
Seldonian Toolkit: Building Software with
Safe and Fair Machine Learning

Austin Hoag
Berkeley Existential Risk Initiative

USA
austinthomashoag@gmail.com

James E. Kostas, Bruno Castro da Silva, Philip S. Thomas, Yuriy Brun
University of Massachusetts

USA
{jekostas, bsilva, pthomas, brun}@cs.umass.edu

Abstract—We present the Seldonian Toolkit, which enables
software engineers to integrate provably safe and fair machine
learning algorithms into their systems. Software systems that
use data and machine learning are routinely deployed in a
wide range of settings from medical applications, autonomous
vehicles, the criminal justice system, and hiring processes. These
systems, however, can produce unsafe and unfair behavior,
such as suggesting potentially fatal medical treatments, making
racist or sexist predictions, or facilitating radicalization and
polarization. To reduce these undesirable behaviors, software
engineers need the ability to easily integrate their machine-
learning-based systems with domain-specific safety and fairness
requirements defined by domain experts, such as doctors and
hiring managers. The Seldonian Toolkit provides special machine
learning algorithms that enable software engineers to incorporate
such expert-defined requirements of safety and fairness into their
systems, while provably guaranteeing those requirements will be
satisfied. A video demonstrating the Seldonian Toolkit is available
at https://youtu.be/wHR-hDm9jX4/.

I. INTRODUCTION

The use of machine learning (ML) algorithms has become
increasingly commonplace, with a wide range of applications
including optimizing user experiences [44], providing decision
support for high-risk high-impact applications such as criminal
sentencing [5], deciding which loans should be approved [6],
deciding which resumes should be evaluated by a human [37],
and providing medical decision support [29].

Unfortunately, data-driven software can sometimes produce
undesirable behavior, such as unsafe or unfair behavior. IBM
Watson, for example, recommended potentially fatal cancer
treatments [36], and ML software used in 11 US states to
predict whether a person will commit a crime in the future
was found to have a racial bias [5].

One of the root causes of these undesirable behaviors is
the fact that there is a disconnect between the users and the
developers of data-driven software. Users, such as doctors,
lawyers, and hiring managers, have the expertise to define
what unsafe or unfair behavior means. However, these users
are not the people building the software systems that must
satisfy safety and fairness requirements. The software engineers
that do build such systems, by contrast, are typically neither
domain experts nor ML experts, so it is critical that they have
the ability to integrate ML algorithms and domain-specific
safety and fairness requirements.

We introduce the Seldonian1 Toolkit, a framework that
bridges the gap between ML experts, software engineers, and
users. The toolkit implements a Seldonian ML algorithm [45]
that allows domain-expert users to specify safety and fairness
requirements, and trains ML models that are probabilistically
verified to satisfy those requirements. The Seldonian Toolkit’s
key contributions are the support for: (1) specification of
custom, domain-specific constraints that can encode safety and
fairness properties, (2) training ML models while providing
high-confidence guarantees that these models, applied to new
data, satisfy the specified safety or fairness constraints, and
(3) evaluating the effectiveness of Seldonian algorithms for a
given use case via comparison to standard ML approaches and
other fairness-aware ML algorithms.

II. THE SELDONIAN TOOLKIT

The Seldonian Toolkit consists of two Python libraries
and a graphical user interface that runs in the browser. The
Python libraries are the Seldonian Engine2 and the Seldonian
Experiments Library3. The graphical user interface is called
the Seldonian Interface GUI (SIGUI)4. We first describe the
SIGUI (Section II-A), the Seldonian Engine (Section II-B),
and then the Experiments library (Section II-C).

With beginners in mind, we provide tutorials and examples
(with more in development) on how to use the Seldonian
Toolkit, starting from installation and progressing toward real-
world end-to-end use cases, such as creating safe and fair deep
learning and computer vision models with the toolkit.5

We have developed the toolkit with ease of adoption in
mind, interfacing with ubiquitous tools, such as NumPy, SciPy,
scikit-learn, and PyTorch. Currently, six groups of computer
science graduate students at the University of Massachusetts
are applying the toolkit to distinct ML problems, providing us
with feedback.

