies. While
decreasing the frequency of rewards has been shown to slow
learning speed [21], [43], techniques such as increasing the
actor’s learning rate [21] have been found to compensate for
the slowed learning that results from sparse rewards.

To our knowledge, the use of human-generated rewards to
train RL controllers for FES human arm control has not yet
been explored. This control problem is distinct from previous
work on RL control with human rewards for continuous-state,
continuous action systems in that the planar arm model we
employ in the present work requires 6 nonlinear, redundant
muscles to be independently controlled. This control challenge
is significantly more complex than in other systems involv-
ing the control of robots, the properties of which are more
predictable.

In our previous work [12], [27], we used sparse, delayed,
computer-generated pseudo-human rewards to shape RL con-
trol and demonstrated that these rewards could result in sig-
nificant RL controller learning of goal-oriented reaching tasks
for a simulated planar human arm. However, whether rewards
generated by humans, which will be less consistent [24] and
may vary subjectively over time [28], will train the controllers
as effectively as computer-generated rewards remains an open
question. Extending that work, in this study, ten neurologically
intact human subjects generate reward signals to train an actor-
critic RL architecture to control a planar arm.

These experiments aim to determine, for the control of goal-
oriented reaching movements using a planar simulated human
arm system, whether any fundamental similarities or differ-
ences exist when RL controllers trained using a population of
human subjects are compared against controllers trained using
a pseudo-human reward-generation algorithm [12]. The rela-
tive advantages of each training method will be determined,
and based upon our findings, we will make recommendations
for training actor-critic RL controllers for the planar arm
system.



1894

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 25, NO. 10, OCTOBER 2017

Y

Fig. 1. Top view of the biomechanical arm model. The Y-axis is
anterior. Movements occur in the sagittal plane with no gravity, as
if sliding across a frictionless tabletop. Antagonistic muscle pairs are
listed as (flexor, extensor): monoarticular shoulder muscles: (A: anterior
deltoid, B: posterior deltoid); monoarticular elbow muscles: (C: brachialis,
D: triceps brachii (short head)); biarticular muscles: (E: biceps brachii;
F: triceps brachii (long head)). ¢1 and ¢, are shoulder and elbow joint
angles, respectively. Adapted from [13] and [26]. Moment arm values:
dqy =30cm, dy> =50 cm[12].

Il. METHODS

A. Experimental Setup

A planar biomechanical human arm and shoulder model
implemented in the C language was used for all experi-
ments [13], [27]. This model is named the Dynamic Arm
Simulator 1 (DAS1) (Fig. 1). The model includes two seg-
ments (upper arm and forearm), two joints (shoulder and
elbow), and 6 muscles (4 monoarticular and 2 biarticular).
Muscles are modeled according to the Hill conven-
tion [14], [15], and are represented by two first-order ordinary
differential equations [16]. Refer to [13] and [27] for additional
model details.

The three flexor muscles of the arm model were weakened
by 50% to simulate muscular atrophy [17], [18]. This produced
a compromised level of baseline performance upon which the
RL controllers had to improve.

The continuous actor-critic RL controller [19] (Algorithm 1)
using artificial neural networks (ANNs) to represent the
actor and critic was implemented for this arm model using
C++ [20]-[22]. Fully connected feed-forward ANNs were
used; the actor consists of 22 neurons (6 input, 10 hidden,
6 output), and the critic consists of 17 neurons (6 input,
10 hidden, 1 output), for a total of 39 neurons.

The ANN actor and critic weight vectors are initialized to
the PD controller’s actor policy, followed by initialization of
the critic’s weight vector by training with the actor’s learning
rate set to 0. Subsequently, eligibility traces, which record on a
short-term basis learning-related events including visited states
and performed actions, are initialized to 0. For each episode,
the state of the system is initialized, muscle stimulation values
are calculated and applied to the arm model, 20 ms is allowed

Algorithm 1 The Continuous Actor-Critic Reinforcement
Learning Algorithm [19], [21]
1: Initialize ANN actor and ANN critic weight vectors
g and w, via error backpropagation supervised learning to
PD controller’s actor policy. Then, train with actor’s learning
rate = O to initialize critic’s weight vector.
2: Initialize eligibility values to zero: &, = 0
3: Repeat for each episode (reaching task)

4: s < initial state of the system
5 Repeat for each 20 ms time step within episode
6: Calculate muscle stimulation levels a: a < 7 (s)
+ n(t)
7: Apply muscle stimulations to arm model
8: Allow 20 ms to elapse
9: Calculate next state s’ and reward: rrorq; =
T Automated + ¥ Human
10: Compute TD error:
1 At
oty=r)+ — [(1 - —)V(@®) -V - At):|
At T
11: Update critic eligibility traces:
oV (s(t);
Kei(t) = —e;(t) + M
5Wi
12: Update actor:
. SA(s(1); wh)
Wit = nadon(n =
ow;
13: Update critic weights: wi = ncd(t)e; (t)
14: Until maximum episode length reached

15: Until maximum run length reached

Symbols are defined as follows: 7 (s): actor’s policy; n(t):
explorational noise (defined in Equation 3); r(t): reward at
timestep t;

V(t): evaluation of the value function at timestep t;

x : constant to scale eligibility traces over time; #a: actor
learning rate; #c: critic learning rate.

to elapse, and the next state and reward are calculated (Fig. 2).
TD error is calculated, the eligibility traces are updated, and
updates are made to the actor and to the critic weights.

