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Abstract

We present ICU-Sepsis, an environment that can be used in benchmarks for evalu-
ating reinforcement learning (RL) algorithms. Sepsis management is a complex task
that has been an important topic in applied RL research in recent years. Therefore,
MDPs that model sepsis management can serve as part of a benchmark to evalu-
ate RL algorithms on a challenging real-world problem. However, creating usable
MDPs that simulate sepsis care in the ICU remains a challenge due to the complex-
ities involved in acquiring and processing patient data. ICU-Sepsis is a lightweight
environment that models personalized care of sepsis patients in the ICU. The en-
vironment is a tabular MDP that is widely compatible and is challenging even for
state-of-the-art RL algorithms, making it a valuable tool for benchmarking their per-
formance. However, we emphasize that while ICU-Sepsis provides a standardized
environment for evaluating RL algorithms, it should not be used to draw conclusions
that guide medical practice.

1 Introduction

In this paper, we present ICU-Sepsis—an easy-to-use environment that can be used in benchmarks
for reinforcement learning (RL) algorithms. This environment is a Markov decision process (MDP)
that models the problem of providing personalized care to sepsis patients, constructed using real-
world medical records. The environment exhibits a level of complexity that challenges state-of-the-
art RL algorithms, making it a suitable domain to include when benchmarking and evaluating RL
algorithms. Its tabular nature makes it a lightweight and portable MDP that is compatible with
many RL algorithms and which can be quickly incorporated into any benchmark suite.

Sepsis is a life-threatening condition that arises when the body’s response to infection causes injury to
its own tissues and organs, and requires personalized care based on a sequence of clinical decisions.
This sequence of decisions results in evaluative feedback—information about whether or not the
patient survived. However, this feedback does not specify what the optimal decisions would have
been in retrospect, i.e., it does not provide the instructive feedback required for supervised learning
(e.g., what the optimal dosages of each medicine would have been). The evaluative nature of this
feedback and the potential for delays in its availability make reinforcement learning methods a
natural choice for this problem.

Following the work of Komorowski et al. (2018), sepsis management has emerged as a prominent use
case in applied RL research (Raghu, 2019; Yu & Huang, 2023), where historical patient data obtained
from large medical record databases is used to model sepsis as an MDP. One of the most common
sources of patient records is the MIMIC-III database (Johnson et al., 2023), which contains health-
related data for over forty thousand ICU patients, collected between 2001 and 2012. Recognizing
the widespread interest and importance of this topic, a dedicated RL environment that emulates the
environments used in applied RL research for sepsis treatment in the ICU can serve as a valuable
tool for evaluating the efficacy of RL algorithms for a real-world problem of interest.
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Figure 1: Illustration of one episode in the ICU-Sepsis environment. The clinician treats the patient
through actions, which affect how their state evolves over time, until the patient is discharged (and
a positive reward is received), or the patient dies (and no reward is received).

Various researchers have developed MDPs that simulate sepsis, as described in detail in Section 2.3.
However, constructing such an MDP is a complex process of querying, cleaning, and filtering patient
data from a medical database. Slight differences in the design and implementation of these proce-
dures by different researchers have resulted in slightly different MDPs. Consequently, a standardized
version of the sepsis MDP, essential for establishing a benchmark, has yet to be defined. Moreover,
although the MIMIC-III database is openly available, researchers must formally request access, a
process that entails completing a data protection course and signing a data use agreement. While
these measures are crucial for upholding patient privacy, they, in conjunction with the complex and
varying MDP creation processes, pose significant challenges for RL researchers seeking to include
sepsis treatment in their benchmark suites.

ICU-Sepsis addresses these issues by presenting users with a readily deployable environment, de-
signed for evaluating the efficacy of most RL algorithms. The MDP is a standalone environment
built with the MIMIC-III database that does not require any querying, cleaning, or filtering from
the user and can be used or modified without restriction (i.e., users need not complete courses or
sign a data use agreement) while maintaining patient privacy (see Section 4.5 for details).

Following the precedent set by Komorowski et al. (2018), the status of a patient at any given time is
discretized into a set of 716 states,1 balancing the granularity of the state set with the amount of data
available for modeling each state transition probability. Similarly, following prior work (Komorowski
et al., 2018), the possible medical interventions by clinicians are discretized into 25 possible actions.
The discount factor γ is set to 1 to reflect the goal of maximizing each patient’s chance of survival.
At the end of each episode, patient survival results in a reward of +1, while death corresponds to
a reward of 0, with all intermediate rewards also being 0. Figure 1 shows an illustration of one
episode in the ICU-Sepsis environment. An agent selecting actions uniformly randomly achieves an
expected return (probability of patient survival) of 0.78, while an optimal policy computed using
value iteration (Bellman, 1957) achieves an expected return of 0.88.

The ICU-Sepsis MDP is provided in a GitHub repository.2 To allow researchers to quickly implement
the environment in the software of their choice, the environment is provided as a set of CSV files
containing the transition, reward, and initial state distribution matrices, as well as open-source
Python implementations in OpenAI Gym (Brockman et al., 2016) and Gymnasium (Towers et al.,
2023). See Section 3 for details.

1Komorowski et al. (2018) constructed an MDP with roughly 750 states. After removing some problematic states
(as discussed later), and introducing additional states to model termination, the ICU-Sepsis MDP that we present
contains 716 states.

2https://github.com/icu-sepsis/icu-sepsis

https://github.com/icu-sepsis/icu-sepsis
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2 Background

In this section we present the notation and terminology that we use for RL, provide background
regarding sepsis management, and review prior work that models sepsis treatment as an RL problem.

2.1 Technical setting

RL problems are often modeled as an agent interacting with a discrete-time Markov decision process
(MDP) (Sutton & Barto, 2018; Fürnkranz et al., 2011). Formally, an MDP is a tuple of the form
(S, A, p, R, d0), where the state set S contains all possible states of the environment, and the set of
actions available to the agent in state s ∈ S is denoted by A(s). The set of all possible actions in
any state is denoted by

A+ .=
⋃
s∈S

A(s).

In this work we consider MDPs where A+ and S are finite, unless stated otherwise. The transition
function p : S × A+ × S → [0, 1] defines the probabilities of transitioning from one state to the next
after taking an action: p(s, a, s′) .= Pr(St+1=s′|St=s, At=a). The function R : S × A+ × S → [0, 1]
gives the reward when transitioning from one state to another after taking an action. In general,
this reward can be stochastic, but in our case, it is a deterministic function of St, At and St+1,
written as Rt = R(St, At, St+1). The initial-state distribution function d0 : S → [0, 1] characterizes
the distribution of the initial state: d0(s) .= Pr(S0 = s).

At any given integer time t ≥ 0, the agent is in a state St ∈ S, and the agent-environment interaction
takes place by the agent taking action At ∈ A(St), transitioning to the next state St+1 ∼ p(St, At, ·),
and receiving a reward Rt = R(St, At, St+1). A policy π : S × A+ → [0, 1] defines the probability of
taking each action given a state: π(s, a) .= Pr(At=a|St=s). A trajectory H of length L can be defined
as a sequence of L (state, action, reward) tuples: H

.= (S0, A0, R0, S1, . . . , SL−1, AL−1, RL−1). A
dataset D is defined as a collection of such trajectories: D

.= {H(0), H(1), . . . , H(N−1)}.

