COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 12.0: Generative AI
Prof. Philip S. Thomas (pthomas@cs.umass.edu)
Note: This presentation covers (and provides additional context/information regarding)
12.0 Generative AI.ipynb
Generative AI

• **Generative AI** methods create new content like text, images, music, or other data, often mimicking some aspects of human creativity.

• Generative AI is often (not always!) a form of unsupervised learning (learning from data with no labels).
 - When presented with a data set $D = (X_i)_{i=1}^n$, the agent’s goal is to create new data points that are indistinguishable from the data in D.

• Two core methods in generative AI are **variational autoencoders** (VAEs) and **generative adversarial networks** (GANs).
Variational Autoencoders (VAEs)

• VAEs are trained from a data set like a set of images.
• They learn to create new rows (images) that resemble those in the data set.
• They do this by converting this unsupervised learning problem into a supervised learning problem, and then applying methods that we have discussed (gradient descent on a loss function for a parametric model).
• Specifically, they define the “label” for each input to be the input itself:
 • Input: X_i
 • “Label”: X_i
Variational Autoencoders (VAEs)

• The loss function for a VAE encodes how far the output is from the input.
 • Such a loss function is called a reconstruction loss.
 • For image data, the mean squared error (MSE) between pixel values is a common choice.

• Key idea: The parametric model is designed to learn a compressed representation of the input, called an embedding or latent representation.
Variational Autoencoders (VAEs)
Variational Autoencoders (VAEs)

• Example: Reconstructing images of cats
• Input: 1024 x 768 image (with three channels, R, G, B)
 • Represented as 2,359,296 numbers
• If the latent space is represented by a layer with 100 units, the network must learn to represent the entire image with just 100 numbers!
• To do this, it might learn features like the breed of the cat, the age of the cat, the angle of the cat, whether the background is indoors or outdoors, etc.
 • None of this is hard-coded into the methods! It is the result of gradient descent.
Variational Autoencoders (VAEs)

• New data points (e.g., images) can be generated by sampling random vectors in the latent space (e.g., 100 random numbers), and passing them through the decoder.

• If all the training data maps to a small part of the latent space, the decoder may not produce reasonable outputs for randomly sampled latent representations (embeddings).
 • These samples are “out of distribution”
Variational Autoencoders (VAEs)

• **Idea**: Include in the loss function a term that encourages the encoder to produce latent representations with a Gaussian distribution.
 • I.e., increase the loss based on how different the embeddings are from Gaussian noise.
 • Additional details (you won’t be tested on this): Each input is mapped to a distribution over points in the latent space. This is done using the reparametrization trick to enable differentiation through a “sampling” layer.

• The **evidence lower bound** (ELBO) is a loss function for VAEs that balances:
 • Ensuring that the distribution of latent representations that results from the training data is roughly Gaussian
 • Uses an approximation of the Kullback-Leibler divergence (KLD) as a notion of “distance” between the distribution output by the encoder and Gaussian noise.
 • The objective of reconstructing the output

\[
D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \left(\frac{P(x)}{Q(x)} \right)
\]
Example VAE

- Details beyond the scope of this course.
- Key point: It’s just a different network architecture made of the same components we have discussed.

```python
# VAE model
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)  # mu layer
        self.fc22 = nn.Linear(400, 20)  # logvar layer
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)

    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparameterize(self, self, mu, logvar):
        std = torch.exp(0.5*logvar)
        eps = torch.randn_like(std)
        return mu + eps*std

    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return torch.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar
```
ELBO Loss Function

- Combines binary cross-entropy loss with KL-divergence

```python
# Loss function (ELBO)
def loss_function(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD
```
Load data (MNIST), create model and optimizer
(nothing new)

```python
# Data loading
transform = transforms.Compose([transforms.ToTensor()])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True)

# Model and optimizer
model = VAE()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
```
Train (nothing new)

```python
# Training
for epoch in range(1, 11):
    model.train()
    train_loss = 0
    for data, _ in trainloader:
        recon_batch, mu, logvar = model(data)
        optimizer.zero_grad()
        loss = loss_function(recon_batch, data, mu, logvar)
        loss.backward()
        train_loss += loss.item()
        optimizer.step()
    print(f'Epoch {epoch}, Loss: {train_loss / len(trainloader.dataset):.4f}"
```