The actor generates actions according to

u(?) =S(A(s(t); wA)—l—an(t)) (1)

where u(t) is a set of six continuous muscle stimulation values
ranging from 0.00 to 1.00 (indicated as Action(6) in Fig. 2),
A() is the action-selection function, w* is the vector of actor
parameters encoding the policy, o is a constant that scales
exploration, n(t) defines explorational noise:

tan(t) = —n(t) + N(t) 2

wherer,, is a time constant, and N(¢) is normal Gaussian
noise having the same dimension as the action space. S is
the monotonically increasing logistic function, defined as:

1
Sx) = m 3)
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Fig. 2. Block diagram of the actor-critic reinforcement learning (RL) controller [19] with human-generated and pseudo-human rewards, to control a
simulated planar human arm. TD error is temporal difference error. State variables consist of 2 current-value joint angles, 2 target-value joint angles,

and 2 angular velocities.

The critic generates Temporal Difference (TD) error after the
actor applies actions to the environment; this TD error is used
to update the actor and the critic (Algorithm 1).

The actor’s weights were initialized to match the policy
conforming to a proportional-derivative (PD) controller opti-
mized via the simulated annealing algorithm [44] for this
2-joint arm system as described in [13]. The critic’s weights
were initialized so that they were consistent with the initial
actor. Neural networks [21] were used to implement these
initializations. For additional details of the implementation of
this controller, refer to [12].

A graphical user interface (GUI) (Fig. 9) that permitted
human rewards to be integrated with the RL controller was
designed using Graphical User Interface Development Envi-
ronment (GUIDE) software (The MathWorks, Inc. Natick,
Massachusetts), and supporting functionality was provided by
MATLAB and Simulink (The MathWorks, Inc.). Our design
of the arm animation GUI (Fig. 9) was intentionally simple
to avoid complications that might have arisen from a more
detailed representation of the arm and hand; for example, had
a detailed hand with fingers been illustrated, subjects might
have become confused about which part(s) of the hand were
required to be inside or near the target in order to score the
reaching movement positively. With our simple representation
of the hand as a dot of the same size as the target dot, we
avoided this issue.

Fig. 2 shows the block diagram of the system. The agent
calculates the set of 6 continuous muscle stimulation values
(ranging from 0.0 to 1.0) to be applied to the arm model at
the current 20 ms timestep, and after this action has been
applied, the arm model updates its states (joint angles, angular
velocities, and target joint angles; target angular velocities are
specified to be constantly 0.0). State information is used to
update the actor and critic components of the RL controller,

as well as the arm animation viewed by human subjects. At the
conclusion of each 2-s reaching movement episode, the human
subject rated the quality of the viewed reaching movement
using the GUI, specifying reward values by manually clicking
a computer mouse.

B. Experimental Protocol

This study used 10 adult human subjects (7 males,
3 females) under the age of 40 years who had no neuro-
logical or visual impairments that limited hand movement or
visual information processing; all had normal or corrected-to-
normal vision. Human experimentation was approved under
the MetroHealth Medical Center IRB protocol #IRB10-00126.

Each subject participated in 5 RL controller training ses-
sions. Each session involved training an RL controller over
500 episodes of simulated goal-oriented reaching move-
ments; each episode consisted of rating one animated reach-
ing movement. Each 500-episode training session required
approximately 1 hour to perform. The 500-task training task
set consisted of a set of 50 unique randomly-generated tasks
repeated 10 times; each set of 50 tasks was always performed
in the same order. Each movement allowed both joints to
range from [20.0°, 90.0°]. The mean linear distance between
the initial and target hand positions over the 50-task set was
32.04 £ 1597 cm. For each episode, the human subject
viewed on a computer monitor the simulated reaching task
performed by the animated planar arm, and after the task
had completed, the subject was instructed to assign a reward
based on his or her subjective assessment of the quality of the
movement that had been performed. Subjects were allotted
4 s between tasks to permit adequate time to assign rewards.
Permissible reward values were integers in the range of
[—2, +2]. Preliminary experiments [21] had applied
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Fig. 3. Design of 50-task video animation rating experiment. The design displayed was used for each of 10 human subjects; sample data and

results from Subject 6 (representing typical reward assignment consistency behavior) are shown.

3, 5, or 7 discrete reward levels to determine which yielded
the most useful learning of the actor-critic RL controller. The
controller’s learning measurably improved when 5 discrete
reward levels were used vs. only 3, but performance between
the 5- and 7-level rewards systems was so similar that it
was decided that using 5 reward levels would be sufficient.
Additionally, we took into account the consideration of how
many levels of discrete reward would be feasible for human
subjects to effectively assign. Using 5 discrete reward levels
corresponds to intuitive interpretations of Very Poor, Poor,
OK, Good, and Very Good ratings, whereas using a higher
number of levels might introduce a delay in the provision of
human-generated feedback rewards, should subjects become
confused about the interpretation of finer gradations of reward
level. For each subject, the trained controller resulting from
one session was used as the initial controller for the subsequent
session.

Before their first session, human subjects were advised of
a list of criteria on which they might consider rating tasks.
However, subjects were free to select their own rating systems
based on their subjective assessments of each individual task
performed.

In order to assess the consistency of human reward-giving
for a set of dynamic tasks that was invariant (i.e., did not
change across sessions due to RL controller learning), a
video recording of 50 unique, randomly-generated movements
controlled by an actor-critic RL controller was created. These
recorded reaching tasks varied significantly with respect to
the movement being performed as well as the qualitative
movement characteristics. During each of 5 data collection
sessions, each human subject viewed and rated the 50-task
video (Fig. 3) once at the beginning of the session, and
again at the end of the session, with the 500-episode RL

controller training run occurring between these two video
rating runs.