1The toolkit name [45] is a homage to Isaac Asimov’s fictional character,
Hari Seldon, a resident of a universe where Asimov’s three laws of robotics fail
to adequately control agent behavior due to their non-probabilistic requirements,
and who formulated and solved a machine learning problem that would likely
have required probabilistic constraints [7].

2https://github.com/seldonian-toolkit/Engine
3https://github.com/seldonian-toolkit/Experiments
4https://github.com/seldonian-toolkit/GUI
5https://seldonian.cs.umass.edu/Tutorials/tutorials/

Fig. 1. The Seldonian Interface GUI (SIGUI) helps users specify safety and
fairness guarantees by selecting and combining basic building blocks.

A. Seldonian Interface GUI (SIGUI)

The SIGUI is designed to help users specify safety and
fairness behavioral constraint requirements. The form of these
constraints can vary depending on the domain, and we designed
the Seldonian Toolkit to be flexible and accept a wide range of
such requirements. Many prominent definitions of fairness [40]
can be defined as mathematical statements or inequalities.
For example, a common desirable fairness definition, known
as demographic parity, requires that a positive outcome be
given to the same fraction of people of two protected classes.
Assume, for instance, that an ML model is designed to decide
who should get a loan while not discriminating based on
race. In this case, the same fraction of applicants of each
race should be given loans, up to some threshold. Not all
types of safety constraints can be expressed as mathematical
statements. Consider, for example, a user observing a robotic
system performing an unwanted behavior, such as a chess robot
breaking a child’s finger [9]. The mathematical expression
required to instruct the robot not to do this is hard to define
analytically by non-expert users. The Seldonian Toolkit
should, nonetheless, allow users to specify that this behavior
is undesirable.

Suppose the user wishes to specify that an application must
satisfy the demographic parity requirement. The toolkit’s
behavioral constraint specifications consist of two parts: (1) con-
straint strings and (2) confidence levels. Constraint strings are
mathematical inequalities that must hold. For example, Figure 1
shows how the constraint string for demographic parity can
be specified in the SIGUI. The user first selects “measure
functions.” These include metrics quantifying properties of
a given ML model, such as its positive rate (PR), negative

rate (NR), false-positive rate (FPR), etc. Then, the user
combines the measure functions with mathematical functions
(e.g., max()) and operators (e.g., ratio), and associates them
with protected classes, such as gender. For example, in Figure 1,
“PR | [Male]” means “positive rate for men.” To specify
demographic parity with respect to (binary) gender, the user
specifies “abs ((PR | [Male])− (PR | [Female]))− 0.15 ≤ 0,”
which means “the absolute value of the difference between
positive rates for men and women must be less than or equal to
0.15.” The toolkit’s probabilistic verification requires the user
to also specify, for each constraint, the required confidence
level, δ. This δ is the acceptable probability of violation of the
constraint. The user could, for example, require the Seldonian
Toolkit to produce an ML model with at least 99.9% confidence
(δ = 0.001) that it will satisfy the above-specified demographic
parity constraint when applied to unseen data.

Safety constraints can be defined similarly to fairness
constraints. For example, a behavioral constraint on an insulin
pump ML-model update could require that the update cause no
more instances of hypoglycemia than the original version [45],
or that a new model’s accuracy is strictly higher, with high
confidence.

To simplify the constraint specification process, SIGUI
allows the user to select from five commonly-used predefined
fairness constraints, modify them, or build their own completely
unique constraints using drag-and-drop building blocks. SIGUI
also includes a tutorial to speed up the learning process.6 The
user can specify an unlimited number of behavioral constraint
requirements for each model.

B. Seldonian Engine

The Seldonian Engine is the core library of the toolkit and
implements a general-purpose Seldonian algorithm. Given
a dataset D and a set of behavioral constraint requirements
(recall Section II-A), a developer can use the Engine to train an
ML model that is probabilistically guaranteed to satisfy all of
the requirements. (Note that under certain conditions, such as
when given insufficient data to train a model, or contradictory
requirements, the Engine will explicitly state that no solution
could be found, as further discussed below.)