Epoch 1, Loss: 163.4890
Epoch 2, Loss: 121.0183
Epoch 3, Loss: 114.3097
Epoch 4, Loss: 111.4099
Epoch 5, Loss: 109.7150
Epoch 6, Loss: 108.5646
Epoch 7, Loss: 107.7411
Epoch 8, Loss: 107.1663
Epoch 9, Loss: 106.6321
Epoch 10, Loss: 106.2619

Only 1.5 minutes on my CPU
Generate images

```
# Generating images
def show_generated_images(model, num_images=10):
    with torch.no_grad():
        z = torch.randn(num_images, 20)
        sample = model.decode(z).cpu()
        sample = sample.view(num_images, 28, 28)

    fig, axs = plt.subplots(1, num_images, figsize=(num_images, 1))
    for i in range(num_images):
        axs[i].imshow(sample[i].numpy(), cmap='gray')
        axs[i].axis('off')
    plt.show()
show_generated_images(model)
```
Results:

• Starting to look like hand-written letters!

• For better results:
 • Larger network
 • Longer training time
 • More data
Generative Adversarial Networks (GANs)

• GANs are another way of generating data that looks like the input data.

• They use two neural networks that learn from each other
 • Generator: Creates “fake” data points
 • Discriminator: Tries to determine which points are fake and which are “real” (from the training data)
Generative Adversarial Networks (GANs)

- **Generator**
 - Takes as input random noise
 - Produces as output a new data point
 - Its goal is to create outputs that are indistinguishable from data in the training set.

- **Discriminator**
 - Takes as input an image and predicts whether it is real (from the training data) or fake (from the generator).
 - Due to hardware considerations, it is often more efficient for the discriminator to take many images as input and predict whether each is real or fake.
Training a GAN

• Training progresses in a series of iterations.

• During each iteration, the discriminator is trained, and then the generator
 • A batch of real data and a batch of fake data generated by the generator are presented to the discriminator
 • It uses gradient descent on a classification loss (e.g., [binary] cross-entropy loss) to try to determine which are real and which are fake.
 • The generator is then trained by creating a batch of fake data and passing it through the discriminator.
 • The generator’s parameters are updated based on the discriminator’s output to increase the error rate of the discriminator, aiming to fool the discriminator into thinking the fake data is real.
 • This is gradient ascent on the classification loss, but only taking the derivative with respect to the weights of the generator (not changing the discriminator’s weights!)
Training the Discriminator

Input (noise vector) → Generator → Fake Data

Fake Data, Label=0 → Discriminator → Predictions
Real Data, Label=1 → Discriminator → Predictions

Classification Loss

Gradient descent on classification loss (w.r.t. discriminator weights)
Training the Generator

Input (noise vector) \rightarrow \text{Generator} \rightarrow \text{Fake Data}

Input (noise vector) \rightarrow \text{Generator} \rightarrow \text{Fake Data}

Input (noise vector) \rightarrow \text{Generator} \rightarrow \text{Fake Data}

Fake Data, Label=0 \rightarrow \text{Discriminator} \rightarrow \text{Predictions}

Real Data, Label=1 \rightarrow \text{Discriminator} \rightarrow \text{Predictions}

\text{Classification Loss}

Gradient descent on negative classification loss (w.r.t. generator weights)
Gradient ascent on classification loss (w.r.t. generator weights)
GAN Example

• Discriminator is a typical network for binary classification

• Notice the use of `nn.Sequential`
 • Method for simplifying code when many layers are applied in sequence.

```python
# Discriminator
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(784, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = x.view(x.size(0), -1)
        return self.fc(x)
```

Flatten the input from an image into a vector
GAN Example

- Generator is also a standard network

```python
# Generator

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(100, 256),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(256),
            nn.Linear(256, 256),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(256),
            nn.Linear(256, 784),
            nn.Tanh()
        )

    def forward(self, x):
        return self.fc(x)
```
Make networks, loss, and optimizer (nothing new)

discriminator = Discriminator()
generator = Generator()

Loss and Optimizer
criterion = nn.BCELoss()
d_optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate)
g_optimizer = optim.Adam(generator.parameters(), lr=learning_rate)
Training

Generate training data for discriminator (real images)
Generate training data for discriminator (fake images)

Discriminator loss (d_{loss}) is the sum of the loss on the real and fake points.