C. Automated Rewards

To allow comparison with the collected human-rewards
data, two additional sets of data were collected using
computer-generated rewards to train RL controllers. Both of
these data sets involved collecting 10 runs of 5 sequential
500-episode sessions per condition. The first data set used
automated rewards only:

rAutomated(t) =W Z u12 - d((x» y); (xGoal» yGoal)) 4
i

where W = —0.016 [21] was selected to match the reward
function employed in the optimized PD controller [13] used
for the initial policy, u is a vector of 6 muscle stimulations, d( )
is Euclidean distance, and (x,y) is the current hand position,
calculated according to:

X _ Ly COS(@Sh) + Ly COS(@Sh + Gerp)
y Ly Sin(‘gsh) + Lo Sil’l(@sh + Oey)

where 6y, is shoulder angle, 6., is elbow angle, L is length
of the upper arm, L, is length of the forearm, and both
segments were assumed to have identical lengths. The target
hand position is denoted (XGoal, YGoal), and is calculated
from (5), using the target shoulder and elbow joint angles.

(5)

D. Human-Generated and Pseudo-Human Rewards

The second form of computer-generated rewards added
pseudo-human rewards, which were generated by Algorithm 2,
and assigned once per episode, at the final timestep. For this
pseudo-human rewards case, 5 discrete reward levels were
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used, analogous to the human data collected. In this algorithm,
final-timestep pseudo-human rewards are assigned using a
combination of success at remaining within the target zone and
extent of target overshoot. A detailed description is included
below this algorithm.

Algorithm 2 Assign Pseudo-Human Rewards
1: Uppeer OvershootThreshold = 0.1
: LowerOvershootThrehold = 0.2
: At final timestep of each movement:
: if AtTarget and InDwellState
and (MaxOvershoot < UpperOvershootThreshold) then
FinalTimestepReward = 2
: else if AtTarget and InDwellState then
FinalTimestepReward = 1
: else if NotAtTarget and ReachedTargetButExited
and (maxOvershoot < lowerOvershootThreshold) then
9: FinalTimestepReward = —1
10: else if (MaxOvershoot > LowerOvershootThreshold)
then
11: FinalTimestepReward = —2
12: else FinalTimestepReward = 0
13: end if

LRI N

PF

Final TimestepReward is the variable being assigned. For
each reaching movement, maxOvershoot is the maximum
Euclidean overshoot of the target position produced by
the controller. UpperOvershootThreshold is a constant value
selected by preliminary experiments that specified the maxi-
mum amount of target overshoot that was permitted to occur
during a 2-second reaching episode and still allow the reach-
ing task to be assigned a high pseudo-human reward value.
LowerOvershootThreshold is a constant value selected by
preliminary experiments that specified the maximum amount
of target overshoot that was permitted to occur during a
2-second reaching episode and still allow the reaching task to
be assigned a particular, non-maximal level of pseudo-human
reward value. AtTarget is a binary value defined based on
whether the hand was within a distance of 0.075 distance units
from the target, determined experimentally. This target zone is
shown as a ring around the target dot in Fig. 9. NotAtTarget is
a binary-valued state indicating whether the hand was within
an experimentally-selected value of 0.075 distance units from
the target. InDwellState is a binary value indicating whether
the hand had been located within the target zone for at
least 100 ms (5 timesteps) consecutively. MaxOvershoot is
the maximum Euclidean overshoot of the target position pro-
duced by the controller. Final TimestepReward is the reward
assigned at the final timestep of each episode. ReachedTar-
getButExited is a binary-valued state indicating whether the
hand passed through the target zone and subsequently exited
this zone.

In the system block diagram (Fig. 2), the (Pseudo-)Human
Reward Generator block is the source of the reward that is
added to the automated reward [12], according to:

TTotal = ¥ Automated + V¥(Pseudo—)Human (6)

where r7o:q1 18 the total reward, rayromareda 1S the reward
calculated from the arm model, 7(pseudo—)Human is the reward
generated from either human or pseudo-human sources at the
final timestep of each episode (i.e. reaching movement), and
v is a constant weighting factor. The value of v was selected to
be 20.0 as a result of preliminary experiments so that human-
generated or pseudo-human rewards would have a substantial
impact on learning while still allowing the automated rewards
to serve as a baseline component of the reward that permits
moderate levels of learning that are able to be improved.

E. Performance Metrics

The recorded performance metrics were defined as follows:

1) Dwell-At-Target Success: At the final timestep of each
reaching movement episode, the arm model’s hand position
was evaluated relative to the target position. If the hand
fell within the specified target zone, and had continuously
remained within this target zone for at least 100 ms, the
episode was scored as a success. Otherwise, the episode was
counted as a failure. Because this metric is a binary value,
success was measured over groups of episodes: success per-
centages were recorded over the set of 500 episodes performed
per session, as well as over each 100-episode subset.

2) Target Overshoot: One overshoot value was recorded for
each reaching movement episode as the largest Euclidean
distance from the target position traversed by the hand, sub-
sequent to the hand entering the target zone. Mean overshoots
were calculated over each set of episodes. Episodes in which
the target zone was not reached were necessarily excluded
from reported overshoot values.

3) Mean Rewards: For the human-generated and pseudo-
human reward conditions, each reaching movement episode
involved the assignment of an integer reward value ranging
from —2 to +2. The mean reward was calculated as the
average reward value over each 500-episode session, as well
as over 100-episode subsets of this data set.

