COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 5.6: Linear Regression and the Optimization Perspective
Prof. Philip S. Thomas (pthomas@cs.umass.edu)
Review: Regression

• **X: Input** (also called features, attributes, covariates, or predictors)
 - Typically, X is a vector, array, or list of numbers or strings.

• **Y: Output** (also called labels or targets)
 - In regression, Y is a real number.

• An input-output pair is (X, Y).

• Let n, called the **data set size**, be the number of input-output pairs in the data set.

• Let (X_i, Y_i) denote the i^{th} input-output pair.

• The complete data set is
 $$ (X_i, Y_i)_{i=1}^n = (X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n) $$.
Review: Nearest Neighbor (Variants)

- Given a query input x_{query}, find the k nearest points in the training data.
- Return a weighted average of their labels.
 - $k = 1$ is nearest neighbor
 - $k > 1$ with all w_i equal is k-nearest neighbor
 - $k > 1$ with not all w_i equal is weighted k-nearest neighbor
- These algorithms don’t pre-process the training data much.
 - They can build data structures like KD-Trees for efficiency.
Linear Regression

• Search for the **line** that is a best fit to the data.

• Different performance measures correspond to different ways of measuring the quality of a fit.

• Sample mean squared error, or the sum of the squared errors is particularly common:

\[
\overline{\text{MSE}}_n: \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \text{ and } \text{SSE}: \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\]

• Although not identical, the line that minimizes one also minimizes the other.

• Using sample MSE, this method is called “least squares linear regression.”
Linear Regression: What is a line?

\[y = mx + b \]

- **Prediction**, \(\hat{y}_i \)
- **Slope**, \(m \)
- **Input**, \(x_i \)
- **y-intercept**, \(b \)
- "weights," or "parameters" , \(w = (w_1, w_2) \)

\[\hat{y} = w_1 x_i + w_2 \]
A model is a mechanism that maps input data to predictions.

ML algorithms take data sets as input and produce models as output.

Models (Review)

- **Data Set**

<table>
<thead>
<tr>
<th>pinyin</th>
<th>biology</th>
<th>history</th>
<th>English</th>
<th>geography</th>
<th>literature</th>
<th>Portuguese</th>
<th>maths</th>
<th>chemistry</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>422.60</td>
<td>491.56</td>
<td>439.93</td>
<td>707.54</td>
<td>550.65</td>
<td>557.09</td>
<td>711.97</td>
<td>721.31</td>
<td>509.60</td>
</tr>
<tr>
<td>1</td>
<td>538.00</td>
<td>490.56</td>
<td>469.93</td>
<td>729.06</td>
<td>532.28</td>
<td>647.33</td>
<td>727.61</td>
<td>779.18</td>
<td>489.64</td>
</tr>
<tr>
<td>2</td>
<td>455.16</td>
<td>440.00</td>
<td>570.86</td>
<td>417.54</td>
<td>453.53</td>
<td>425.67</td>
<td>475.63</td>
<td>476.91</td>
<td>407.15</td>
</tr>
<tr>
<td>3</td>
<td>756.91</td>
<td>476.63</td>
<td>592.63</td>
<td>532.42</td>
<td>521.80</td>
<td>550.41</td>
<td>703.76</td>
<td>598.36</td>
<td>2.3333</td>
</tr>
<tr>
<td>4</td>
<td>504.54</td>
<td>459.56</td>
<td>637.43</td>
<td>609.06</td>
<td>570.40</td>
<td>615.98</td>
<td>572.50</td>
<td>571.25</td>
<td>529.04</td>
</tr>
</tbody>
</table>

- **ML Algorithm**

A query can be one or more feature vectors.

- **Model**

Predictions are given for each feature vector in the query.

<table>
<thead>
<tr>
<th>Query</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>798.75</td>
<td>3.75000</td>
</tr>
<tr>
<td>817.58</td>
<td>2.50000</td>
</tr>
<tr>
<td>731.98</td>
<td></td>
</tr>
<tr>
<td>648.42</td>
<td></td>
</tr>
<tr>
<td>527.66</td>
<td></td>
</tr>
<tr>
<td>443.82</td>
<td></td>
</tr>
<tr>
<td>545.88</td>
<td></td>
</tr>
<tr>
<td>624.18</td>
<td></td>
</tr>
<tr>
<td>751.30</td>
<td></td>
</tr>
<tr>
<td>648.67</td>
<td></td>
</tr>
<tr>
<td>662.05</td>
<td></td>
</tr>
<tr>
<td>773.15</td>
<td></td>
</tr>
<tr>
<td>835.25</td>
<td></td>
</tr>
</tbody>
</table>