The return of a trajectory is the discounted sum of rewards G(H) .=
∑∞

t=0 γtRt, where γ ∈ [0, 1] is the
discount factor that determines the relative weight of future and immediate rewards. The objective
function J(π) is the performance measure of a policy π, defined as the expected return when the
agent uses the policy π to select actions: J(π) .= E

[ ∑∞
t=0 γtRt

]
. The goal of an RL agent is to find

an optimal policy π∗, which is a policy that maximizes the expected return: π∗ ∈ arg maxπ J(π).

2.2 Sepsis management

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection
(Singer et al., 2016), and is implicated in approximately 1 in every 5 deaths worldwide (Rudd et al.,
2020). It is a severe multisystem disease with high mortality rates, and it is challenging to determine
the correct treatment strategy for its various manifestations (Polat et al., 2017).

Sepsis management is a sequential decision-making problem, wherein clinicians make a series of med-
ical interventions based on the state of the patients, to provide treatments that maximize the chances
of patient survival. Guidelines such as those published by the Surviving Sepsis Campaign (Evans
et al., 2021) provide valuable frameworks for early recognition and key interventions. However, ow-
ing to the complex nature of the condition, there are ongoing efforts to further refine guidelines and
individualize treatment approaches (Kissoon, 2014; Kalil et al., 2017). In the event of a patient’s
death, it is generally not possible to determine the precise steps in their care that, if changed, would
have resulted in their survival. Likewise, figuring out how to modify policies to enhance survival
prospects for future patients remains an ongoing and critical challenge.
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2.3 RL for sepsis treatment

There has been significant interest recently in the healthcare domain in using historical patient
data to learn new policies for patient care, such as for diabetes (Bastani, 2014), epilepsy treatment
(Pineau et al., 2009), cancer trials (Humphrey, 2017), radiation adaptation for lung cancer (Tseng
et al., 2017), and many others as shown by Yu et al. (2020). In the context of sepsis management,
datasets like MIMIC-III (Johnson et al., 2023) and e-ICU (Pollard et al., 2018) have been used to
create tabular MDPs to find better treatment methods for sepsis (Komorowski et al., 2018; Oberst
& Sontag, 2019; Tsoukalas et al., 2015; Lyu, 2020) and more specialized cases, such as pneumonia-
related sepsis (Kreke, 2007), as well as optimizing the initial response to sepsis (Rosenstrom et al.,
2022). Nanayakkara et al. (2022) combined distributional deep reinforcement learning (Bellemare
et al., 2023) with mechanistic physiological models (Hodgkin & Huxley, 1952; Bezzo & Galvanin,
2018) to devise personalized sepsis treatment strategies. Raghu et al. (2017) studied the use of deep
reinforcement learning with continuous states for optimizing sepsis treatments.

RL researchers may want to ensure that the algorithms that they develop are effective for important
real-world problems like sepsis treatment. However, different (but similar) environment models are
used in the applied RL research described above, and recreating these environment models can be
challenging. Our work therefore seeks to provide a standardized RL environment that simulates
sepsis treatment in the ICU. This environment is designed to be an easy-to-use environment within
RL algorithm benchmarks, which is also representative of an important real problem. Although
ICU-Sepsis is built from real data, and follows procedures from prior work intended to guide medical
practice, the environment that we present is only intended for use as a standardized MDP to evaluate
RL algorithms, not as a tool for studying sepsis treatment or guiding medical practice.

3 Software and Data

The dynamics of the ICU-Sepsis environment are available to download as .csv tables from the
GitHub repository.3 The use of .csv files allows for development with different libraries and pro-
gramming languages. We also provide Python code compatible with the widely-used frameworks
OpenAI Gym (Brockman et al., 2016) and Gymnasium (Towers et al., 2023).

3.1 The environment parameters and implementation

The states S = {0, 1, . . . ,715} and actions A+ = {0, 1, . . . , 24} are both represented by integers. The
transition tensor table has |S| × |A+| = 17,900 rows and |S| columns. The value p(s, a, s′) is present
in the (s′)th column of the (s · |A+| + a)th row. The centroids of the state clusters are provided in
an optional table that has |S| rows and 47 columns, with the sth row containing the 47-dimensional
centroid of state s in the normalized feature space.

The table representing the initial state distribution as a vector has 1 row and |S| columns. The
value of d0(s) is present in the sth column. The reward table also has 1 row and |S| columns, with
the value of R(s, a, s′) present in the (s′)th column. Details of reproducing these parameters from
the MIMIC-III dataset are given in Appendix A.

4 The ICU-Sepsis Environment

Hospitals systematically monitor various patient statistics and vitals, documented in their electronic
health records (EHRs) (Shabo, 2017), during the course of patient care. Clinicians prescribe appro-
priate medication using the collected data, adjusting dosages as the patient’s condition evolves. In
recent years, a growing number of hospitals have taken to recording detailed patient treatment in-
formation within their EHR systems. This rich dataset allows for the extraction of valuable insights,
enabling the development of informed policies geared towards enhancing patient care.

3https://github.com/icu-sepsis/icu-sepsis

https://github.com/icu-sepsis/icu-sepsis
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4.1 Formulating sepsis management as a reinforcement learning problem

Based on the statistics collected by the hospital, at any given point in time, a patient’s health can be
described by a vector representing different features of the patient, such as their demography, vitals,
body fluid levels, etc. After discretizing time into uniform chunks, these features can be clustered
into a finite set S, thus representing the evolution of the status of a patient in the hospital as a
sequence of discrete states across discrete time steps. The different types and dosages of medications
administered to the patient can similarly be represented as a finite set of discrete actions A+. The
number of different medications dA and number of dosage levels nA of each medication determines
the size of the action set: |A+| = (nA)dA .

The EHR data for |D| patients can be represented as a dataset D, where each trajectory describes
the hospitalization of one patient. The reward associated with each time step is R = 0, except for
the last time step, where the reward is R = +1 if the patient survives. This design choice causes
the expected return to correspond to the probability of a randomly selected patient surviving.

4.2 The ICU-Sepsis dataset

The dataset D is created by using real patient data describing approximately 17,000 sepsis patients
from version 1.4 of the MIMIC-III dataset (Johnson et al., 2023). Following the procedure by
Komorowski et al. (2018), time is discretized into 4-hour blocks, and the states are clustered using
the K-means clustering algorithm (MacQueen et al., 1967) with K-means++ initialization (Arthur
& Vassilvitskii, 2007). Three additional states are added to model termination—two corresponding
to survival and death, based on 90-day mortality, and the third as the terminal absorbing state s∞.
Actions specify the dosages of intravenous fluids and vasopressors (two different interventions) with
similar discretization thresholds as used by Komorowski et al. (2018).

In many states, not all actions are seen enough times to enable accurate estimation of the transition
probabilities p(s, a, ·). Therefore, for any given state-action pair (s, a), the action a is considered an
admissible action for state s if and only if it occurs at least τ times in state s within the dataset,
and the parameter τ is called the transition threshold. The set of all such admissible actions for any
given state s is denoted by A(s) ⊆ A+. Based on this definition of admissible actions, some states
have no admissible actions at all, and such states are removed from the MDP.

