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Abstract—In many domains, the exploration process of rein-
forcement learning will be too costly as it requires trying out
suboptimal policies, resulting in a need for off-policy evaluation,
in which a target policy is evaluated based on data collected
from a known behaviour policy. In this context, importance
sampling estimators provide estimates for the expected return
by weighting the trajectory based on the probability ratio
of the target policy and the behaviour policy. Unfortunately,
such estimators have a high variance and therefore a large
mean squared error. This paper proposes state-based importance
sampling estimators which reduce the variance by dropping
certain states from the computation of the importance weight. To
illustrate their applicability, we demonstrate state-based variants
of ordinary importance sampling, weighted importance sampling,
per-decision importance sampling, incremental importance sam-
pling, doubly robust off-policy evaluation, and stationary density
ratio estimation. Experiments in four domains show that state-
based methods consistently yield reduced variance and improved
accuracy compared to their traditional counterparts.

Index Terms—off-policy reinforcement learning, off-policy
evaluation, importance sampling, variance reduction

I. INTRODUCTION

In reinforcement learning [1], an agent explores an environ-

ment to learn a policy that optimises a utility function, such

as the expected cumulative reward, in that environment. In

many domains, including medical interventions (e.g. surgery,

diabetes or sepsis), financial decision-making (e.g. advertising

or trading), and safe navigation, it would be preferable to avoid

costly trial-and-error and instead use a known expert or safe

policy to gather the data needed for reinforcement learning.

Such domains motivate the use of off-policy evaluation [2],

[3], a class of methods which estimate the utility of a target

policy based on trajectories from a behaviour policy.

Importance sampling (IS) is a traditional statistical tech-

nique which estimates an integral over one distribution of

interest while only having samples from another distribution.

The expected cumulative reward can be seen as such an

integral, and therefore IS is an important technique for off-

policy evaluation [4]–[6]. Such techniques have been used
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successfully in the context of diabetes treatment [6] and digital

marketing [5]. Unfortunately, the variance of IS based off-

policy evaluation grows exponentially with the horizon H of

the decision process, a problem also known as “the curse

of horizon” [7]. This makes IS based off-policy evaluation

perform more poorly in domains requiring long-term planning

(e.g. safe navigation).

To reduce the variance of off-policy evaluation, this paper

proposes a technique that can be used on a wide variety of

estimators. The paper makes the following contributions:

• state-based importance sampling, a class of state-based

importance sampling estimators which remove “negligi-

ble states” from the importance weight computation;

• two methods to identify negligible states, one based

on covariance testing [8] and one based on state-action

values;

• implementations of state-based variants of ordinary im-

portance sampling, weighted importance sampling [4],

[9], per-decision importance sampling [4], incremental

importance sampling [8], doubly robust off-policy eval-

uation [10], and stationary density ratio estimation [7];

and

• a set of empirical experiments demonstrating the perfor-

mance of these state-based estimators compared to their

traditional counterparts.

II. PROBLEM STATEMENT AND PRELIMINARIES

This present paper is based on finite-horizon undiscounted

Markov decision processes (MDPs), which can be defined

based on the tuple (S,A, r, T ), where S is the state space, A
is the action space, r : S × A → R is a reward function, and

T : S × A → ΔS is the transition dynamics model defined

over the probability simplex over the state space, ΔS . The

goal of the reinforcement learning agent is to select actions

that maximise the expected cumulative reward, which is also

called the expected return. The decision-making is represented

by the policy of the agent, which takes the form π : S → ΔA;

that is, the policy π outputs the action distribution for each

given state.
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Off-policy evaluation computes the expected return G of an

evaluation policy πe based on samples from a behaviour policy

πb. This can be done using importance sampling,

G = Eπe

[
H∑
t=1

rt

]

= Eπb

[
H∑
t=1

rt

(
H∏
t=1

πe(at|st)
πb(at|st)

)]
,

which samples from πb and then corrects for the probability

under πe, using the product
∏H

t=1
πe(a

(i)
t |s(i)t )

πb(a
(i)
t |s(i)t )

as the impor-

tance weight of the trajectory.

A long-standing problem with importance sampling in this

manner is that if the horizon is large, then the variance on the

estimate of G is prohibitively large. To see why, define the

estimate ĜIS

ĜIS =
1

n

n∑
i=1

H∑
t=1

r
(i)
t

(
H∏
t=1

πe(a
(i)
t |s(i)t )

πb(a
(i)
t |s(i)t )

)
,

where i indexes the trajectory of the state s
(i)
t , action a

(i)
t , and

reward r
(i)
t at time t. By sample mean of a random variable

X =
∑H

t=1 rt

(∏H
t=1

πe(at|st)
πb(at|st)

)
and Popoviciu’s inequality

[11],

Var(ĜIS) =
1

n
Var(X)

≤ 1

4n

(
H∑
t=1

rmax

(
H∏
t=1

ρmax

))2

=
1

4n

(
Hrmaxρ

H
max

)2
= O(exp(H)) , (1)

where ρmax = max(s,a)∈S×A πe(a|s)/πb(a|s) and [0, rmax] is

the reward range. In addition to the general upper bound, it is

also possible, with some additional assumptions, to show that

the variance is lower bounded by Ω(exp(H)) [12]. Due to the

bias-variance decomposition of the mean squared error,

MSE(ĜIS) = Bias(ĜIS)
2 + Var(ĜIS) ,

where Bias(ĜIS) = Eπb
[ĜIS ] − G, the above results imply

an exponential dependency of the MSE on the horizon of the

decision problem.

III. RELATED WORK

Due to the curse of horizon, variance reduction is one of

the important problems in off-policy evaluation. We review

variance reduction techniques and provide exemplary off-

policy evaluation applications.