583.41	
395.46	
509.80	
Parametric Model

• A model “parameterized” by a weight vector w.
• Different settings of w result in different predictions.
• Let $\hat{y} = f_w(x)$
 • 1-dimensional linear case:
 $$f_w(x) = w_1 x + w_2$$
Linear Regression: Hyperplanes

• What if we have more than one input feature?
• Let $x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,d})$ be a d-dimensional input.
 • We include the i subscript to make it clear that $1,2,\ldots$ aren’t referencing different input vectors, but different elements of one input vector.
• We use a hyperplane:
 $$f_w(x_i) = w_1 x_{i,1} + w_2 x_{i,2} + \ldots + w_d x_{i,d} + w_{d+1}.$$
Linear Regression (cont.)

\[f_w(x_i) = w_1 x_{i,1} + w_2 x_{i,2} + \ldots + w_d x_{i,d} + w_{d+1}. \]

- **Thought**: We don’t want to have to keep remembering a special “intercept” term.

- **Idea**: Drop the intercept term!
 - If you want to include the intercept term, add one more feature to your data set, \(x_{d+1} = 1 \).
 - If \(d \) is the dimension of the input with this additional feature, we then have:
 \[f_w(x_i) = w_1 x_{i,1} + w_2 x_{i,2} + \ldots + w_d x_{i,d} \]
 - We can write this as:
 \[f_w(x_i) = \sum_{j=1}^{d} w_j x_{i,j}. \]
 - This is called a **dot product** and can be written as \(w \cdot x_i \) or \(w^T x_i \).
Linear Regression (cont.)

\[\hat{y}_i = f_w(x_i) = \sum_{j=1}^{d} w_j x_{i,j} \]

• How many weights (parameters) does the model have?
 • \(d \), the dimension of any one input vector \(x_i \).
 • Not \(n \), the number of training data points.
Linear Regression: Optimization Perspective

• Given a parametric model f_w of any form how can we find the weights w that result in the “best fit”?

• Let L be a function called a loss function.
 • It takes as input a model (or model weights w)
 • It also takes as input data D
 • It produces as output a real-number describing how bad of a fit the model is to the provided data.

• The evaluation metrics we have discussed can be viewed as loss functions. For example, the sample MSE loss function is:

$$L(w, D) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_w(x_i))^2$$

• We phrase this as an optimization problem:
 $$\arg\min_w L(w, D)$$

For the sample MSE loss function, this can be any parametric model, not just a linear one!
Linear Regression: Optimization Perspective

\[\text{argmin}_w \, L(w, D) \]

• **Recall**: \(\text{argmin} \) returns the \(w \) that achieves the minimum value of \(L(w, D) \), not the minimum value of \(L(w, D) \) itself.

• This expression describes a massive range of ML methods.
 • Supervised, unsupervised, (batch/offline) RL
 • Deep neural networks
 • Large language models and generative AI

• Different problem settings and algorithms in ML correspond to:
 • Different loss functions
 • Different parametric models.
 • Different algorithms for approximating the best weight vector \(w \).
Least Squares Linear Regression (cont.)

• Find the weights w that minimize

$$L(w, D) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_w(x_i))^2$$

Number of training data points

Dimension of each input vector
(number of features per row)

$$L(w, D) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} w_j x_{i,j} \right)^2$$
Linear Regression: Least Squares Solvers

• How should one solve this problem?

\[\text{argmin}_w \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} w_j x_{i,j} \right)^2 \]

• Answer: “Least squares solvers”
 • Algorithms based on concepts from linear algebra.
 • Extremely effective for solving problems of precisely this form.
 • Beyond the scope of this class.
 • **Only useful for this exact problem.**
 • Not effective when using other parametric models (e.g., not linear)
 • Not effective when using other loss functions / performance metrics.
Linear Regression

• How do we solve this problem?

$$\arg\min_w \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} w_j x_{i,j} \right)^2$$

• We will study a different approach for solving this problem.
• It is less efficient.
• It applies to almost all loss functions and parametric models of interest.

• Method: Gradient descent.
 • Soon we will discuss gradient descent.
 • For now, assume we have some way of finding the $$\arg\min_w L(w, D)$$.
Least Squares Linear Regression
Linear Regression vs Weighted k-NN for GPA Prediction

Weighted KNN Model:
- Average MSE: 0.571
- MSE Standard Error: 0.004

Linear Regression Model:
- Average MSE: 0.582
- MSE Standard Error: 0.004

Very simple method achieves nearly the same performance as a tuned-version of weighted k-NN!

