CMPSCI 687: Reinforcement Learning
Fall 2018 Class Syllabus, Notes, and Assignments

Professor Philip S. Thomas
University of Massachusetts Amherst
pthomas@cs.umass.edu

In Fall 2018 I taught a course on reinforcement learning using the whiteboard. Because I used the whiteboard, there were no
slides that I could provide students to use when studying. I decided to type up my own notes describing what we covered in class
at night after each lecture (lectures ended at 6:45pm). Here you will find these (often hastily written) notes. There are likely
errors and this document is not intended to stand on its own (it is a supplement for the lectures).

-Phil
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1 Syllabus

1.1 Class

Class will be held on Tuesdays and Thursdays from 5:30pm—6:45pm in ELab 2, Room 119. Lectures will be given primarily on
the whiteboard, with typed notes provided below and updated throughout the semester as additional material is covered. These
notes are not a complete summary of all material that students are responsible for—you are responsible for all material covered
in class, even if it is not present in these notes.

1.2 Website

The class website is https://people.cs.umass.edu/~pthomas/courses/CMPSCI_687_Fal12018.html. All homework assignments, due
dates, and notes will be posted there.

1.3 Book

The start of the course will be roughly based on the first edition of Sutton and Barto’s book, Reinforcement Learning: An
Introduction. It can be found on Amazon here. It is also available for free online here. Although the book is a fantastic
introduction to the topic (and I encourage purchasing a copy if you plan to study reinforcement learning), owning the book is not
a requirement.

1.4 Office Hours

Prof. Thomas’ office hours will be Mondays from 9am—-10am in his office, room 346 of the computer science building. The location
of his office hours may move during the semester, in which case this document will be updated (and it will be announced in class).

1.5 Teaching Assistants and Office Hours

The teaching assistants (TAs) this semester will be Nicholas (Nick) Jacek (njacek@cs.umass.edu) and James Kostas (jekostas@cs.umass.edu
Nick will have office hours on Wednesdays and Fridays from 2:00-3:00 in CS Building room 207. James will have office hours on
Tuesdays and Thursdays from 2:30-3:30 in CS Building room 207. The TAs will extend their office hours by up to a half hour if
students are present and asking questions.

1.6 Office Hours Summary
e Mondays: 9am—10am, Philip Thomas, room 346.
e Tuesdays: 2:30pm—-3:30pm, James Kostas, room 207.
e Wednesdays: 2:00pm—3:00pm, Nick Jacek, room 207.
e Thursdays: 2:30pm-3:30pm, James Kostas, room 207.
e Fridays: 2:00pm-3:00pm, Nick Jacek, room 207.

1.7 Grading

Your grade will have four components:

1. Homework Assignments (60%): There will be roughly seven homework assignments. Each problem in an assignment will
specify its point value, and not all homework assignments will necessarily have the same point value (i.e., some homework
assignments may be smaller and worth less than others). All assignments will have total point values of at most 100 (thus,
the last assignment will not have a point value so high that previous assignments are irrelevant).

2. Pop Quizzes (15%): There will be pop-quizzes given in class without prior announcement. They will typically take about
10 minutes to complete and will be given at the start of class. If you know in advance that you will miss class, please e-mail
both TAs, and you may be excused from any quizzes that occur that day.


https://people.cs.umass.edu/~pthomas/courses/CMPSCI_687_Fall2018.html
https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262193981/
http://incompleteideas.net/book/the-book-1st.html

3. Midterm Exam (10%): There will be a midterm exam on Thursday October 18, from 7pm-9pm in room 135 of the
Integrated Science Building (ISB).

4. Final Exam (15%): There will be a final exam on Tuesday December 18 from 6pm-8pm in Marcus Hall room 131.

A cumulative grade in [90% — 100%)] will be an A- or A, [80%,90%) will be a B-, B, or B+, and [70%, 80%) will be a C-, C, or
C+. Course grades will be curved only in students’ favor (that is, these thresholds may be lowered, but a grade of 90% will not
be lower than an A-).

1.8 Late Policy

Late homework assignments will not be accepted. An assignments submitted one minutes late is late, and will not be accepted. I
recommend submitting homework well in advance of the due date and time.

1.9 Disability Services

If you have a disability and require accommodations, please let me know as soon as possible. You will need to register with
Disability Services (161 Whitemore Administration Building; phone (413) 545-0892). Information on services and materials for
registering are also available on their website: www.umass.edu/disability.

1.10 Cheating

Cheating will not be tolerated. Each assignment includes instructions about what forms of collaboration are allowed. Copying
answers or code from online sources or from solutions to assignments from previous years is always considered cheating. All
instances of cheating will be reported to the university’s Academic Honesty Board, and will result in a failing grade letter grade
for the course.

1.11 BTEX

Your homework submissions must be typed using INTEX. If you have not used IXTEX before, you may want to complete an online
tutorial now. Also, the instructor and TAs are prepared to help you learn about KTEX during their office hours. Note: The
formatting of math using editors like Microsoft Word is not as clear as IXTEX. Assignments created using other editors will not
be accepted.

1.12 Questions About Course Material

We encourage you to ask questions in office hours. Questions may also be asked on Piazza, here. We will try to maintain a
maximum time-to-answer of at most 24 hours Monday-Friday. Questions asked on the weekend or during holidays may not be
answered until the next work day.


www.umass.edu/disability
https://piazza.com/umass/fall2018/cmpsci687/

2 Introduction

2.1 Notation

When possible, sets will be denoted by calligraphic capital letters (e.g., X'), elements of sets by lowercase letters (e.g., x € X),
random variables by capital letters (e.g., X), and functions by lowercase letters (e.g., f). This will not always be possible, so keep
an eye out for exceptions (e.g., later P will be a function).

We write f : X — Y to denote that f is a function with domain X and range ). That is, it takes as input an element
of the set X and produces as output an element of Y. We write |X| to denote the cardinality of the set X—the number of
elements in X, and |z| to denote the absolute value of x (thus the meaning of | - | depends on context).

We typically use capital letters for matrices (e.g., A) and lowercase letters for vectors (e.g., b). We write AT to denote
the transpose of A. Vectors are assumed to be column vectors. Unless otherwise specified, ||b| denotes the {>-norm (Euclidean
norm) of the vector v.

We write Nyo to denote the natural numbers not including zero, and N> to denote the natural numbers including zero.

We write := to denote is defined to be. In lecture we may write £ rather than := since the triangle is easier to see when
reading handwriting from the back of the room.

If f: X xY — Z for any sets X, YV, and Z, then we write f(-,y) to denote a function, g : X — Z, such that g(z) = f(z,y) for
allx € X.

We denote sets using brackets, e.g., {1,2, 3}, and sequences and tuples using round brackets, e.g., (z1,22,...).

The notation that we use is not the same as that of the book or other sources (papers and books often use different no-
tations, and there is no agreed-upon standard). Our notation is a mix between the notations of the first and second editions of
Sutton and Barto’s book.

2.2 What is Reinforcement Learning (RL)?

Reinforcement learning is an area of machine learning, inspired by behaviorist psychology, concerned with how an
agent can learn from interactions with an environment.

~Wikipedia, Sutton and Barto (1998), Phil
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Figure 1: Agent-environment diagram.
Agent: Child, dog, robot, program, etc.
Environment: World, lab, software environment, etc.
Evaluative Feedback: Rewards convey how “good” an agent’s actions are, not what the best actions would have been.

If the agent was given instructive feedback (what action it should have taken) this would be a supervised learning problem, not a
reinforcement learning problem.


https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

Sequential: The entire sequence of actions must be optimized to maximize the “total” reward the agent obtains. This
might require forgoing immediate rewards to obtain larger rewards later. Also, the way that the agent makes decisions (selects
actions) changes the distribution of states that it sees. This means that RL problems aren’t provided as fixed data sets like in
supervised learning, but instead as code or descriptions of the entire environment.

Question 1. If the agent-environment diagram describes a child learning to walk, what exactly is the “Agent” block? Is it
the child’s brain, and its body is part of the environment? Is the agent the entire physical child? If the diagram describes a
robot, are its sensors part of the environment or the agent?

Neuroscience and psychology ask how animals learn. It is the study of some examples of learning and intelligence. Reinforcement
learning asks how we can make an agent that learns. It is the study of learning and intelligence in general (animal, computer,
match-boxes, purely theoretical, etc.). In this course we may discuss the relationship between RL and computational neuroscience
in one lecture, but in general will not concern ourselves with how animals learn (other than, perhaps, for intuition and motivation).

There are many other fields that are similar and related to RL. Separate research fields often do not communicate much,
resulting in different language and approaches. Other notable fields related to RL include operations research and control (classical,
adaptive, etc.). Although these fields are similar to RL, there are often subtle but impactful differences between the problems
studied in these other fields and in RL. Examples include whether the dynamics of the environment are known to the agent a
priori (they are not in RL), and whether the dynamics of the environment will be estimated by the agent (many, but not all, RL
agents do not directly estimate the dynamics of the environment). There are also many less-impactful differences, like differences
in notation (in control, the environment is called the plant, the agent the controller, the reward the (negative) cost, the state the
feedback, etc.).

A common misconception is that RL is an alternative to supervised learning—that one might take a supervised learning
problem and convert it into an RL problem in order to apply sophisticated RL methods. For example, one might treat the state
as the input to a classifier, the action as a label, and the reward as —1 if the label is correct and 1 otherwise. Although this is
technically possible and a valid use of RL, it should not be done. In a sense, RL should be a last resort—the tool that you use
when supervised learning algorithms cannot solve the problem you are interested in. If you have labels for your data, do not
discard them and convert the feedback from instructive feedback (telling the agent what label it should have given) to evaluative
feedback (telling the agent if it was right or wrong). The RL methods will likely be far worse than standard supervised learning
algorithms. However, if you have a sequential problem or a problem where only evaluative feedback is available (or both!), then
you cannot apply supervised learning methods and you should use RL.

Question 2. [Puzzle] There are 100 pirates. They have 10,000 gold pieces. These pirates are ranked from most fearsome
(1) to least fearsome (100). To divide the gold, the most fearsome pirate comes up with a method (e.g., split it evenly, or I
get half and the second most fearsome gets the other half). The pirates then vote on this plan. If 50% or more vote in favor
of the plan, then that is how the gold is divided. If > 50% wvote against the plan, the most fearsome pirate is thrown off the
boat and the next most fearsome comes up with a plan, etc. The pirates are perfectly rational. You are the most fearsome
pirate. How much of the gold can you get? How?

‘G Jemsuy

If you solved the above puzzle, you very likely did so by first solving easier versions. What if there were only two pirates? What
if there were three? This is what we will do in this course. We will study and understand an easier version of the problem and
then will build up to more complex and interesting cases over the semester.


https://en.wikipedia.org/wiki/Donald_Michie
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Classical_control_theory
https://en.wikipedia.org/wiki/Adaptive_control

2.3 687-Gridworld: A Simple Environment

Start
State 1 State 2 State 3 State 4 State 5

State 6 State 8 State 9 State 10

State 11 | State 12 Kol:§eldl:l State 13 | State 14

State 15 | State 16 EOls§e[d[:l State 17 | State 18

Goal

State 19 | State 20 State 22 | State 23

Figure 2: 687-Gridworld, a simple example environment we will reference often.
State: Position of robot. The robot does not have a direction that it is facing.
Actions: Attempt_Up, Attempt _Down, Attempt_Left, Attempt_Right. We abbreviate these as: AU, AD, AL, AR.

Environment Dynamics: With probability 0.8 the robot moves in the specified direction. With probability 0.05 it gets
confused and veers to the right—moves +90° from where it attempted to move (that is, AU results in the robot moving right, AL
results in the robot moving up, etc.). With probability 0.05 it gets confused and veers to the left—moves —90° from where it
attempted to move (that is, AU results in the robot moving left, AL results in the robot moving down, etc.). With probability 0.1
the robot temporarily breaks and does not move at all. If the movement defined by these dynamics would cause the agent to exit
the grid (e.g., move up from state 2) or hit an obstacle (e.g., move right from state 12), then the agent does not move. The robot
starts in state 1, and the process ends when the robot reaches state 23.

Rewards: The agent receives a reward of —10 for entering the state with the water and a reward of 410 for entering
the goal state. Entering any other state results in a reward of zero. If the agent is in the state with the water (state 21) and stays
in state 21 for any reason (hitting a wall, temporarily breaking), it counts as “entering” the water state again and results in an
additional reward of —10. We use a reward discount parameter (the purpose of which is described later) of v = 0.9.

End of Lecture 1, September 4, 2018

2.4 Describing the Agent and Environment Mathematically

In order to reason about learning, we will describe the environment (and soon the agent) using math. Of the many different
mathematical models that can be used to describe the environment (POMDPs, DEC-POMDPs, SMDPs, etc.), we will initially
focus on Markov decision processes (MDPs). Despite their apparent simplicity, we will see that they capture a wide range of real
and interesting problems, including problems that might at first appear to be outside their scope (e.g., problems where the agent
makes observations about the state using sensors that might be incomplete and noisy descriptions of the state). Also, a common
misconception is that RL is only about MDPs. This is not the case: MDPs are just one way of formalizing the environment of an
RL problem.

e An MDP is a mathematical specification of both the environment and what we want the agent to learn.



o Let t € N5q be the time step (iteration of the agent-environment loop).
e Let S; be the state of the environment at time .
e Let A; be the action taken by the agent at time .

e Let R; € R be the reward received by the agent at time ¢. That is, when the state of the environment is S;, the agent takes
action Ay, and the environment transitions to state Syy1, the agent receives the reward R;. This differs from some other
sources wherein this reward is called Ry .

Formally, a finite MDP is a tuple, (S, A, P,dg,dy,~y), where:

e S is the set of all possible states of the environment. The state at time ¢, S;, always takes values in S. For now we will
assume that |S| < co—that the set of states is finite.

e A is the set of all possible actions the agent can take. The action at time ¢, A;, always takes values in A. For now we will
assume that |A| < cc.

e P is called the transition function, and it describes how the state of the environment changes.
P:SxAxS—[0,1]. (1)
ForallseS,ac A, s €S, and t € N>:
P(s,a,s’) :=Pr(Siy1 = 5'|S; = s, A; = a). (2)

Hereafter we suppress the sets when writing quantifiers (like 3 and V)—these should be clear from context. We say that the
transition function is deterministic if P(s,a,s’) € {0,1} for all s,a, and '

e dp describes how rewards are generated. Intuitively, it is a conditional distribution over R; given S, A;, and S;y;. For now
we assume that the rewards are bounded—that |R;| < Ryax always, for all ¢ € N> and some constant Ryax € R.!

e R is a function called the reward function, which is implicitly defined by dr. Other sources often define an MDP to contain
R rather than dr. Formally
R:SxA—R, (3)

and
R(s,a) :=E[R|S: = s, Ay = a], (4)

for all s,a, and t. Although the reward function, R, does not precisely define how the rewards, Ry, are generated (and thus
a definition of an MDP with R in place of dg would in a way be incomplete), it is often all that is necessary to reason
about how an agent should act.

e dg is the initial state distribution:
do: S —[0,1], (5)

and for all s:
do(s) = Pr(Sp = s). (6)

e v € [0,1] is a parameter called the reward discount parameter, and which we discuss later.

Just as we have defined the environment mathematically, we now define the agent mathematically. A policy is a decision
rule—a way that the agent can select actions. Formally, a policy, 7, is a function:

m:SxA—[0,1], (7)

and for all s € S, a € A, and ¢t € N>,
7(s,a) = Pr(A; = a|S; = s). (8)

Thus, a policy is the conditional distribution over actions given the state. That is, w is not a distribution, but a collection
of distributions over the action set—one per state. There are an infinite number of possible policies, but a finite number of



AU AD AL AR

1 0 0.1 0.3 0.6
2 0.8 0 0 0.2
3 0.1 0.1 0.5 0.3
4 0.25 0.25 0.25 0.25
5 0.25 0.25 0.5 0
6 0.2 0.3 0.5 0

Figure 3: Example of a tabular policy. Each cell denotes the probability of the action (specified by the column) in each state
(specified by the row). In this format, II is the set of all |S| x |.A| matrices with non-negative entries and rows that all sum to one.

deterministic policies (policies for which 7(s,a) € {0,1} for all s and a). We denote the set of all policies by II. Figure 3 presents
an example of a policy for 687-Gridworld. We will sometimes write 7 : S — A to denote a deterministic policy, where A; = 7w(Sy).