4.3 Constructing the ICU-Sepsis MDP

Given a dataset D of trajectories, the indicator for state-action-next-state tuple (s, a, s′) at time-step
t in trajectory h is given by

ID(h, t, s, a, s′) .=
{

1 if s=S
(h)
t , a=A

(h)
t , s′=S

(h)
t+1

0 otherwise,

for s, s′ ∈ S2, a ∈ A+, t ∈ {0, 1, . . . , }, and h ∈ D. This indicator is used to define the set of
admissible actions A(s) in a given state s ∈ S as

A(s) .=
{

a ∈ A+ :
∑

h∈D,s′∈S

|h|−1∑
t=0

ID(h, t, s, a, s′) > τ

}
.

We estimate the transition probability from a state s ∈ S, to another state s′ ∈ S, after taking
an admissible action a ∈ A(s) by dividing the number of times this transition took place by the
total number of times the action a was taken while in state s. Formally, the count of the number of
times the transition took place is defined as C(s, a, s′) .=

∑
h∈D

∑|h|−1
t=0 ID(h, t, s, a, s′) and the total

number of times the action was taken is defined as C(s, a) .=
∑

s′∈S C(s, a, s′). Thus, we can define
an intermediate to the transition function ζ : S × A+ × S → [0, 1] as ζ(s, a, s′) = C(s, a, s′)/C(s, a)
for any admissible action a ∈ A(s), and ζ(s, a, s′) = 0 otherwise.

For the sake of completeness, the ICU-Sepsis environment allows every action a ∈ A+ in every state
s ∈ S by defining the transition probability distribution of any inadmissible action a /∈ A(s) to be



RLJ | RLC 2024

the average distribution for all the admissible actions in that state. The transition function for the
MDP is therefore defined as

p(s, a, s′) =


ζ(s, a, s′) if a ∈ A(s)

1
|A(s)|

∑
a′∈A(s)

ζ(s, a′, s′) if a /∈ A(s).

This effectively means that the MDP still only allows the admissible actions to be taken, since
taking an inadmissible action is equivalent to choosing one of the admissible actions at random and
transitioning accordingly. Therefore, all optimal policies for the restricted-action setting remain
optimal, and all policies that take inadmissible actions in some states can be mapped to equivalent
policies that only use admissible actions (by spreading the probability of inadmissible actions across
the admissible actions). This design decision enables the use of RL algorithm implementations that
are only compatible with MDPs that allow all actions in all states, without giving them access to
inadmissible actions. We discuss this decision of how inadmissible actions are handled in more detail
in Appendix B.

An episode ends when the agent reaches the state corresponding to survival or death, after which it
can be considered to always transition to s∞ with probability 1 regardless of action taken. Therefore,
the states corresponding to survival and death are called terminal states.

The policy used by the clinicians during the treatment of patients can also be estimated as
πexpert(s, a) .= C(s, a)/

∑
a∈A+ C(s, a). The initial-state distribution d0 is defined to be d0(s) .=

1
|D|

∑
h∈D

∑
a∈A+

∑
s′∈S I(h, 0, s, a, s′). The rewards are determined by the state being transitioned

into, with a positive reward (R = +1) for transitioning into the terminal state corresponding to
survival and zero reward for every other transition.

4.4 Computing the final parameters

The process of clustering the continuous state vectors into a finite set of discrete states (as mentioned
in Section 4.2) introduces a source of stochasticity in the MDP parameter creation process. We
investigated the effect of different seeds on the resulting MDP by creating 30 environments with
different seeds (but which are otherwise identical) and analyzing their properties. We found that
the different environments did not have significantly different properties, so we fixed the seed and
defined the resulting MDP to be the ICU-Sepsis MDP.

The result is the transition function T represented as a tensor of shape |S|×|A+|×|S|, and the reward
and initial-state distribution functions vectors R and d0, respectively, both represented as vectors of
length |S|. While we have largely followed the work of Komorowski et al. (2018) in the formulation
of the MDP, we have made two important changes. First, the discount factor γ has been set to 1
instead of 0.99 to prioritize patient survival over treatment speed. Secondly, the transition threshold
τ has been increased from 5 to 20 to enable more accurate estimation of transition probabilities.
The effects of these changes are examined in Appendix C. The values for all the parameters are
shown in Table 1.

|S| dA nA |A+| τ
716 2 5 25 20

Table 1: Parameters for creating the ICU-Sepsis MDP. The values are chosen based on work by
Komorowski et al. (2018), except for τ , where the value has been increased from 5 to 20, to remove
actions that are taken very rarely.

4.5 Additional environment details

The development and release of this environment has prioritized the preservation of patient privacy.
The MDP parameters offer only overarching statistical summaries of patient data, which was pre-
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viously de-identified during the creation of the MIMIC-III dataset. Consequently, the Institutional
Review Board (IRB) review at our institution determined that the MDP and this project are exempt
from IRB approval, as the research qualifies as no risk or minimal risk to subjects. Additionally,
the creators of the MIMIC-III dataset affirmed the precedent of model publication derived from the
dataset, provided that no straightforward method exists for reconstituting individual patient data.
Therefore, the ICU-Sepsis MDP can be responsibly released, modified, and redistributed for the
purposes of RL research without any substantial risk of patient harm.

Random Expert Optimal Dataset
Average return 0.78 0.78 0.88 0.77

Average episode length 9.45 9.22 10.99 13.27

Table 2: Average return and episode lengths for three baseline policies in the ICU-Sepsis MDP—a
policy that takes actions uniformly randomly over all actions, the estimated expert policy, and an
optimal policy computed by value iteration. The average return and episode lengths in the dataset
used to create the ICU-Sepsis MDP are also shown.

Table 2 shows the baseline properties of the environment and how they compare to the MIMIC-III
dataset. Since the data contains actions selected by trained physicians on real ICU patients, there
are relatively few instances of poor decisions in the original dataset. This, combined with our removal
of actions that were not taken at least τ times in the dataset, means that the MDP is limited to
simulating reasonable treatments. If the agent selects poor or unknown treatments (actions that
are inadmissible), they are mapped to a uniform distribution over the admissible (i.e., frequently
selected) treatments. Hence, even an agent that selects actions uniformly randomly achieves a
performance similar to that of the expert policy. However, the optimal policy computed using value
iteration (Bellman, 1957) indicates that there is still room for improvement over the expert policy,
which can be achieved while only taking actions that clinicians have taken in the real world.

The various design choices involved in the construction of the ICU-Sepsis environment were made
with the goal of creating an easy-to-use MDP that is familiar to the RL research community. Notably,
while several follow-up works have suggested improvements in the MDP creation process, like time
discretization and fluid dose thresholds (see, for example, the work of Futoma et al., 2020; Tang et al.,
2023), we have tried to stay generally faithful to the original design decisions made by Komorowski
et al. (2018).

5 Experiments

The evaluation of RL algorithms often focuses on their ability to learn high-performing policies
quickly and reliably. Hence, a good benchmark environment is one that not only resembles a
real problem of interest, but one that is also challenging enough for modern algorithms that some
algorithms are more effective (learn faster, converge to better policies, or learn more robustly) than
others. To test the ICU-Sepsis MDP, we therefore evaluate several commonly used RL algorithms,
including both value function and policy gradient methods, and analyze their learning characteristics.

Specifically, we conducted experiments to answer two research questions: 1) How close to optimal
are the policies learned using common RL algorithms? 2) How many episodes do common RL
algorithms require to find policies that perform nearly optimally?

