
CMPSCI 390A Homework 5

Assigned: April 12 2022; Due: April 22 2022 @ 11:59pm

Abstract

This assignment will cover the basics of solving a reinforcement learning problem using a simple algorithm. To submit
this assignment, upload two files to Gradescope. File 1: A .pdf containing your responses to the written response
questions below. File 2: a file named my hw5.py with your solution to the programming portion. Failure to name the file
my hw5.py will will result in subtraction of 5 points from the grade for this assignment. An auto-grader will check your
code for the correct output. As such, your program must meet the requirements specified below. We will also be using
cheating detection software, so, as a reminder, you are allowed to discuss the homework with other students, but you must
write the code on your own.

1 Written Questions (20 points)

In this part of the assignment, you will be asked to answer questions that will help with the assignment’s coding portion. In this
homework, you will be implementing the Simple RL algorithm covered in recent lectures. The Simple RL algorithm covered
in lectures requires computing two quantities: ∂

∂θa′
i

πθ(s, a) and the sum of discounted rewards. The policy representation used

in this assignment will be a linear softmax with a Fourier basis. Recall that a linear softmax policy specifies the probability
of action a in state s as

πθ(s, a) =
e
∑

j θa
j ϕj(s)∑

a′ e
∑

j θa′
j ϕj(s)

,

where θaj is the jth weight in the vector for action a, and ϕj(s) is the jth feature produced by the basis function ϕ. For the
coding portion ϕ will be the Fourier basis and you will be given the code for it. The policy can be broken down into two steps.
The first step is to compute output values for each action, i.e., oa =

∑
j θ

a
j ϕj(s). This is equivalent to the linear function

approximation we did in the regression problems, e.g., oa = fθa(s). The second step is to perform the softmax operation on
each action output oa, i.e.,

πθ(s, a) =
eoa∑
a′ eoa′

.

To answer the questions below, provide an expression for the quantity specified. For derivatives, your answer should not
contain any derivative symbols but can contain computed quantities such as πθ(s, a) and ϕj(s).

1. (5 points) Compute the partial derivative for the action output oa when a is the chosen action.

∂

∂oa
πθ(s, a) =

2. (5 points) Compute the partial derivative for the action output oa when another action b is chosen, i.e., b ̸= a.

∂

∂oa
πθ(s, b) =

3. (2 points) Compute partial derivative for the weights of the chosen action.

∂

∂θak
πθ(s, a) =

4. (1 points) Compute the partial derivative for the weights of an action a when another action b was chosen, i.e., b ̸= a.

∂

∂θak
πθ(s, b) =

1



5. (5 points) Compute the partial derivative of the natural log probability of the chosen action. Side note: this is the
derivative used in most policy gradient algorithms.

∂

∂θak
lnπθ(s, a) =

6. (2 points) Let Gt =
∑∞

k=0 γ
kRt+k. Write a recursive expression for Gt using Rt, γ, and Gt+1. Side note: This makes

it easy to compute Gt starting at the last reward in an episode.

Gt =

2 The Stopped Car Problem
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Figure 1: Depiction of the Stopped Car problem.

In this assignment, you will be tasked with optimizing a policy to solve a reinforcement learning task. This assignment’s
task will be the StoppedCar problem, which is illustrated in Figure 1. We have implemented this environment for you, so
you only need to understand the environment to interpret the policy’s performance.

In the StoppedCar problem, there is a car at position x moving a constant velocity, v, towards another car at position xc

that is stopped at a stop sign. The agent’s job is to learn to apply the breaks, so the car stops within a goal region centered
at xg. The car is equipped with a distance sensor to measure the distance to the back of the stopped car, i.e., xc − x. The
state of the environment at time t is represented by the distance to the stopped car xc − xt and the velocity of the car vt at
time t, i.e., st = [xc − xt, vt].

The position of the car always transitions based on the current velocity, i.e., xt+1 = xt +∆tvt, where ∆t is the amount
of simulation time between time steps t and t+1. There are two actions available to the agent, do-nothing and apply-breaks.
When the do-nothing action is taken the car continues moving at the current velocity, i.e., vt+1 = vt. When the apply-breaks
action is taken, the velocity is decreased by a constant factor κ of the current velocity, i.e., vt = vt −∆tκvt. If the velocity
becomes smaller than a constant c, then the velocity is set to zero. The episode terminates when the velocity reaches zero or
a collision with the stopped car occurs, i.e, xt+1 ≥ xc. The agent receives a reward of 0 at all time steps except at the last
time step. On the last time step, the agent will receive a reward of +10, −10, or −1 depending on if it is stopped in the goal
region, collided with the car, or stopped anywhere else.

3 Implementing a Simple RL Algorithm (50 points)

For this assignment, you will implement the Simple RL algorithm and solve the stopped car problem using the code provided
in the template file my hw6.py. We have provided complete code for the environment (stoppedcar.py), the Fourier basis
(fourierbasis.py), and sampling an episode from the environment. You are responsible for finishing the implementation
of the class LinearSoftmax and completing functions for the Simple RL algorithm. The requirements for each of these are
outlined below.

Implement the following functions:

• LinearSoftmax.get action probabilities(self, x). This function computes each action’s probability given a vec-
tor x, where xj is the output of the basis function ϕj(s). This function should compute the following for each action:

πθ(s, a) =
e
∑

j θa
j xj∑

a′ e
∑

j θa′
j xj

.