4) Positive:Negative Rewards Ratio: The final-timestep
reward, generated by human subjects or the pseudo-human
rewards-generation algorithm (Algorithm 2), was recorded for
each training episode. Positive rewards were defined as the
sum of the counts of +1 and 42 rewards, and negative rewards
constituted the set of all —1 and —2 rewards. Ratios of the sum
of positive reward instances divided by the sum of negative
reward instances were calculated for selected subsets of the
collected data.

F. Trained Controller Testing

After the RL controllers had been trained, each was tested
on a set of 500 unique randomly-generated tasks ranging from
[20.0°, 90.0°] for both joint angles. None of the testing tasks
had previously been used to train the controllers. The mean
linear distance between the initial and target hand positions
over the 500-task testing set was 28.38 £ 16.88 cm. The arm
model continued to have its three flexor muscles weakened
by 50% of their maximum force. RL controller learning was
turned off during this testing stage, so that each controller
could perform a single set of the 500 tasks in a deterministic
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the 10 subjects, is shown. w is mean, ¢ is standard deviation.

process. An optimized PD controller [13] was also applied to
this set of 500 tasks.

G. Data Analysis

Data were inspected for adherence to standard statisti-
cal assumptions (e.g., normality, linearity, homoscedasticity)
and alternative analyses were conducted when assumptions
were violated. The relative performance of RL controllers
trained using human-generated rewards against controllers
trained using pseudo-human computer-generated rewards and
automated rewards was assessed via pairwise t-tests that
were corrected for multiple comparisons using false discovery
rate (FDR) [48]. These tests were performed on the dwell-at-
target success metric of the controller training data over the
final 100 episodes. To compare the rewards assigned by human
subjects against those assigned by the pseudo-human algo-
rithm, Welch’s t-test was used. The ratios of positive:negative
rewards for both conditions over Session 1 and Session 5 were
calculated. To test whether human reward signals significantly
improve accuracy in arm movement, linear mixed modeling
was used, and the slope of the human-rewards condition was
tested to determine whether it differed significantly from zero.

To determine the relationship between human reward-
assignment consistency and dwell-at-target success of the
RL controllers trained using human rewards, it was necessary
to calculate this consistency value (Fig. 4); this quantity
was calculated in the following way. For the video rating
experiment, each subject had rated each of 50 tasks ten
times. For each of the 50 tasks, the mean and standard
deviation over the subject’s 10 rating values for that task were
calculated. The 50 standard deviation values corresponding to
each subject’s 50 rated tasks were averaged, and this mean
standard deviation value was used as the Reward Consistency
value for each subject. For the dwell-at-target success data
set, each human-trained controller’s success percentage over
the final 100 episodes of Session 5 was used. Spearman’s p
was calculated to compare the human reward consistency and
dwell-at-target success data sets for each human subject.

For analysis of trained controller testing, Kolmogorov-
Smirnov analysis was applied to compare RL controllers
trained using human and pseudo-human rewards for the
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Fig. 5. Dwell-at-target success over the final 100 episodes of each of
five 500-episode reinforcement learning (RL) controller training sessions.
Learning resulting from 10 individual human subjects are shown as thin
trendlines, and the mean human dwell-at-target success is shown as
the thick solid blue trendline. All standard error bars represent 95%
confidence intervals with averages over 10 runs of the same controller
training condition in the center; the human data set (thick solid blue
trendline) is averaged over all 10 human subjects. Means and confidence
intervals have been offset on the x-axis between the conditions for
visual clarity. Controllers trained using human rewards significantly out-
performed those trained using automated rewards starting at Session 2
(p = 0.03, FDR-adjusted g = 0.03), and maintained this advantage over
the remaining sessions. In Session 5, pairwise t-tests showed significant
differences between automated rewards and both the human-generated
(p = 0.0001, FDR-adjusted g =0.0002) and pseudo-human rewards
training conditions (p < 0.0001, FDR-adjusted g <0.0001). No sig-
nificant difference (p =0.07, FDR-adjusted g = 0.07) was observed
between the human-generated and pseudo-human rewards conditions
for the final session’s dwell-at-target success values.

metrics of dwell-at-target success, time to achieve the dwell
state, and target overshoot.

I1l. RESULTS

In this section, we compare the performance of RL con-
trollers trained using human-generated rewards with the per-
formance of RL controllers trained using computer-generated
pseudo-human rewards and computer-generated automated
rewards, for dynamic goal-oriented reaching movements using
our arm model. A benchmark optimized PD controller [13] is
also used for comparison.
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TABLE |
P VALUES (AND CORRESPONDING FDR-CORRECTED ¢ VALUES) FOR
PAIR-WISE COMPARISONS FOR EACH CONTROLLER TRAINING REWARD
CONDITION ACROSS EACH OF THE FIVE SESSIONS FOR THE
DWELL-AT-TARGET SUCCESS PERCENTAGES FOR THE FINAL
100 EPISODES OF EACH SESSION (FIG. 5)

Session Condition P q
1 ANOVA 0.0575 0.0575
Human vs. Automated MNA MNA
Automated vs. Pseudo-Human NA MA
Human vs. Pseudo-Human MNA MA
2 ANOVA <0.0001 <0.0001
Human vs. Automated 00316 00316
Automated vs. Pseudo-Human 20,0001 <0.0001
Human vs. Pseudo-Human <0.0001  0.0001
3 ANOVA <0.0001  0.0001
Human vs. Automated 00015  0.0022
Automated vs. Pseudo-Human <0.0001 <0.0001
Human vs. Pseudo-Human 0.0646 0.0646
4 ANOVA 0.0001 0.0001
Human vs. Automated 0.0037  0.0056
Automated vs. Pseudo-Human <0.0001 <0.0001
Human vs. Pseudo-Human 00474 00471
5 ANOVA <0.0001 <0.0001
Human vs. Automated 0.0001 0.0002
Automated vs. Pseudo-Human <0.0001 <0.0001
Human vs. Pseudo-Human 0.0693 0.0693