We conduct experiments using five algorithms that represent a diverse range of approaches commonly
used in RL research: Sarsa (Rummery & Niranjan, 1994), Q-Learning (Watkins & Dayan, 1992),
Deep Q-Network (Mnih et al., 2013), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Proximal
Policy Optimization (PPO) (Schulman et al., 2017). We use tabular representations for the policies
and value functions in all of these algorithms.
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5.1 Methodology

Hyperparameter tuning is performed using a random search, where each algorithm runs for 300,000
episodes, averaged over eight random seeds for each hyperparameter setting, to maximize expected
returns for the last 10% of the episodes. After approximating the best set of hyperparameters
through the random search, each algorithm is run for 500,000 episodes averaged over 1,000 random
seeds to ensure robustness in results. More details about the search and the final hyperparameter
values are given in Appendix D. We say that an algorithm has converged if the average return over
the last 1,000 episodes are within 0.1% of the average return over the last 10,000 episodes. Since the
goal is to find policies with a high expected return in the environment, the returns are not evaluated
on a separate MDP built with held-out data, as ICU-Sepsis acts as the ground truth in this case,
and generalization of policies to other environments or the real world is not being tested.

5.2 Results and analysis
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Figure 2: (Left) The learning curves for five algorithms on the ICU-Sepsis MDP. (Right) Average
episode lengths during the learning process. Each curve is averaged over 1,000 random seeds, where
the error bars represent one unit of standard error.

Figure 2 shows the learning curves with the average returns and average episode lengths for all five
algorithms in the ICU-Sepsis environment. Table 3 shows the average number of episodes and time
steps needed for each algorithm to converge.

Algorithm Episodes (K) Steps (M) Average Return
Sarsa 105.3 0.99 0.79

Q-Learning 285.8 3.04 0.84
Deep Q-Network 241.5 2.60 0.86

SAC 324.0 4.01 0.83
PPO 386.9 3.59 0.86

Table 3: The number of episodes and time steps for each algorithm to converge, as well as the average
return over the last 1,000 time steps. It can be observed that the algorithms require a large number
of episodes to converge, and not every algorithm is able to achieve near-optimal performance.

With respect to the first research question, we observe that while some algorithms are able to achieve
near-optimal performance, not all algorithms show significant improvement in performance for the
learned policy, and notably, the performance of Sarsa is only marginally better than a random agent.
Concerning the second research question, we observe that even after extensive parameter tuning, all
of these algorithms take hundreds of thousands of episodes (i.e., millions of steps) to converge. The
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average episode lengths are shown in Figure 2 (Right), which are roughly in line with the episode
lengths seen in the MIMIC-III dataset, where the episodes had 13.27 steps on average.

6 Limitations

We would like to reiterate that the ICU-Sepsis MDP is designed to model a real-world problem,
presenting a level of difficulty for policy search that makes it an excellent environment to evaluate
RL algorithms. However, it is not intended to be a comprehensive medical simulation of sepsis and
should not be used for drawing conclusions about treatments for actual patients.

Sepsis treatment requires careful consideration of numerous factors that are beyond the scope of
this MDP. For example, the vasopressor dosage should change gradually, as abrupt changes can
lead to hypertension or cardiac arrhythmia (Fadale et al., 2014; Allen, 2014), but basing the optimal
action solely on the current state may result in policies with numerous sudden changes in vasopressor
dosages, deviating from clinically accepted strategies (Jia et al., 2020). Moreover, the generalizability
of the learned policies across different scenarios has not been tested, and these policies might perform
suboptimally if treatment standards change over time (Gottesman et al., 2019).

7 Future Work

While ICU-Sepsis is designed to be a standardized MDP with broad compatibility with many RL
algorithms, it can also serve as the base for another, more medically accurate version of the MDP
that incorporates, among others things, the considerations mentioned in Section 6, making it more
useful for applied RL research in the healthcare domain.

The choice of creating ICU-Sepsis as a tabular MDP is motivated by the goal of creating an MDP with
broad compatibility that also reflects how RL is used in many real-world applications. As mentioned
in Section 3, the normalized values of the state centroids are provided with the MDP, even though the
transitions are still modeled in a tabular fashion. However, an additional continuous-state version
of the MDP would further broaden the spectrum of RL algorithms that would be suitable to be
evaluated on the ICU-Sepsis environment.

8 Conclusion

This work introduces the ICU-Sepsis MDP and demonstrates its potential to serve as an environ-
ment within benchmarks for RL algorithms. It is lightweight and easy to set up and use, yet the
inherent complexity of the sepsis management task proves to be a significant challenge to modern
RL algorithms. These qualities position the ICU-Sepsis MDP as a strong candidate for inclusion in
RL benchmark suites, offering researchers an indicator of the performance of RL algorithms on an
important real-world problem.

References
John M. Allen. Understanding vasoactive medications. Journal of Infusion Nursing, 37(2):82–

86, March 2014. DOI: 10.1097/nan.0000000000000022. URL https://doi.org/10.1097/nan.
0000000000000022.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp.
1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.
URL https://dl.acm.org/doi/10.5555/1283383.1283494.

Meysam Bastani. Model-free intelligent diabetes management using machine learning. 2014. URL
https://era.library.ualberta.ca/items/fee1e7a7-1993-43f6-8d93-1d93855f6275.

https://doi.org/10.1097/nan.0000000000000022
https://doi.org/10.1097/nan.0000000000000022
https://dl.acm.org/doi/10.5555/1283383.1283494
https://era.library.ualberta.ca/items/fee1e7a7-1993-43f6-8d93-1d93855f6275


RLJ | RLC 2024

Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learning. MIT
Press, 2023. http://www.distributional-rl.org.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1
edition, 1957. URL https://books.google.com/books?id=fyVtp3EMxasC.

Fabrizio Bezzo and Federico Galvanin. On the identifiability of physiological models: Optimal design
of clinical tests. In Computer Aided Chemical Engineering, pp. 85–110. Elsevier, 2018. DOI:
10.1016/b978-0-444-63964-6.00004-0. URL https://doi.org/10.1016/b978-0-444-63964-6.
00004-0.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016. URL https://arxiv.org/abs/1606.01540.

Laura Evans, Andrew Rhodes, Waleed Alhazzani, Massimo Antonelli, Craig M. Coopersmith, Craig
French, Flávia R. Machado, Lauralyn Mcintyre, Marlies Ostermann, Hallie C. Prescott, Christa
Schorr, Steven Simpson, W. Joost Wiersinga, Fayez Alshamsi, Derek C. Angus, Yaseen Arabi,
Luciano Azevedo, Richard Beale, Gregory Beilman, Emilie Belley-Cote, Lisa Burry, Maurizio
Cecconi, John Centofanti, Angel Coz Yataco, Jan De Waele, R. Phillip Dellinger, Kent Doi, Bin
Du, Elisa Estenssoro, Ricard Ferrer, Charles Gomersall, Carol Hodgson, Morten Hylander Møller,
Theodore Iwashyna, Shevin Jacob, Ruth Kleinpell, Michael Klompas, Younsuck Koh, Anand Ku-
mar, Arthur Kwizera, Suzana Lobo, Henry Masur, Steven McGloughlin, Sangeeta Mehta, Yatin
Mehta, Mervyn Mer, Mark Nunnally, Simon Oczkowski, Tiffany Osborn, Elizabeth Papathanas-
soglou, Anders Perner, Michael Puskarich, Jason Roberts, William Schweickert, Maureen Seckel,
Jonathan Sevransky, Charles L. Sprung, Tobias Welte, Janice Zimmerman, and Mitchell Levy. Sur-
viving Sepsis Campaign: International guidelines for management of sepsis and septic shock 2021.
Intensive Care Medicine, 47(11):1181–1247, October 2021. DOI: 10.1007/s00134-021-06506-y.
URL https://link.springer.com/article/10.1007/s00134-017-4683-6.