To summarize so far, the interaction between the agent and environment proceeds as follows (where R; ~ dg(St, A¢, St+1,°)
denotes that R; is sampled according to dr):

Sy ~do (9)
Ay ~m(So, ) (10)
S1 ~P(So, Ao, ) (11)
Ry ~dgr(So, Ao, S1,-) (12)
Ay ~7m(S1, ) (13)
Sy ~P(S1, 41, ) (14)

(15)

In pseudocode:

Algorithm 1: General flow of agent-environment interaction.

1 Sp ~ do;

2 for t =0 to oo do

A ~ (S, );

Sty1~ P(St, A, +);

Ry ~ dR(Sta Ay, Siqa, ')§

(2L B ]

The running of an MDP is also presented as a Bayesian network in Figure 4.

Figure 4: Bayesian network depicted the running of an MDP.

Notice that we have defined rewards so that Ry is the first reward, while Sutton and Barto (1998) define rewards such that
Ry is the first reward. We do this because Sy, Ag, and t = 0 are the first state, action, and time, and so having R; be the first
reward would be inconsistent. Furthermore, this causes indices to align better later on. However, when comparing notes from the
course to the book, be sure to account for this notational discrepancy.

ISometimes dr will place probabilities on a small number of rewards (often the reward may be a deterministic function of S, A¢, and Syt1).
Sometimes dr will characterize a continuous distribution. Defining dr properly therefore requires the use of measure theory for probability. To keep
things simple, we will not do this—we will not define dg more formally.

10



Agent’s goal: Find a policy, n*, called an optimal policy. Intuitively, an optimal policy maximizes the expected total

amount of reward that the agent will obtain.

Objective function: J : II — R, where for all 7= € II,

J(r) =E T (16)

>n
t=0

Note: Later we will revise this definition—if you are skimming looking for the correct definition of J, it is in (18).

Note: Expectations and probabilities can be conditioned on events. A policy, 7, is not an event. Conditioning on m, e.g., when
we wrote |7 in the definition of J above, denotes that all actions (the distributions or values of which are not otherwise explicitly
specified) are sampled according to 7. That is, for all ¢ € N>q, A, ~ 7(Sy, ).

*

Optimal Policy: An optimal policy, 7*, is any policy that satisfies:

7" € argmax J (7). (17)
mell

Note: Much later we will define an optimal policy in a different and more strict way.
Property 1 (Existence of an optimal policy). If |S| < oo, |A| < 00, Rpmaz < 00, and v < 1, then an optimal policy exists.

We will prove Property 1 later.

Question 3. Is the optimal policy always unique when it exists?

‘¢ IOMSUY

Reward Discounting: If you could have one cookie today or two cookies on the last day of class, which would you pick? Many
people pick one cookie today when actually presented with these options. This suggests that rewards that are obtained in the
distant future are worth less to us than rewards in the near future. The reward discount parameter, -y, allows us to encode, within
the objective function, this discounting of rewards based on how distant in the future they occur.

Recall that v € [0, 1]. We redefine the objective function, J, as:

Z ’7th
t=0

for all m € II. So, v < 1 means that rewards that occur later are worth less to the agent—the utility of a reward, r, ¢ time steps
in the future is y'r. Including ~y also ensures that J(7) is bounded, and later we will see that smaller values of v make the MDP
easier to solve (solving an MDP refers to finding or approximating an optimal policy).

To summarize, the agent’s goal is to find (or approximate) an optimal policy, 7*, as defined in (17), using the definition of J
that includes reward discounting—(18).

J(r) =E : (18)

™

Question 4. What is an optimal policy for 687-Gridworld? Is it unique? How does the optimal action in state 20 change if
we were to change the value of v?

When we introduced 687-Gridworld, we said that the agent-environment interactions terminate when the agent reaches state
23, which we called the goal. This notion of a terminal state can be encoded using our definition of an MDP above. Specifically,
we define a terminal state to be any state that always transitions to a special state, s, called the terminal absorbing state.
Once in S, the agent can never leave (so is absorbing)—the agent will forever continue to transition from s, back into se.
Transitioning from s, to so always results in a reward of zero. Effectively, when the agent enters a terminal state the process
ends. There are no more decisions to make (since all actions have the same outcome) or rewards to collect. Thus, an episode

11



terminates when the agent enters s.,. Notice that terminal states are optional—MDPs need not have any terminal states. Also,
there may be states that only sometimes transition to s.,, and we do not call these terminal states. Notice also that s, is an
element of S. Lastly, although terminal states are defined, goal states are not defined—the notion of a goal in 687-Gridworld is
simply for our own intuition.

When the agent reaches s, the current trial, called an episode ends and a new one begins. This means that ¢ is reset to zero,
the initial state, Sp, is sampled from dy, and the next episode begins (the agent selects Ag, gets reward Ry, and transitions to

state S1). The agent is notified that this has occurred, since this reset may change its behavior (e.g., it might clear some sort of
short-term memory).

End of Lecture 2, September 6, 2018
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CMPSCI 687 Pop Quiz 1
September 11, 2018

Instructions: You have 10 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do
not discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables. Presenting equalities that are true is not
enough—you must provide the definitions of the symbols on the left.

Fill in the definitions for the following terms (7 and 8 should be real numbers as your answers, not math expressions):

[Answers in blue.]
1. P(s,a,s") = Pr(Si41 = §'|St = s, A1 = a)
2. R(s,a) = E[R|S; = s, A = d]

7(s,a) = Pr(A; = alSy = s)

do(s) = Pr(Sy = 5)

J(%) = B[S, 7 Rl

. € argmax, o J ()

. P(S00,0,800) =1

. maxged R(S00,a) =0

© 0 N Ol s W

. (True or False) an MDP is a mathematical formalization of an agent.

10. (True or False) RL problems are problems where only evaluative feedback is available, not instructive feedback. (Due to
valid student argument, false is accepted for this problem.)

13



Consider again the definition of reinforcement learning. Notice the segment “learn from interactions with the environment.” If
P and R (or dr) are known, then the agent does not need to interact with the environment. E.g., an agent solving 687-Gridworld
can plan in its head, work out an optimal policy and execute this optimal policy from this start. This is not reinforcement
learning—this is planning. More concretely, in planning problems P and R are known, while in reinforcement learning problems
at least P (and usually R) is not known by the agent. Instead, the agent must learn by interacting with the environment—taking
different actions and seeing what happens. Most reinforcement learning algorithms will not estimate P. The environment is often
too complex to model well, and small errors in an estimate of P compound over multiple time steps making plans built from
estimates of P unreliable. We will discuss this more later.

2.5 Additional Terminology, Notation, and Assumptions

A history, Hy, is a recording of what has happened up to time ¢ in an episode:

H; = (S0, Ao, Ro, S1,A¢, R1, Sa, ..., St, A, Ry). (19)

A trajectory is the history of an entire episode: H.

The return or discounted return of a trajectory is the discounted sum of rewards: G := Zfio ~vtR;. So, the objective, J, is
the expected return or expected discounted return, and can be written as J(w) = E[G|n].

e The return from time t or discounted return from time t, Gy, is the discounted sum of rewards starting from time ¢:

G, = Z Y* Ryt
k=0

2.5.1 Example Domain: Mountain Car

Environments studied in RL are often called domains. One of the most common domains is mountain car, wherein the agent is
driving a crude approximation of a car. The car is stuck in a valley, and the agent wants to get to the top of the hill in front of
the car. However, the car does not have enough power to drive straight up the hill in front, and so it must learn to reverse up the
hill behind it before accelerating forwards to climb the hill in front. A diagram of the mountain car environment is depicted in
Figure 5.

0.5

-0.5

sin(3x)
1 I

1.2 -1 -0.8 0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 5: Diagram of the mountain car domain.

e State: s = (z,v), where z € R is the position of the car and v € R is the velocity.
e Actions: a € {forward, neutral, reverse}. These actions can be renamed to be less unwieldy: a € {0, 1, 2}.

e Dynamics: The dynamics are deterministic—taking action a in state s always produces the same state, s’. Thus,
P(s,a,s’) € {0,1}. The dynamics are characterized by:

ver1 = v + 0.001a — 0.0025 cos(3x) (20)
Tip1 = Tt + Vpt1- (21)
If these equations would cause xy41 < —1.2 then instead z¢41 = —1.2 and the velocity is set to zero: v;41 = 0. Similarly, if

these equations would cause x;y1 > 0.5, then x;41 = 0.5 and the velocity is set to zero: v,11 = 0. This simulates inelastic
collisions with walls at —1.2 and 0.5.
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Terminal States: If x; = 0.5, then the state is terminal (it always transitions to se).

Rewards: R; = —1 always, except when transitioning to s (from s, or from a terminal state), in which case R; = 0.

Discount: v = 1.0.
Initial State: Sy = (—0.5,0) deterministically (i.e., Pr(So = (—0.5,0)) = 1).

Question 5. For this problem, what is an English description of the meaning behind a return? What is an episode? What
is an optimal policy? How long can an episode be? What is the English meaning of J(mw)?

‘G Jomsuy

2.5.2 Markov Property
A seemingly more general non-Markovian formulation for the transition function might be:
P(h,s,a,8") :=Pr(Siy1 = §'|Hy_1 = h, Sy = s, Ay = a). (22)
The Markov assumption is the assumption that S;,; is conditionally independent of H; 1 given S;. That is, for all h, s,a, s',t:2
Pr(Siy1 =8 |Hi_1 =h,S; = s, Ay = a) = Pr(Syy1 = §'|S; = s, Ay = a) (23)

Since we make this Markov assumption, P as defined earlier completely captures the transition dynamics of the environment, and
there is no need for the alternate definition in (22). The Markov assumption is sometimes referred to as the Markov property (for
example one would usually say that a domain has the Markov property, not that the domain satisfies the Markov assumption). It
can also be stated colloquially as: the future is independent of the past given the present.

We also assume that the rewards are Markovian—R; is conditionally independent of H;_; given S; (since A; depends only on
St, this is equivalent to assuming that R; is conditionally independent of H;_; given both S; and A;). While the previous Markov
assumptions apply to the environment (and are inherent assumptions in the MDP formulation of the environment), we make an
additional Markov assumption about the agent: the agent’s policy is Markovian. That is, A; is conditionally independent of H;
given S;.

Question 6. Can you give examples of Markovian and non-Markovian environments?

Question 7. Is the Markov property a property of the problem being formulated as an MDP or a property of the state
representation used when formulating the problem?

To answer this second question, consider whether state transitions are Markovian in mountain car. It should be clear that
they are as the domain has been described. What about if the state was s = (z) rather than s = (z,v)? You could deduce v;
from the previous state, x;_1 and current state, ¢, but that would require part of the history before s;. Thus, using s = (x)
mountain car is not Markovian. So, the Markov property is really a property of the state representation, not the problem being
formulated as an MDP.

Notice that one can always define a Markovian state representation. Let S; be a non-Markovian state representation. Then
(S, Hi—1) is a Markovian state representation. That is, we can include the history within the states in order to enforce the
Markov property. This is typically undesirable because the size of the state set grows exponentially with the maximum episode
length (a term discussed more later). This trick of adding information into the state is called state augmentation.

There is often confusion about terminology surrounding states, state representations, and the Markov property. The state of
an MDP (and every other similar formulation, like POMDPs, DEC-POMDPs, SMDPs, etc.) should always be defined so that
the Markov property is satisfied. Later we will reason about state representations that are not Markovian, in order to model
situations where the agent might only be able to make partial or noisy observations about the state of the environment.

2For brevity, hereafter we omit the sets that elements are in when it should be clear from context, e.g., we say “for all s” rather than “for all s € S”.
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2.5.3 Stationary vs. Nonstationary

We assume that the dynamics of the environment are stationary. This means that the dynamics of the environment do not change
between episodes, and also that the transition function does not change within episodes. That is, Pr(So = s) is the same for all
episodes, and also for all s, a,t, and i:

PI‘(St_H = 8/|St =S, At = a) = PI"(SH_l = S/|Si =S, A, = a). (24)

Importantly, here ¢ and ¢ can be time steps from different episodes.

This is one of the assumptions that is most often not true for real problems. For example, when using RL to control a car, we
might not account for how ware on the parts (e.g., tires) causes the dynamics of the car to change across drives. When using
RL to optimize the selection of advertisements, the day of the week, time of day, and even season can have a large impact on
how advertisements are received by people. Depending on how the problem is modeled as an RL problem, this may manifest as
nonstationarity.

Although this assumption is almost always made, and is almost always false, we usually justify it by saying that some
assumption of this sort is necessary. This assumption is what allows us to use data from the past to inform how we make decisions
about the future. Without some assumption saying that the future resembles the past, we would be unable to leverage data to
improve future decision making. Still, there exist weaker assumptions than requiring stationarity (e.g., a small amount of work
focuses on how to handle a small finite number of jumps in system dynamics or slow and continuous shifts in dynamics).

We also assume that the rewards are stationary (that the distribution over rewards that result from taking action a in state
s and transitioning to state s’ does not depend on the time step or episode number). However, usually we assume that 7 is
nonstationary. This is because learning corresponds to changing (ideally, improving) the policy both within an episode and across
episodes. A stationary policy is sometimes called a fixed policy.

End of Lecture 3, September 11, 2018
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CMPSCI 687 Homework 1
Due September 20, 2018, 11:55pm Eastern Time

Instructions: This homework assignment consists of a written portion and a programming portion. Collaboration is not
allowed on any part of this assignment. Submissions must be typed (hand written and scanned submissions will not be accepted).
You must use BTEX. The assignment should be submitted on Moodle as a .zip (.gz, .tar.gz, etc.) file containing your answers in a
.pdf file and a folder with your source code. Include with your source code instructions for how to run your code. You may not
use any reinforcement learning or machine learning specific libraries in your code (you may use libraries like C++ Eigen and
numpy though). If you are unsure whether you can use a library, ask on Piazza. If you submit by September 25, you will not lose
any credit. The automated system will not accept assignments after 11:55pm on September 25.

Part One: Written (65 Points Total)

1. (Your grade will be a zero on this assignment if this question is not answered correctly) Read the class syllabus carefully,
including the academic honesty policy. To affirm that you have read the syllabus, type your name as the answer to this
problem.

2. (15 Points) Given an MDP M = (S, A, P,dg, dy,7) and a fixed policy, 7, the probability that the action at time ¢t = 0 is
ac Alis:

Pr(Ap =a) = Z do(s)m(s,a). (25)

seS

Write similar expressions (using only S, A, P, R, dy,~, and 7) for the following problems.

Hints and Probability Review:

Write Probabilities of Events: In some of the probability hints below that are not specific to RL, we use expressions
like Pr(alb), where a and b are events. Remember that in the RL notation used for this class, the values of Pr(sg),
Pr(ao), Pr(Ao), or Pr(Ag|Sp) are all undefined, since those are simply states, actions, or random variables (not events).
Instead, we must write about the probabilities of events. For example: Pr(Ag = ag) or Pr(Ap = ag|So = so)-

Bayes’ Theorem: Pr(a|b) = Pr(b|a) Pr(a)/Pr(b). This is useful for dealing with conditional probabilities Pr(a|b),
where event a occurs before event b. For example, it is often difficult to work with an expression like Pr(Sy = sg|Ag = ag),
but easy to deal with the 3 terms in Pr(Ag = ao|So = so) Pr(So = so)/ Pr(Ag = ap)-

The law of total probability: For event a, and a set of events B,

Pr(a) =Y Pr(b) Pr(alb)

beB

See the example below for several useful applications of this property.

“Extra” given terms: Remember that when applying laws of probability, any “extra” given terms stay in the result.
For example, applying the law of total probability:

Pr(alc,d) = Z Pr(b|c, d) Pr(alb, ¢, d)
beB

Example problem: The probability that the state at time t =1is s € S.

Pr(S1=s) = Z Pr(Sy = so) Pr(S1 = s|So = s0) (26)
SpES
= Z d()(S()) PI‘(Sl = S|SO = 80) (27)
SpES
=D dolso) Y Pr(Ag = ao|So = s0) (28)
SpES ap€A
X PI‘(S1 = S‘SO = S, Ao = ao) (29)
= Z do(so) Z (80, a0) P(s0, ao, $). (30)
SoES ap€EA
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Problems:

e The probability that the state at time ¢ = 3 is either s € S or s’ € S.

Pr(S3 =sUS3 =) szo(so) ZW(SO,GO) ZP(807CL0781) (31)
X Zw(sl,al)ZP(sl,al,SQ) (32)
X ZW(SQ,QQ)(P(SQ,GQ,S) + P(s3,a2,5")) (33)

e The probability that the action at time ¢ = 16 is a/ € A given that the action at time ¢ = 15 is @ € A and the state at
timet =141is s € S.