A. Variance reduction in importance sampling

While ordinary importance sampling takes a simple average

across trajectories, dividing by a denominator n, the weighted

importance sampling (WIS) technique [4], [9] divides by the

sum of the importance weights of the different trajectories.

This mitigates the impact of excessively large importance

ratios. Its resulting variance converges to 0 for n → ∞ [9]

but remains exponential in the horizon [7]. While state-based

importance sampling does not work similarly to weighted

importance sampling, it shares the commonality that it serves

as an easy plug-in to a wide range of estimators.

Another common technique is to remove some of the time

steps from the cumulative product, which results in a lower

exponent in Eq. 1 and mitigates the curse of horizon. In per-

decision importance sampling (PDIS) [4], one forms different

importance weights for each reward rt′ by relating it to the

past time steps until that point, i.e. ρt′ =
∏t′

t=1
πe(a

(i)
t |s(i)t )

πb(a
(i)
t |s(i)t )

.

Incremental importance sampling (INCRIS) [8] drops all but

the k most recent action probability ratios from the importance

weight of the per-decision importance sampling technique,

where the number k is selected based on a covariance test.

Removing time steps in this manner is not always a natural

solution since the i’th decision in one trajectory may not

be related to the i’th decision in another trajectory. In state-

based importance sampling, one drops action probability ratios

associated with a particular set of states rather than a particular

set of time steps. In doing so, a similar covariance test is

proposed as one technique to identify the set of states to drop.

It is also possible to avoid products of action probability

ratios in favour of sums over state density ratios. Stationary

density ratio estimation (SDRE) [7] avoids the cumulative

product across time and instead is based on the average visi-

tation distribution of state-action pairs. Denoting the average

visitation distribution of a state s
(i)
t as dπt (s

(i)
t ) and its estimate

as d̂πe
t (s

(i)
t ), SDRE estimates the return as

ĜSDRE =
1

n

n∑
i=1

H∑
t=1

r
(i)
t

d̂πe(s
(i)
t )

d̂πb(s
(i)
t )

, (2)

thereby removing the curse of horizon such that the variance

depends polynomially, rather than exponentially, on H . The

approach is thereby suitable for large and even infinite-horizon

problems but requires additional assumptions of ergodicity, a

finite state space, and a clearly defined stationary distribution.

In similar spirit, Marginalised importance sampling (MIS) [13]

is formulated as

ĜMIS =
1

n

n∑
i=1

H∑
t=1

r̂πe
t (s

(i)
t )

d̂πe
t (s

(i)
t )

d̂πb
t (s

(i)
t )

, (3)

where one can note the difference with SDRE by indexing

the state distribution d̂πe
t at a particular time t as well as

estimating the reward r̂πe
t (s

(i)
t ) for a particular time t. The

estimator of the state distribution is updated according to

d̂πe
t = T̂ πe

t (st|st−1)d̂
πe
t−1, where T̂ πe

t (st|st−1) is the empirical

importance-weighted visitation of st−1 → st. The estimator

r̂πe
t is the importance-weighted reward for transitions st−1 →
st. Within the formalism of a tabular MDP, i.e. where state

space and actions space are limited such that each state-action

pair can be frequently visited, Tabular MIS [14] provides an

alternative approximation to r̂πe
t (s

(i)
t ) and d̂πe

t (s
(i)
t ) based on
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the observed visitation frequencies. Tabular MIS provides a

lower MSE bound in line with the Cramer-Rao bound of

Ω(H2/n). Compared to techniques using state density ratios,

which require stationary state distributions and various func-

tion approximators, state-based estimators are applicable under

varying asssumptions and algorithmic frameworks, depending

on which estimator it is plugged into (e.g. ordinary importance

sampling vs stationary density ratio estimation).
Conditional importance sampling (CIS) uses conditional

Monte Carlo over the importance weight to yield lowered

variance. Denoting ρ1:t′ =
∏t′

t=1
πe(at|st)
πb(at|st) and φt as a statistic

obtained from the trajectory, CIS can be written as

ĜCIS =
n∑

i=1

H∑
t=1

r
(i)
t Eπb

[ρ1:H |φt]] , (4)

which yields Var(GEπb
[ρ1:H |φt]) ≤ Var(Gρ1:H). Liu et al.

(2020) [12] make use of this property to better understand

IS, PDIS, and marginalised IS, noting that in this framework

the PDIS estimate has φt = s1:t, a1:t and the marginalised

IS estimate has φt = st, at. Rowland et al. (2020) [15]

present a related framework for conditional importance sam-

pling with emphasis on trajectories given particular start state-

action pair. They introduce novel algorithms arising within the

framework, namely return-conditioned, reward-conditioned,

and state-conditioned importance sampling. When the equa-

tions cannot be solved analytically, the technique often comes

with a requirement to form an importance weight regression

model, which may increase variance and reduce accuracy.

Rather than conditioning on states, state-based methods drop

selected states from the importance weight every time they

occur in the trajectory.
State-based techniques can also be applied when an accurate

model is available. In particular, doubly robust (DR) methods

[10], [16]–[18] use estimators that combine importance sam-

pling with the direct method, which uses an estimated model

to infer the return of the evaluation policy, using traditional

statistical techniques for missing data (e.g. [19]). The doubly

robust estimator benefits from the low variance of the direct

method and the low bias – or unbiasedness, if the behaviour

policy is known – of importance sampling methods. It is a

consistent estimator [10], implying its variance converges to

0 for n → ∞.
Other variance reduction techniques not investigated in this

paper are of further interest, including options [8], [20], mul-

tiple importance sampling [21], [22], and estimator selection

[2].