While the Seldonian algorithm [45] is not a contribution
of this work (the Toolkit is a usable implementation of a
previously-published algorithm), we briefly describe it here.
At a high level, the algorithm operates as follows. First,
the available dataset D is partitioned into two disjoint sets:
candidate data, Dcand, and safety data, Dsafety. Dcand is provided
as input to a component called candidate selection,
which trains a single ML model that the algorithm plans to re-
turn. This model is called the candidate solution. The algorithm
attempts to select a model that maximizes performance, while
also satisfying the behavioral constraints, but, at this point,
provides no guarantees. Next, the safety test component
probabilistically verifies that the candidate solution satisfies
the behavioral constraints. The safety test executes the

6https://seldonian-toolkit.github.io/GUI/build/html/index.html

Fig. 2. The Seldonian Experiments Library can help software engineers evaluate trade-offs between using Seldonian and non-Seldonian ML algorithms. Here,
models trained using the Seldonian Toolkit are less accurate than ones trained using standard linear regression, and require more data, but always satisfy a
fairness requirement that the linear regression model fails.

solution on Dsafety and checks if the constraints hold on that
data. The size of Dsafety is selected specifically to allow the
use of probability bounds, such as Hoeffding’s inequality, to
estimate the likelihood that the requirement is satisfied not
only on Dsafety, but also on new, unseen data. If the bound
satisfies the specified confidence level, the algorithm returns the
candidate model. Otherwise, if the model fails the requirement
or the algorithm’s confidence is insufficient, the algorithm
returns “No Solution Found.” Our prior work has formally
proven that the produced models are probabilistically verified
to satisfy the provided safety and fairness constraints and
empirically compared Seldonian algorithms to other fairness-
aware ML algorithms [19], [31], [45].

To use the Seldonian Engine, the developer needs a set of be-
havioral constraint requirements (created by, or in coordination
with a domain expert), a dataset, and instructions on which ML
model the Engine should use internally. The Engine can use
any (parametric) ML model, such as a deep neural network or a
linear regression model. The Engine uses its implementation of
the Seldonian algorithm to train and probabilistically verify the
model, and either returns that model or “No Solution Found.”

C. Seldonian Experiments Library

Developers and domain-expert users will understandably
want to know how well their Seldonian algorithms perform
compared to existing ML models that do not necessarily enforce
safety or fairness. Satisfying behavioral constraints can involve
trade-offs between enforcing safety and, for instance, runtime
or accuracy (though our prior work showed that given real-
world data, Seldonian algorithms often identify safe and fair
solutions without a significant reduction in accuracy [17], [45]).

The Experiments Library helps the developer understand
these trade-offs. Consider an engineer tasked with building a

system that predicts housing prices within two zip codes. The
developer has access to historical data describing how various
features, including zip code, size, and the year when it was
built, influence housing prices. The stakeholders (or, perhaps,
the law) require that the system must have similar accuracy
in both zip codes, perhaps because these zip codes correlate
with the residents’ races, and failing this requirement could
lead to discrimination. The developer could use a standard ML
model, e.g., linear regression implemented in scikit-learn [35],
to achieve good overall accuracy in predicting house prices,
but they might find that their predictions are more accurate in
one zip code than the other.

The developer can input that scikit-learn model and dataset
into the Seldonian Toolkit, along with the behavioral constraint
from the stakeholders (formalized using SIGUI). The Engine
will train a new model that satisfies the requirement, i.e., it will
be similarly accurate in both zip codes. Then, the Experiments
Library will produce a set of three diagnostic plots to help the
developer understand the potential trade-offs.

We generated a synthetic dataset with a single feature (house
size), a single sensitive attribute (zip code), and a single label
(house price), and then used the Experiments Library on this
dataset with a fairness constraint that enforces similar accuracy
in the two zip codes. Figure 2 shows the resulting three plots for
this house-price prediction problem. (While the Experiments
Library currently makes these plots static, future work can
explore if interactive features can help users better understand
model behavior.) The left plot presents the accuracy of the
two ML models (produced by scikit-learn and the Seldonian
algorithm) in terms of mean squared error, as a function of
the size of the dataset. The larger the mean squared error, the
less accurate the model is in explaining the data. Here, the
Seldonian model sacrifices accuracy to be able to satisfy the

fairness constraint with high confidence. Note that the plot
shows no accuracy for datasets smaller than 103 data points,
as we explain next. Here, we stress, again, that while we
selected this example to showcase the possible trade-offs that
may occur, prior research has shown that accuracy can often
remain just as high as that of standard, unsafe ML algorithms
when safety or fairness constraints are enforced [17], [45].