Pr(Ajg = d'|S14 = s, A15 = a) (34)
_ Pr(Ajg=d', A5 = a|S14 = )
N Pr(Ais = a|S1a = 9)
Y, T(8sa14) o P(s,a14, 815)7(s15,a) Y2 P(s15,a, 816)7(816, @)

— . 36
S (s ) S, P(s,ara s15) (51, a) (36)

(35)

e The expected reward at time ¢ = 6 given that the action at time ¢t = 3 is a € A, and the state at time t =5 is s € S.

E[Rs|As =a,8 =] =Y _m(s,a5) ¥ _ P(s,a5,56) »_ 7(s6,a6)R(s6, as) (37)

as 56 ae

e The probability that the initial state was s € S given that the state at time t = 11is s’ € S.
Pr(So=s,51 =¢')
Pr(S, =¢)
~ do(8) o4, (s, a0)P(s, a0, 8")
> sy @0(80) D, (8, a0)P(s0, ao, s')

PI"(SQ = S|Sl = S/) =

e The probability that the action at time ¢ = 5 is a € A given that the initial state is s € S, the state at time t = 5 is
s’ € 8, and the action at time t = 6 is a’ € A.

Pr(As = a|So = 5,95 =5, Ag = a') =Pr(A5 = a|s5 = §', Ag = a’) (40)

:Pr(A5 =a,As =d|s5 =) (41)
Pr(A¢ = d/|S5 = &)
m(s' a) ZSG P(s',a,s6)m(sg,a’)

:Za5 7-(-(3/7 a5) ESG P(S/a as, 86)71-(56’ a/) (42)

ot

3. (3 Points) In 687-Gridworld, if we changed how rewards are generated so that hitting a wall (i.e., when the agent would enter an
obstacle state, and is placed back where it started) results in a reward of —1, then what is E[R;|S; = 17, A, = AL, S;11 = 17]7
Consider the event HitWall, which occurs if the agent hits the obstacle to the left of state 17, and does not occur if the
agent does not hit the obstacle to the left of state 17. For brevity, we write 17AL17 to denote Sy = 17, Ay = AL, S¢y1 = 17.

E[R|S; = 17, A; = AL, S,41 = 17] = Pr(HitWall|17AL17)E[R,|17AL17, HitWall] (43)
+ Pr(=HitWall|17AL17)E[R;|17AL17, ~Hit Wall] (44)

= Pr(HitWall[17AL17)(~1) + Pr(~HitWall|17AL17)(0) (45)

= — Pr(HitWall[17AL17). (46)
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To conclude, we must compute the probability that the agent hit the wall if it started in state 17, took action AL, and
ended in state 17.

Pr(HltWall, St+1 = 17|St = 17, At = AL)

Pr(HitWall|17AL17) = 4
r(HitWall I7ALLT) Pr(Sisy = 17]S; = 17, A, = AL) (47)
 Pr(HitWall|S; = 17, A, = AL) (48)
~ Pr(S;.1 = 17|S; = 17, A, = AL)
0.8
_ 4
0.8+ 0.1 (49)
0.8
=55 (50)
So,
0.8
E[R/[S =17, 4y = AL, S0 = 17] = — . (51)

. (2 Points) How many stochastic policies are there for an MDP with |S| < 0o and |A| < c0? (You may write your answer in
terms of |S| and |A]).

Infinite.

. (5 Points) Create an MDP (which may not have finite state or action sets) that does not have an optimal policy. The
rewards for your MDP must be bounded, and it must use v < 1.

Student answers may vary. One example is an MDP with one state that always transitions to s., A = [0,1), and
R; = Ay. Since the action set is open, the maximum element in A does not exist, and so no optimal policy exists.

. (3 Points) Read about the Pendulum domain, described in Section 5.1 of this paper (Reinforcement Learning in Continuous
Time and Space by Kenji Doya). Consider a variant where the initial state has the pendulum hanging down with zero
angular velocity always (a deterministic initial state where the pendulum is hanging straight down with no velocity) and a
variant where the initial angle is chosen uniformly randomly in [—, 7] and the initial velocity is zero. Which variant do you
expect an agent to require more episodes to solve? Why? Note: We did not talk about the complexity of solving MDPs in
class yet—we want you to provide your best guess here.

Any reasonable answer is ok, but it must have an explanation that makes some sense.

. (1 Point) How many episodes do you expect an agent should need in order to find near-optimal policies for the gridworld
and pendulum domains? Note: We did not talk about the complexity of solving MDPs in class yet—we want you to provide
your best guess here.

Any reasonable answer is ok, but it must have an explanation that makes some sense.

. (5 Points) Select a problem that we have not talked about in class, where the agent does not make Markovian observations
about the world around it. Describe how the environment for this problem can be formulated as an MDP by specifying
(S, A, P,[d, or R],dg,7) (your specifications of these terms may use English rather than math, but be precise).

Answers may vary. The key property should be that the states are Markovian and correspond to states, not obser-
vations. One example is a robot learning to balance. The set of states is the set of all possible configurations of the robot.
The set of actions is each possible amount of power that could be given to each motor, P captures the dynamics described
by physics, R might be 0 if the force sensors indicate that the robot has fallen over, and +1 otherwise, dy might be the
initial distribution of positions that results from me trying to set up the robot to a near-standing position, and v = 0.99.
This example is partially observable because the sensors on the robot will not allow it to precisely measure the true state of
the robot—the agent will not fully observe the state.

. (5 Points) Create an MDP for which there exist at least two optimal policies that have different variance of their returns.
Describe the two optimal policies and derive the expected value and variance of their returns.

Student answers may vary. One example is an MDP with one state that always transitions to s, and which has
two actions. The first actions results in R, ~ N (0, 1) and the second results in R; ~ N(0, 2).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

(2 Points) Create an MDP that always terminates, but which has no terminal states other than s..

Student answers may vary. One example is an MDP with a single state that always transitions to s, with probability 0.5.

(2 Points) Read the Wikipedia page on Markov chains. A state in a Markov chain has period k if every return to the state
must occur in multiples of k time steps. More formally,

k = ged{t > 0: Pr(S; = s|Sp = s) > 0}.

An MDP with a fixed policy results in state transitions that can be described as a Markov chain. Create an MDP and a
policy that result in a state having a period of 3.

Student answers may vary. One example is an MDP with three states, where s; always transitions to s, which al-
ways transitions to s3, which always transitions back to si.

(5 Points) A Markov chain is irreducible if it is possible to get to any state from any state. An MDP is érreducible if the
Markov chain associated with every deterministic policy is irredicible. A Markov chain is aperiodic if the period of every
state is k = 1. The state of a Markov chain is positive recurrent if the expected time until the state recurs is finite. A
Markov chain is positive recurrent if all states are positive recurrent. A Markov chain is ergodic if it is aperiodic and positive
recurrent. An MDP is ergodic if the Markov chain associated with every deterministic policy is ergodic. Create an MDP
that is ergodic, but not irreducible.

Student answers may vary. One example is an MDP with two states, s; and s, where s; always transitions back
to s1, and so always transitions back to ss.

(3 Points) Create an MDP that is not ergodic.

Student answers may vary. One example is 687-Gridworld.

(2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where R, is not a deterministic
function of S, A¢, and Si11.

Student answers may vary. One example is digital marketing, as described in class. The state might be a vector of
features that describe a person, the action might be the advertisement shown to the user, and the reward might be 41 if
the user clicks on the advertisement, and 0 otherwise. The next state might always be s, if we view the problem as a
bandit problem. For this problem, whether the person clicks the advertisement or not is not a deterministic function of the
feature vector describing the person and the advertisement shown.

(2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where R; is a deterministic
function of S;.

Student answers may vary. One example is a robot learning to balance. The reward might be +1 for every time
step where the robot has not fallen over (and zero when the robot falls over, entering s,). Here we could define the reward
to be +1 is S; is a state that is not considered to be “fallen over”.

(2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where R; is a deterministic
function of Syyq.

Student answers may vary. One example is our example from the previous question, but where we choose to define
R; to be +1 if Sy41 is a state that is not considered to be “fallen over”.

(2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where the reward function, R,
would be known.

Student answers may vary. The examples over a robot learning not to fall over again applies.

(2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where the reward function, R,
would not be known.

Student answers may vary. The digital marketing example is one possible example. We do not know the distribution over
whether or not a person will click on an advertisement.
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19. (2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where the transition function,
P, would be known.

Student answers may vary. Robotics applications sometimes involve physical systems, the dynamics of which are well-
understoon. We can view these as being problems where the transition dynamics are known.

20. (2 Points) Describe a real-world problem and how it can be reasonably modeled as an MDP where the transition function,
P, would not be known.

Student answers may vary. Consider a tutoring system, wherein the states correspond to what the student currently
understands, and the actions correspond to decisions about what topic to teach next. The transition function for this
problem includes human behavior—how a student learns about a topic. Modeleing human learning is challenging, and an
active research topic. Current models are not reliable enough to be viewed as known transition functions.

Part Two: Programming (25 Points Total)

Implement the 687-Gridworld domain described in class and in the class notes. Have the agent select actions uniformly randomly.

e (5 Points) Have the agent uniformly randomly select actions. Run 10,000 episodes. Report the mean, standard deviation,
maximum, and minimum of the observed discounted returns.

Sample correct answers (correct answers will vary slightly): mean: -.55, standard deviation: 2.18, min: -36.59, max:
4.78

e (5 Points) Find an optimal policy (you may do this any way you choose, including by reasoning through the problem
yourself). Report the optimal policy here. Comment on whether it is unique.

right right right down down
right right right down down

up up XXXXX down down (52)
up up XXXXX down down
up up right right  up

e (10 Points) Run the optimal policy that you found in the previous question for 10,000 episodes. Report the mean, standard
deviation, maximum, and minimum of the observed discounted returns.

e (5 Points) Using simulations, empirically estimate the probability that S19 = 21 (the state with water) given that Sg = 18
(the state above the goal) when running the uniform random policy. Describe how you estimated this quantity (there is not
a typo in this problem, nor an oversight).

~ 0.02 (53)

2.5.4 Cart-Pole Balancing

Also called pole balancing, cart-pole, and inverted pendulum.
This domain models a pole balancing on a cart, as depicted in Figure 6. The agent must learn to move the cart forwards and
backwards to keep the pole from falling.

e State: s = (z,v,0, 9), where z is the horizontal position of the cart, 6 is the angle of the pole, and 6 is the angular velocity
of the pole.

e Actions: A = {left, right}.
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Figure 6: Cart-Pole Domain.

e R =1 always.
o v=1.
e So=1(0,0,0,0) always.

e Dynamics = physics of the system. See the work of Florian (2007) for the derivation of the correct dynamics. The
domain was originally presented by Barto et al. (1983). However, this original work presents the dynamics with gravity
reversed—pulling the pole up rather than down. Andy says that they did use the correct direction for gravity in their code
though.

e Episodes terminate after 20 seconds, when the pole falls down, or when the cart hits the end of the track, which spans from
—3 to 3. Time is simulated with time steps of At = 0.02 seconds.

Question 8. Is the optimal policy for cart-pole unique?

‘® IoMSUY
Question 9. Is the state representation Markovian?
‘6 JoMsuUy
2.5.5 Finite-Horizon MDPs
The horizon, L, of an MDP is the smallest integer such that
YVt > L, Pr(S; = $00) = 1. (54)

If L < oo for all policies, then we say that the MDP is finite horizon. If L = oo then the domain may be indefinite horizon
or infinite horizon. An MDP with indefinite horizon is one for which L = oo, but where the agent will always enter s,,. One
example of an indefinite horizon MDP is one where the agent transitions to s, with probability 0.5 from every state. An infinite
horizon MDP is an MDP where the agent may never enter so.

For the cart-pole domain, how can we implement within P that a transition to s, must occur after 20 seconds? We achieve
this by augmenting the state to include the current time. That is, the state is (s,t), where s is what we preivously defined to be
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the state for cart-pole and ¢ is the current time step. P increments ¢ at each time step and causes transitions to So, when ¢ is
incremented to 20/At = 1000. So, the state for cart-pole is really s = (z,v,0,0,t). Often the dependence on ¢ is implicit—we
write s = (z,v,0,0) and say that the domain is finite horizon.

2.5.6 Partial Observability

For many problems of interest, the agent does not know the state—it only makes observations about the state. These observations
may be noisy and/or incomplete. We will discuss this later in the course.

2.5.7 Other Domains

See if you can model the following problems as MDPs:

e Type 1 Diabetes treatment, where the goal is to determine how much insulin an insulin pump should inject in order to keep
a person’s blood glucose levels near optimum levels (Bastani, 2014).

e Digital marketing, where the goal is to present ads on a website that are likely to be clicked by the user. Assume that we
have some knowledge about the user, like their age and gender.

e Playing video games to maximize score.

e Automation of methods for determining the composition of rocks using spectroscopy. For this task the agent observes spectra
collected from a rock and makes a decision about what minerals it believes are present. There are data sets containing
examples of spectra of rocks with known compositions, but these data sets are small.

e Functional electrical stimulation, where the goal is to stimulate the muscles in a paralyzed person’s arm in order to cause it
to move to a desired position (Thomas et al., 2009).

e Garbage collection systems, where the agent must optimize the choice of when to garbage collect.

o Intelligent tutoring systems, where the goal is to decide how to order topics presented to a student in order to maximize
their score on a quiz after the tutorial (Woolf, 2010; Mandel et al., 2014).

e Elevator scheduling, where the agent must decide where to send an elevator to minimize wait times.

Question 10. All but one of the above problems are cases where supervision is not available. After the agent takes an
action, we do not know what the optimal action would have been. One example is of a supervised learning problem that likely
should not be solved using RL methods. Which one?
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3 Black-Box Optimization for RL

3.1 Hello Environment!

In this lecture we will describe how you can create your first RL agent. Agents can be viewed as objects in an object-oriented
programming language that have functions for getting an action from the agent, telling an agent about what states and rewards
it obtains, and for telling the agent when a new episode has occurs. High level pseudocode for an agent interacting with an
environment may look like:

Algorithm 2: Pseudocode for an agent interacting with an environment.

1 for episode =0,1,2,... do

2 s ~ do;

3 for t =0 to co do

4 a = agent .getAction(s);
5 s’ ~ P(s,a,-);

6 r~dg(s,a,s,);

7 agent.train(s,a,r,s’);

8
9

if s’ == s, then

L break; // Exit out of loop over time, t
10 s =s';
11 agent .newEpisode();

Here the agent has three functions. The first, getAction, which samples an action, a, given the current state s, and using
the agent’s current policy. The second function, t rain, alerts the agent to the transition that just ocurred, from s to s’, due to
action a, resulting in reward r. This function might update the agent’s current policy. The third function, newEpisode, alerts
the agent that the episode has ended and it should prepare for the next episode. Notice that the agent object might have memory.
This allows it to, for example, store the states, actions, and rewards from an entire episode during calls to train, and then
update its policy when newEpisode is called using all of the data from the episode (or from multiple episodes).

Question 11. How might you create this agent object so that it improves its policy? This might be your last chance to
think about this problem in your own creative way, before we corrupt your mind with the standard solutions used by the RL
community.

3.2 Black-Box Optimization (BBO) for Policy Search

Black-boz optimization (BBO) algorithms are generic optimization algorithms (i.e., not specific to RL) that solve problems of the
form:

arg max f(z), (55)
TER™

where f : R™ — R. Different BBO algorithms make different assumptions about f, like that it is smooth or bounded. Furthermore,
different BBO algorithms make different assumptions about what information is known about f. Some algorithm might assume
that the optimization algorithm can compute f(x) for any x € R™, while others assume that the agent can compute the gradient,
Vf(z), at any point . BBO algorithms are called black-box because they treat f as a black-box—they do not look “inside” of f
to leverage knowledge about its structure (or knowledge of an analytic form) in order to speed up the optimization process. For
RL, this means that BBO algorithms will not leverage the knowledge that the environment can be modeled as an MDP.

Here, we will consider BBO algorithms that assume the estimates of f(x) can be produced for any x € R™, but that the
precise value of f(z) is not known, and the gradient, V f(x), is also not known. Examples of BBO algorithms that can be used
for problems of this sort include (first-choice) hill-climbing search, simulated annealing, and genetic algorithms (Russell et al.,
2003). To apply these algorithms to RL, we will use them to optimize the objective function. That is, we will use them to solve
the problem:

argmax J(m). (56)
mell
In order to apply these algorithms to the above problem, we must determine how we can estimate J(7), and also how we can
represent each policy, 7, as a vector in R™.
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3.2.1 How to estimate the objective function?