B. Applying off-policy evaluation
Off-policy evaluation has two primary uses. First, when

few trajectories are available and the designer wants to make

a decision on whether or not to use the evaluation policy

instead of a given expert policy; primary examples include

medical treatment [6] and digital marketing [23], which would

incur significant costs and safety risks when the evaluation

policy’s performance is not estimated correctly. Second, off-

policy evaluation can be used to optimise the policy, where key

challenges include how to provide monotonic improvement

and how to provide confidence estimates on improvement.

For example, high-confidence policy improvement (HCOPE)

[24] uses confidence estimates on the evaluation [25] to ensure

with high probability that the new policy improves on the old;

policy optimisation via importance sampling (POIS) [26] op-

timises surrogate objective that effectively captures the trade-

off between the estimated improvement and the uncertainty

due to importance sampling [22]; and Uniform OPE [27]

simulateneously evaluates all policies in a policy class.

IV. STATE-BASED IMPORTANCE SAMPLING

State-based importance sampling (SIS) mitigates the above

issue by constructing an estimator ĜSIS that selectively drops

the action probability ratios of a select state set SA ⊂ S from

the product to compute the importance weight. If the dropped

term is equal to 1 and does not covary with the estimator

ĜSIS , this yields lower-variance estimates. In this section, we

demonstrate the state-based formalism for ordinary importance

sampling while Sec. VI shows how to apply the state-based

formalism for other estimators with lower variance and mean

squared error. We extend ordinary importance sampling here

for its simplicity and the fact that its variance is more

significantly reduced (i.e. by reducing the exponent).

Let SA ⊂ S and SB = S \ SA its complement.

Let G =
∑H

t=1 rt. Also for any given trajectory τ =
{s1, a1, . . . , sH , aH} taken by a policy πb on an MDP M,

let

A =

{∏
t∈[H]:st∈SA

πe(at|st)
πb(at|st) , if ∃s ∈ SA ∩ τ

1, otherwise

B =

{∏
t∈[H]:st∈SB

πe(at|st)
πb(at|st) , if ∃s ∈ SB ∩ τ

1, otherwise,

where [H] = {1, 2, . . . , H}.

Given a selected state-set SA of dropped states, the state-

based variant of ordinary importance sampling computes the

action probability ratios only over its complement SB :

ĜSIS(SA) =
1

n

n∑
i=1

G(i)

⎛⎜⎝ ∏
t∈[H]:s

(i)
t ∈SB

πe(a
(i)
t |s(i)t )

πb(a
(i)
t |s(i)t )

⎞⎟⎠ .

(5)

Its expected return can be rewritten as

G = Eπb
[A]Eπb

[BG] + Cov(A,BG) , (6)

since Cov(X,Y ) = E[XY ] − E[X]E[Y ]. As shown in the

coviarance testing framework [8], any decomposition of the

form (6) allows to accurately estimate G based on samples

of BG if Eπb
[A] ≈ 1 and Cov(A,BG) is sufficiently small.

For the first condition, the random variable A can be seen as

the importance weight under a different evaluation policy πA
e ,

which we will call the SA-reduced evaluation policy of πe,

which is equal to πe for s ∈ SA and equal to πb for s ∈ SB ;

therefore it follows that E[A] = 1 (see Appendix A). The

second condition does not follow automatically, but depends
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on the chosen SA; the definition below specifies the criterion

for SA to form an accurate state-based estimator.

Definition 1. (πe, πb, ε)-decomposable MDP and ε-negligible
state set. Let ε > 0, M be an MDP 〈S,A, r, T 〉, and let πe and
πb two policies in M . Then M is (πe, πb, ε)-decomposable iff
there exists a set SA for which Cov(A,BG) < ε. Any such
set SA is called an ε-negligible state set for the off-policy
evaluation problem 〈M, πe, πb〉.

Applying bias-variance decomposition, it follows that

MSE(ĜSIS(SA)) = Cov(A,BG)2 + Var(ĜSIS(SA)) . (7)

Denoting the subtrajectory τB := {t ∈ [H] : s
(i)
t ∈ SB} and

MB := maxτ∈τB |τ |, we have

Var(ĜSIS(SA)) ≤ 1

4n

(
Hrmaxρ

MB
max

)2
. (8)

The resulting variance upper bound of ĜSIS is exponential in

the maximal number of occurrences of states in SB rather than

in the full trajectory length H . Consequently, the SIS estimator

will significantly improve on IS if many visited states can be

dropped from the computation of the importance weight. When

SA is an ε-negligible state set, this implies via (7) and (8) that

MSE(ĜSIS(SA)) ≤ ε2 +
1

4n

(
Hrmaxρ

MB
max

)2
. (9)

V. OPTIMISING THE DROPPED STATE SET

We propose two search algorithms to optimise the dropped

state set, one based on covariance testing and one based on

state-action values (a.k.a. Q-values). Additional derivations are

presented in Appendix B showing that even with some addi-

tional bias, the performance of a state-based variant of ordinary

importance sampling (SIS) is still a significant improvement

over ordinary importance sampling.

A. Covariance testing

Following the covariance testing approach [8], this algo-

rithm applies a bias-variance decomposition based on empiri-

cal estimates of the covariance and variance, and compares

the MSEs of different parameter choices. In our case, the

parameter choice is the state set SA for a decomposition

M̂SE(ĜSIS(SA)) = Ĉov(A,BG)2 + V̂ar(ĜSIS(SA)) , (10)

and the algorithm encourages larger negligible states sets using

the criterion best ← SA if and only if Ĉov(A,BG) < ε and

M̂SE(SA) < M̂SE(best) or M̂SE(SA) < M̂SE(best)∗(1+
εs)∧ |SA| > |best| based on user-defined parameters εs > 0
and ε > 0. In this paper, we use exhaustive search over subsets

while it is also possible to form heuristic search algorithms.