Kristin Lavigne Fadale, Denise Tucker, Jennifer Dungan, and Valerie Sabol. Improving nurses'
vasopressor titration skills and self-efficacy via simulation-based learning. Clinical Simulation in
Nursing, 10(6):e291–e299, June 2014. DOI: 10.1016/j.ecns.2014.02.002. URL https://doi.org/
10.1016/j.ecns.2014.02.002.

Johannes Fürnkranz, Philip K. Chan, Susan Craw, Claude Sammut, William Uther, Adwait Rat-
naparkhi, Xin Jin, Jiawei Han, Ying Yang, Katharina Morik, Marco Dorigo, Mauro Birat-
tari, Thomas Stützle, Pavel Brazdil, Ricardo Vilalta, Christophe Giraud-Carrier, Carlos Soares,
Jorma Rissanen, Rohan A. Baxter, Ivan Bruha, Rohan A. Baxter, Geoffrey I. Webb, Luís
Torgo, Arindam Banerjee, Hanhuai Shan, Soumya Ray, Prasad Tadepalli, Yoav Shoham, Rob
Powers, Yoav Shoham, Rob Powers, Geoffrey I. Webb, Soumya Ray, Stephen Scott, Hendrik
Blockeel, and Luc De Raedt. Markov decision processes. In Encyclopedia of Machine Learn-
ing, pp. 642–646. Springer US, 2011. DOI: 10.1007/978-0-387-30164-8_512. URL https:
//doi.org/10.1007/978-0-387-30164-8_512.

Joseph Futoma, Muhammad A. Masood, and Finale Doshi-Velez. Identifying distinct, effective
treatments for acute hypotension with SODA-RL: Safely optimized diverse accurate reinforcement
learning, 2020. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233066/.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
Medicine, 25(1):16–18, January 2019. DOI: 10.1038/s41591-018-0310-5. URL https://doi.org/
10.1038/s41591-018-0310-5.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https://
proceedings.mlr.press/v80/haarnoja18b.

http://www.distributional-rl.org
https://books.google.com/books?id=fyVtp3EMxasC
https://doi.org/10.1016/b978-0-444-63964-6.00004-0
https://doi.org/10.1016/b978-0-444-63964-6.00004-0
https://www.wandb.com/
https://arxiv.org/abs/1606.01540
https://link.springer.com/article/10.1007/s00134-017-4683-6
https://doi.org/10.1016/j.ecns.2014.02.002
https://doi.org/10.1016/j.ecns.2014.02.002
https://doi.org/10.1007/978-0-387-30164-8_512
https://doi.org/10.1007/978-0-387-30164-8_512
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233066/
https://doi.org/10.1038/s41591-018-0310-5
https://doi.org/10.1038/s41591-018-0310-5
https://proceedings.mlr.press/v80/haarnoja18b
https://proceedings.mlr.press/v80/haarnoja18b


RLJ | RLC 2024

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its applica-
tion to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544, August
1952. DOI: 10.1113/jphysiol.1952.sp004764. URL https://doi.org/10.1113/jphysiol.1952.
sp004764.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Kyle Humphrey. Using reinforcement learning to personalize dosing strategies in a simulated cancer
trial with high dimensional data. 2017. URL https://repository.arizona.edu/handle/10150/
625341.

Yan Jia, John Burden, Tom Lawton, and Ibrahim Habli. Safe reinforcement learning for sepsis treat-
ment. In 2020 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, November
2020. DOI: 10.1109/ichi48887.2020.9374367. URL https://doi.org/10.1109/ichi48887.2020.
9374367.

Alistair Johnson, Tom Pollard, and Roger Mark. MIMIC-III clinical database, 2023. URL https:
//physionet.org/content/mimiciii/1.4/.

Andre C Kalil, David N Gilbert, Dean L Winslow, Henry Masur, and Michael Klompas. Infectious
diseases society of america (IDSA) position statement: Why IDSA did not endorse the Surviving
Sepsis Campaign guidelines. Clinical Infectious Diseases, 66(10):1631–1635, November 2017. ISSN
1537-6591. DOI: 10.1093/cid/cix997. URL http://dx.doi.org/10.1093/cid/cix997.

Niranjan Kissoon. Sepsis guideline implementation: benefits, pitfalls and possible solutions. Critical
Care, 18(2), March 2014. ISSN 1364-8535. DOI: 10.1186/cc13774. URL http://dx.doi.org/
10.1186/cc13774.

Matthieu Komorowski, Leo A. Celi, Omar Badawi, Anthony C. Gordon, and A. Aldo Faisal. The
Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.
Nature Medicine, 24(11):1716–1720, October 2018. DOI: 10.1038/s41591-018-0213-5. URL https:
//doi.org/10.1038/s41591-018-0213-5.

Jennifer E. Kreke. Modeling disease management decisions for patients with pneumonia-related
sepsis. September 2007. URL http://d-scholarship.pitt.edu/8143/.

Ruishen Lyu. Improving treatment decisions for sepsis patients by reinforcement learning. March
2020. URL http://d-scholarship.pitt.edu/38498/.

James MacQueen et al. Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probabil-
ity, volume 1, pp. 281–297. Oakland, CA, USA, 1967. URL https://projecteuclid.
org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/
Some-methods-for-classification-and-analysis-of-multivariate-observations/
chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/
bsmsp/1200512992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Thesath Nanayakkara, Gilles Clermont, Christopher James Langmead, and David Swigon. Unifying
cardiovascular modelling with deep reinforcement learning for uncertainty aware control of sep-
sis treatment. PLOS Digital Health, 1(2):e0000012, February 2022. DOI: 10.1371/journal.pdig.
0000012. URL https://doi.org/10.1371/journal.pdig.0000012.

https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
http://jmlr.org/papers/v23/21-1342.html
https://repository.arizona.edu/handle/10150/625341
https://repository.arizona.edu/handle/10150/625341
https://doi.org/10.1109/ichi48887.2020.9374367
https://doi.org/10.1109/ichi48887.2020.9374367
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
http://dx.doi.org/10.1093/cid/cix997
http://dx.doi.org/10.1186/cc13774
http://dx.doi.org/10.1186/cc13774
https://doi.org/10.1038/s41591-018-0213-5
https://doi.org/10.1038/s41591-018-0213-5
http://d-scholarship.pitt.edu/8143/
http://d-scholarship.pitt.edu/38498/
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://arxiv.org/abs/1312.5602
https://doi.org/10.1371/journal.pdig.0000012


RLJ | RLC 2024

Michael Oberst and David Sontag. Counterfactual off-policy evaluation with Gumbel-Max structural
causal models, 2019. URL https://proceedings.mlr.press/v97/oberst19a.html.

Joelle Pineau, Arthur Guez, Robert Vincent, Gabriella Panuccio, and Massimo Avoli. Treating
epilepsy via adaptive neurostimulation: a reinforcement learning approach. International journal
of neural systems, 19(04):227–240, 2009. URL https://www.worldscientific.com/doi/abs/
10.1142/S0129065709001987.

Gizem Polat, Rustem Anil Ugan, Elif Cadirci, and Zekai Halici. Sepsis and septic shock: Current
treatment strategies and new approaches. The Eurasian Journal of Medicine, 49(1):53–58, March
2017. DOI: 10.5152/eurasianjmed.2017.17062. URL https://doi.org/10.5152/eurasianjmed.
2017.17062.

Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G. Mark, and Omar
Badawi. The eICU collaborative research database, a freely available multi-center database for
critical care research. Scientific Data, 5(1), September 2018. DOI: 10.1038/sdata.2018.178. URL
https://doi.org/10.1038/sdata.2018.178.

Aniruddh Raghu. Reinforcement learning for sepsis treatment: Baselines and analysis, 2019. URL
https://openreview.net/forum?id=BJekwh0ToN.

Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo A. Celi, Peter Szolovits, and Marzyeh
Ghassemi. Deep reinforcement learning for sepsis treatment. CoRR, abs/1711.09602, 2017. URL
http://arxiv.org/abs/1711.09602.

Erik Rosenstrom, Sareh Meshkinfam, Julie Simmons Ivy, Shadi Hassani Goodarzi, Muge Capan,
Jeanne Huddleston, and Santiago Romero-Brufau. Optimizing the first response to sepsis: An
electronic health record-based Markov decision process model. Decision Analysis, 19(4):265–296,
December 2022. DOI: 10.1287/deca.2022.0455. URL https://doi.org/10.1287/deca.2022.
0455.

Kristina E Rudd, Sarah Charlotte Johnson, Kareha M Agesa, Katya Anne Shackelford, Derrick
Tsoi, Daniel Rhodes Kievlan, Danny V Colombara, Kevin S Ikuta, Niranjan Kissoon, Simon
Finfer, Carolin Fleischmann-Struzek, Flavia R Machado, Konrad K Reinhart, Kathryn Rowan,
Christopher W Seymour, R Scott Watson, T Eoin West, Fatima Marinho, Simon I Hay, Rafael
Lozano, Alan D Lopez, Derek C Angus, Christopher J L Murray, and Mohsen Naghavi. Global,
regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden
of disease study. The Lancet, 395(10219):200–211, January 2020. DOI: 10.1016/s0140-6736(19)
32989-7. URL https://doi.org/10.1016/s0140-6736(19)32989-7.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Tech-
nical Report TR 166, Cambridge University Engineering Department, Cambridge, England,
1994. URL https://www.researchgate.net/publication/2500611_On-Line_Q-Learning_
Using_Connectionist_Systems.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Amnon Shabo. Electronic Health Record, pp. 1–6. Springer New York, New York, NY, 2017. ISBN
978-1-4899-7993-3. DOI: 10.1007/978-1-4899-7993-3_48-3. URL https://doi.org/10.1007/
978-1-4899-7993-3_48-3.

Mervyn Singer, Clifford S. Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali
Annane, Michael Bauer, Rinaldo Bellomo, Gordon R. Bernard, Jean-Daniel Chiche, Craig M.
Coopersmith, Richard S. Hotchkiss, Mitchell M. Levy, John C. Marshall, Greg S. Martin,
Steven M. Opal, Gordon D. Rubenfeld, Tom van der Poll, Jean-Louis Vincent, and Derek C. An-
gus. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA,
315(8):801, February 2016. DOI: 10.1001/jama.2016.0287. URL https://doi.org/10.1001/
jama.2016.0287.

https://proceedings.mlr.press/v97/oberst19a.html
https://www.worldscientific.com/doi/abs/10.1142/S0129065709001987
https://www.worldscientific.com/doi/abs/10.1142/S0129065709001987
https://doi.org/10.5152/eurasianjmed.2017.17062
https://doi.org/10.5152/eurasianjmed.2017.17062
https://doi.org/10.1038/sdata.2018.178
https://openreview.net/forum?id=BJekwh0ToN
http://arxiv.org/abs/1711.09602
https://doi.org/10.1287/deca.2022.0455
https://doi.org/10.1287/deca.2022.0455
https://doi.org/10.1016/s0140-6736(19)32989-7
https://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
https://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
https://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-1-4899-7993-3_48-3
https://doi.org/10.1007/978-1-4899-7993-3_48-3
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1001/jama.2016.0287


RLJ | RLC 2024

Jayakumar Subramanian and Taylor Killian. Sepsis cohort from MIMIC-III. https://github.com/
microsoft/mimic_sepsis, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249. URL https://ieeexplore.ieee.org/
document/712192.

Shengpu Tang, Maggie Makar, Michael W. Sjoding, Finale Doshi-Velez, and Jenna Wiens. Lever-
aging factored action spaces for efficient offline reinforcement learning in healthcare, 2023. URL
https://arxiv.org/abs/2305.01738.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Huan-Hsin Tseng, Yi Luo, Sunan Cui, Jen-Tzung Chien, Randall K. Ten Haken, and Issam El Naqa.
Deep reinforcement learning for automated radiation adaptation in lung cancer. Medical Physics,
44(12):6690–6705, November 2017. DOI: 10.1002/mp.12625. URL https://doi.org/10.1002/
mp.12625.

Athanasios Tsoukalas, Timothy Albertson, and Ilias Tagkopoulos. From data to optimal decision
making: A data-driven, probabilistic machine learning approach to decision support for patients
with sepsis. JMIR Medical Informatics, 3(1):e11, February 2015. DOI: 10.2196/medinform.3445.
URL https://doi.org/10.2196/medinform.3445.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3–4):279–292,
May 1992. ISSN 1573-0565. DOI: 10.1007/bf00992698. URL http://dx.doi.org/10.1007/
BF00992698.

Chao Yu and Qikai Huang. Towards more efficient and robust evaluation of sepsis treatment with
deep reinforcement learning. BMC Medical Informatics and Decision Making, 23(1), March 2023.
DOI: 10.1186/s12911-023-02126-2. URL https://doi.org/10.1186/s12911-023-02126-2.

Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare: A survey, 2020.
URL https://arxiv.org/abs/1908.08796.

https://github.com/microsoft/mimic_sepsis
https://github.com/microsoft/mimic_sepsis
https://ieeexplore.ieee.org/document/712192
https://ieeexplore.ieee.org/document/712192
https://arxiv.org/abs/2305.01738
https://zenodo.org/record/8127025
https://doi.org/10.1002/mp.12625
https://doi.org/10.1002/mp.12625
https://doi.org/10.2196/medinform.3445
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992698
https://doi.org/10.1186/s12911-023-02126-2
https://arxiv.org/abs/1908.08796


RLJ | RLC 2024

A Reproducing the ICU-Sepsis Parameters

The Python code for reproducing the ICU-Sepsis parameters is available in GitHub repository4

released with this paper. Reproducing these parameters would require the researchers to download
the MIMIC-III dataset from their website.5 The initial steps for identifying patients with sepsis
and extracting their features from the MIMIC-III dataset can be performed using the MATLAB
code provided in the GitHub repository6 by Komorowski et al. (2018). These steps have also been
translated by Subramanian & Killian (2020) into Python scripts that produce equivalent results with
minor differences. After creating the patient features, estimating the MDP parameters and creating
the list of admissible actions can be done using the scripts provided in our GitHub repository. Figure
3 shows the distribution of the number of admissible actions in the states set for ICU-Sepsis.
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Figure 3: Distribution of the number of admissible actions for different states in the ICU-Sepsis
environment.