Soon, we will consider more complex parametric models that can be even more effective.
Linear Regression Limitation

• What if the relationship between the inputs and outputs is not linear (or affine)?
 • Linear: $A_1 x_{i,1} + A_2 x_{i,2} + \cdots + A_n x_{i,n}$
 • Affine: $A_1 x_{i,1} + A_2 x_{i,2} + \cdots + A_n x_{i,n} + b$
 • Equivalent to linear with an additional feature $x_{i,n+1} = 1$.

• **Idea:** Have parametric functions that can represent more than linear functions!
Linear Parametric Model ≠ Linear Functions

- **Linear parametric functions** are functions $f_w(x_i)$ that are **linear functions** of the weights w.
- They need not be linear functions of the input x_i.

Input x_i → Feature generator ϕ → Feature 1: $\phi_1(x_i)$ → Feature 2: $\phi_2(x_i)$ → Feature m: $\phi_m(x_i)$ → Linear Regression: $f_w(x_i) = w_1\phi_1(x_i) + w_2\phi_2(x_i) + \cdots$

Note: Each feature can depend on more than one element of x_i. So, this is $\phi_1(x_i)$ not $\phi_1(x_{i,1})$.

Note: This is equivalent to pre-processing the data, converting x_i (length d) into $\phi(x_i)$ (length m).

Note: The input x_i is a vector – an array of values.
Linear Parametric Model \(\neq \) Linear Functions

• **Linear parametric functions** are functions \(f_w(x_i) \) that are *linear* functions of the weights \(w \).

• They need not be linear functions of the input \(x_i \).

• That is, a linear parametric model has the form:

\[
f_w(x_i) = \sum_{j=1}^{m} w_j \phi_j(x_i),
\]

where \(\phi \) takes the input vector \(x_i \) as input and produces a vector of \(m \) features as output. That is, \(\phi_j(x_i) \) is the \(j \)th feature output by \(\phi \).

• \(\phi \) is called the **basis function**, **feature generator**, or **feature mapping function**.
Linear Parametric Model

\[f_w(x_i) = \sum_{j=1}^{m} w_j \phi_j(x_i) \]

- Polynomial basis
 - If \(x_i \in \mathbb{R} \) then \(\phi_j(x_i) = x_i^{j-1} \) so that:
 \[\phi(x_i) = [1, x_i, x_i^2, x_i^3, \ldots, x_i^{m-1}] \]
 - Here \(m - 1 \) is the **degree** or **order** of the polynomial basis.
 - \(f_w(x_i) = w_1 + w_2 x_i + w_3 x_i^2 + w_4 x_i^3 + \cdots + w_m x_i^{m-1} \)
 - We are fitting a polynomial to the data!
 - This is a non-linear function of the input \(x_i \)
 - This can represent *any* smooth function (if \(m \) is big enough).
 - This is a linear function of \(w \).
Linear Parametric Models (cont.)

• What does it mean for a function $g(x, y)$ to be **linear** with respect to an input, x?
 • The slope is constant as x changes.
 • The derivative with respect to x is a constant (does not vary with x)

• Is $g(x, y) = x^2 y^2$ linear with respect to (w.r.t.) x?
 • $\frac{\partial g(x,y)}{\partial x} = 2xy^2$, which changes with x, so no.

• Is $g(x, y) = x \sin(y)$ linear w.r.t. x?
 • $\frac{\partial g(x,y)}{\partial x} = \sin(y)$, which does not change with x, so yes!

• Is $f_w(x_i) = \sum_{j=1}^{m} w_j \phi_j(x_i)$ linear w.r.t. w?
 • $\frac{\partial f_w(x_i)}{\partial w_j} = \phi_j(x_i)$, for all j, which does not change with w, so yes!
Linear Parametric Models (cont.)

• Is \(f_w(x_i) = \sum_{j=1}^{m} w_j \phi_j(x_i) \) linear w.r.t. \(x \)?
 • \(\frac{\partial f_w(x_i)}{\partial x_{i,j}} = w_j \frac{\partial \phi_j(x_i)}{\partial x_{i,j}} \), for all \(j \).
 • If \(\phi \) is linear w.r.t. \(x \) then yes, otherwise no.