B. Q-value based identification

In the Q-value based identification, a model of the MDP is

formulated based on the trajectories from πb to compute time-

specific Q-values for πe via stochastic dynamic programming:

Q̂t(s, a) = r̂(s, a) +
∑
s′∈S

T̂ (s, a, s′)πe(: |s′) · Q̂t+1(s
′, :) ,

(11)

where : indicates vectorisation. The algorithm identifies a state

s ∈ S as negligible if for all t ∈ [H], |Q̂t(s, a)−Q̂t(s, a
′)| < ε

for all a, a′ ∈ A. This criterion leads to an SIS estimator

with limited absolute bias depending on the user-defined ε,
the maximal number of dropped weights, and the model

approximation error ε2 (see Appendix C). Consistent with the

analysis in Appendix B, the MSE of SIS is O (exp(MB))
with both state identification methods. The Q-value based

identification algorithm is computationally inexpensive and

can include a large subset of the state space as negligible states.

Moreover, it easy to interpret and independent of the estimator

making it applicable to a variety of estimators.

VI. STATE-BASED IMPORTANCE SAMPLING VARIANTS

While so far we have focused on ordinary importance

sampling, it is easy to extend SIS to use more advanced off-

policy evaluation estimators as its base-estimator.

First, methods such as PDIS and INCRIS, and even the

weighted counterparts of these algorithms, are easily extended

by analogously setting the action probability ratio to one for

negligible states.

Second, for doubly robust off-policy evaluation [10], [17],

one can use a model using the same formalism as the Q-

value based identification. While traditional DR uses an im-

portance weight wi
t = 1

n

∏t
j=1

πe(a
i
t|sit)

πb(ai
t|sit) for a trajectory i

at time t and n total trajectories, doubly robust state-based

importance sampling (DRSIS) uses the importance weight

wi
t = 1

n

∏t
j=1

πA
e (ai

t|sit)
πb(ai

t|sit) where πA
e is the SA-reduced evalu-

ation policy of πe.

Third, techniques that rely on importance sampling over

state visitation frequencies such as SDRE and MIS can also

benefit from a state-based formulation. For example, the

stationary density ratio estimator (2) can be turned into a state-

based formulation according to

ĜSSDRE =
1

n

n∑
i=1

H∑
t=1

r
(i)
t

d̂π
A
e (s

(i)
t )

d̂πb(s
(i)
t )

, (12)

where d̂π
A
e (s

(i)
t ) is equal to d̂πe(s

(i)
t ) for s

(i)
t ∈ SB and

d̂πb(s
(i)
t ) for s

(i)
t ∈ SA. Such techniques are polynomial

in H due to replacing the product over action probability

ratios by a sum of state visitation density ratios. As such

the variance reduction due to reducing polynomial factors is

smaller than variance reductions due to reducing the exponent,

as is the case in traditional IS methods. However, as the

experiments in Sec. VII show, this can still yield significant

MSE improvements and an excellent overall performance in

environments with stationary distributions.

VII. EXPERIMENTS

The experimental validation of state-based estimators com-

prises 4 domains. The first two domains include lift states

in the form of a lift transporting the agent from one side to

another, while the third and fourth domain are common RL

benchmarks, namely the inventory management domain [28]

and the taxi domain variant used in [7]. In each of the domains,
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TABLE I
MEAN SQUARED ERROR (MSE) FOR OFF-POLICY EVALUATION ESTIMATORS OF THE EXPECTED RETURN IN THE DETERMINISTIC LIFT DOMAIN BASED ON

50 INDEPENDENT RUNS OF 1,000 EPISODES FOR EACH DOMAIN SIZE. THE BEST AND SECOND BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD

UNDERLINED AND BOLD, RESPECTIVELY, FOR EACH DOMAIN SIZE. ALL SIS ESTIMATORS SHOWN USE THE Q-VALUE BASED ALGORITHM FOR

NEGLIGIBLE STATE SET IDENTIFICATION.

Domain
size

IS SIS PDIS SPDIS INCRIS SINCRIS SDRE SSDRE

7 0.0067 0.0019 0.0398 0.0121 4.0024 4.0007 532.7567 536.3787
9 0.0153 0.0019 0.1766 0.0215 6.1964 6.1765 577.3089 584.4657
11 0.0353 0.0029 0.7087 0.0600 8.9408 8.9225 674.0772 680.1959
13 0.0691 0.0026 1.8038 0.0688 12.5475 12.4779 652.6004 660.2387
15 0.1389 0.0033 5.3474 0.1378 16.1902 16.1558 803.3450 813.4997
17 0.3026 0.0031 15.1566 0.1303 23.7084 20.1534 758.2237 764.6283

TABLE II
MEAN SQUARED ERROR (MSE) FOR OFF-POLICY EVALUATION ESTIMATORS OF THE EXPECTED RETURN IN THE STOCHASTIC LIFT DOMAIN BASED ON

200 INDEPENDENT RUNS OF 1,000 EPISODES FOR EACH DOMAIN SIZE. THE BEST, SECOND BEST, AND THIRD BEST ESTIMATORS ARE HIGHLIGHTED IN

BOLD DOUBLE-UNDERLINED, BOLD UNDERLINED, AND BOLD, RESPECTIVELY, FOR EACH DOMAIN SIZE.