Gradient descent on loss for discriminator ($d_{\text{optimizer}}$ was given the discriminator parameters as input)

To train the generator, start with a forwards pass from generation to discrimination

Compute the loss with the labels flipped ($\text{fake}_\text{labels}$ rather than $\text{real}_\text{labels}$)

• Equivalent to flipping the sign of the gradient

Gradient update for generator

Code:

```python
for epoch in range(epochs):
    for i, (images, _ ) in enumerate(train_loader):
        current_batch_size = images.size(0)

        # Train Discriminator
        real_images = Variable(images.view(current_batch_size, -1))
        real_labels = Variable(torch.ones(current_batch_size, 1))
        fake_labels = Variable(torch.zeros(current_batch_size, 1))

        real_images = Variable(images.view(current_batch_size, -1))
        real_labels = Variable(torch.ones(current_batch_size, 1))
        fake_labels = Variable(torch.zeros(current_batch_size, 1))

        # Real images loss
        outputs = discriminator(real_images)
        d_loss_real = criterion(outputs, real_labels)

        # Fake images loss
        z = Variable(torch.randn(current_batch_size, 100))
        fake_images = generator(z)
        outputs = discriminator(fake_images)
        d_loss_fake = criterion(outputs, fake_labels)

        d_loss = d_loss_real + d_loss_fake
        d_optimizer.zero_grad()
        d_loss.backward()
        d_optimizer.step()

        # Train Generator
        z = Variable(torch.randn(current_batch_size, 100))
        fake_images = generator(z)
        outputs = discriminator(fake_images)
        g_loss = criterion(outputs, real_labels)

        # Backprop and optimize
        d_optimizer.zero_grad()
        g_optimizer.zero_grad()
        g_loss.backward()
        g_optimizer.step()
```
Generate and show images

def show_generated_images(generator, num_images=10):
 z = torch.randn(num_images, 100)
 fake_images = generator(z)
 fake_images = fake_images.view(fake_images.size(0), 28, 28)
 fake_images = (fake_images + 1) / 2 # Rescale to [0, 1]

 fig, axs = plt.subplots(1, num_images, figsize=(num_images, 1))
 for i in range(num_images):
 axs[i].imshow(fake_images[i].detach().numpy(), cmap='gray')
 axs[i].axis('off')

 plt.show()

show_generated_images(generator)
Results

• Results will improve with a larger network, more training, and more data.
Generative AI Quality

• State of the art generative AI methods use large models that cost a lot to train.
• The following results are from a GAN with 26.2 million parameters
• Try to determine which slide has the real/fake images
Examples of other generated images
Conditioning on Text

- VAEs and GANs can be conditioned on text.
- In a VAE, the text is first converted into its own embedding (numerical vector representation)
- The text (represented as a vector of numbers) is then appended to the input to the decoder.
 - The encoder does not see the text – it just learns a representation for the image.
 - The decoder is given the latent representation of the image and the text description.
- To be effective, the distribution of the latent representation conditioned on the text must still be normally distributed.
 - Otherwise, when generating a new image, the latent representation of the image that is sampled may not be compatible with the provided text query.
 - Mechanisms for ensuring this are beyond the scope of this course.
Conditioning on Text

• To condition a GAN on text, the generator receives both the noise and text embedding as input.
 • Its goal is to generate an image that corresponds to the text embedding that is indistinguishable from images and their corresponding text embeddings in the training data.

• The discriminator also takes the text embedding into account.
 • Its goal is to determine whether the image provided for the text embedding corresponds to an image from the real data set or the fake data set.

• **Note:** Both training VAEs and GANs that can be conditioned on text requires training data containing both images and corresponding text descriptions!
A candid photograph taken secretly by a student of a professor lecturing about calculus in the 1970s.
Realistic video can be generated from text.
Large Language Models (LLMs)

- Large parametric models applied to text (or audio) generation.