We can estimate J (7r)A by running the policy 7w for N episodes and then averaging the observed returns. That is, we can use the
following estimator, J, of J:

. 1N
J(m) =+ pE (57)
=1
1 N oo ]
LSS 58)
=1 t=0

where G? denotes the return of the i*" episode and R} denotes the reward at time ¢ during episode i. Hereafter, we will use
superscripts on random variables to denote the episode during which they occurred (but will omit these superscripts when the
relevant episode should be clear from context).

3.2.2 Parameterized Policies

Recall from Figure 3 that we can represent policies as |S| x |.A| matrices with non-negative entries and rows that sum to one.
When numbers are used to define a policy, such that using different numbers results in different policies, we refer to the numbers
as policy parameters. Unlike other areas of machine learning, often we will discuss different functions and/or distributions that
can be parameterized in this way, and so it is important to refer to these parameters as policy parameters and not just parameters
(unless it is exceedingly obvious which parameters we are referring to). We refer to the representation described in Figure 3 as a
tabular policy, since the policy is stored in a table, with one entry per state-action pair. Notice that we can view this table as a
vector by appending the rows or columns into a vector in RISIIAI

Although this parameterization of the policy is simple, it requires constraints on the solution vectors that standard BBO
algorithms are not designed to handle—they require the rows in the tabular policy to sum to one and the entries to always be
positive. Although BBO algorithms might be adapted to work with this policy representation, it is usually easier to change how
we represent the policy. That is, we want to store 7 as a |S| x |.A| matrix, p, that has no constraints on its entries. Furthermore,
increasing p(s,a) (the entry in the s’th row and a’th column) should increase 7 (s, a). Notice that, using this notation, p(s,a) is a
policy parameter for each (s,a) pair.

One common way to achieve this is to use softmazx action selection. Softmax action selection defines the policy in terms of

p(s,a) as:
eoP(s,a)

W(Sa a/) = 4Za/ eo’p(sﬂl) ) (59)

where o > 0 is a hyperparameter that scales how differences in values of p(s, a) and p(s, a’) change the probabilities of the actions
a and a/. For now, assume that o = 1, and note that uses of the symbol ¢ in future sections of the notes often refer to other
hyperparameters (e.g., later in the first-choice hill-climbing algorithm, o is a different parameter). To see that this is a valid
definition of 7, we must show that 7(s,-) is a probability distribution over A for all s € S. That is, ), 4 7(s,a) = 1 for all s
and 7(s,a) > 0 for all s and a. We now show these two properties. First, for all s € S:

3= 5
— Z(IGA 6‘777(37@) 61
e e o
~1. (62)

(60)

Second, for all s and a, e”?(**) > 0, and so all terms in the numerator and denominator of (59) are non-negative, and thus (s, a)
is non-negative.

This distribution is also known as the Boltzman distribution or Gibbs distribution. A drawback of using this distribution is
that it cannot exactly represent deterministic policies without letting p(s,a) = £oo.

We typically denote the parameters of a policy by 0, not p, and we define a parameterized policy to be a function 7 :
S x A xR™ — [0,1] such that 7(s,a,0) = Pr(A; = a|S; = s,0). Thus, changing the policy parameter vector  results in the
parameterized policy being a different policy. So, you might see the equivalent definition of a tabular softmax policy:

6095’“

W(S, a, 9) = W.
a’ ’

(63)
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Tabular softmax policies are just one way that the policy might be parameterized. In general, you should pick the policy
parameterization (the way that policy parameter vectors map to stochastic policies) to be one that you think will work well for
the problem you want to solve. This is more of an art than a science—it is something that you will learn from experience.

Now that we have represented the policy as a vector in R™ (with n = |S||.A| when using a tabular softmax policy), we must
redefine our objective function to be a function of policy parameter vectors rather than policies. That is, let

J(6) = E[G|4], (64)

where conditioning on € denotes that A; ~ 7(St,-,0). Often a policy parameterization will be used that cannot represent all
policies. In these cases, the goal is to find the best policy that can be represented, i.e., the optimal policy parameter vector:

0* € arg max J (). (65)
OeR™

Examples of other parameterized policies include deep neural networks, where the input to the network is the state, s, and the
network has one output per action. One can then use softmax action selection over the outputs of the network. If the actions are
continuous, one might assume that the action, A, should be normally distributed given S;, where the mean is parameterized by a
neural network with parameters 8, and the variance is a fixed constant (or another parameter of the policy parameter vector).

One might also choose to represent deterministic policies, where the input is a state and the output is the action that is always
chosen in that state. For example, consider the problem of deciding how much insulin an insulin pump should inject prior to a
person eating a meal. One common (and particularly simple) policy parameterization is:

current blood glucose — target blood glucose n meal size

injection size =
2 02

(66)
where 6 = [0, 05]T € R? is the policy parameter vector, the current blood glucose and meal size form the state, the target blood
glucose is a constant value specified by a diabetologist, and the injection size is the action (Bastani, 2014). Notice that this
representation results in a small number of policy parameters—far fewer than if we were to use a neural network. Similarly, many
control problems can use policies parameterized using few parameters (Schaal et al., 2005) (see also PID and PD controllers).

Selecting policy representations with small numbers of parameters often speeds up learning. This is because the space of policy
parameter vectors that an algorithm must search is lower dimensional—when the problem is phrased as in (55), n is the number
of policy parameters, and so fewer policy parameters results in a smaller search space. Thus, deep neural networks should usually
be a last resort when selecting a policy representation, since they often have thousands, if not millions of policy parameters.

3.3 Cross-Entropy Method

The cross-entropy (CE) method for policy search is a simple BBO algorithm that has achieved remarkable performance on
domains like playing Tetris (Szita and Lorincz, 2006). We present a variant of CE based on the work of Stulp and Sigaud
(2012). Intuitively, CE starts with a multivariate Gaussian distribution over policy parameter vectors. This distribution has
mean # and covariance matrix X. It then samples some fixed number, K, of policy parameter vectors from this distribution.
Let 61,...,0x denote these samples. It evaluates these K sampled policies by running each one for N episodes and averag-
ing the resulting returns. It then picks the K, best performing policy parameter vectors (for some constant K,) and fits a
multivariate Gaussian to these parameter vectors. The mean and covariance matrix for this fit are stored in 6 and ¥ and
this process is repeated. We present pseudocode for CE in Algorithm 3, which uses the evaluate function defined in Algorithm 4.
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Algorithm 3: Cross—Entropy (CE) for Policy Search.

Input:

1) Initial mean policy parameter vector, § € R™

2) Initial » x n covariance matrix, X [for example, o1, for some o € R]

3) Population, K € Ny [for example, K = 20]

4) Elite population, K. € N+, where K, < K [for example, K, = 10]

5) Number of episodes to sample per policy, N € N5 [for example, N = 10]
6) Small numerical stability parameter € € R [for example, e = 0.0001]

while true do
for k=1 to K do

1
2

3 Gk ~ N(@,E),

4 Ji, = evaluate(fy, N);

sort((6, jl), (02, jg), ooy Ok jK), descending);
6 0= }%Zf:el O;

T | D= e (S 00— 0)(0k - 0)7);

o

Algorithm 4: evaluate

Input:

1) Policy parameter vector, § € R"

2) Number of episodes to sample, N € Ny [for example, N = 10]

1 Run the parameterized policy using policy parameters 6 for N episodes;

2 Compute the resulting N returns, G*,G?,...,G", where G' = 312 ' Ri;
1 N

3 Return + > ;= G

3.4 First-Choice Hill-Climbing

Another simple BBO algorithm is First-Choice Hill-Climbing (FCHC) (Russell et al., 2003). CE, presented above, has several
hyperparameters that must be set properly for the algorithm to work well. FCHC has remarkably few hyperparameters, which
makes it easy to apply. Pseudocode for a variant of FCHC, created for this class, is presented in Algorithm 5.

Algorithm 5: First—-Choice Hill-Climbing (FCHC) for Policy Search.
Input:

1) Initial mean policy parameter vector, § € R™

2) Exploration parameter, o € R

3) Number of episodes to sample per policy, N € Nyq [for example, N = 10]

1 J = evaluate(d, N);

2 while true do

0"~ N(0,0l);

J' = evaluate(d’,N);
if J' > J then

=0
J=J;

3.5 Evaluating RL Algorithms

There are many different ways that researchers report the performance of their algorithms. The most common method is for
researchers to optimize all of the hyperparameters for all of the algorithms, and then plot learning curves for each algorithm,
which show how quickly the agent learns when using each RL algorithm. The details of this process are not standardized across
the community. An example of a learning curve is depicted in Figure 7.

There is no agreed upon standard for how the optimization of hyperparameters should be performed. Some researchers use
grid searches and others random searches. Research on hyperparameter optimization suggests that you should at least use a
random search (Bergstra and Bengio, 2012) rather than a grid search. You might consider using a BBO algorithm to optimize the

o I =L ' N
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Figure 7: Example learning curve. The horizontal axis shows the number of episodes that the agent has been learning for, and
the vertical axis shows the mean return. This plot is often confusing to students, so we will go through it very precisely. Consider
running an algorithm for 200 episodes. During the first episode run, there was some resulting return, which we plot at the 1-mark
on the horizontal axis. The second episode resulted in a return, which we plot on the 2-mark, etc. This process would result in a
learning curve, and we refer to this process as a trial. Imagine if we did this entire process a second time—we ran a second trial.
This would result in a different learning curve due to the random nature of how policies sample actions, as well as how states
transition and how rewards are generated. To get a good idea of how the algorithm performs on average, we run a large number
of trials and plot the mean learning curve—the point at the horizontal hash mark at 20 episodes is the average return during the
20th episode during all of the trials that were run. To show how much variance there is in performance, we include error bars
showing the standard deviation or standard error of returns. This plot was averaged over 100,000 trials. Notice that these trials
all use the same hyperparameters—this plot does not show the sensitivity of the algorithm to its hyperparameters. Standard
error error-bars are included, but are too small to be seen. It is not uncommon for researchers to provide standard deviation error
bars. Researchers also sometimes plot total time-steps on the horizontal axis (particularly when episode lengths vary significantly
with policy performance), and cumulative reward (total reward since the first step of the first episode) on the vertical axis.
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hyperparameters of the algorithm. There is also no agreed upon objective for the hyperparameter optimization: some authors
choose the hyperparameters that maximize the area under the learning curve (the sum of returns over a fixed number of episodes,
averaged over several trials), while others optimize for the performance of the final policy after a fixed number of episodes.
Notice that this approach for reporting the performance of RL algorithms does not capture how difficult it is to find good
hyperparameters for each algorithm. This problem is not new—there has been a push for many years now to report the sensitivity
of algorithms to their hyperparameters, and increasingly many papers provide plots showing hyperparameter sensitivity. Notice
also that some papers present similar looking plots, but report statistics other than expected return (Johns, 2010, Page 80).

End of Lecture 4, September 18, 2018
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CMPSCI 687 Pop Quiz 2
September 20, 2018

Instructions: You have 5 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do not
discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables. Presenting equalities that are true is not
enough—you must provide the definitions of the symbols on the left.

Fill in the definitions for the following terms, and the real-number answers for 9 and 10:

[Answers in blue.]
1. P(s,a,8") = Pr(Sit1 = §'|St = s, Ay = a)
2. R(s,a) =E[R|S: = s, A = a]

7(s,a) = Pr(A; = a|S; = s)

do(s) = Pr(So = s)

J(m) = B[3 220y Relm]

G =30 R

Gy =300V Ry

. T € argmax, oy J ()

© 0 N Ol s W

. MiNges MaXge A ) es P(s,0,8) =1

10. maxgzeq R(S00,a) =0
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4 Value Functions

So far we have described the problem we want to solve mathematically, and have described how BBO methods can be applied.
These BBO algorithms do not leverage the assumed MDP structure of the environment. We will now present value functions,
which are a tool that we will use to leverage the MDP structure of the environment. Notice that value function are not a complete
agent on their own.

4.1 State-Value Function

The state-value function, v™ : § — R, is defined as follows, for all s:
v™(s) == E[G¢|St = s, 7] . (67)

In English, v™(s) is the expected discounted return if the agent follows policy 7 from state s. Notice that this quantity depends
on the policy, 7. More informally, v™(s), is a measure of how “good” it is for the agent to be in state s when using policy 7. We
call v™(s) the value of state s. Notice that we use ¢ on the right side of (67), even though it does not appear on the left side. This
is because the right side takes the same value for all ¢, and thus the following definitions are equivalent:

v™(s) =E kaRHk Sy = S,ﬂ'] (68)
Lk=0

v™(s) =E [_G|So = s, (69)

v™(s) =E Ztht So = 3,77] . (70)
Lt=0

You will prove that these latter two definitions are equivalent to the first two definitions in Homework 2.
As an example, consider the MDP depicted in Figure 8. For this MDP:

v™(s1) =0 (77)
0™ (89) =07° + 0 + 072 + 293 =1/4 (78)
v™(s3) =07° + 0y +29% = 1/2 (79)
v (s4) =07° + 29" =1 (80)
v (s5) =27" =2 (81)
v™(sg) =0. (82)

4.2 Action-Value Function

The action-value function, also called the state-action value function or Q-function, is defined as:

g :SxA—=R (83)
qﬂ(sva) = E[Gt|St = stt = avﬂ-}a (84)

for all s and a. Recall that conditioning on 7 denotes that A; ~ 7(Sy, ) for all times, ¢, where A; has not otherwise been specified.
Here A; has been specified, and so conditioning on 7 only applies to time steps other than ¢. That is, ¢" (s, a) is the expected
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left,right

Figure 8: A simple MDP that we will call the “chain” MDP. There are many “chain” MDPs used in the RL literature—this is
not a standard one. In each state the agent can choose to move left (L) or right (R), and the transition function is deterministic
in implementing these transitions. In states s; and sg, both actions cause a transition to so,. The rewards are always zero, except
for when the agent transitions from s; to s;, in which case the reward is +12, or when the agent transitions from s; to sg, in
which case the reward is +2. The initial state distribution is not specified. For simplicity, let v = 0.5. We will consider two
policies for this MDP. The first, m;, always selects the left action, while the second, mo, always selects the right action.

discounted return if the agent takes action a in state s and follows the policy 7 thereafter. Equivalent definitions of ¢™ are:

q"(s,a) =E Z'yth+k Sy = 8,4 = a, 7T‘| (85)
Lk=0

q"(s,a) =E[G|Sy = s, Ao = a, 7] (86)

q"(s,a) =E Z’tht So=8,40= a,w] . (87)
Lt=0

For the chain MDP depicted in Figure 8:

q" (s1,L) =0 (88)
q" (s1,R) =0 (89)
g (59, L) =127¢° = 12 (90)
¢ (52, R) =07 + 0! + 1292 =3 (91)
q" (ss, L) =07° +129' = 6 (92)

(s3, R) (93)

Notice that ¢" (s, a) and v™(s) are both always zero if s is a terminal state. Also, take particular note of (91)—it shows a nuance
of g-values that is often missed. That is, the agent begins in so and takes the action to go right. It then takes the action to
go left, bringing it back to s;. Now when it is again in so, it takes the action to go left. In this sense, the g-function considers
the behavior of an agent that is not following a fixed policy. For more on this topic, see the work of Bellemare et al. (2016) for
further discussion of this “inconsistency”.

4.3 The Bellman Equation for v™

The Bellman equation is a recursive expression for the value function—a sort of consistency condition that the value function
satisfies. Specifically, the Bellman equation for the state-value function can be derived from the definition of the state-value
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function:

v™(s) =E Z’ykRH_k Sy = S,ﬂ'] (94)
Lk=0
=E [R; + Y 7" Riyi|Se = s, w] (95)
L k=1
=E Rt + ’YZ’Y'ICilRt+k St =S8, (96)
L k=1
© Z 7(s,a)R(s,a) + E ’YZ’YkRHk-H Sy = 8,7‘(‘] (97)
acA k=0
(® =
L Z n(s,a)R(s,a) + Z (s, a) Z P(s,a,sE ’yZ’ykRHkH Sy =8,Ar =a,Sty1 = s',w] (98)
acA acA s’eS k=0
© Z n(s,a)R(s,a) + Z 7(s,a) Z P(s,a,s')vE ZVthJrkH Sii1 = s’,w} (99)
acA acA s'eS k=0
@ Z 7(s,a)R(s,a) + Z (s, a) Z P(s,a,s )yv™(s") (100)
acA acA s’eS
=Y w(s,a) Y Ps,a,8) (R(s,a) + 707 (s)), (101)
acA s’eS

where x denotes scalar multiplication split across two lines, (a) comes from modifying the indexing of the sum to start at zero
instead of one, but changes all uses of k£ within the sum to k + 1, (b) comes from marginalizing over A; and Si;1, (c) follows
from the Markov property, and (d) comes from the definition of the state-value function (see (67)).