Domain
size

WIS WSIS WPDIS WSPDIS WINCRIS WSINCRIS SDRE SSDRE WDR WDRSIS

7 10.2238 8.4832 6.8271 5.3853 1.0958 0.2618 208.7413 209.8354 5.2572 5.0844
9 9.4737 7.7326 5.3924 4.0441 0.2973 0.6929 243.1366 245.1004 2.8067 2.7486
11 9.7285 6.2044 5.7219 3.0552 0.2002 2.3050 250.3149 251.5843 2.3016 1.9838
13 8.4436 9.4967 4.4449 3.2916 0.8958 4.8960 266.7911 268.6634 1.3459 1.3354
15 18.0453 4.2831 6.2259 1.7004 2.6550 9.0162 280.6434 282.6849 1.2258 0.8797
17 8.2474 4.8129 5.2761 1.8151 4.7157 13.0056 305.7465 307.9191 0.8385 0.4820

we evaluate the expected return of a near-optimal policy πe

based on sub-optimal policy πb.
The experiments validate state-based importance sampling

when implemented on IS, PDIS, INCRIS, DR, and SDRE. The

corresponding state-based implementations are denoted with

the prefix S; for instance, SPDIS denotes state-based PDIS.

State-based doubly robust off-policy evaluation is denoted as

DRSIS to distinguish it from SDRE. With the exception of

the first domain, which has short trajectory lengths, and SDRE

for which this is not applicable, the experiments use additional

variance reduction with weighted importance sampling, which

is indicated by the prefix W; for instance, WIS denotes

weighted IS. Further, the effectiveness of the negligible state

identification is demonstrated on the first two domains as

these contain known lift states (see Appendix D). Due to its

ability to identify the lift states and yield lower MSE, the Q-

based identification algorithm is used throughout this section.

Additional experimental details are provided in Appendix E

and source code is available at https://github.com/bossdm/Im

portanceSampling.

A. Lift domains
Based on the ε-negligibility definition, one would expect

state-based techniques to be advantageous on domains where

there are some states for which the action taken has no or

limited impact on the return. This intuition is captured by the

notion of “lift states”.

Definition 2. Lift states. A lift state s ∈ S is a state for which
T (s, a) = T (s, a′) and r(s, a) = r(s, a′) for all a, a′ ∈ A.
The set of lift states for a domain is denoted by SL.

a) Deterministic lift domain: The deterministic lift do-

main involves an agent moving on a straight line, with the state

space S = {−b, . . . ,−1, 0, 1, . . . , b} representing the coordi-

nates along the line and the action space A = {left,right}
representing left or right movements on the line. With the

exception of the starting state and states within a distance of

1 from the terminal state, the domain has lift states which

force the agent to move left on s < 0 and right on s > 0.

The episode stops when the agent hits the bound, and then

the terminal reward of r = s is given (equal to either −b
or b). All non-terminal rewards are r = −1 to penalise the

length of the path. The experiments manipulate this bound for

an increasing effective horizon. An analysis comparing state-

based estimators to their traditional counterparts (see Tab. I)

demonstrates a near universal benefit in the deterministic

domain, with the only exception being SDRE. SIS is the best

performing estimator across all domain sizes, followed by IS

and SPDIS depending on the domain size. SDRE and SSDRE

have particularly poor estimates because the domain does

not have a stationary distribution. Analysis of the residuals

(see Fig. 1a in Appendix F) also shows that: a) state-based

methods have successfully reduced the variance compared to

their traditional counterparts; b) SPDIS strongly reduces the

residual of PDIS for large domain sizes; and c) INCRIS and

SINCRIS have large residuals, which implies that dropping

recent time steps may not be suitable for the deterministic

domain (e.g. the first time step always determines the final

reward). Due to the deterministic domain being easy to model,

the doubly robust methods have MSEs close to zero in this

domain so are not further analysed.
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TABLE III
NORMALISED MEAN SQUARED ERROR (MSE) FOR OFF-POLICY EVALUATION ESTIMATORS OF THE EXPECTED RETURN IN THE INVENTORY

MANAGEMENT DOMAIN BASED ON 50 INDEPENDENT RUNS FOR EACH NUMBER OF EPISODES. NORMALISATION IS BASED ON DIVISION BY THE SQUARED

RANGE. THE BEST, SECOND BEST, AND THIRD BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD DOUBLE-UNDERLINED, BOLD UNDERLINED, AND BOLD,
RESPECTIVELY, FOR EACH NUMBER OF EPISODES.

Episodes WIS WSIS WPDIS WSPDIS WINCRIS WSINCRIS SDRE SSDRE WDR WDRSIS

100 0.0490 0.0088 0.0278 0.0074 0.0641 0.0109 0.0160 0.0077 0.0173 0.0138

250 0.0651 0.0080 0.0335 0.0080 0.0546 0.0118 0.0161 0.0070 0.0132 0.0137

500 0.0652 0.0113 0.0340 0.0105 0.0456 0.0124 0.0163 0.0067 0.0098 0.0114

1000 0.0820 0.0122 0.0293 0.0119 0.0313 0.0128 0.0162 0.0066 0.0117 0.0104

TABLE IV
MEAN SQUARED ERROR (MSE) FOR OFF-POLICY ESTIMATORS OF THE EXPECTED RETURN IN THE TAXI DOMAIN BASED ON 20 INDEPENDENT RUNS FOR

EACH EFFECTIVE HORIZON. THE BEST, SECOND BEST, AND THIRD BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD DOUBLE-UNDERLINED, BOLD

UNDERLINED, AND BOLD, RESPECTIVELY, FOR EACH EFFECTIVE HORIZON.