The middle plot shows how often the algorithm produces a
verified fair model (as opposed to “No Solution Found”), as a
function of the size of the dataset. While scikit-learn always
produces a model (a very inaccurate one for small datasets),
the Seldonian Engine is only able to produce models it can
confidently say are fair once it has access to approximately
103 data points. (This is the reason the left plot did not
contain accuracy information for small datasets). The amount
of needed data is another important trade-off factor in choosing
algorithms.

Finally, the right plot shows how often the trained models
violate the behavioral constraint requirement when applied to
new, unseen data. Scikit-learn’s linear regression model always
violates the fairness constraint, thus discriminating against one
zip code. The Seldonian algorithm’s model, by contrast, never
violates the constraint.

Importantly, external ML models can be used in the toolkit,
with little additional configuration. Because reimplementing
ML models in a new framework, especially complex ones
such as deep neural networks, can be prohibitively time
consuming when designing software, the Seldonian Toolkit
supports NumPy [20], SciPy [47], scikit-learn [35], and
PyTorch models [34], and work is ongoing to add support for
Keras, TensorFlow, and other popular ML libraries. Further,
the Experiments Library incorporates Microsoft Fairlearn’s [2]
fairness-aware classification algorithms, and we similarly plan
to add support for the Fairness Constraints [51] library. This
allows developers to directly compare their Seldonian models
to other methods that aim to improve fairness (but which do
not provide similar guarantees).

III. RELATED WORK

Recent research has argued that fairness is not only an
important aspect of machine learning, but must also be
addressed within the software engineering community, devel-
oping tools and technology to support software engineers in
building fair systems [11]. Several frameworks exist to help
data scientists evaluate models with respect to their fairness
and other performance measures, including Fairlearn [10],
Fairkit-learn [26], [27], AIFairness 360 [24], FairViz [12],
FairML [1], and Fairway [13]. Like our Seldonian Toolkit,
these frameworks help evaluate trade-offs in models but none
provide methods for training provably fair nor safe ML models.
Meanwhile, algorithms aimed to enforce fairness in ML models,
e.g., [2], [51], or repair models to reduce bias, e.g., [22], [42],
similarly do not provide the kinds of high-confidence guarantees
the Seldonian Toolkit provides. In fact, two recent systematic
literature reviews of research on testing models and systems
for fairness [14] and mitigating bias [21], found that other

than Seldonian algorithms [45], none provide high-confidence
guarantees.

Formal verification of software systems using proof assis-
tants, such as Coq [43] and Isabelle/HOL [32], allows proving
software properties but, unlike our work, requires significant
manual effort [28], [30]. Recent research has enabled fully
automating formal verification by learning models of existing
proofs for a set of systems and then using those models to
generate proofs of new properties for new systems [3], [8],
[15], [16], [18], [23], [25], [33], [38], [39], [50]. However,
these approaches to not apply directly to machine learning
models and, typically, require the system whose properties
are being verified to be written in the language used by the
underlying proof assistant.

Frameworks such as FairPrep [41] and FairRover [52] help
data scientists follow best practices in software engineering and
ML, focusing on responsible and ethical ML uses. Meanwhile,
Google’s What-If tool helps scientists analyze and understand
ML models without writing code [49]. These tools are
complementary to our work.

An important complement to building systems that enforce
fairness is testing systems for discrimination [4], [17], [46].
When additional data become available, these tools can be used
to audit models learned by the Seldonian Tooklit and by other
methods.

Finally, Seldonian algorithms have been developed for
contextual bandits [31], the setting where the training data
and deployment data come from different distributions [19],
and to enforce measures of long-term fairness [48], suggesting
future extensions of the Seldonian Toolkit.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under grants no. CCF-1763423, CCF-2018372, and CCF-
2210243, and by a gift from the Berkeley Existential Risk
Initiative.