B Handling Inadmissible Actions

Recall from Section 4.3 that state-action pairs that occur τ or fewer times in the dataset (where τ is
a hyperparameter) are inadmissible (that is, they cannot be taken) since the subsequent transition
distribution is unknown. This presents a problem: many implementations of RL algorithms do not
allow for different action sets in each state. This may present a challenge for researchers hoping to
compare to baselines that lack this functionality. We therefore opted to design ICU-Sepsis to be
compatible with two different perspectives.

In the first perspective, inadmissible actions cannot be taken in the states where they are inadmis-
sible. A list of admissible actions for each state is provided in the extras/admissibleActions.txt
file provided with the CSV files containing the dynamics, as well as under the admissible_actions
key in the info dictionary provided by the Gym/Gymnasium API. Furthermore, the entries in the
transition probability table and reward function that correspond to inadmissible state-action pairs
can be ignored. This perspective is ideal, simulating a setting where inadmissible actions do not
exist as options for the agent to consider.

4https://github.com/icu-sepsis/icu-sepsis
5https://physionet.org/content/mimiciii/1.4/
6https://github.com/matthieukomorowski/AI_Clinician
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https://physionet.org/content/mimiciii/1.4/
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In the second perspective, we ensure that ICU-Sepsis is compatible with software that requires all
actions to be admissible in all states. A key goal under this perspective is to avoid the fabrication
of artificial environment behavior if inadmissible actions are chosen by the agent (e.g., defining
inadmissible actions to cause a transition to a state representing death to discourage the selection
of inadmissible actions). Such artificial transitions are undesirable because they can alter various
performance metrics (e.g., performance improvement and learning curve plots could be dominated
by the speed with which agents learn not to take inadmissible actions, which is not the important
part of the ICU-Sepsis simulation). Instead we view inadmissible actions as being truly inadmissible
(they cannot be taken by the agent, and hypothetical transitions that result from these actions
should not be considered). To achieve this, we consider how ICU-Sepsis could be designed so that
when RL software selects inadmissible actions, these inadmissible actions are automatically modified
to correspond to admissible actions, thereby ensuring that inadmissible actions are never chosen by
the agent.

The key insight to enable this is the creation of a mapping from any policy that allows all actions
to a corresponding policy that only selects admissible actions. Although the agent can learn and
reason using a policy that can select all actions, the interactions with the environment (including
evaluations of expected return) are equivalent to a corresponding policy that only selects admissible
actions.

The most straightforward way to achieve these desired properties would be to define inadmissible
actions to instead represent any one of the admissible actions. If there is only one inadmissible
action, this essentially gives the agent two different ways to select one of the admissible actions.
Critically, this does not mean that the inadmissible action is actually chosen and the simulated
result is the outcome of the inadmissible action. Instead, this means that inadmissible actions can
never be chosen and instead a redundant policy representation is used (a policy representation that
allows for multiple ways of selecting one or more of the admissible actions).

However, this straightforward approach introduces a different issue: in standard RL implementations
that require all actions to be allowed in all states, there may not be a mechanism to tell the agent
that in some states two different actions actually correspond to a single action. When the agent
selects one of two equivalent actions, it may not recognize that the outcome of the action provides
information about both of the actions. That is, the agent will not necessarily generalize properly.
This raises questions regarding the significance of the choice of which action inadmissible actions
map to. To avoid these complexities, we opt to map inadmissible actions to a distribution over the
admissible actions.

Specifically, we define inadmissible actions in a given state to be equivalent to a uniform random
selection of the admissible actions in that state. This means that if an agent that requires all
actions to be allowed in all states selects a inadmissible action, its policy is implicitly modified to
uniformly randomly select an action from the admissible set of actions. This achieves the desired
goals: it is realistic in that it completely disallows actions that it would be irresponsible to allow an
RL agent to take (it does not provide hypothetical simulations of the outcomes of these uncertain
and risky actions) and it avoids skewing performance metrics because the agent cannot achieve a
significant initial increase in expected discounted return by simply learning to avoid inadmissible
actions (a uniform random policy over all actions is now equivalent to a uniform random policy over
the admissible actions). However, it is worth noting the limitation that agents selecting inadmissible
actions may still fail to properly generalize, possibly resulting in slower learning than agents that
properly handle admissible action sets.
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C Examining the Effect of the Transition Threshold

As explained in Section 4.4, the transition threshold has been increased from 5 (as set by Komorowski
et al. 2018) to 20 to ensure that each admissible action is seen enough times in the dataset to provide
a reasonable estimate of the transition probabilities. To examine the effects of this change on the
resulting environment, we create a Variant environment with τ = 5 that is otherwise identical to the
ICU-Sepsis environment in its creation process, and ask the following research questions about the
policies in this new environment: 1) What is the highest survival rate possible in the Variant MDP?
2) How close to the optimal performance are the policies learned by common RL algorithms? 3)
How do the average episode lengths change during the learning process for common RL algorithms?

C.1 Baseline results

Table 4 shows the baseline results for the Variant MDP and how they compare to ICU-Sepsis. We
observe that an optimal policy in the Variant MDP has an expected return of 0.96, which means
that 96% of sepsis patients will survive when treated using this policy, compared to the 77% survival
rate seen in the MIMIC-III dataset. Thus, with respect to the first research question, the highest
possible survival rate in the Variant MDP appears to be unreasonably high compared to the real
data. Table 4b also shows that an episode running under this optimal policy will have an expected
24.8 steps in an episode, much higher that the 13.27 steps seen in the dataset.

Agent ICU-Sepsis Variant
Random 0.78 0.74
Expert 0.78 0.77

Optimal 0.88 0.96
(a) Average return

Agent ICU-Sepsis Variant
Random 9.45 12.6
Expert 9.22 9.8

Optimal 10.99 24.8
(b) Average episode lengths

Table 4: (a) Average return and (b) average episode lengths for ICU-Sepsis and the Variant MDP
for three baseline policies: A random policy taking each action uniformly randomly in each state, the
expert policy estimated from the dataset, and an optimal policy computed using value iteration. The
average return and episode lengths seen in the MIMIC-III dataset were 0.77 and 13.27 respectively.

C.2 Performance of various algorithms

The number of episodes and steps required for convergence and expected returns after convergence
are shown in Table 5. Figure 4 shows the learning curves and average episode lengths for the five
algorithms described in Section 5 when run on the Variant MDP, using the same methodology as
explained in Section 5.1 for the experiments with ICU-Sepsis.

Algorithm Episodes (K) Steps (M) Average Return
Sarsa 125.5 1.42 0.79

Q-Learning 188.3 3.48 0.89
Deep Q-Network 283.3 7.82 0.91

SAC 273.3 4.20 0.87
PPO 235.5 2.35 0.95

Table 5: This table shows the number of episodes and time steps for each algorithm to converge,
along with the average return over the last 1,000 time steps.

Therefore, with respect to the second and third research questions, we see that the expected returns
and average episode lengths in the learned policies are unusually high, which do not reflect the
numbers seen in the dataset. We posit that this might be happening because the agent has learned
to exploit some rare actions in certain states which happened to result in good outcomes by chance.
Since increasing the transition threshold removes such actions from the set of admissible actions,
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this behavior is not observed in the ICU-Sepsis MDP which has a higher transition threshold but
is otherwise identical in the creation process to the Variant MDP. To further validate this theory,
in Appendix C.3 we test the robustness of the three baseline policies: a random policy, the expert
policy, and the optimal policy learned using value iteration for both ICU-Sepsis and the Variant.
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Figure 4: (Left) The learning curves for five algorithms on the Variant MDP. (Right) A plot
depicting the average episode lengths during the learning process. Each curve is averaged over 20
random seeds, where the error bars represent one unit of standard error.