Effective
horizon

WIS WSIS WPDIS WSPDIS WINCRIS WSINCRIS SDRE SSDRE WDR WDRSIS

10 0.6080 0.4525 0.7234 0.5084 0.4896 0.4767 1.2764 1.2790 53.2003 53.1011

50 15.8227 15.9281 11.6239 10.7777 35.6350 35.8282 9.4938 9.4435 188.8620 187.3876

250 440.6435 473.4986 281.9518 273.3647 1753.7938 1752.6067 25.3142 25.2920 993.3100 1055.8603

1000 8233.7773 7948.8306 4876.1759 4652.7797 27675.6630 27635.4627 231.6101 231.4313 11982.1668 12176.5372

b) Stochastic lift domain: In the stochastic lift domain,

the evaluation policy and the state transitions are stochastic

rather than deterministic. The evaluation policy πe takes the

best action with probability 1 − δ and the other action with

probability δ, and the state transitions dynamics are formulated

such that the action effect is reversed with probability δ.

An analysis comparing state-based estimators to their tradi-

tional counterparts (see Tab. II) demonstrates a benefit in the

stochastic domain. This time doubly robust methods are also

analysed as the error of the DR estimator is now non-zero.

WSIS and WSPDIS consistently outperform their traditional

counterparts. For large domain sizes, WDRSIS is the best

performing estimator followed by WDR and WSPDIS. State-

based methods are not adversely affected by the domain

size, which is explained by all the lift states being dropped

and therefore the maximal number of steps MB in non-

negligible states remaining constant regardless of domain size.

For small domain sizes, WINCRIS and WSINCRIS have the

best performance, indicating the benefit of dropping time

steps; the difference to the deterministic domain maybe due

to the visitation of multiple lifts in the same episode. The

lower performance of WINCRIS and WSINCRIS in larger

domain sizes is attributed to the limited history window

k ∈ {1, . . . , 10}, which is needed for computational feasibility

but may not be sufficient for longer trajectories. Fig. 1b in

Appendix F further demonstrates that the state-based methods

have successfully reduced the variance compared to their

traditional counterparts. As in the deterministic lift domain,

the poor performance of SDRE estimators in the stochastic

lift domain is attributed to the domain not having a defined

stationary state distribution.

B. Inventory management

The task of the agent in the inventory management problem

is to purchase items to make optimal profits selling the items.

The agent must balance supply with demand while having at

most S items in the inventory. The state is the current inventory

while the action is the chosen number of items to add. States

corresponding to an almost full inventory are similar to lift

states in the sense that the actions chosen are unimportant.

As the domain is high variance due to the varying demand,

we opt for a relatively high number of 50 experiment runs

and instead of manipulating the effective horizon we analyse

the improvement in performance across different numbers of

episodes. An analysis comparing state-based estimators to

their traditional counterparts (see Tab. III) demonstrates a near

universal benefit in the inventory management domain, with

2– to 8–fold improvements being observed (see Tab. III) –

with the exception of DR which already has high accuracy.

WSPDIS performs best for 100 episodes while SSDRE per-

forms best for 250 to 1,000 episodes. The high performance of

SSDRE is attributed to a clearly defined stationary distribution.

The performance of SSDRE and SDRSIS dependent on the

sample size suggests that these state-based methods provide

improved convergence and efficiency. Other high-performing

algorithms are WSIS, WSINCRIS, WDR, and WDRSIS. Fig. 2

in Appendix F demonstrates that state-based techniques reduce

the variance and yield a smaller residual.

C. Taxi

The taxi domain has a much larger state space with

|S| = 2000 and can have infinite horizon. A taxi agent has

to pick up and drop off passengers who arrive at random

corners in a 5 × 5 grid based on 6 actions, namely going

a step north, west, south, east, picking up a passenger, and
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dropping off a passenger. The taxi agent receives a reward

of 20 upon a drop-off or pick-up at the correct location,

and a reward of −1 otherwise. The domain is of interest

to investigate the scalability to large state-action spaces and

large effective horizon, and it is of interest to manipulate the

effective horizon in an additional domain which in contrast

to the lift domains has a stationary distribution. The results

for the taxi domain (see Tab. IV) also show a near universal

benefit for state-based estimators compared to the traditional

counterparts, although the effect is not as pronounced as for

example in the inventory management domain. For an effective

horizon of 10, WSIS is the highest performing followed by

WSINCRIS and WINCRIS. For effective horizons between 50

and 1,000, SSDRE is the highest performer followed by SDRE

and WSPDIS. The high performance of SDRE based methods,

and their relative improvement across effective horizon, is

attributed to their MSE being polynomial in the effective

horizon whereas the MSE of traditional importance sampling

techniques based on products of action probability ratios is

exponential in the effective horizon. As illustrated in Fig. 3 in

Appendix F, the SDRE methods have a lower variance than

WDR methods and their residuals do not depend as strongly

on the effective horizon as WIS, WPDIS, and WINCRIS.

VIII. CONCLUSION

Off-policy reinforcement learning comes with the significant

challenge of high-variance estimates for the expected return.