A. Dwell-at-Target Success

Dwell-at-target success percentages over the final 100
episodes of each of the five sessions of RL controller train-
ing are presented in Fig. 5. Error bars show 95% confi-
dence intervals averaged over 10 runs; the solid blue trendline
averages all 10 human subjects’ data. The red dotted trendline
indicates the optimized PD controller’s performance on the
same set of 50 unique tasks on which the RL controllers
were trained. All RL controllers significantly outperformed the
PD controller (which had a mean success rate of 40%), and
all RL controllers improved their dwell-at-target success rates
over the course of the five 500-episode sessions. In partic-
ular, the mixed model analysis showed that human rewards
significantly improved accuracy from trial to trial (prediction
equation: accuracy = 64.1 + 4.1 x Trial; y> = 70.398,
p < 0.0001). Phrased differently, human reward signals did
improve the accuracy in arm movement beyond what would
be expected by chance, and their improvement occurred at a
constant rate of approximately 4.1% each trial.!

We analyzed dwell-at-target success (Fig. 5) of the final
100 episodes of each training session, to emphasize the per-
formance that controllers had achieved toward the end of each
session. The superior dwell-at-target success of controllers

L\ squared term was also added to the model to account for possible
non-linearities in the rate of improvement. This model was not significantly
different than the model without the squared term ( )52 =1.799, p = 0.1799).

— Mean Human Rewards
--- Pseudo-Human Rewards

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Mean Rewards
0
i

1 2 3 “1 B
Session

Fig. 6. Mean rewards over five 500-episode reinforcement learning (RL)
controller training sessions. Rewards resulting from 10 individual human
subjects are shown as thin trendlines, and the mean human reward
value is shown as the thick solid blue trendline. All standard error bars
represent 95% confidence intervals with averages over 10 runs of the
same controller training condition in the center; the human data set (thick
solid blue trendline) is averaged over all 10 human subjects. Means
and confidence intervals have been offset on the x-axis between the
conditions for visual clarity. Pseudo-human rewards are significantly
more positive than human-generated rewards for all 5 sessions (Table I1).

trained using pseudo-human rewards when compared with
controllers trained using automated rewards became detectable
from Session 2 onward (p < 0.0001, FDR-adjusted g <
0.0001; see Table I). Furthermore, controllers trained using
human rewards also began to significantly outperform those
trained using automated rewards over the final 100 episodes
starting at Session 2 (p = 0.03, FDR-adjusted ¢ = 0.03), and
maintained this advantage over the remaining sessions. For
dwell-at-target success of the final 100 episodes of Session 5,
pairwise t-tests showed significant differences between the
automated rewards condition and both the human-generated
(p = 0.0001, FDR-adjusted ¢ = 0.0002) and pseudo-human
rewards training conditions (p < 0.0001, FDR-adjusted ¢ <
0.0001). No significant difference (p = 0.07, FDR-adjusted
g = 0.07) was observed between the human-generated and
pseudo-human rewards conditions for the final 100 episodes
of the final session’s dwell-at-target success values.

B. Final-Timestep Rewards

1) Reward Trends Across Sessions: Mean rewards assigned
by human subjects and by the computer-generated pseudo-
human algorithm (Algorithm 2) across the five training
sessions are presented in Fig. 6. The mean rewards given by
each human subject appear to be fairly consistent across all
episodes; individual trendlines (thin lines) do not significantly
cross others or show dramatic shifts as sessions progress.
Human rewards visually fall into two distinct groups: the
more-positive group, consisting of Subjects 6, 7, 8, and
9; and the less-positive group, consisting of the remaining
six subjects. The more-positive group tended to have a
larger positive reward increase over the 5 sessions (mean
difference between the mean rewards in Session 5 and
in Session 1 was 047 £ 0.39, mean * s.d.), compared
with the less-positive group (0.05 £ 0.34). Pseudo-human
computer-generated rewards (thick black dashed trendline)
increased monotonically across the sessions, while the mean
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TABLE Il
PAIRWISE t, p, AND FDR-CORRECTED q VALUES FOR THE MEAN
REWARDS VARIABLE (FIG. 6) COMPARED BETWEEN
HUMAN-GENERATED AND PSEUDO-HUMAN-
GENERATED CONDITIONS

Session t P q
1 230 0.044 0.044
2 293 0.015 0.019
3 429 0.002 0.006
4 382 0.004 0.006
5 392 0.003 0.006

human final-timestep rewards increased only modestly and
non-monotonically across sessions. The standard deviations
of the pseudo-human rewards were substantially smaller than
those of the human-generated rewards.

Because variances between the two groups were not equal,
Welch’s t-tests were performed for each session separately and
their p-values adjusted for multiple comparisons using false
discovery rate [48] (FDR; see Table II). The rewards assigned
by the pseudo-human algorithm were found to be significantly
more positive than the rewards generated by human subjects
for every training session (see Table II). When rewards over
all sessions were grouped into Positive (+1 and +2 values)
and Negative (—1 and —2 values) categories, 2 of 10 human
subjects (Subjects 4 and 5) had net-negative rewards, and the
remaining 8 subjects showed net-positive rewards. Also, when
the mean reward for the first (Session 1) and last (Session 5)
training sessions were compared for each human subject, and
the difference of the mean rewards between the final and initial
sessions was calculated, 3 of the 10 subjects showed rewards
that became more negative over time, while the remaining 70%
of subjects showed increased positivity of rewards over time.