C.3 Effect of perturbations on the environments

To illustrate the robustness of different policies in the ICU-Sepsis and the Variant MDP, we eval-
uate the performance of the baseline policies after making some perturbations in the environment
dynamics. Each environment (ICU-Sepsis and the Variant) is first perturbed in the following way:

1. Among all the admissible actions, each of them is made inadmissible with some probability
σ ∈ [0, 1] independently of each other.

2. If all of the actions for some state are made inadmissible, one of the previously admissible
actions for that state is randomly chosen and made admissible again. Thus, every state will
always have at least one admissible action.

3. As explained in Section 4.3, any inadmissible action taken by the agent is equivalent to
randomly choosing one of the admissible actions (according to the new list of admissible
actions after the perturbation process) and taking that action.

Figure 5 shows an illustration of this process, which is repeated 32 times for each policy in each
environment. If a policy is over-reliant on a few transitions, then their removal should result in
a large performance drop. Therefore, such policies should have higher variance across runs, where
some runs would not allow the actions that are being exploited to obtain unrealistically high returns.
Figure 6 shows that the variance is indeed higher for the Variant compared to ICU-Sepsis, where the
average return and episode lengths stay more stable as actions are progressively made inadmissible.
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Figure 5: Illustration of the perturbation process. (a) Admissible actions for different states. Each
row has a state (in bold) followed by the list of admissible actions in that state. (b) Some admissible
actions are randomly chosen and made inadmissible. (c) Remaining admissible actions. This can
cause some states (in this case S3) to have no admissible actions left. (d) For states where there are
no admissible actions left, a previously admissible action is chosen and reintroduced as an admissible
action. Thus, every state still has at least one admissible action after the perturbation process.

(a) Return

(b) Number of steps per episode

Figure 6: Effects of removing some actions from the set of admissible actions on the learned policies
as the probability of removing actions (σ) increases from 0 to 1. Each perturbation was done 32
times for each environment and the average and standard error of the results are shown. (a) The
average return for different policies. (b) The average lengths of episodes for different policies.
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D Hyperparameters Search

The algorithms have been implemented as modifications on top of the CleanRL7 library (Huang
et al., 2022).

D.1 Random search setting

Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Learning Rate [10−5, 0.01] Log Uniform
Number of Environments 1 -
Buffer Size [13, 106] Integer Log Uniform
Discount Factor (γ) 1.0 -
Polyak Averaging Coefficient (τ) [0.001, 1.0] Log Uniform
Target Network Update Frequency [1, 1000] Integer Uniform
Batch Size [1, 256] Integer Uniform
Start Exploration Rate (ϵstart) [0.01, 1.0] Uniform
End Exploration Rate (ϵend) [0.01, 0.1] Log Uniform
Exploration Fraction [0.0, 1.0] Uniform
Learning Starts 10,000 -
Training Frequency 10 -

Table 6: Hyperparameter settings and distribution types for the DQN hyperparameter search.

Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Learning Rate [10−5, 0.01] Log Uniform
Number of Environments 1 -
Number of Steps [100, 500] Integer Uniform
Number of Mini-batches [1, 6] Integer Uniform
Discount Factor (γ) 1.0 -
GAE Lambda [0.0, 1.0] Uniform
Update Epochs [1, 8] Integer Uniform
Normalize Advantage True -
Clipping Coefficient [0.1, 0.5] Uniform
Clip Value Loss True/False -
Entropy Coefficient [10−2, 1.0] Log Uniform
Value Function Coefficient [0.2, 1.0] Uniform
Maximum Gradient Norm [0.1, 1.0] Uniform
Target KL [Null , 0.01, 0.05, 0.1] Uniform

Table 7: Hyperparameter settings and distribution types for the PPO hyperparameter search.

Weights & Biases (Wandb)8 (Biewald, 2020) was utilized for performing the random search over
hyperparameters. The ranges and distributions used for the searches across different algorithms are
detailed in Tables 6, 7, 8, and 9. To ensure equitable compute resources across different methods,
each was allocated 72 CPUs and a maximum duration of 4 days for the search, with the process
concluding at that time. The number of hyperparameters explored for each method is listed in Table
10, highlighting that slower methods were limited to fewer parameter searches. Altogether, ≥ 11,000
parameters were searched across all methods.

7https://github.com/vwxyzjn/cleanrl
8https://wandb.ai/

https://github.com/vwxyzjn/cleanrl
https://wandb.ai/
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Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Learning Rate [10−5, 0.01] Log Uniform
Number of Environments 1 -
Buffer Size 1 -
Discount Factor (γ) 1.0 -
Batch Size 1 -
Start Exploration Rate (ϵstart) [0.01, 1.0] Uniform
End Exploration Rate (ϵend) [0.01, 0.1] Log Uniform
Exploration Fraction [0.0, 1.0] Uniform

Table 8: Hyperparameter settings and distribution types for the Q-learning and Sarsa hyperparam-
eter search.

Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Buffer Size [103, 106] Integer Log Uniform
Polyak Averaging Coefficient (τ) [10−3, 1.0] Log Uniform
Batch Size [1, 256] Integer Uniform
Learning Starts [104, 2 × 104] -
Policy Learning Rate [10−5, 0.01] Log Uniform
Q-function Learning Rate [10−5, 0.01] Log Uniform
Update Frequency [1, 6] Integer Uniform
Target Network Update Frequency [100, 104] Integer Uniform
Temperature Coefficient (α) [0.01, 1.0] Uniform
Automatic Entropy Tuning False/True -
Target Entropy Scale [0.01, 1.0] Uniform
Number of Environments 1 -
Discount Factor (γ) 1.0 -

Table 9: Hyperparameter settings and distribution types for the SAC hyperparameter search.

Method Name Number of Hyperparameters
Q Learning 2263

Sarsa 2501
SAC 1162
PPO 3224
DQN 2632

Table 10: Number of runs for different methods.
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D.2 Best set of approximated hyperparameters

Table 11 lists the best hyperparameters for each method found during the random search. These
hyperparameters were used in the experiments, with results shown in Figure 2.

Hyper-parameter DQN PPO Q-Learning SAC Sarsa
Learning Rate 0.001 0.005 0.0025 π: 0.025, Q: 0.025 0.0025
Optimizer Adam Adam Adam Adam Adam
Buffer Size 10,000 1 10,000 1
Batch Size 64 1 64 1
Start Exploration Rate (ϵ start) 1.0 1.0 1.0
End Exploration Rate (ϵ end) 0.001 0.001 0.001
Exploration Fraction 0.25 0.1 0.25
Learning Starts 10,000 10,000
Training Frequency 10
Number of Steps for Rollout 500
Number of Minibatches 1
GAE Lambda 0.4
Update Epochs 6
Normalize Advantage Yes
Clipping Coefficient 0.5
Clip Value Loss No
Entropy Coefficient 0.005
Value Function Coefficient 0.3
Maximum Gradient Norm 0.4
Target KL Divergence 0.001
Polyak Average (τ) 0.01 0.01
Target Network Update Frequency 512 500
Update Frequency 1
Alpha 0.25
Autotune No
Target Entropy Scale 0.2

Table 11: Hyper-parameters used in DQN, PPO, Q-Learning, SAC, and Sarsa to solve ICU-Sepsis.