This final expression gives the Bellman equation for v™:

v(s) =Y _w(s,a) > P(s,a,8) (R(s,a) + (). (102)

acA s'eS

End of Lecture 5, September 20, 2018
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CMPSCI 687 Homework 2
Due October 8, 2018, 11:55pm Eastern Time

Instructions: This homework assignment consists of a written portion and a programming portion. Collaboration is not
allowed on any part of this assignment. Submissions must be typed (hand written and scanned submissions will not be accepted).
You must use WTEX. The assignment should be submitted on Moodle as a .zip (.gz, .tar.gz, etc.) file containing your answers in a
.pdf file and a folder with your source code. Include with your source code instructions for how to run your code. You may not
use any reinforcement learning or machine learning specific libraries in your code (you may use libraries like C++ Eigen and
numpy though). If you are unsure whether you can use a library, ask on Piazza. If you submit by October 14, you will not lose
any credit. The automated system will not accept assignments after 11:55pm on October 14.

Part One: Written (25 Points Total)

1. (5 Points) Prove that the following two definitions of the state-value function are equivalent:

(s) == E[G¢|S; = s, 7] (103)
(s) =E[G|So = s,7]. (104)

UTF
U7r
Let us denote the first definition as v] (s) and the second as v (s).

vg (s)

E[Gt|St = S//T]

E[Riy1|S; = s, 7]

>

k=0

Z (s, a)(R(s,a) + Z VB[R 1|S: = 5,7])
acA k=1

(s, a) [R(s,a) + Z P(s,a,s") Z m(s',a)(v' R(s',a") + Z’ykE[Rt+k|St =s,7)

acA s'eS a’cA k=2
=0 Z 7(s,a)R(s,a) +~* Z (s, a) Z P(s,a,s) Z 7(s’,a")R(s',a)
acA acA s'eS a’'c€A
+ 2 Z (s, a) Z P(s,a,s) Z n(s',a’) Z P(s',d’,s") n(s”,a")R(s",a") + ...
acA s'eS a’'€e A s"eS a’e A
=0 Z Pr(4g = a|Sy = s)R(s,a)
acA
+4t Z Pr(A4g = a|Sy = s) Z Pr(S; = §'|4g = a, S =p=s) Z Pr(A; =d'|Sy = §')R(s',ad) + . ..
acA s'eS a’eA
=E[} ' Ri|So = 5,7
t=0
=E[G|Sy = s, 7]
=3 (8).

We will accept less thorough/more trivial answers for full credit. For example:

e Plugging in ¢t = 0 for v,.
e Only expanding one step and then doing a correct, if not rigorous, switch.

e Even just a correct English explanation using the Markov Property.

2. (5 Points) Prove that the following two definitions of the action-value function are equivalent:

q"(s,a) = E[G|S; = s, Ay = a, 7] (105)
q"(s,a) =E[G|Sy = s, Ao = a,7]. (106)

Very similar to question 1; use ¢ instead of v, so no need to sum over the first action.
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3. (5 Points) Let M and M’ be two MDPs that are identical except for their initial state distributions. Prove that v™ is the
same for both MDPs. You may write v7, and v7;, to denote the state-value functions for m on M and M’ respectively.

Let us write the first MDP’s transition and reward functions as P and R, and the second’s as P’ and R’. Note that
Vs € S,Va € A,Vs' € S, P(s,a,s") = P'(s,a,s') and R(s,a) = R'(s,a).

\St—s 71']

=E[G¢
=Y VE[Ri4k|S; = s, 7]

k=0
=D _m(s,a)(R(s,a +Z’Y [Rivk|St = s,7])
acA
= 7(s,a) [R(s,a) + Z P(s,a,s) Z m(s',a ) (Y R(s',a") + Z’ykE Riyk|S: = s,7|)
acA s'eS a’'€A k=2
0 Y w5 )Rl a) + 91 3 w(sa) 3 Plsas) 3wl )RS a)
acA acA s'eS a’'€A
+ 42 Z (s, a) Z P(s,a,s") Z w(s',a’) Z P(s',d,s") n(s"”,a")R(s",a") + ...
acA s'eS a’'cA s""eS a’’e A
=0 Z n(s,a)R (s,a) +~+' Z s,a Z P'(s,a,s Z n(s’,a" )R (s',a")
acA acA s'eS a’'eA
+ 42 Z (s, a) Z P'(s,a,s) Z (s, a") Z P'(s',d,s") Z m(s", )R (s",a") + ...
acA s'es a’'e A s'"eS a’c€A

@
=i (s).

Where (a) follows from reversing the first 4 steps.
Like questions 1 and 2, we will accept more trivial or less rigorous answers for full credit as long as they are basically correct.

4. (2 Points) Prove that multiplying all rewards (of a finite MDP with bounded rewards and v < 1) by a positive scalar does
not change which policies are optimal.
Consider a finite MDP, M, with bounded rewards. If 7* is an optimal policy for M, then we will show that it is an optimal
policy for all MDPs M,, that are identical to M, except that their rewards, R} are a positive constant times the rewards of
M, ie., R, = aR; for some o > 0.

Let Jo(m) = E[Y.,2 7 aR;]. That is, J, is the objective function for the MDP M,, and J; = J (recall that J is
the objective function for M, as defined in class). If 7* is an optimal policy for M, then for all = € II:

J(7*) > J(m) (107)
E|> 'Rir*| >E > +'R|r (108)

t=0 t=0

Multiplying both sides by a we have that for all = € II:
oE thRt 7| >aE thRt ™ (109)
t=0 t=0

E Z'ytaRt | >E Z’ytoth ™ (110)

t=0 t=0
Jo (1) > (7). (111)

Thus, 7* is a maximizer of .J, and therefore an optimal policy for M.

5. (2 Points) Prove that adding a positive constant to all rewards (of a finite MDP with bounded rewards and v < 1) can
change which policies are optimal.
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Consider the MDP shown in Figure 9. SO is the start state. m denotes the policy that takes action 1, and 7o denotes
the policy that takes action 2. Initially, let every transition give a deterministic reward of -1. Then, J(7;) = —1 and
J(mg) = —2, so 7 is the optimal policy. Next, add 2 to the reward given by every transition, so every transition now gives
a reward of 1. In this case, J(m1) = 1 and J(ms) = 2. Now, 7y is the optimal policy; this shows that adding a constant to
all rewards can change which policies are optimal.

Al
SO S1

A2

Figure 9: MDP for Question 5

6. (1 Point) Your boss asked you to estimate the state-value function associated with a known policy, =, for a specific MDP.
You misheard and instead estimated the action-value function. This estimation was very expensive, and so you do not want
to do it again. Explain how you could easily retrieve the value of any state given what you have already computed.

Use the property: v™(s) = >, . 4 7(s,a)q™(s,a). That is, when asked for v™(s), compute the right side of this equation,
which uses g.

7. (5) Consider a finite MDP with bounded rewards, where all rewards are negative. That is, Ry < 0 always. Let v = 1. The
MDP is finite horizon, with horizon L, and also has a deterministic transition function and initial state distribution (rewards
may be stochastic). Let Ho, = (S, Ao, Ro,S1, A1, R1,...,SL-1,Ar_1, R,—1) be any history that can be generated by a
deterministic policy, 7. Prove that the sequence v™(Sp), v™(S1),...,v™(SL—1) is strictly increasing.
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@)

VT (Sh) E0T(Sh) (112)
© (s, (113)
(:C)E Z’Yth_;,_k- St == St77T‘| (114)

k=0
d oo
(:)ZE[Rt+k|St = St,ﬂ'} (115)
k=0
CN E[Realn] (116)
k=0
=E[R/|7*] + Y E[Riyrp1|7] (117)
k=0
f o0
(:)E [Rt|’/T} + E [Rt+k+1 |St+1 = St41,T (118)
k=0
©E [R,|7] + 0™ (5011) (119)
h
YE [Ry[r] + 0" (Se41) (120)
()
<v"(Si41), (121)

where (a) holds because v* is the state-value function associated with all optimal policies, 7*, as discussed in class, (b)
holds because S; = s; (for some s; € §) deterministically due to the transition function and initial state distributions being
deterministic, (c) comes from the definition of the state-value function, (d) holds because v =1, (e) and (f) hold because
the sequence of states is deterministic and so conditioning on Sy = s¢ or Sy41 = S¢41 is conditioning on an event that always
happens, (g) holds by the definition of v™ , (h) holds because S;;1 = s;,,1 always, and (i) holds because R, < 0 (this was
specified in the problem statement).

Part Two: Programming (45 Points Total)

Implement the 687-Gridworld domain described in class and in the class notes, and the cart-pole domain using the (frictionless)
dynamics described by Florian (2007, Equations 23 and 24). When implementing Cart-Pole, the state should include the position
of the cart, velocity of the cart, angle of the pole, and angular velocity of the pole. You must use a forward Euler approximation
of the dynamics. If the cart hits the boundary of the track (which runs from —3 to 3), terminate the episode. You may not use
existing RL code for this problem—you must implement the agent and environment entirely on your own and
from scratch. Four questions ask for a plot. You may report two plots: one for cart-pole and one for 687-Gridworld, where each
of these two plots has a curve corresponding to the cross-entropy method and a curve corresponding to first-choice hill-climbing.
Use the following values for the Cart-Pole constants:

e Fail angle = w/2. (If it exceeds this value or its negative, the episode ends in failure.)
e Motor Force F = 10.0 (force on cart in Newtons).

e Gravitational constant g is 9.8.

e Cart mass = 1.0.

e Pole mass =0.1.

e Pole half-length I = 0.5.

e At =0.02 seconds (time step).

e Max time before end of episode = 20 seconds + 10At = 20.2 seconds.

e The cart’s position may be bounded in [—3, 3], the cart’s velocity in [—10, 10], and the angular velocity in [—m, 7].
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Problems:

(10 Points) Implement the cross-entropy method as described in the class notes and apply it to the 687-Gridworld. Use
a tabular softmax policy. Search the space of hyperparameters for hyperparameters that work well. Report how you
searched the hyperparameters, what hyperparameters you found worked best, and present a learning curve plot using these
hyperparameters, as described in Figure 7. This plot may be over any number of episodes, but should show convergence to
a nearly optimal policy. The plot should average over at least 500 trials and should include standard error (or standard
deviation) error bars (say which error bar variant you used).

(10 Points) Repeat the previous question, but using the cross-entropy method on the cart-pole domain. Notice that the
state is not discrete, and so you cannot directly apply a tabular softmax policy. It is up to you to create a representation
for the policy for this problem. Report the same quantities, as well as how you parameterized the policy.

(10 Points) Repeat the previous question, but using first-choice hill-climbing on the 687-Gridworld domain. Report the
same quantities.

(10 Points) Repeat the previous question, but using first-choice hill-climbing (as described earlier in these notes) on the
cart-pole domain. Report the same quantities and how the policy was parameterized.

(5 Points) Reflect on this problem. Was it easier or harder than you expected to get these methods working? In the previous
assignment you hypothesized how long it would take an agent to solve the 687-Gridworld problem. Did it take more or
fewer episodes than you expected? Why do you think this happened?

Be very generous with the grading; half-decent results should receive full credit. Not for grading, but useful for giving office hours

hints:

Gridworld CEM hyperparameters: pop 10, 4 elite, 1 ep per policy, sigma 1, init with 0’s. This gives a smooth curve, (not

stepwise).

Below is an example plot using the cross entropy method for 687-Gridworld, a population of 10, 4 elite, 5 episodes run
to evaluate each policy, and the initial covariance matrix equal to 51, where I is the identity matrix.

8-

Gridworld-687

Expected Return
L]

Tabular Q-Leaming
Cross-Entropy Method

1000 2000 3000 4000 5000 6000 7000 8000
Episodes

Below is an exmaple plot using the cross entropy method for Cart-Pole, a population of 10, 5 elite, 5 episodes run to evaluate
each policy, and the initial covariance matrix equal to 21.

1400

1200 1

1000 1

Expected Return

@
=1
5]

@
=1
5]

Cart Pole Balancing

——— Gross-Entrapy Method

200 400 600 8OO 1000 1200 1400 1600 1800 2000 2200 2400
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Another way to understand the Bellman equation for v™ is to consider the expansion:

v™(s) =E [Ry + YRy41 + 7V Riy1 + ...|Se = s, 7] (122)
=E[R: + v (Riy1 +YRey1 +...)|St = s, 7] (123)
=E [R; + yv" (S¢41)|St = s, 7] (124)
=Y w(s,a) Y P(s,a,5) (R(s,a) + 40" (s)). (125)
acA s'eS

Consider the “Cookie MDP” depicted in Figure 10, which was created for this course (it is not a standard domain). Clearly
v™(s3) = 0. We can then compute v™(s2) in two different ways. The first is to use the definition of the value function (and the
property that state transitions are deterministic in this case):

v™(s2) = Ry + 7R3 = 10 + 70 = 10. (126)
The second approach is to use the Bellman equation (and the property that state transitions are deterministic in this case):
v™(s2) = Ry + 0" (s3) = 10 + 70 = 10. (127)
ES

.\;l ~ 4 |

L

R, = +1 cookie R; = +10 cookies
Figure 10: The “Cookie MDP”. Under some policy, 7, the agent always begins in sy, and walks down the line of states. The
agent receives a reward of +1 when transitioning from state sg to s; and a reward of +10 when transitioning from s to s3. All

other transitions result in a reward of zero.

Similarly, we can compute v™(s1) using the definition of the value function or the Bellman equation:

v™ (1) =Ry +yRa +7*R3 = 0 + 410 + 720 = 710. (128)
v™(s1) =Ry + 0" (s2) = 0+ ~10. (129)
We can also compute v™(sg) both ways:
v™(s0) =Ro 4+ YR1 + 2Ry + 73 R3 = 1 + 70 + 4210 + 430 = 1 + 4%10. (130)
v™(s0) =Ro + Y™ (51) = 1 +yy10 = 1+ +*10. (131)

Notice that already it is becoming easier to compute the value of states using the Bellman equation than it is to compute the
values of states from the definition of the value function. This is because the Bellman equation only needs to look forward one
time step into the future, while the definition of the value function must consider the entire sequence of states that will occur
until the end of the episode. When considering larger problems, and particularly problems with stochastic policies, transition
functions, and rewards, the Bellman equation will be increasingly useful, since computing state-values from the definition of the
value function would require reasoning about every possible sequence of events that could occur from the occurrence of that state
until the end of the episode.

For more intuition about the Bellman equation, imagine that the current state is s. We can view the Bellman equation as
breaking the expected return that will occur into two parts: the reward that we will obtain during the next time step, and the
value of the next state that we end up in. That is,

’l)Tr(S) =E R(S, At) +’V UW(StJrl) St =S, . (132)
immediate reward value of next state

This should make intuitive sense, because the value of the next state is the expected discounted sum of rewards that we will obtain
from the next state, and so summing the expected immediate reward and the expected discounted sum of rewards thereafter gives
the expected discounted sum of rewards from the current state.
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4.4 The Bellman Equation for ¢"
While the Bellman equation for v™ is a recurrent expression for v”, the Bellman equation for ¢™ is a recurrent expression for ¢”.

Specifically:

q"(s,a) = R(s,a) +~ Z P(s,a,s') Z (s’ a")qg" (s, a’). (133)

s'eS a’€A

Question 12. Can you derive the Bellman equation for ¢™(s,a) from the definition of ¢™ ¢

1T IoMsuy

4.5 Optimal Value Functions

The optimal value function, v*, is a function v* : § — R defined by:

* o T
v*(s) = max v (). (142)
Notice that for each state v* “uses” the policy, 7, that maximizes v™(s). From this definition, we can immediately see taht v* is
not necessarily associated with a particular policy—uv*(s) can be the value function associated with different policies depending
on which state, s, it is evaluated on. Hereafter we show that v* = v™ for all optimal policies 7*—notice that this does not follow
immediately from the definition of v*.
Consider the relation > for policies defined as:

7> 7' if and only if Vs € S, v™(s) > v™ (s). (143)

Notice that this relation produces a partial ordering on the set of policies. This is not a total order on the set of policies because
there can exist two policies, m and 7/, such that both 7 2 7’ and ©" % 7.

Question 13. Give an example MDP for which there exist policies m and @' such that m 2 ©' and © % .
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We now present a definition of an optimal policy that differs from our earlier definition. Specifically, an optimal policy, 7* is
any policy that is at least as good as all other policies. That is, 7#* is an optimal policy if and only if

Vo ell, 7 > 7. (144)

Particularly given that > only produces a partial ordering, at this point it may not be clear than such an optimal policy exists.
Later we will prove that for all MDPs where |S| < 00, |A| < 00, Rmax < 00, and 7 < 1, there exists at least one optimal policy,
m* under this definition of an optimal policy. That is, Property 1 holds for this definition of an optimal policy as well as the
definition of an optimal policy in (17). From the definition of v* in (142), it follows that v* = v™ for all optimal policies, 7*.