REFERENCES

[1] Julius A. Adebayo. FairML: ToolBox for diagnosing bias in predictive
modeling. PhD thesis, Massachusetts Institute of Technology, 2016.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and
Hanna Wallach. A reductions approach to fair classification. In ICML,
volume PMLR 80, pages 60–69, Stockholm, Sweden, 2018.

[3] Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo
Zhang, Timothy Zhou, Alex Sanchez-Stern, Talia Ringer, and Yuriy Brun.
Proofster: Automated formal verification. In ICSE Demo, May 2023.

[4] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou.
Themis: Automatically testing software for discrimination. In Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) Demonstration Track,
pages 871–875, Lake Buena Vista, FL, USA, November 2018.

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine
bias. ProPublica, May 2016.

[6] Kumar Arun, Garg Ishan, and Kaur Sanmeet. Loan approval prediction
based on machine learning approach. IOSR Journal of Computer
Engineering, 18(3):18–21, 2016.

[7] Isaac Asimov. Foundation. Gnome Press Publishers, New York, NY,
USA, 1951.

[8] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and
Stewart Wilcox. HOList: An environment for machine learning of higher
order logic theorem proving. In International Conference on Machine
Learning (ICML), volume 97, pages 454–463, Long Beach, CA, USA,
2019. PMLR.

[9] Des Bieler. Chess-playing robot breaks finger of 7-year-old boy during
match. The Washington Post, Jul 2022.

[10] Sarah Bird, Miro Dudı́k, Richard Edgar, Brandon Horn, Roman Lutz,
Vanessa Milan, Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker.
Fairlearn: A toolkit for assessing and improving fairness in AI. Technical
Report MSR-TR-2020-32, 2020.

[11] Yuriy Brun and Alexandra Meliou. Software fairness. In Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE) New Ideas and Emerging Results
Track, pages 754–759, Lake Buena Vista, FL, USA, November 2018.

[12] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng,
Jamie Morgenstern, and Duen Horng Chau. FairVis: Visual analytics
for discovering intersectional bias in machine learning. In IEEE VAST,
pages 46–56, 2019.

[13] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies.
Fairway: A way to build fair ML software. In ESEC/FSE, pages 654–665,
2020.

[14] Zhenpeng Chen, Jie M. Zhang, Max Hort, Federica Sarro, and Mark
Harman. Fairness testing: A comprehensive survey and analysis of trends.
CoRR, abs/2207.10223, 2022.

[15] Emily First and Yuriy Brun. Diversity-driven automated formal
verification. In International Conference on Software Engineering (ICSE),
pages 749–761, Pittsburgh, PA, USA, May 2022.

[16] Emily First, Yuriy Brun, and Arjun Guha. TacTok: Semantics-aware
proof synthesis. Proceedings of the ACM on Programming Languages
(PACMPL) Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) issue, 4:231:1–231:31, November 2020.

[17] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing:
Testing software for discrimination. In ESEC/FSE, pages 498–510, 2017.

[18] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe:
Learning to reason with HOL4 tactics. In International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
volume 46, pages 125–143, 2017.

[19] Stephen Giguere, Blossom Metevier, Yuriy Brun, Bruno Castro da
Silva, Philip S. Thomas, and Scott Niekum. Fairness guarantees under
demographic shift. In ICLR, 2022.

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.

[21] Max Hort, Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Har-
man. Bias mitigation for machine learning classifiers: A comprehensive
survey. CoRR, abs/2207.07068, 2022.

[22] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. Fairea: A
model behaviour mutation approach to benchmarking bias mitigation
methods. In ESEC/FSE, pages 994–1006, Athens, Greece, 2021.

[23] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever.
GamePad: A learning environment for theorem proving. In International
Conference on Learning Representations (ICLR), 2019.

[24] IBM. AI Fairness 360. https://aif360.mybluemix.net, 2019.
[25] Albert Jiang, Konrad Czechowski, Mateja Jamnik, Piotr Milos, Szymon

Tworkowski, Wenda Li, and Yuhuai Tony Wu. Thor: Wielding hammers
to integrate language models and automated theorem provers. In Neural
Information Processing Systems (NeurIPS), New Orleans, LA, USA,
2022.