This paper introduces state-based importance sampling, a class

of off-policy evaluation techniques which reduces the variance

of importance sampling by eliminating states that do not

affect the return from the importance weight computation. The

state-based technique is shown to improve performance when

integrated with a variety of off-policy evaluation methods,

making it a useful plug-in for many applications. Future

work directions include theoretical studies on the presence of

negligible states, implementing policy optimisation techniques

based on state-based importance sampling, and exploring the

links with other off-policy evaluation techniques.
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[11] T. Popoviciu, “Sur les équations algébriques ayant toutes leurs racines
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APPENDIX A: PROOF OF E[A] = 1

Denoting P1 as the starting distribution, τ := s1, a1 . . . , sH , aH , τs := s1, . . . , sH , and τa := a1, . . . , aH and πA
e as the

SA-reduced evaluation policy of πe, we have

Eπb
[A] =

∫
τ

πA
e (τa|τs)/πb(τa|τs)P(τs|πb)dτ

=

∫
τ

πA
e (τa|τs)/πb(τa|τs)

P1(s1)

H∏
t=1

πb(at|st)T (st, at, st+1)

=

∫
τ

πA
e (τa|τs)P1(s1)

H∏
t=1

T (st, at, st+1)dτ

=

∫
τ

P(τs|πA
e )dτ

= 1 .

APPENDIX B: ANALYSIS OF MSE UNDER INACCURATE STATE-SET IDENTIFICATION

The variance reduction of state-based methods depends crucially on the state-set identification. In covariance testing, the

covariance estimate may be highly inaccurate, and in Q-value based identification, the model on which the Q-value is based

may be highly inaccurate. Below we compare the true MSE of the IS estimator to that of the covariance testing based SIS

estimator under the assumption that the state-identification algorithm has identified a state-set that is not negligible at all but

instead has an arbitrary covariance with the return estimate (thereby yielding a significant bias in the estimate).

Note that the true MSE of ordinary importance sampling is upper bounded by

MSE(ĜIS) ≤
1

4n

(
Hrmaxρ

H
max

)2
= O(exp(H)) .

While for SIS the chosen state-set has been observed to be ε-negligible and the covariance and variance have been estimated,

for the sake of the argument assume that the population covariance and variance may take on any value. Via Cauchy-Schwartz

inequality and Popoviciu’s inequality with G ∈ [0, Hrmax] and A,B ∈ [0, ρmax], we have

|Cov(A,BG)| ≤ Var(A)Var(BG) ≤ ρ4maxH
2r2max

16
.

With the bias equal to the covariance, it follows via bias-variance decomposition that

MSE(ĜSIS(SA)) = Var(ĜSIS(SA)) + Cov(A,BG)2

≤ 1

4n

(
Hrmaxρ

MB
max

)2
+

ρ8maxH
4r4max

256
= O(exp(MB)) .

Therefore the SIS has a significantly improved upper bound on the true MSE provided the maximal number of steps in SB

is significantly smaller than H . If, however, the state-set identification was accurate, such that Cov(A,BG) < ε, then any

reduction in variance implies via the bias-variance decomposition that SIS has successfully optimised the true MSE compared

to IS.
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APPENDIX C: PROOF OF LIMITED BIAS OF Q-BASED STATE IDENTIFICATION

Let st ∈ SA = {s ∈ S : |Q̂t′(s, a)− Q̂t′(s, a
′)| < ε ∀a, a′ ∈ A ∀t′ ∈ [H]}. This implies that the SIS estimator has the

following expected return from starting state st

Eπb
[ĜSIS |st] = Eπb

[ρt+1:t+HGt|st]
=
∑
a

πb(a|st) (r(st, a) + Eπb
[ρt+1:t+HGt+1|st])

=
∑
a

πb(a|st)Qt(st, a)

≈
∑
a

πe(a|st)Qt(st, a)

= Eπe [Gt|st] ,

where the approximate equality follows since |Q̂t(s, a)− Q̂t(s, a
′)| < ε implies Qt(s, a) ≈ Qt(s, a

′) for all a, a′ ∈ A. Under

a perfect model, the bias of the estimator comes only from the approximate equality, in which case the absolute bias induced

by state being dropped is at most ε. Under an erroneous model, which yields |Q̂t(s, a)−Qt(s, a)| < ε2 for all t and all a ∈ A,

the absolute bias induced by a state being dropped is at most ε+ ε2. Repeatedly applying this argument for a maximal number

of MA dropped weights in a trajectory, the absolute bias induced is at most MA(ε + ε2). Filling in O (poly(H)) as the bias

and 1
4n

(
Hrmaxρ

MB
max

)2
as the variance in the bias-variance decomposition, the MSE is bounded by O (exp(MB)).

APPENDIX D: COMPARISON OF STATE SET IDENTIFICATION ALGORITHMS

The comparison for traditional importance sampling includes SIS (Lift states), which uses the lift states of the domain (i.e.,

where SA = SL); SIS (Covariance testing), which uses the negligible states identified by covariance testing; and SIS (Q-
based), which uses the negligible states identified using Q-values. Similarly, we evaluate the effectiveness of state identification

for the doubly robust off-policy evaluation method, which are analgously denoted as SDR (Lift states), SDR (Covariance
testing), and SIS (Q-based).

Analysing the different negligible state set identification methods reveals that SIS (Q-based) identifies the lift states as

negligible states and therefore yields the same performance as SIS (Lift states). Tab. I demonstrates the superior performance

of SIS (Q-based) and SIS (Lift states) compared to IS, which never drops any states, and SIS (Covariance testing), which

typically drops two lift states (the maximal cardinality given the computational budget).

TABLE I
MEAN SQUARED ERROR (MSE) COMPARING STATE-BASED IMPORTANCE SAMPLING METHODS WITH DIFFERENT NEGLIGIBLE STATE SETS ON 50

INDEPENDENT RUNS OF THE DETERMINISTIC LIFT DOMAIN FOR EACH DOMAIN SIZE. ESTIMATES ARE OBTAINED BASED ON 1,000 EPISODES. THE BEST

AND SECOND BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD UNDERLINED AND BOLD, RESPECTIVELY, FOR EACH NUMBER OF EPISODES; IN CASE OF A

TIE ONLY THE BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD UNDERLINED.