• Is \(f_w(x_i) = w_1 w_2 x_{i,1}^2 \) linear w.r.t. \(w \)?
 • \(\frac{\partial f_w(x_i)}{\partial w_1} = w_2 x_{i,1}^2 \)
 • **No.** It is linear w.r.t. \(w_1 \) but not linear w.r.t. \(w \).
 • Linear w.r.t. \(w \) means that the derivative w.r.t. \(w \) (a vector) does not depend on \(w \) (a vector).
 • Note: The derivative w.r.t. \(w \) is
 \[
 \left[\frac{\partial f_w(x_i)}{\partial w_1}, \frac{\partial f_w(x_i)}{\partial w_2} \right]^T
 \]
 This T means “transpose,” which just means that this should be viewed as a column not a row (the elements stacked vertically rather than horizontally). This isn’t important for this course.
Linear Parametric Models
Linear Parametric Model vs Linear Regression vs Weighted k-NN for GPA Prediction (20-fold cross-validation)

- **Weighted KNN Model:**
 - Average MSE: 0.571
 - MSE Standard Error: 0.004

- **Linear Regression Model:**
 - Average MSE: 0.582
 - MSE Standard Error: 0.004

- **Polynomial Regression Model (Degree 4):**
 - Average MSE: 0.576
 - MSE Standard Error: 0.004

Recall k-NN results:

<table>
<thead>
<tr>
<th>k</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.152084</td>
</tr>
<tr>
<td>1</td>
<td>0.853430</td>
</tr>
<tr>
<td>2</td>
<td>0.764468</td>
</tr>
<tr>
<td>3</td>
<td>0.688330</td>
</tr>
<tr>
<td>4</td>
<td>0.631001</td>
</tr>
<tr>
<td>5</td>
<td>0.579404</td>
</tr>
<tr>
<td>6</td>
<td>0.581676</td>
</tr>
<tr>
<td>7</td>
<td>0.600544</td>
</tr>
</tbody>
</table>

A simple linear model outperforms k-NN (not quite a well-tuned weighted k-NN)!
Linear Parametric Models

• Pros:
 • Relatively simple.
 • Can represent any smooth function (given the right / enough features).
 • Can use hand-crafted features.
 • Quite efficient to solve for optimal w.
 • Can still use least squares solvers – need not use gradient descent.
 • Extremely fast to generate predictions for new inputs
 • Compute features, take the dot-product with the weights (take the weighted sum)

• Cons:
 • Can be hard to find good features.
 • People often think linear parametric models can only represent lines, and so they think negatively of them.
Parametric vs Nonparametric

• ML algorithms are often categorized into **parametric** and **nonparametric**.
 • In general:
 • Parametric methods use parameterized functions with weights w.
 • Nonparametric methods store the training data or statistics of the training data.
 • More precisely
 • Parametric:
 • Have a fixed number of weights w.
 • Tend to make specific assumptions about the form of the function.
 • Nonparametric:
 • Do not make explicit assumptions about the form of the function.
 • Number of values stored tends to vary with the amount of training data (e.g., storing data).
 • There is some debate about whether some methods are parametric or nonparametric.
 • Linear regression and regression with linear parametric are canonical examples of parametric.
 • Nearest neighbor algorithms are canonical examples of nonparametric.
How does the polynomial basis, ϕ, work if x is multidimensional (an array rather than a number?)

- Multivariate polynomial on inputs x, y:
 $$a + bx + cy + dxy + ex^2 + fy^2 + gxy^2 + hx^2y + ix^3 + \cdots$$

- Multivariate polynomial on input $x_{i,1}, x_{i,2}$:
 $$w_1 + w_2x_{i,1} + w_3x_{i,2} + w_4x_{i,1}x_{i,2} + w_5x_{i,1}^2 + w_6x_{i,2}^2 + w_7x_{i,1}x_{i,2}^2 + w_8x_{i,1}^2x_{i,2} + w_9x_{i,1}^3 + \cdots$$

The expression above is $f_w(x_i)$ for a linear parametric model using the multivariate polynomial basis.

- Notice that some $\phi_j(x_i)$ terms depend on more than one element of x_i!
 - This term is $w_8\phi_8(x_i)$
Fourier Basis

• Each ϕ_j is a cosine function with a different period.
 • Can optionally include both sine and cosine functions.
• Univariate:
 • $\phi_j(x_i) = \cos(j\pi x)$
• Approximation of a step function (from Wikipedia “Fourier series” page)
Fourier Basis (Multivariate)

Figure 3: A few example Fourier basis functions defined over two state variables. Lighter colors indicate a value closer to 1, darker colors indicate a value closer to -1.
Feature Engineering

• In some cases, you can hand-craft features
• Examples:
 • Average STEM score
 • Average non-STEM score
• Question: Why might these not be good features?
• Answer: They do not change the functions that can be represented!
 • A weight of w_j on STEM score equates to $\frac{w_j}{9}$ being added to the weights on each of the STEM exams.
• Effective features are not linear combinations of existing features.