[26] Brittany Johnson, Jesse Bartola, Rico Angell, Sam Witty, Stephen J.
Giguere, and Yuriy Brun. Fairkit, fairkit, on the wall, who’s the fairest
of them all? Supporting data scientists in training fair models. CoRR,
abs/2012.09951, 2020.

[27] Brittany Johnson and Yuriy Brun. Fairkit-learn: A fairness evaluation
and comparison toolkit. In ICSE Demo, pages 70–74, 2022.

[28] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. SeL4: Formal verification of an OS kernel. In Symposium
on Operating Systems Principles (SOSP), pages 207–220, Big Sky, MT,
USA, 2009.

[29] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon,
and A Aldo Faisal. The artificial intelligence clinician learns optimal
treatment strategies for sepsis in intensive care. Nature Medicine,
24(11):1716–1720, 2018.

[30] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM (CACM), 52(7):107–115, 2009.

[31] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy
Brun, Emma Brunskill, and Philip S. Thomas. Offline contextual bandits
with high probability fairness guarantees. In NeurIPS, pages 14893–
14904, 2019.

[32] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
A proof assistant for higher-order logic, volume 2283. Springer Science
& Business Media, 2002.

[33] Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and
Christian Szegedy. Graph representations for higher-order logic and
theorem proving. In Conference on Artificial Intelligence (AAAI), pages
2967–2974, New York, NY, USA, 2020.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In NeurIPS, pages 8024–8035,
2019.

[35] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.

[36] Casey Ross. IBM’s Watson supercomputer recommended ‘unsafe and
incorrect’ cancer treatments, internal documents show, 2018.

[37] Pradeep Kumar Roy, Sarabjeet Singh Chowdhary, and Rocky Bhatia. A
machine learning approach for automation of resume recommendation
system. Procedia Computer Science, 167:2318–2327, 2020.

[38] Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner.
Generating correctness proofs with neural networks. In Machine Learning
in Programming Languages (MAPL), 2020.

[39] Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman,
Yuriy Brun, and Talia Ringer. Passport: Improving automated formal
verification using identifiers. ACM TOPLAS, 2023.

[40] Suchi Saria and Julia Rubin. Fairness definitions explained. ACM/IEEE
International Workshop on Software Fairness (FairWare), 2018.

[41] Sebastian Schelter, Yuxuan He, Jatin Khilnani, and Julia Stoyanovich.
FairPrep: Promoting data to a first-class citizen in studies on fairness-
enhancing interventions. In EDBT, 2020.

[42] Bing Sun, Jun Sun, Long H. Pham, and Jie Shi. Causality-based neural
network repair. In ICSE, pages 338–349, Pittsburgh, PA, USA, 2022.

[43] The Coq Development Team. Coq, v.8.7. https://coq.inria.fr, 2017.
[44] Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh.

Personalized ad recommendation systems for life-time value optimization
with guarantees. In IJCAI, pages 1806–1812, 2015.

[45] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen
Giguere, Yuriy Brun, and Emma Brunskill. Preventing undesirable behav-
ior of intelligent machines. Science, 366(6468):999–1004, 22 November
2019.

[46] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-
Pierre Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. FairTest:
Discovering unwarranted associations in data-driven applications. In
IEEE European Symposium on Security and Privacy (EuroS&P), Paris,
France, April 2017.

[47] Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[48] Aline Weber, Blossom Metevier, Yuriy Brun, Philip S. Thomas, and
Bruno Castro da Silva. Enforcing delayed-impact fairness guarantees.
CoRR, abs/2208.11744, 2020.

[49] James Wexler. The What-If tool: Code-free probing of
machine learning models. https://ai.googleblog.com/2018/09/
the-what-if-tool-code-free-probing-of.html, 2018.

[50] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting
with proof assistants. In International Conference on Machine Learning
(ICML), Long Beach, CA, USA, 2019.

[51] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez,
and Krishna P. Gummadi. Fairness constraints: Mechanisms for fair
classification. In FAT ML, Lille, France, 2015.

[52] Hantian Zhang, Nima Shahbazi, Xu Chu, and Abolfazl Asudeh. Fair-
Rover: Explorative model building for fair and responsible machine
learning. In Workshop on Data Management for End-To-End Machine
Learning, 2021.