IS SIS
(Lift states)

SIS
(Covariance
testing)

SIS
(Q-based)

Domain size
7 0.0067 0.0019 0.0056 0.0019
9 0.0153 0.0019 0.0138 0.0019
11 0.0353 0.0029 0.0345 0.0029
13 0.0691 0.0026 0.0705 0.0026
15 0.1389 0.0033 0.1386 0.0033
17 0.3026 0.0031 0.3035 0.0031

Results for state set identification are analogous to the deterministic lift domain: WSIS (Q-based) is successful at identifying

the lift states as negligible states and together with WSIS (Lift states) has a superior performance compared to WSIS (Covariance

testing) and WIS (see Tab. II; and WSIS (Covariance testing) typically drops two lift states (the maximal cardinality given the

computational budget). Tab. III demonstrates how dropping states is also beneficial for doubly robust methods and again the

Q-based state identification works to identify the lift states.
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TABLE II
MEAN SQUARED ERROR (MSE) COMPARING STATE-BASED IMPORTANCE SAMPLING METHODS WITH DIFFERENT NEGLIGIBLE STATE SETS ON 200

INDEPENDENT RUNS OF THE STOCHASTIC LIFT DOMAIN FOR EACH DOMAIN SIZE. ESTIMATES ARE OBTAINED BASED ON 1,000 EPISODES. THE BEST

AND SECOND BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD UNDERLINED AND BOLD, RESPECTIVELY, FOR EACH DOMAIN SIZE; IN CASE OF A TIE ONLY

THE BEST ESTIMATORS ARE HIGHLIGHTED IN BOLD UNDERLINED.

WIS WSIS
(Lift states)

WSIS
(Covariance
testing)

WSIS
(Q-based)

Domain size
7 10.2238 8.4832 10.2186 8.4832
9 9.4737 7.7326 9.4489 7.7326
11 9.7285 6.2044 9.6775 6.2044
13 8.4436 9.5003 8.4058 9.4967
15 18.0453 4.2803 17.9633 4.2831
17 8.2474 4.7482 7.7646 4.8129

TABLE III
MEAN SQUARED ERROR (MSE) COMPARING DOUBLY ROBUST METHODS WITH DIFFERENT NEGLIGIBLE STATE SETS ON 200 INDEPENDENT RUNS OF THE

STOCHASTIC LIFT DOMAIN FOR EACH DOMAIN SIZE. ESTIMATES ARE OBTAINED BASED ON 1,000 EPISODES. THE BEST AND SECOND BEST ESTIMATORS

ARE HIGHLIGHTED IN BOLD UNDERLINED AND BOLD, RESPECTIVELY, FOR EACH DOMAIN SIZE; IN CASE OF A TIE ONLY THE BEST ESTIMATORS ARE

HIGHLIGHTED IN BOLD UNDERLINED.

WDR WDRSIS
(Lift states)

WDRSIS
(Covariance
testing)

WDRSIS
(Q-based)

Domain size
7 5.2572 5.0844 5.2662 5.0844
9 2.8067 2.7486 2.8235 2.7486
11 2.3016 1.9838 2.3058 1.9838
13 1.3459 1.3359 1.3612 1.3354
15 1.2258 0.8788 1.1675 0.8797
17 0.8385 0.4817 0.6620 0.4820

APPENDIX E: EXPERIMENTAL DETAILS

In the experiments, covariance testing is applied with εs = ε = 0.01 and rather than the full power set, we limit the search to

sets with cardinalities of at most 2. The Q-value based identification is suitable for all the domains and the parameter settings

are ε = 1 in the grid world lift domains, ε = 50 in the inventory management domain, and ε = 2 in the taxi domain.

In the lift domains, πe is the optimal policy and πb is the uniform random policy. The expected return is 1.0 in the deterministic

domain and negative in the stochastic domain (with magnitude increasing with domain size). The failure probability is set to

δ = 0.05 for the stochastic domain.

In inventory management, the purchasing cost is set to 2.49, the sale price to 3.99, and the holding cost to 0.03. Demand for

items follows a Gaussian with mean S/4 and standard deviation S/6, and S = 10 in the experiments. Each episode consists

of 100 steps, and consistent with the rest of our experiments an undiscounted setting (γ = 1) is considered. The evaluation

policy, πe, was trained for 500 episodes on the MDP and has an expected return of G = 1471.1041. The behaviour policy, πb,

is uniform random.

In taxi, the implementation of the domain is based on code of [1] (see https://github.com/zt95/infinite-horizon-off-polic

y-estimation/tree/master/taxi). The evaluation policy represents a policy formed after 1,000 iterations of Q-learning and the

behaviour policy represents a policy formed after 950 iterations of Q-learning. The expected return is positive and increases

with effective horizon.
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APPENDIX F: RESIDUAL PLOTS

(a) Deterministic lift domain

(b) Stochastic lift domain lift domain

Fig. 1. Residuals (y-axis), defined as Ĝ−G, as a function of the domain size (x-axis) in the lift domains. Estimates are based on 1,000 episodes. Residuals
are represented by their mean ± standard error over 50 independent runs for the deterministic lift domain and over 200 independent runs for the stochastic
domain. Note that SDRE and SSDRE are not included for improved visibility as their residuals are extremely large.
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Fig. 2. Residuals (y-axis), defined as Ĝ−G, as a function of the number of episodes (x-axis) in the inventory management domain. Residuals are represented
by their mean ± standard error over 50 independent runs.

Fig. 3. Residuals (y-axis), defined as Ĝ− G, as a function of the effective horizon (H; x-axis) of the taxi domain. Residuals are represented by their mean
± standard error over 20 independent runs.
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