• LinearSoftmax.gradient logprob(self, state, action). This function computes and returns two quantities:
∂
∂θ lnπθ(s, a) and lnπθ(s, a), where s and a are the variables state and action. This function should return a tuple of
both quantities with the derivative terms first. This also requires compute the basis functions for the state input. See
the code in LinearSoftmax.get action for an example on how to do this.
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• LinearSoftmax.gradient prob(self, state, action). This function computes and returns the quantity ∂
∂θπθ(s, a).

• compute sum of discounted rewards(rewards, gamma). This function computes and returns the list of all discounted
sum of rewards for one episode, i.e., return the list:

[G0, G1, . . . , GT−1],

where T − 1 is the last step of the episode.

• update policy(policy, states, actions, rewards, alpha, gamma). This function performs the policy update
specified by the MENACE algorithm Version 4.0, e.g., Algorithm 15.1 in the course notes. The algorithm is shown
below and the update policy function performs the computation of the last for loop.

Algorithm 1: A simple RL algorithm inspired by MENACE, Version 4.0

for each episode do
// We provide code for this for loop.

// Run one episode (play one game).

for each time t in the episode do
Agent observes state St;
Agent selects action At according to the current policy, πθ;
Environment responds by transitioning from state St to state St+1 and emitting reward Rt;

end
// You are implementing this update.

// Learn from the outcome of the episode.

for each time t in the episode do

∀i, θi ← θi + α
(∑∞

k=0 γ
kRt+k

) ∂πθ(St,At)
∂θi

;

end

end

Import details on how to correctly implement these functions are specified in the template file’s comments. For your
convince, the code contains TODO comments to mark where you need to implement these functions along with other
assignment-related aspects. However, you should read the entire file to understand the greater scope of the function calls.
An autograder will check these functions, and you will be able to see the outputs of the autograder every time you upload
your file.

4 Running the Algorithm and Optimizing Hyperparameters (30 points)

With the above functions correctly implemented, the next step is to tune the algorithm’s hyperparameters. This algorithm
has three hyperparameters: the step size α, discount factor γ, and Fourier basis order. These hyperparameters need to be
tuned to find a setting that makes the algorithm reliably achieve good performance.

The performance will be measured by the sum of rewards without discounting (i.e., γ = 1). The algorithm will be run for
100 trials (lifetimes), each containing 400 episodes. The algorithm’s average performance will be represented by a learning
curve plot as shown in Figure 2. This plot is automatically generated and saved when the function main is run. In addition,
to the written questions above, your written response should contain the learning curve plot and the hyperparameters you
found.

5 Hints and Tips

Quickly Optimizing Hyperparameters: When tuning hyperparameters, it will take a long time to determine if a
particular hyperparameter worked well if you run all the lifetimes and episodes. A faster way is to set the number of lifetimes
to one and increase the number as you find good values for the hyperparameters. You can also set the number of episodes
lower, but by doing so you will not be able to tell how the algorithm will perform when it is run for longer episodes. Make
sure to set both of these to 100 lifetimes and 400 episodes when you perform your final run.

Scaling Hyperparameters: Tuning multiple hyperparameters can be tricky since changing one usually affects how
good the value is for another. A good example of this is changing the size of the basis function and the step size. Typically,
as the number of basis functions grows (order increases), the step size needs to be decreased. A common heuristic for scaling
the step size to account for the size of the basis function is to scale it by the number of basis functions, e.g., α = α0/m, where
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Figure 2: This plot represents the acceptable performance of the algorithm for this assignment. The red line represents the
mean performance for each episode averaged over 100 lifetimes, and the red shaded area is the standard deviation. The black
dashed line represents the minimum performance the algorithm must achieve on average. The blue dots are all of the sums
of rewards from each episode and lifetime. Each dot has the α value (translucency not step size) set to 0.01, so as the dot
becomes more or less opaque, it means that the algorithm optimized the policy so that that level of performance is more or
less frequent. The change in frequency is easy to see on the best and worst performance levels, where the top performance
becomes frequent and the bottom rare.

α0 is the step size you specify, and m is the number of basis functions. The getNumFeatures() function of the FourierBasis
class will return the number of basis functions used.

Easy and Efficient Python Coding: As many have of you might have noticed, Python code can run very slow. This
slowness is because Python cannot perform code optimization when each command gets compiled to machine code. Python
libraries like NumPy write much of their code in C/C++/Fortran, and the Python components act as a convenient interface
to this code. In doing so, these libraries can have enormous speeds over a similar implementation written directly in pure
Python. We outline a couple of useful NumPy operations that make code both simpler (fewer lines) and faster.

x = np.array(range(100))

y = np.random.rand(100)

# scalar times each value in the array

# Pure Python:

z = np.zeros_like(x)

s = 20 # an arbitrary value

for i in range(x.shape[0]):

z[i] = s * x[i]

# NumPy way (called broadcasting)

z = s * x # super simple and equivalent to the above for loop

# this also works with +,-,/ and some other operations.

# in-place operations also work

x *= s # same as x = s * x

# add the value of each element of x and y together

# Pure Python:

z = np.zeros_like(x)

for i in range(x.shape[0]):

z[i] = x[i] + y[i]

# NumPy way

z = x + y

# also works with -,*,/ and in-place operations.

# sum of the products of each element in x and y (called a dot product)

# Pure Python:
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z = 0.0

for i in range(x.shape[0]):

z += x[i] * y[i]

# NumPy way

z = np.dot(x,y)

# The function np.dot is a powerful function for NumPy and can handle multidimensional arrays, but you need

# to be careful with the shape of each array. See the NumPy documentation for more information.
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