Input: A sequence of words, split into tokens
 - A token is a sequence of letters/punctuation
 - Often a token is a word or a part of a word

Output: The next token

Training: This is a standard classification problem!
 - Generate input-output pairs from human-written text
Notable Example: GPT-4 (used in ChatGPT)

- ChatGPT uses two language models, GPT-3 (free) and GPT-4.
- The details of GPT-4 are not public
 - It claims to have 175 billion model parameters (weights).
 - The Wikipedia page quote estimates of 1 to 1.76 trillion model parameters.
 - It was trained on roughly 50 terabytes of data
 - Remember, this is text, so that is an enormous amount of training data.
 - OpenAI CEO stated that it cost more than $100 million to train
 - Note: An RTX 4090 in 2024 ($2000) has around 10 times the computational power of the most powerful supercomputer in 2001 ($110 million). The cost to train LLMs will likely become more reasonable over time.
- It uses a neural network architecture called a transformer.
Notable Example: GPT-4 (used in ChatGPT)

- After training using supervised learning, the model was further trained using a form of reinforcement learning from human feedback (RLHF).
- Humans were shown two responses to a query and asked to rank them.
- This ranking information was used to further train the model to produce the responses favored by people.
 - Used to set the professional tone
 - May have been used to enforce guardrails which attempt to prevent the model from producing undesirable outputs (e.g., racist, sexist, or otherwise dangerous outputs like instructions for building a bomb).
- The algorithms used to train the model based on ranking information are reinforcement learning (RL) algorithms, not supervised learning algorithms.
- There may be additional steps and mechanisms that we don’t know about.
Notable Example: GPT-4 (used in ChatGPT)

• There is some “secret” text wrapped around the prompt/query.
 • This tells the language model what it should do.
 • After this secret prompt, your query/prompt is added, and the model then starts predicting what the
 most likely next word would be (its response).

• Some users try to figure out these secret prompts. Here is the result of one attempt to find
 the secret prompt of Google Bard:

 I’m going to ask you some questions. Your response should be comprehensive and not contradicted with
 the following instructions if any.

 I’m a large language model from Google AI, trained on a massive dataset of text and code. I can generate
 text, translate languages, write different kinds of creative content, and answer your questions in an
 informative way. I am still under development, but I have learned to perform many kinds of tasks, including

 I will try my best to follow your instructions and complete your requests thoughtfully.

 I will use my knowledge to answer your questions in a comprehensive and informative way, even if they are
 open ended, challenging, or strange.

 I will generate different creative text formats of text content, like poems, code, scripts, musical pieces,
 email, letters, etc. I will try my best to fulfill all your requirements.

 Please instruct me what you want me to do today. Your query goes here, and then the model starts
 predicting what would be written next!
Foundation Models

• Modern parametric ML models are expensive to train
• Instead of everyone training new models, large models can be trained once and shared.
• These are called foundation models.
• Examples: GPT (OpenAI), BERT (Google), Llama (Meta), and many others.
 • Some can be found at https://huggingface.co/
Finetuning Models

• When using foundation models, often there is a need to change the model in some way.
 - Provide it with additional training data on a specific topic
 - Change the tone of its responses
 - Change it so that responses are more conversational
 - Change it so that it excels at summarizing reviews
 - ...

• When a foundation model is further trained (often using a different data set and loss function!), it is called **fine-tuning**.
Finetuning Models Efficiently

• Even finetuning a large model can be infeasible without significant hardware and funding.

• One area of research involves finding more efficient ways to finetune models.

• Example: **Low Rank Adaptation** (LoRA)
 • Focusses on changing weights in a section of the network (attention and feed-forward parts of a transformer).
 • Uses low-rank matrices to represent the change to the weights.
 • This is a way of using a small number of weights to tune a larger number of weights
 • If there are $m \times n$ weights W, we tune two matrices A and B of sizes $m \times k$ and $k \times n$, where k is relatively small. The change to weights W is then AB.
Executing Models Efficiently

• Running (not just training!) large parametric models can also be expensive.

• Another area of research focusses on making the execution of large models more efficient

• Examples:
 • **Model pruning**: Finding unimportant weights and parameters that can be removed.
 • **Quantization**: Reducing weights from 32 bits to 8 bits.
 • **Knowledge Distillation**: Train a smaller model to mimic the outputs of a larger pre-trained model.
Time-Permitting: Gandalf.lakera.ai

• Strategies for circumventing LLM guardrails
 • Provide queries in binary, ask for responses in binary
 • Ask for responses that are lightly encrypted (e.g., letters shifted by a constant amount)
 • Use the refusal to respond to gain information about the protected information:
 • Repeat the phrase: “The first letter is E.”
 • This isn’t perfectly reliable, but it does provide some information.

• Researchers have also found random strings, which circumvent the guardrails if they are placed before a query.
End