We now have two different definitions of an optimal policy. Both definitions are standard in RL research. The definition
presented in (17) is common in papers that focus on policy optimization, like BBO algorithms and algorithms that compute the
gradient of J(#) (we will talk more about these policy gradient algorithms later). The definition presented in (144) is common in
theoretical reinforcement learning papers and in papers that emphasize the use of value functions. Also, notice that even when 7*
is not unique, the optimal value function, v* is unique—all optimal policies share the same state-value function.

Question 14. Which definition of an optimal policy is stricter, the definition in (17) or the definition in (144)?

44!
L1
4 LT L1
44! 44! €T Jomsuy
Just as we defined an optimal state-value function, we can define the optimal action-value function, ¢* : S x A — R, where
* = 4 . 14
¢"(s,a) = maxq"(s, a) (145)

Also like the optimal state-value function, ¢* = ¢™ for all optimal policies, 7.

Question 15. Given v*, can you compute 7 if you do not know P and R?

‘T Iomsuy

Question 16. Given ¢*, can you compute 7™ if you do not know P and R?

‘GT IoMSUy

4.6 Bellman Optimality Equation for v*

The Bellman optimality equation for v* is a recurrent expression for v*. We can derive it beginning from the Bellman equation
for 7*:

v*(s) = Z *(s,a) Z P(s,a,s") [R(s,a) +yv*(s)]. (148)

acA s'eS

q*(s,a)
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Notice that in state s, 7 will pick the action that maximizes ¢*(s,a). So, we do not need to consider all possible actions, a—we
only need to consider those that cause the ¢*(s,a) term in (148) to be maximized. Thus,

v*(s) = max P(s,a,s")[R(s,a) +yv*(s)]. (149)
s'eS

q*(s,a)

The above equation is the Bellman optimality equation for v*. Similarly, the Bellman optimality equation for ¢* is:

q*(s,a) = Z P(s,a,s) {R(s,a) + 7 max q*(s',ad")| . (150)
s'es

Question 17. Derive the Bellman optimality equation for ¢* starting with the Bellman equation for ¢” .

An obvious question is whether the Bellman optimality equations can hold for value functions that are not v* or ¢*. That is,
if 7 is not an optimal policy, can it be true that for all s,

v (s) = max Z P(s,a,s")[R(s,a) +yv"(s)]? (151)
s'eS

Later we will show that this cannot happen—any policy whose value function satisfies the Bellman optimality equation in
necessarily an optimal policy.

End of Lecture 6, September 25, 2018
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Name:

CMPSCI 687 Pop Quiz 3
September 27, 2018

Instructions: You have 10 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do
not discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables.

1. The definition of the state-value function is: v™(s) = E[G¢|S; = s, 7]

2. The definition of the action-value function is: ¢™ (s, a) == E[G¢|S; = s, A; = a, 7]

3. The Bellman equation states that for all s:

v (s) = Z (s, a) Z P(s,a,s")(R(s,a) +vv"(s")) (152)

acA s'eS

4. The Bellman optimality equation states that for all s:

v*(s) = max P(s,a,s")(R(s,a) +yv*(s)) (153)

5. (True or False) Although there may be multiple optimal policies, there is only one optimal value function for an MDP.

Any answer for question 5 accepted since we did not specify that the MDP has bounded rewards or is finite.
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5 Policy Iteration and Value Iteration

So far we have defined the problem that we would like to solve, discussed BBO algorithms, which ignore the MDP structure
of the problem, and defined value functions that more sophisticated algorithms will use to leverage the MDP structure of the
environment. In this section we will show how value functions can be used to efficiently solve for the optimal policies of finite
MDPs when the transition function and reward function are known. That is, in this section we will present standard planning
algorithms. We present these algorithms because the later RL algorithms (which do not require P and R to be known) are closely
related to these algorithms (they can be viewed as stochastic approximations to these planning algorithms). We begin with the
question of how the value function for a policy can be computed.

5.1 Policy Evaluation

Here we consider the question: given a policy, 7, how can we efficiently compute v™7 Notice that the Bellman equation provides

us with |S| equations and |S| unknown variables, v™(s1),v™(s2),...,v™(s|s. These equations are:
v (s1) = Z m(s1,a) Z P(s1,a,s") (R(s1,a) +~v™(s")) (154)
acA s'eS
v (s9) = Z 7(s2,a) Z P(sg,a,s") (R(s2,a) +~v™(s")) (155)
acA s'es

’UW(S‘SO = Z 7T(S‘5|, a) Z P($|3|,a, S/) (R(s‘3|,a) + ’YUW(S,)) . (156)

acA s'eS

Notice that this is a system of linear equations for which we know there is a unique solution (the value function—we know this is
unique because these equations were derived from the definition of the value function in (67), which is clearly unique). This
system can be solved in O(|S|?) operations (in general this problem requires Q(|S|?) operations, and the current algorithm with
the best asymptotic runtime is that of Coppersmith and Winograd (1987), which requires O(n?73%) operations.).

An alternative approach is to use dynamic programming. Although not necessarily more efficient, this dynamic programming
approach will later allow us to efficiently interleave steps of evaluating the current policy and then improving the current policy.
Here, when we talk about evaluating a policy or policy evaluation, we refer to estimating the state-value or action-value function
associated with the policy. Later we will discuss a different form of policy evaluation wherein the goal is to estimate J(7), not the
entire value function, v™.

Let vg,v1,v2,... denote a sequence of functions where each v; : § — R. Intuitively, this sequence of functions represents
the sequence of estimates of v™ produced by an algorithm estimating v™ in an incremental manner. This has been a point of
confusion for students in the past, who did not recognize that v; and v™ are different. So, to say it again, notice that v; is our i
approximation of v™. It is not necessarily v™. Also, although we typically “know” v; (we have an analytic form for it, or code to
evaluate it), we often do not precisely know v™ (if we did, we would have no need to approximate it!).

Consider the setting where vg is chosen arbitrarily. One way to improve our estimate is to try to make the two sides of the
Bellman equation equal. Recall that the Bellman equation for v™ is:

v (s) = Z (s, a) Z P(s,a,s") (R(s,a) +yv™(s")). (157)

acA s'eS

We can therefore try to make the two sides of the Bellman equation equal with the following update:

vip1(s) = Z (s, a) Z P(s,a,s")(R(s,a) +yv;(s)). (158)

ac€A s’eS

Applying this update to compute v;11(s) for ever state s given v;, is called a full backup. Applying the update to a compute
vi+1(s) for a single state, s, is called a backup.

To see why this is a dynamic programming approach, consider what this algorithm does if we stored vy, v1,... as a matrix
with vg as the first column, v; and the second column, etc. This update rule fills this matrix from the left to the right, where the
values for entries depend on previously computed values for the previous column.

From our derivation of the Bellman equation, it should be clear that v™ is a fixed point of this iterative procedure (that is, if
v; = 0™, then v;41 = v™ as well). Less obviously, as ¢ — oo, v; — v™. We will not prove this property (this update is a stepping
stone to the wvalue iteration update that we present later, and we will focus on proving the convergence of the value iteration
update).
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Question 18. Consider a 4 x 4 gridworld where the agent starts in the top left, the bottom right state is terminal, rewards
are always —1, v =1, and state transitions are deterministic. Consider the policy that always chooses the action to move
down, except when it is on the bottom row, at which point it chooses the action to move right. Starting with vo(s) =0 for all
s, compute v1,V2,...,V7.

‘AT Jomsuy

Notice that in Question 18 information appears to flow backwards across state transitions. Also notice that in this exam-
ple the process has reached its fixed point after only seven iterations. In general, this policy evaluation algorithm is only
guaranteed to converge in the limit, and so practical implementations might halt the process when all changes to the current
state-value approximation are smaller than some predefined constant value.

The dynamic programming algorithm for policy evaluation that we have described thus far can be implemented by storing
2|S| values—by storing v; only until v;4; has been computed. When a new estimate of v™(s) has been computed, it is placed in
v;+1(8) in order to not overwrite the value stored in v;(s), which might be used when computing the next values for other states.
An alternative in-place implementation keeps only a single table, performs individual state backups (rather than full backups)
and stores updated state-value approximations directly in the same table from which they were computed. This variant has
also been shown to converge, even if states are updated in any order or if some states are updated more frequently than others
(as long as every state is updated infinitely often). Notice that in these in-place variants, the order that states are updated in
matters. In Question 18, updating states from the bottom left to the top right can result in a single sweep of the state space
being sufficient for the algorithm to reach its fixed point, while updating states from the top left to bottom right will take many
sweeps before convergence.

Question 19. What is the dynamic programming policy evaluation update for estimating the action-value function for a
policy?

QT IoMSUY

5.2 Policy Improvement

Once we have estimated v™ or ¢™ for some initial policy, 7, how can we find a new policy that is at least as good as m?7 Notice
that if we have v™, we can easily compute ¢" (s, a) for any (s,a) by the equation ¢™(s,a) = Y. s P(s,a,5) (R(s,a) + yv"(s)).
So, for now consider how we could find a policy 7’ that is always at least as good as 7 if we have already computed ¢™.

Consider a greedy approach, where we define 7’ to be a deterministic policy that selects the action that maximizes ¢™ (s, -)
when in state s. That is, 7’ : S — A is a deterministic policy defined such that

7' (s) € argmax ¢” (s, a). (160)
acA

This policy is the greedy policy with respect to q™. 1t is greedy because it optimizes for the immediate future without considering
long-term ramifications. Recall that ¢™ (s, a) is the expected discounted return if the agent takes action a in state s and follows
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the policy 7 thereafter. So, when 7’ chooses actions, a, that maximize ¢™(s,a), it not necessarily choosing actions that cause
q”/(s, a) or U”/(s) to be maximized. It is choosing the actions that maximize the expected discounted return if the action is
chosen at the current step, and then afterwards the policy = (not 7’!) is used. Can this greedy update to the policy, which only
considers using 7’ to take a single action, cause 7’ to be worse than 77

Perhaps surprisingly, the greedy policy with respect to ¢™ is always at least as good as 7, i.e., 7’ > 7 (recall the definition of
> for policies, presented in (143)). This result is described by the policy improvement theorem, Theorem 1.

Theorem 1 (Policy Improvement Theorem). For any policy 7, if 7 is a deterministic policy such that Vs € S,

q"(s,7'(s)) = v"(s), (161)
then @ > 7.
Proof.

162
163

v7(s) <4™(s.7(5)) (162)
=E [R¢ + 70" (St41)[ St = s, 7] (163)
<E[R: +vq" (St41, 7 (St41))|St = s, 7] (164)
—E Ry 4+ vE [Ris1 + 70" (Si12)| S0 = 5,715 = 5,7 (165)
=E [R; + YRi41 + 70" (Sp42)| St = s, 7] (166)
<E [R; + YRi41 + 7V’ Rig2 + 70" (Si43) | S = s, 7] (167)

(168)
(169)
(170)

170

<E [R; + YRs1 + 7V’ Rigo + 7 Regs + [ Sy = 5,7

:Uﬂ-, (S)a

where each step follows from the previous using mixtures of the definitions of value functions and the assumption within
the theorem statement. Notice that (163) conditions on 7/, not 7. This is because the only action that this conditioning
impacts is A;—all subsequent actions are captured by the v™(S;+1) term, which uses the policy m. Notice also that the inner
expectation in (165) does not condition on S;1; taking a particular value, which one might expect given that it is an expansion
of ¢"(St41,7 (S¢4+1)). This is because the state, Siy1, that ¢"™(Siy1, 7' (St41)) takes as its first argument is a random variable.
So, the condition that one might expect in (165) when expanding ¢™(S¢11, 7' (St+1)) is that Siy1 = Sir1. This condition is a
tautology, and so it can be ignored. O

The policy improvement theorem also holds for stochastic greedy policies, as described in Theorem 2, for which we do not
provide a proof.

Theorem 2 (Policy Improvement Theorem for Stochastic Policies). For any policy 7, if ©’ satisfies

Z 7' (s,a)q" (s,a) > v™(s), (171)

acA

forall s €S, then " > 7.

End of Lecture 7, September 27, 2018
We now have the components to create our first planning algorithm, policy iteration. The policy iteration algorithm interleaves

policy evaluation steps using the dynamic programming approach and policy improvement steps. This process is depicted in
Figure 11, and presented using pseudocode in Algorithm 6.

46



policy policy policy policy policy policy
evaluation improvement  evaluation improvement evaluation improvement

Ty — v’o > T, > v > 1T, > p’2

Figure 11: Diagram of the policy iteration algorithm. It begins with an arbitrary policy, m, and evaluates it using the dynamic

programming approach described previously to produce v™.

It then performs greedy policy improvement to select a new

deterministic policy, 71, that is at least as good as my. It then repeats this process, evaluating 71, and using the resulting value
function to obtain a new policy, 7, etc.

Algorithm 6: Policy iteration. This pseudocode assumes that policies are deterministic.

10

1 Initialize my arbitrarily;
2 for i =0 to co do

/* Policy Evaluation
Initialize vy arbitrarily;

for k=0 to oo do

For all s € S:

if Vi4+1 = Vg then
VT = Vg
break;

/* Policy Improvement
Compute 7;41 such that for all s,

mis1(s) € argmax 3 P(s,a,5') (R(s,0) + 0™ (5)) ),
acA s'eS

with ties broken by selecting actions according to some strict total order on A;
/* Check for Termination
if Ti41 = T then

L break;

*/

(172)

(173)

*/

vt (5) @ > mipa(s,a) Y P(s,a,8))(R(s,a) + v (s'))

acA s'eS

® Z miv1(s,a) Z P(s,a,s")(R(s,a)+~yv™(s"))
acA s'eS

(© ! i (o

©) P R ™
glgsgs (s,a,5")(R(s,a) + 0™ ("))

® nax Z P(s,a,s")(R(s,a) +yv™+1(s")),
s’eS

Because the number of deterministic policies for a finite MDP is finite, policy iteration terminates after a finite number of
iterations (if rewards are bounded and v < 1). When this process terminates, we have that for all s € S,

(174)
(175)
(176)

(177)

where (a) is the Bellman equation (and where we view ;1 as a distribution rather than a mapping from states to actions),
(b) both follow from the starting assumption that the process has terminated, and so m;41 = 7;, and (c) comes from the fact
that ;41 is greedy with respect to v™. Since (177) is the Bellman optimality equation, ;11 is an optimal policy—when policy
iteration stops, the policy is optimal.

Notice also that the policy evaluation algorithm could terminate when v™+! = v™¢. Using this termination condition would not

require m; 41 to break ties in any particular order and is equivalent, but makes the analysis of the final policy less straightforward.
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5.3 Value Iteration

Notice that the policy iteration algorithm is not efficient. Even though policy evaluation using dynamic programming is guaranteed
to converge to v™, it is not guaranteed to reach v™, except in the limit as the number of iterations of policy evaluation goes to
infinity. Thus, each iteration of the outer loop in policy iteration (the loop over i), may require an infinite amount of computation.
An obvious question is whether or not the policy evaluation algorithm can be stopped early—when vg1 # v, but perhaps after
some fixed number of iterations (i.e., the loop over k goes from 0 to K, for some constant K).

If policy evaluation is stopped early, then the estimate of v™ will have error, and so the policy that is greedy with respect to
the estimate of v™ may not be an improvement over the current policy. However, perhaps surprisingly, this process does still
converge to an optimal policy. A particularly popular variant of this algorithm is value iteration, which uses K = 1—it performs
a single iteration of policy evaluation between policy improvement steps. Importantly, each iteration of policy evaluation begins
with the value function estimate used in the previous step (rather than a random initial value function. Pseudocode for value
iteration is presented in Algorithm 7.

Algorithm 7: Value Iteration. This pseudocode is an inefficient implementation that we use as a stepping-stone to the
common pseudocode.