2) Positive:Negative Reward Ratios: Fig. 7 presents the
positive:negative reward ratios for human-generated rewards
and computer-generated pseudo-human rewards for the initial
(Session 1: Fig. 7(a)) and final (Session 5: Fig. 7(b)) data
collection sessions. The black dashed horizontal lines separate
net-positive (i.e. positive:negative reward ratios > 1) and net-
negative (i.e. ratios < 1) reward ratios. Human reward ratios
are blue when net-positive, and red when net-negative. From
Session 1 to Session 5, all 10 of the pseudo-human reward
ratios became dramatically more positive. In contrast, only
3 of the 10 human subjects (Subjects 6, 8, and 9) show ratios
that substantially increased from Session 1 to Session 5, and
4 subjects (Subjects 2, 4, 5, and 7) had reward ratios that
decreased over this period.

C. Success as a Function of Reward Consistency

Spearman’s p was calculated to relate RL controller learning
success over the final 100 episodes of Session 5 to human-
generated reward consistency over the 50-task video rating
data set. No correlation was found between dwell-at-target
success and rating consistency: p = 0.0307, N = 10,
p = 0.933.

(a)

10F b

by

Session 1 Pos:Neg Rewards Ratio

Session 5 Pos:Neg Rewards Ratio
i o
n
L]
.

HI H2 HI HA HE HE HT H8 HOHIOGCT €2 ©3 G4 C5 CF CF CB C9C10

RL Controller

Fig. 7. Positive:negative final-timestep reward ratio for the initial (Session
1: Panel (a)) and final (Session 5: Panel (b)) data collection sessions of
reinforcement learning (RL) controller training. H1 — H10 denote reward
ratios from human subjects 1 — 10; C1 — C10 denote reward ratios from
computer-generated pseudo-human reward algorithm (Algorithm 2). For
human reward ratios, blue dots indicate net-positive reward ratios, and
red x markers indicate net-negative ratios. Black dashed line shows the
division between net-positive and net-negative reward ratios.

D. Trained Controller Testing

Fig. 8 shows the results of applying the RL controllers
trained using either human-generated or pseudo-human
rewards to the set of 500 randomly generated testing tasks.
Boxplots of the dwell-at-target success percentages are given
in Fig. 8(a). Both sets of RL controllers showed high
success rates (98.26 + 1.18% for the human-trained con-
trollers, 99.20 % 0.41% success for the pseudo-human-trained
controllers), indicating that both forms of training allowed the
hand to reach the target zone and remain there for nearly every
movement tested. The human-trained controllers show slightly
more variability than controllers trained using pseudo-human
rewards. Optimized PD controller performance is given by
the red dashed line, and is noticeably less successful (43.0%
success) than either of the sets of RL controllers. Kolmogorov-
Smirnov analysis revealed a significant difference between the
human and pseudo-human rewards conditions: pseudo-human
rewards outperformed human rewards (D = 0.60; p = 0.03).
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Fig. 8. Testing of reinforcement learning (RL) controllers trained using
computer-generated pseudo-human and human-generated rewards.
Boxplots show 10 sets of 500 tested tasks per reward condition (10 con-
trollers trained by using pseudo-human rewards and 10 controllers
trained by human subjects; 1 controller per subject). Stars indicate
statistically significant differences between the two training conditions.
(a) Dwell-at-target success percentages. (98.26 + 1.18% for the human-
trained controllers, 99.20 + 0.41% for the pseudo-human-trained con-
trollers). Kolmogorov-Smirnov analysis revealed a significant difference
between the human and pseudo-human rewards conditions: pseudo-
human rewards outperformed human rewards (D = 0.60; p =0.03).
(b) Mean time (in seconds) required to achieve the dwell state (1.01 +
0.07 s vs. 0.95 £+ 0.02 s for human-trained vs. pseudo-human reward-
trained). Kolmogorov-Smirnov analysis showed a significant difference
between the two cases (D =0.60; p = 0.03), with the pseudo-human
rewards condition achieving the dwell state more quickly. (c) Mean over-
shoot of target (in cm): 12.83 + 0.92 cm for human-trained controllers vs.
11.58 + 0.63 cm for pseudo-human reward-trained controllers. The
Kolmogorov-Smirnov test showed a significant difference between the
two reward conditions, with the pseudo-human rewards having smaller
overshoot than human rewards (D = 0.60; p = 0.03). In these plots, the
red central line indicates the median; upper and lower limits of the blue
boxes indicate the upper and lower quartiles, respectively; and the black
horizontal lines above and below each box indicate the maximum and
minimum values, respectively.

Fig. 8(b) presents the mean time required to achieve the
dwell state for both training conditions. Human-trained con-
trollers had slightly larger (i.e., slower) mean times to achieve
the dwell state, compared with the controllers trained using
pseudo-human rewards (1.01 £ 0.07 s vs. 0.95 £ 0.02 s,
respectively). Kolmogorov-Smirnov analysis showed a signif-
icant difference between the two cases (D = 0.60; p = 0.03),
with the pseudo-human rewards condition achieving the dwell
state more quickly. The optimized PD controller, given by the
red dashed trendline (1.36 s), had a notably larger mean time
to dwell value than either of the RL controller sets.