1 Initialize w9 and vy arbitrarily;
2 for i =0 to oo do

/* Policy Evaluation */
3 For all s € S:
visn(9) = 3 Plsmi(s), ) (R, mi(s)) + 70i(s") (17s)
s'eS
/* Check for Termination */
if Vi+1 = U4 then
L terminate;
/+ Policy Improvement */
6 Compute 7;41 such that for all s,
mit1(s) € arg max Z P(s,a, s')(R(s, a) + inﬂ(s')). (179)
a€A s'eS

If we were to following the pseudocode in Algorithm 7, we would obtain the following sequence of policies and value functions:

vp : arbitrary (180)
mo : arbitrary (181)
vy Vs, v1(s) = Z P(s,mo(s),s") (R(s, mo(s)) + yvo(s')) (182)
s'eS
7 Vs, m1(s) € argmax Z P(s,a,s")(R(s,a) + yvi(s)) (183)
acA s'eS
2 Vs, v2(s) = Z P(s,mi(s),s") (R(s,m1(s)) +yvi(s')) (184)
s'eS
T Vs, ma(s) € arg njlax Z P(s,a,s")(R(s,a) + yva(s")) (185)
ac s’eS
v3 Vs, v3(s) = Z P(s,m3(s),s") (R(s, m2(s)) + yva(s")) (186)
s'eS
73 Vs, m3(s) € arg Il’fltaX Z P(s,a,s")(R(s,a) + yvs(s")) (187)
ac s’eS
(188)

Notice the similarity between the updates to the policy and the value function estimate. When computing vs(s) we use m1(s),
which is the action, a, that maximizes the expression on the right side of (183). This expression is the same expression as that in
the right side of (184). Thus, the expression for va(s) can be written as:

va(s) = max P(s,a,s")(R(s,a) +yvi(s)). (189)
s’eS
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This same trend holds for v3 and ve. In general, we can compute v;11 directly from v; without explicitly computing ;. This
results in the more efficient form for the value iteration algorithm:

vit1(s) = max Z P(s,a,s")(R(s,a) +yv;(s)). (190)
s’esS

Notice that, while the policy evaluation algorithm is an iterative form for the Bellman equation, the value iteration update in
(190) is an iterative form for the Bellman optimality equation. Pseudocode for the value iteration algorithm using this more
efficient update is presented in Algorithm 8.

Algorithm 8: Value Iteration.

1 Initialize vy arbitrarily;

2 for i =0 to oo do

/+ Policy Evaluation */
3 For all s € S:

vir1(s) = max Z P(s,a,s")(R(s,a) + yvi(s)). (191)
s’eS

/+ Check for Termination iy
if v;y1 = v; then
L terminate;

5.4 The Bellman Operator and Convergence of Value Iteration

In this subsection we prove that value iteration converges to a single unique value function. We then argue that this result implies
all of the claims that we previously stated we would prove later: a deterministic optimal policy exists for all finite MDPs with
bounded rewards and v < 1, and the Bellman optimality equation only holds for v™ , where 7* is an optimal policy.

Before we present the main theorem of this subsection, we will establish additional notation. First notice that, for finite
MDPs, we can view value function estimates as vectors in RIS, where each element in the vector corresponds to the value of one
state. Also, recall that an operator is a function that takes elements of a space as input and produces elements of the same space
as output. Let 7 : RISl — RISI be an operator that we call the Bellman operator, which takes value function estimates as input
and produces as output new value function estimates, and such that

T(’U,L) = Vj+1, (192)
where the sequence of value function approximations, vg,v1, ..., is as defined by (190). That is,
T(v;) = max P(s,a,s")(R(s,a) + yvi(s)). (193)
“ s'eS

That is, the Bellman operator is the operator that encodes a single iteration of value iteration. We will abuse notation and omit
parenthesis, writing 7v; = v;11, and further assume that the order of operations prioritizes evaluation of the Bellman operator
over evaluation of the value function approximation, so that 7v(s) denotes T (v) evaluated at s.

An operator is a contraction mapping if there exists a A € [0,1) such that Vo € X,Vy € Y, d(f(x), f(y)) < Ad(x,y), where d
is a distance function. Figure 12 presents a diagram that may assist in understanding the definition of a contraction mapping.

Question 20. If f is a contraction mapping, then is the sequence x;11 = f(x;) guaranteed to converge? Is it guaranteed to
converge to a unique point within X ¢

‘6T IoMSUY

As described in the answer to the above question, if f is a contraction mapping then it is guaranteed to converge to a unique
fixed point. This intuition is formalized by the Banach fixed-point theorem:
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d(f (), f()) <
dlx,y) ~

Figure 12: Diagram to assist with interpreting the definition of a contraction mapping. Here z and y denote two points in the
space X. The function, f, maps z to f(z), and y to f(y). If f is a contraction mapping, then for every possible x and y, the
distance between x and y (the length of the green dotted line) must be greater than the distance between f(x) and f(y) (the
length of the dotted blue line). Moreover, the ratio of these distances must be at most A. For example, if A = 0.5, then every
application of f to two points, z and y must at least halve the distance between = and y.

Theorem 3 (Banach Fixed-Point Theorem). If f is a contraction mapping on a non-empty complete normed vector space, then
f has a unique fized point, =*, and the sequence defined by xx+1 = f(xy), with zg chosen arbitrarily, converges to x*.

Proof. We do not provide a proof in this course. A proof can be found on Wikipedia. O

We will apply the Banach fixed-point theorem where f < 7, z € RISI and d(v,v’) := max,es |v(s) — v/(s)|. That is, we will
consider the max norm, ||[v — v'||cc = maxses |v(s) — v'(s)|. Recall that the max norm is the p-norm, with p = co. In order to
apply the Banach fixed-point theorem, first notice that RISl is complete under the max-norm.®> We must also show that the
Bellman operator is a contraction mapping—we show this in Theorem 4.

Theorem 4 (The Bellman operator is a contraction mapping). The Bellman operator is a contraction mapping on RISI with
d(v,v") = maxses |[v(s) —v'(s)].

End of Lecture 8, October 2, 2018

Proof.
|Tv — TV =max |Tv(s) — Tv'(s)] (194)
_ ’ Ny ’ 1o
= max I%aj:,es P(s,a,s")(R(s,a) +yv(s)) Igleajcy;SP(s,a, s")(R(s,a) +y'(s)], (195)

by the definition of the Bellman operator. To continue, we derive a relevant property of arbitrary functions, f : X — R and
g:S — R, for arbitrary sets, X'. We begin with a simple expression and then list inequalities implied by the preceding inequalities
to obtain the desired expression:

Ve, f(x) = g(z) <|f(z) - g(2)] (196)
Ve, f(z) <|f(z) = g(2)| + 9(x) (197)
max f(z) <max|f(z) - g(z)| + g(z) (198)
max f(z) <max|f(z) - g(z)| + max g(z) (199)
max f(z) — max g(z) <max|f(z) - g(z)| (200)
If maxyex f(x) — maxzex g(x) > 0, then it follows from (200) that
max f(z) — max g(z)| < max|f(z) - g(z)|. (201)

3This follows from the Riesz-Fisher theorem, which implies that LP space is complete for 1 < p < co.
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If maxyex f(x) — maxyex g(x) <0, then we have from (200) that:

e g(w) — ma £ (@) < ma |g(x) — f(2)], (202)

which also implies (201), since max,ex f(x) — maxzex g(x) > 0 and |f(z) — g(z)| = |g(x) — f(z)|. Applying (201) to (195), we
obtain:

| Tv — TV <m€axrglezﬁi Z P(s,a,s")(R(s,a) +yv(s SZE;SP s,a,8")(R(s,a) +~0'(s)) (203)
/
= max max Z P(s,a,s") (v(s") = v'(s)) (204)
s'eS

= max gleaj( 2 P(s,a,s") | (v(s") =/ (s))] (205)

< N 206

<y peg |0 /)] (206)
. . /

o max o) /(<) (207)

=7llv = o'||. (208)

O

Thus, we have that the Bellman operator is a contraction mapping, and so by the Banach fixed point theorem it follows that
the value iteration algorithm converges to a unique fixed point, which we denote here by v>°. Although we do not provide a proof,
policy iteration and value iteration both converge in a number of iterations that is polynomial in |S| and |.A|. Notice also that the
Bellman operator is a contract with parameter yv—as -« approaches one the speed of convergence slows, while small values for -
speed up convergence. This is intuitive because small v mean that events that occur in the distant future are of little importance,
and so the value function will become accurate after fewer backups.

Because v is a fixed-point of the Bellman operator, we have that for all s € S:

v>¥(s) = max P(s,a,s")(R(s,a) +~yv>(s)), (209)
s'eS

which is the Bellman optimality equation. Consider any deterministic policy, 7°°, that is greedy with respect to v>°. We have
that for all s € S:

7 (s) € argmax Z P(s,a,s")(R(s,a) + yv>®(s)). (210)
acA s

We would like to conclude that 7 is an optimal policy, which would prove that an optimal deterministic policy always exists (for
MDPs with finite states and actions, bounded rewards, and v € [0,1)). It is tempting to conclude this property because the fixed
point of Value Iteration is the Bellman optimality equation, but we derived the Bellman optimality equation beginning with the
assumption that 7* exists, so we cannot rely on the Bellman optimality equation to prove that an optimal policy exists.

It is further tempting to argue that for all policies, 7, if we begin value iteration with v™, it still converges to v*°. Further, by
the policy improvement theorem each iteration of value iteration results in a policy that is at least as good as the preceding
policy, and thus the policy that is greedy with respect to v>° is at least as good as every other policy, and thus optimal. However,
this is a misuse of the policy improvement theorem, which describes iterations of policy iteration, not value iteration (and we
have not proven that v>° is the unique fixed point of policy iteration).

We can conclude that any policy, 7, that is not greedy with respect to v> is not an optimal policy. This is clear because
value iteration beginning with v™ can proceed in two ways. First, v™ = v*°, in which case 7 is greedy with respect to v°°, which
is a contradiction. Second, v™ # v*°, and so during the iteration starting from v™ the value function changes, which means that
the policy changes. The policy change is performed by greedy policy improvement to produce a new policy, n’. Here, by the
policy improvement theorem we have that 7/ > 7: that Vs, o™ (s) > v™(s). Further, since v™ # o™ (if it was, we are at a fixed
point, and thus v™ = v™), we have that there exists a state s € S for which v™ (s) > v™(s), and thus = cannot be an optimal
policy. However, this does not establish that 7°° is an optimal policy, nor that v> = v* as defined in (142).

Question 21. How can one prove that an optimal deterministic policy exists for all MDPs with finite states, finite actions,
bounded rewards, and v € [0,1)?
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Midterm Extra Credit

Assigned: October 4, 2018
Due: October 11, 2018

Instructions: This extra credit assignment should be solved individually—do not collaborate with others. There is no partial
credit on this: you either obtain full credit (+5% on your midterm grade) or no credit. You may submit your answers on Moodle.

1. (+5% on the midterm) Prove that for all MDPs with finite state set, finite action set, bounded rewards, and ~ € [0,1) there
exists at least one optimal deterministic policy. You may use results that we have proven in the notes above (e.g., that the
Bellman operator is a contraction, or the policy improvement theorem), but not results that we have asserted (e.g., that
policy iteration converges to an optimal policy, or that the Bellman optimality equation only holds for the value function of
optimal policies). Your proof must be formal and precise. You may assume that the space of value functions is a complete
normed vector space in order to apply the Banach fixed point theorem.

Answer: The proof is beyond the scope of these notes. For a complete proof, see the work of Puterman (1994, Proposition
4.4.3, page 90).
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6 Monte Carlo Methods

Monte Carlo algorithms, which have a history worth reading about, use randomness to solve problems that are deterministic in
principle. A classical example is the estimation of . Consider the unit circle, drawn with its center at the bottom left corner of a
unit square. The percent of the area inside the square that is also inside the circle is 7/4. Hence, once can estimate 7w by throwing
darts at the unit square (such that the darts land with a uniform distribution over the square). An estimate of 7 is then given by:

4number of darts inside the unit square and the circle (211)
TR .
number of darts inside the unit square

In this example, the random dart throws are used to provide an (unbiased) estimate of the deterministic value, .

6.1 Monte Carlo Policy Evaluation

Consider using a Monte Carlo approach to estimate the state-value function for a policy 7. In this case, a “dart throw” corresponds
to sampling history (running an episode) using the policy, m. More specifically, consider the task of estimating the value of a
state, s € S. If we generate a history, H = (Sy, Ao, Ro, S1, 41, R1,...), starting from Sy = s, how can we construct an unbiased
estimator of v™(s)?

Question 22. Which of the following three estimators of v™(s) is an unbiased estimator?
1. ZI;“;O ’}/kRk.
2. Z,;“;O WthmH_k, where ti,5 18 the last time step where the state was s.

8. Other estimators that average the returns from each occurrence of s within the history.

End of Lecture 9, October 4, 2018
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Name:

CMPSCI 687 Pop Quiz 4
October 11, 2018

Instructions: You have 7 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do not
discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables.

1. The Bellman equation states that for all s:

v(s) =Y _m(s,a) Y P(s,a,5')(R(s,a) + " (s")) (212)

acA s'eS

2. The Bellman optimality equation states that for all s:

v*(s) =max » P(s,a,s")(R(s,a)+yv*(s)) (213)
acA s'eS
3. The value iteration update is:
i1 = P ! i(s' 214
Vit1 gleaj( SZ€;§ (s,a,s )(R(s, a) + yv;(s )) (214)

4. (True or False) The Bellman operator is a contraction mapping for all finite MDPs with bounded rewards and v < 1.

5. (True or False) Consider the value functions v; and v;11 from two iterations of value iteration. Let m; and m;11 be the
policies that are greedy with respect to these value functions. It is always true (for finite MDPs with bounded rewards and
v < 1) that Mit1 = .
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We can construct an unbiased estimator of v™(s) by computing the discounted return starting from the first occurrence of
s within a history sampled using the policy, 7. If we were to compute the return from the last visit to the state, s, it would
not necessarily produce an unbiased estimate. To see why, consider an MDP with a single state, sg, that self-transitions with
probability 0.5, and transitions to s, with probability 0.5. Let the reward be +1 for self-transitions, and 0 for transitioning to
Soo- The value of sy in the example is 2, and the expected return from the first visit to sg is 1. However, if we compute the
expected return from the last visit to sg, it is zero. The expected return for intermediate visits (not the first, and not the last) is
between zero and two.

This suggests a simple algorithm for estimating v™: generate many episodes of data, and for each state, average the discounted
returns after it was visited for the first time in each episode. This algorithm is called First-Visit Monte Carlo, pseudocode for
which is provided in Algorithm 9.

Algorithm 9: First-Visit Monte Carlo

Input:

1) Policy, 7, whose state-value function will be approximated

2) Initial state-value function estimate, v (e.g., initialized to zero)

1 Returns(s) < an empty list, for all s € S. while true do
2 Generate an episode using 7;

3 for each state, s, appearing in the episode do

4 t < time of first occurrence of s in the episode;

5 G+ Zzozo '7th+19§

6 Append G to Returns(s);

7 v(s) « average(Returns(s));

If every state is visited infinitely often, then (for any finite MDP with bounded rewards and - < 1) the state-value function
estimate, v, in First-Visit Monte Carlo converges almost surely to v™. The proof of this property stems from the Khitchine strong
law of large numbers:

Property 2 (Khintchine Strong Law of Large Numbers). Let {X;}$2, be independent and identically distributed random variables.
Then (£ 377 | X;)5%, is a sequence of random variables that converges almost surely to E[X1], i.e., £ 37 | X; =% E[X].

Proof. See the work of Sen and Singer (1993, Theorem 2.3.13). O

For a review of almost sure convergence, see Wikipedia. Another useful law of large numbers, which we will not use here, is
the Kolmogorov trong law of large numbers:

Property 3 (Kolmogorov Strong Law of Large Numbers). Let {X;}5°, be independent (not necessarily identically distributed)
random variables. If all X; have the same mean and bounded variance, then (£ 3" | X;)°2, is a sequence of random variables
that converges almost surely to E[X1].

Proof. See the work of Sen and Singer (1993, Theorem 2.3.10 with Proposition 2.3.10). O

To see that First-Visit Monte Carlo converges almost surely to v™, consider the sequence of estimates, vg(s) for a particular
state, s. We have that vg(s) = £ Zle G, where G; is the i*® return in Returns(s). Notice that E[G;] = v™(s) and that the G;
are i.i.d. because they are sampled from independent episodes. Hence, by Khintchine’s strong law of large numbers we have that
v (s) 23 v™(s). Furthermore, because the number of states is finite, we have that this convergence is uniform, not just pointwise.
That is, not only does the value of each state converge almost surely to the correct value, but the entire value function estimate
converges to the true state-value function.

Furthermore, Var(v(s)) o« + since (using the fact that G; are i.i.d.):

Var(vg(s)) = Var ( Gi> (215)

?