Fig. 8(c) gives the mean target overshoot of both controller
training conditions. The human-trained RL controllers had a
larger mean overshoot (12.83 4+ 0.92 cm) than did the con-
trollers trained with pseudo-human rewards (11.58 & 0.63 cm),
although both sets of RL controllers had smaller mean
overshoot values than that of the optimized PD controller
(12.88 cm) for this set of 500 tasks. The Kolmogorov-Smirnov
test showed a significant difference between the two reward

conditions, with the controllers trained using pseudo-human
rewards having smaller overshoot than controllers trained
using human rewards (D = 0.60; p = 0.03).

V. DISCUSSION

In the experiments described, ten neurologically intact
human subjects trained actor-critic RL controllers to perform
planar goal-oriented reaching movements using a biomechan-
ical human arm model, by assigning a subjective reward to
each animated arm reaching movement performed by the
controller. Additionally, pseudo-human computer-generated
rewards (Algorithm 2) were used to train RL controllers, as
was an automated rewards training condition that used only
rewards provided by the arm model (Fig. 1). A benchmark
optimized PD controller was also applied to the sets of training
and testing tasks used for RL controller analysis.

We found that all three forms of training rewards allowed
the RL controllers to significantly outperform the optimized
PD controller for the dwell-at-target success performance
metric. The deterministic PD controller was not able to adapt
to a new control strategy necessitated by the arm model in
which the flexor muscles had been weakened significantly.
In contrast, all RL controllers were able to improve their per-
formance progressively to adapt to this weakened arm model.
All three forms of RL controller training rewards accomplished
measurable improvement in dwell-at-target success over five
sessions of 500 episodes per session.

Both human-generated and pseudo-human rewards yielded
significantly improved dwell-at-target success when compared
with the performance of RL controllers trained using auto-
mated rewards. The mean dwell-at-target success values of the
controllers trained using pseudo-human rewards (Fig. 5, thick
black dashed trendline) were visibly somewhat larger than
those of controllers trained by human subjects (Fig. 5, thick
blue solid trendline) for all sessions; however, there was no
statistically significant difference between the RL controllers
trained using human-generated and pseudo-human rewards
when the final 100 episodes of the final data collection session
were evaluated, which is the most useful metric of overall
learning success.

Trained RL controllers tested on tasks that they had not pre-
viously encountered showed a small but statistically significant
advantage of training using pseudo-human rewards instead
of human-generated rewards for the performance metrics of
dwell-at-target success, time to achieve the dwell state, and
target overshoot (Fig. 8). Controllers trained using human-
generated rewards and controllers trained using pseudo-human
rewards each outperformed an optimized PD controller on
all three performance metrics (Fig. 8). While the controllers
trained using pseudo-human rewards had marginally better
performance than controllers trained using human-generated
rewards on all three metrics, the functional difference between
the performance of these two training cases was minimal, with
both sets of controllers demonstrating excellent performance
on all three metrics.

Given the strong similarities in performance when using
pseudo-human and human-generated rewards to train the actor-
critic RL architecture employed for planar arm movement
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(Figs. 5 and 8), we propose the use of pseudo-human rewards
to pre-train controllers in simulation to achieve a baseline level
of performance. Then, when the controller is introduced to
its human FES user, human rewards can be substituted to
shape controller performance to the preferences of the indi-
vidual user. Sequential RL controller training with computer-
generated and human-generated rewards has been shown to
be possible [10], although careful parameter tuning was found
to be essential to the success of such a technique [10]. It will
remain to be experimentally determined whether an actor-critic
RL architecture will be sufficiently flexible to learn effectively
from pre-training with a pseudo-human reward function fol-
lowed by subsequent training using human-generated rewards,
when these two forms of reward have distinctly different
properties.

Pseudo-human rewards proved to be consistently and
significantly more positive than human-generated rewards
(Figs. 6 and 7). The deterministic pseudo-human reward
generation algorithm (Algorithm 2) caused rewards to become
progressively more positive as controller learning improved,
and the hand achieved the dwell-at-target state with increasing
success. In contrast, even though the RL controller learning
resulting from human training progressed apace with that of
the controllers trained using pseudo-human rewards (Fig. 5),
human rewards did not consistently become more positive
across sessions, and variability in these rewards was much
larger than that seen for pseudo-human rewards (Fig. 6).
Interestingly, the human reward trendlines visually fell into
two distinct groups (Fig. 6, thin trendlines), with 4 of the
10 subjects assigning rewards that had similar positivity to
the pseudo-human rewards (thick black trendline), while 6 of
the 10 subjects tended to assign less positive rewards, so that
the calculated mean human reward values (thick blue solid
trendline) were substantially less positive than the pseudo-
human rewards. In analyses comparing reward positivity to
dwell-at-target success, we found no association between these
two quantities. Although larger numbers of subjects would be
required to draw strong conclusions, it appears that human
trainers may have inherent biases that shape their reward-
assignment tendencies. If the positivity of assigned rewards
proves not to significantly influence the success of actor-
critic RL architecture training, reward positivity may not be a
factor that should be included in future RL controller design
considerations.

When the human rating consistency values from the ani-
mated reaching movement video rating experiment were com-
pared against the RL controller learning achieved by each
subject, no correlation was detected. This finding agrees
with our previous assessment of controllers trained using
human-generated vs. pseudo-human rewards: the pseudo-
human rewards were, by definition, 100% self-consistent,
because they were generated from Algorithm 2. This algorithm
used only a few quantitative metrics to evaluate controller
performance. In contrast, the human subjects were able to
assess a much wider range of both quantitative and qualita-
tive performance characteristics when selecting their reward
values. As a result, human-generated rewards were much
more variable. From the dwell-at-target success analysis of

the data in Fig. 5 and associated statistics, we found that, even
though the pseudo-human rewards were much more consistent
than human-generated rewards (Fig. 6), the ultimate dwell-at-
target success for both forms of training were strongly similar.
This suggests that the actor-critic RL control architecture
implemented for this modeled human arm domain does not
appear to be sensitive to reward consistency, and that as long
as the reward signals contain useful information, this controller
can learn efficiently even when inconsistent, unpredictable
human rewards are used.

We analyzed the effects of using both human-generated and
pseudo-human rewards on the speed of RL controller learning,
as measured by dwell-at-target success percentages across
sessions (Fig. 5). The controllers trained using pseudo-human
rewards demonstrated a significant and consistent learning
speed advantage over those trained using automated rewards,
starting in Session 2. The advantage of using human-generated
rewards was not as pronounced, first becoming substantial
in Session 3. By Session 5, the controllers trained using
both human-generated and pseudo-human rewards showed a
significant advantage over controllers trained using automated
rewards, with the success values of the human-trained and
pseudo-human controllers being statistically indistinguishable.

We conclude that training controllers using our pseudo-
human reward-generation algorithm (Algorithm 2) shows a
moderate advantage in learning speed over using human-
generated rewards, which in turn achieves learning more
quickly and efficiently than the automated-rewards condi-
tion. This finding conflicts with previous work showing an
advantage in learning speed when human-generated rewards
are used to train RL controllers, compared with computer-
generated rewards [23], although our domain differs from that
of previous work, and the superiority in learning speed of our
pseudo-human rewards-generation algorithm over controllers
trained using human-generated rewards was only a modest
effect.

Previous experiments using humans to train RL controllers
have consistently identified a strong positive bias in human
reward assignment [10], [24]. Comparing these observations
against our results (Figs. 6 and 7), we observe that 2 of the
10 human trainers (Subjects 4 and 5) had net-negative reward
values for most of the training sessions. We posit that a com-
bination of task domain and psychological traits of the human
trainer yield observable trends in controller training behavior,
and that human-generated rewards will not necessarily always
have a positive bias. On the whole, however, for this study
in which RL controllers learned from interactions with their
human trainers, over the entire set of 2,500 training episodes
completed by each subject, most (8 of 10) human trainers
did assign rewards with a positive bias, to a greater or lesser
degree, consistent with previous findings in the literature. Also,
our experiments revealed that human-generated rewards varied
in their internal consistency. This finding is in accordance
with previous work showing that the human reward function
is dynamic and inconsistent [24], [25].

The pseudo-human reward generation  algorithm
(Algorithm 2) was developed with the goal of achieving
a balance among the 5 possible reward levels over a
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Fig.9. Screenshot of the arm visualization GUl used in experiments. The
green dot represents the target, and the green ring indicates the target
zone, which was not displayed during experiments involving human-
generated rewards. For each episode, the dot representing the hand
(adjacent to the wrist) had the goal of reaching and remaining at the
target dot, for a variety of different tasks. Note that the text labels in this
figure were not present during the testing sessions.

preliminary testing set of 500 episodes. However, other
criteria may instead or additionally have been used to specify
this algorithm, which would have yielded different controller-
training behavior. Therefore, it should be recognized that
the pseudo-human reward generation described here is one
specific formulation of many possible reward generation
schemes, and that other algorithms would produce different
controller learning properties.

Alternatives to treating feedback as numeric, such as inter-
preting human rewards depending on both the teaching strat-
egy adopted by the teacher (e.g. the human deciding to
withhold rewards as a sign of negative feedback) as well as the
task intended to be taught, could potentially improve the rate
of learning. For example, Loftin et al. [45] provided two novel
Bayesian algorithms to achieve effective learning from human-
generated rewards for the contextual bandit [46] problem.
Exploring whether such methods will extend effectively to
more complex systems such as the arm model used in the
present work remains for future investigation.

Ng et al. [47] described the importance of choosing effective
shaping functions for human-guided RL control; their work
suggests the significance of considering how modifications to
the reward functions of Markov decision processes (MDPs)
affect the optimal policy. They present strategies to modify
the reward function in order to preserve the optimal policy;
future exploration of this concept in the context of selecting
the most effective method to integrate human rewards with the
actor-critic RL controller could be useful.

Despite the many challenges of using sparse, delayed
rewards as a training signal, we have shown that actor-
critic RL controllers can be trained in a simulated human
arm domain using both human-generated and pseudo-human
rewards with these properties. In future work, the pre-trained

controller should be introduced to human FES users with
tetraplegia, and it should be observed how successfully an
actor-critic architecture is able to adapt when the shoulder
and arm being controlled have properties differing from the
simulated arm system on which the controller was trained.

These experiments demonstrate that it is possible for sub-
jects to successfully train RL controllers for a simulated human
arm, using subjective human-generated rewards. Pseudo-
human rewards, generated from an algorithm, were also used
for RL controller training, and were found to result in per-
formance similar to that of controllers trained with human-
generated rewards; pseudo-human rewards training yielded
a statistically significant advantage over human-trained con-
trollers, although the functional difference between the two
forms of training was minimal. Even though the rewards used
for training were delayed, sparse, and inconsistent, the actor-
critic RL architecture was able to learn effectively from them.
Significant learning is observable over as few as 500 training
episodes, with learning progressing consistently over the five
training sessions performed. We recommend that pseudo-
human computer-generated rewards be used for controller
pre-training in simulated environments before introduction to
human Functional Electrical Stimulation (FES) systems, in
which they can be trained using human-generated rewards in
addition to computer-generated rewards. These results serve
as a proof of concept that human rewards are a viable training
signal for RL control of upper-extremity FES systems.
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