:% Var ( Gi) (216)
i—1

1

<
Il

kaVar (G;) (217)
:é Var (Gy) . (218)

55


https://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Pointwise_convergence

An alternative to First-Visit Monte Carlo is Every-Visit Monte Carlo, which uses the return from every visit to state s during
an episode. Pseudocode for this algorithm is provided in Algorithm 10. Notice that the return estimates used by Every-Visit
Monte Carlo are not all unbiased estimators of v™(s). Furthermore, these estimators are not all independent, since two returns
computed from the same episode may be correlated. Hence, our argument using Khintchine’s strong law of large numbers does
not apply, and we also cannot directly use Kolmogorov’s strong law, since the G; will not be independent. However, it can be
shown that if every state is visited infinitely often, then (for any finite MDP with bounded rewards and v < 1) the state-value
approximation of Every-Visit Monte Carlo also converges almost surely to v™.

Algorithm 10: Every-Visit Monte Carlo

Input:

1) Policy, 7, whose state-value function will be approximated

2) Initial state-value function estimate, v (e.g., initialized to zero)

1 Returns(s) < an empty list, for all s € S. while true do

Generate an episode using 7;

for each state, s, appearing in the episode and each time, t, that it occurred do
G Yo7 Resns
Append G to Returns(s);
v(s) < average(Returns(s));

<INV NIV V)

Notice that we can also use Monte Carlo methods to estimate action values. The idea is the same: our estimate, ¢(s, a) will
be the average return from the first time that action, a, was taken in state s in each episode. This raises a problem: what if
the policy, 7, never takes an action, a? If we are going to use Monte Carlo approximation to estimate ¢™(s,a) within policy
iteration, we need to compute the action-values for all actions, not just the actions that 7 takes (this is particularly true because
policy iteration typically uses deterministic policies). That is, we need to estimate the value of all actions at each state, not
just the actino that we currently favor.* One way to fix this problem is to use exploring starts: to randomize Sy and Ag such
that every state-action pair has non-zero probability of being the initial state and action. Although effective, this is not always
possible (some systems cannot be reset to arbitrary states—you can reset a chess board to a different state, but you cannot reset
a student interacting with a tutoring system to a particular state). Another solution is to use a stochastic policy—to ensure that
the policies being evaluated have non-zero probability for every action in every state.

End of Lecture 10, October 11, 2018

Using these Monte Carlo evaluation algorithms we can create a Monte Carlo control algorithm. Recall that we refer to
algorithms as control algorithms if they search for an optimal policy, and evaluation algorithms if they estimate the value function
associated with a policy. In order to use Monte Carlo evaluation within the policy iteration algorithm, we must estimate g™
rather than v™. This is because, now that we are assuming P and R are not known, we could not perform the greedy policy
improvement step in Algorithm 6. However, if we estimate the action-value function we can: the greedy policy, m;+1 with respect
to the current policy, 7;, satisfies the following for all s:

mir1(s) € argmax ¢ (s, a). (219)
acA

Unlike line 173 of Algorithm 6, this can be computed without knowledge of P or R.

Policy iteration, using Monte Carlo evaluation instead of dynamic programming policy evaluation (and estimating ¢™ instead
of v™), has the same properties as standard policy iteration if Monte Carlo evaluation is guaranteed to converge to ¢™ (e.g., if
using exploring starts).

This algorithm remains impractical because it calls for an infinite number of episodes to be run in order to compute one
iteration (to evaluate a policy). We can create a Monte Carlo control algorithm similar to value iteration, which avoids this
infinite number of episodes in the evaluation step by terminating evaluation after one episode. This algorithm accumulates returns
over all episodes—it uses all past returns to evaluate the current policy, not just the returns generated by the current policy.

4Interestingly, this problem comes up in more modern reinforcement learning results as well. For example, Silver et al. (2014) present the deterministic
policy gradient theorem, which considers a deterministic policy, m, but requires estimates of the action-value function for actions that the deterministic
policy will never take. The solution they propose is the same as one we use here: sampling using a stochastic policy.
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Pseudocode for this algorithm is presented in Algorithm 11.
Algorithm 11: Monte Carlo - Exploring Starts.
for alls € S and a € A do

1

2 q(s,a) < arbitrary;

3 7(s) < arbitrary;

4 Returns(s, a) « empty list;

5 for : =0 to co do

6 Generate an episode using exploring starts and 7;
7 for each (s,a) appearing in the episode do

8 G + return following the first occurrence of (s, a);
9 Append G to Returns(s, a);

10 q(s,a) < average(Returns(s, a));

11 for each s in the episode do

12 L m(s) < argmax,c 4 ¢(s,a);

Notice that this algorithm cannot converge to a sub-optimal policy. If it did, then ¢ would converge to g™ (by the convergence
of first-visit Monte Carlo for policy evaluation), and m would be improved (if not, then 7 is a fixed-point of the Bellman operator,
and so it is an optimal policy). Notice also that we can avoid exploring starts by removing the exploring starts and changing line
11 to compute the greedy action, a* < arg max,c 4 (s, a), and then defining the e-greedy policy (a stochastic policy):

(5,a) 1—6—&—@ if a = ax (220)
w(s,a) = .
ﬁ otherwise.

By variations on the policy improvement theorem, policy iteration using e-greedy policies converges to an optimal e-greedy policy.
For more details on this topic, see the work of Sutton and Barto (1998, Section 5.4)

6.2 A Gradient-Based Monte Carlo Algorithm

Consider another Monte Carlo algorithm. It begins with a value function estimate, v € RISI. At time ¢ it performs the update:
v(St) < v(St) + a(Gy — V(Sy)). (221)
We will see many updates of this form. The general form is:
f(@) < f(z) + alg(x) — (). (222)

Here we refer to g(x) as the target for f(x), and this update changes f(z) to be more similar to g(z).
We now show that this update can be viewed as the gradient descent update on a loss function called the mean squared value
error (MSVE):

1
MSVE(v) = E |:2(U7T(S) - U(S))2:| , (223)
where the expectation is over states, S. The precise distribution of states can be found in the second edition of Sutton and Barto’s

book—here we use the intuition that this distribution is the “observed distribution of states when the policy 7 is executed.
The gradient descent algorithm on MSVE uses the update:

OMSVE(v)
o IMSVE(v)

Vv — 50 (224)
=v — Q%E B(UW(S) - ’U(S))2:| (225)
v+ aE {(UW(S) — () ag(f )] . (226)

Because we do not know v™, nor the distribution over states that results from running =, we cannot compute this gradient

update. Instead we can perform stochastic gradient descent, wherein an unbiased estimator of the gradient is used. We can obtain

an unbiased estimate by sampling the state, S, and using the Monte Carlo return, G, in place of v™(S). Thus we obtain the

stochastic gradient descent update:

6’0(515)
v

v v+ a(Gy — V(St)) (227)
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Consider now the term dv(S)/dv. This term is a vector with |S| entries, all of which are zero, except for the S*"', which is one.
Hence, the update update to the entire vector v can be written as an update to only the S™ term, since all other updates are set
to zero by multiplication with dv(S)/0v, giving the update in (221).

Thus, because (221) is an instance of the stochastic gradient descent algorithm, its convergence properties have been well-studied
(Bertsekas and Tsitsiklis, 2000). That is, with sufficient smoothness assumptions, it will converge to a locally optimal solution.
Furthermore, because MSVE is a quadratic function of v, it is convex, and the local optimum is the global minimum—stochastic
gradient descent will converge to v™ (with different forms of convergence given different smoothness assumptions and assumptions
on the step size sequence).

Notice that this algorithm can easily be adapted to work with continuous states. Let v,, be a function parameterized by the
vector w € R™ (here n is not related to any n previously discussed—it is an arbitrary integer). That is, different vectors, w, result
in v being a different function, but for all w € R”, v,, : S — R. In reinforcement learning literature, we refer to v,, as a function
approximator. A common example of a function approximator is an artificial neural network, wherein w are the weights of the
network.

Following our derivation of (221) as the stochastic gradient descent update for MSVE, we can obtain the equivalent update
using function approximation:

w4 w+ (G — vw(St))aq}gil(ft). (228)

Again, because this algorithm is stochastic gradient descent, it will converge almost surely to a locally optimal solution given the
appropriate assumptions. However, because v,, may not be a linear function of w, this solution may not be a global optimum.
Furthermore, the global optimum may not be v™, if this true state-value function is not representable by the chosen function
approximator. Lastly, notice that (221) is a special case of (228), where v,, stores one number per state.

End of Lecture 11, October 16, 2018
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Name:

CMPSCI 687 Midterm
October 18, 2018

Instructions: This midterm is closed notes. Do not use any notes or electronic devices. You have until 9pm to complete this
exam.

1. Recall the gridworld described in class:

Start Actions:

s=1 s=2 s=3 s=4 s=5 attempt_up
attempt_down
attempt_left
attempt_right

When the agent attempts to move in

a direction:
s=11 s=14 The agent succeeds, p = 0.8
The agent veers 90° right, p = 0.05
The agent veers 90° left, p = 0.05
s =15 < =18 The agent stays in place, p = 0.1
If the agent would ever hit a wall, it
R = +10 stays in its current position.
s=19 s =23
All unspecified rewards are zero.
Goal All specified rewards are for entering

the state

Note: If the agent is in a state, s, takes an action, a, and transitions back to state s, we considering that “entering” the
state s. Also, for this problem, use v = 1.
You may write your answers on the next page.

(A) [4%)] What is P(18, attempt_down, 18)?

(B) [8%)] Consider an agent that begins with an initial state-value function approximation, v(s) = 0 for all s € S.
During the first episode, the agent visits the following states in the following order: 1, 2, 3, 8, 7, 12, 16, 20, 21, 22, 21, 22,
17, 18, 23. If the agent uses every-visit Monte Carlo to estimate the state-value function, what will the resulting value
function be after this first episode? Draw the value function as a 5 X 5 matrix.

-10| -10| =10 | 0 | O
0 —-10| =10 | O 0
0 | —10 [N/A| 0] 0
0 | —10 | N/A | 10 | 10
0 —10 ) 5 0

—-10 | -10| =10 | O | O

0 —-10 | =10 | O 0

(C) [8%] Repeat part (B), but if the agent used First-Visit Monte Carlo policy evaluation. | 0 | —10 | N/A | 0 | 0

0 | —10 | N/A |10 | 10

0 —10 0 010
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2. Define the following (using math, and the notation in class):

[2%] ¢"(s,a) = E [Z;OZO VkRHk’St =54, = a,ﬂ

[2%] J(m) =B 32,20 Rel7]
o [2%] T(s) =maxsea ) s P(s,a,58")(R(s,a,s") +yv(s'))

o [2%] P(s,a,s’) =Pr(Si11 = &'|St = s, Ay = a)

[2%)] do(s) =Pr(Sp = s)

3. [6%] Let v™ be the value function for the policy 7. Write an expression for the greedy policy with respect to v™:
A greedy deterministic policy, Tgreedy is given by:

Tgreedy () € arg max Z P(s,a,s")(R(s,a) +~v"(s")). (229)
ac s'eS

4. [5%] Write the Bellman optimality equation (using state-values, not action-values):

v*(s) =max Y P(s,a,s)(R(s,a) +yv"(s)). (230)

5. [6%] Write the Bellman equation (using state-values, not action-values):

v(s) =Y _w(s,a) Y P(s,a,8")(R(s,a) + " (s")). (231)

acA s'eS
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6. [2% each] For each of the following, circle either true or false:

(True or False) Every finite MDP with bounded rewards and « € [0,1) has at least one optimal value function.

(True or False) For all finite MDPs with bounded rewards and v € [0, 1), for all policies T,

Vs € S, maxq”(s,a) > v"(s). (232)
acA
e (True or False) Let vy, vs,... be the value function approximations created by running the value iteration algorithm.

Let m; be the greedy policy with respect to v;. It is always true that m; 11 > ;.

(True or False) Because the Bellman operator is a contraction mapping (for finite MDPs with bounded rewards and
v € [0,1)), if the Bellman operator is applied to a value function v : § — R that is not v*, then T'v(s) will be closer to
v*(s) for all s € S. That is, for all s € S, [Tw(s) — v*(s)| < |v(s) — v*(s)|, where | - | denotes absolute value.

(True or False) The optimal policy (defined as any policy 7* such that for all other policies, 7w, 7* > 7) does not
depend on the initial state distribution.

7. [5%] Write an expression (as in Homework 1—in terms of m and symbols defined in an MDP) for the probability that the
state at time 0 is s given that the state at time 1 is s’ and the action at time 0 is a. Recall Bayes’ Theorem:

Pr(B =b|A =a)Pr(A =a)

Pr(A=a|B=0)= Pr(B = 1) , (233)
and the definition of conditional probabilities:
Pr(B=0bA=
Pr(A—alB—p)— SB=bA=a) (234)

Pr(B =b)

— — — o
Pr(Sy = s|dp = a, Sy = 5') Pr(i)r&j,lejArz,ila; s') (235)
B do(s)m(s,a)P(s,a,s)
>, Pr(So = s0) Pr(S1 = ', Ag = a|Sp = s0)
do(s)m(s,a)P(s,a,s")

:ZSO do(So)T{‘ESQ, a)P(sg,a,s)’

where (a) comes from the definition of conditional probability.

(236)

(237)
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8. [10%)] Prove that last-visit Monte Carlo (for estimating a state-value function, v™) is not guaranteed to converge almost surely
to v™ for all finite MDPs with bounded rewards and € [0,1). You may reference Khintchine’s Strong Law of Large Numbers:

[Khintchine Strong Law of Large Numbers]
Let {X;}52, be independent and identically distributed random variables. Then (L 3" | X;)22, is a sequence of random

variables that converges almost surely to E[X1], i.e., £ 3" | X; 2% E[X;].

Consider applying last visit Monte Carlo to the MDP with & = {1, s}, A = {1}, P(1,1,1) = 0.5, P(1,1,54) = 0.5, Ry =1
if Spp1 =1and Ry = 01if Si41 = 800, do(1) = 1, and v = 0.5. Let 7 be the only policy, which deterministically selects action
1. Notice that v™(1) = 1.

Last visit Monte Carlo computes returns from state 1 using only the last visit, so all returns from state 1 will be for
transitions to S, for which the reward (and return) are zero. Hence, the last visit Monte Carlo estimate for v™(1) after n

episodes will be:
1
— 0 238
S0 (238)

i=1
and so
R
Jun 071 = fim 2D ,0=0. (239)
Hence,

Pr ( lim 97(1) = v”(l)) —Pr (7}320 % zn:o - 1) (240)
=0. (241)
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9. [15%] Someone proposes reversing the Bellman equation, and writing the value of a state in terms of the values of previous
states. They come up with the expression:

v(s') = Z Z P(s,a,s)n(s,a) [W] . (242)

sES acA

Is this expression correct when v € (0,1)? Prove your answer (prove that this expression is or is not correct).

No. Consider an MDP with a state, s’, that cannot be reached from any other state, but such that v™(s") # 0. This new
equation would say that v™(s") = 0 because every P(s,a,s’) term would be zero, and so this equation cannot be correct.
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10. [15%)] Consider a finite MDP, M = (S, A, P,dgr,dy,~), with bounded rewards and v € [0,1). Let ©#* be a deterministic
optimal policy for this MDP. Let M' = (S§', A’, P!, d,, d;),7') be a new MDP that is the same as M, except that a positive
constant, ¢, is subtracted from R; if A; is not the action that 7* would select. Is 7* necessarily always an optimal policy for
M'? Prove your answer (if it is not, prove that it is not, and if it is, prove that it is).

Note: this last problem was intentionally made to be particularly difficult.
First, notice that for all s € S and a € A, R(s,a) > R/(s,a), where R’ is the reward function of M’, because R(s,a) = R/(s,a)

if 7 would choose action a in state s, and R(s,a) > R'(s,a) otherwise. We write v}, to denote the value function for policy
m on MDP M. Notice that for all s € S:

IU}\T/; (5) =E Z"Yth_Hg St =S, ﬂ-*v M] (243)
k=0

o) Z'yth+k Sy = S,ﬂ'*,M/‘| (244)
k=0

=0 (s), (245)

where (a) holds because A; ~ 7* means that R; will be unchanged. Notice also that for all 7 and all s € S,

vis(s) =E Z’ykRHk Sy = S,ﬂ',M] (246)
Lk=0
=E Z'VkR(St+k:aAt+k) Sy = SﬂT,M] (247)
Lk=0
@ [&
ZE Z’YkR/(S,H_k,AtJ,_k) St = S,ﬂ',M,‘| (248)
Lk=0
=vpp(s), (249)

where (a) holds because R(s,a) > R/(s,a) for all s € S and a € A. Lastly, notice that, because 7* is optimal for M, we
have that for all 7 and all s € S,

vir (s) = vy (s)- (250)
Combining (245), (249), and (250), we have that for all 7 and s € S,
Vi (s) = vif (s) = 0fr(s) = Vip(s), (251)

and so m* > 7 for all policies w, and therefore 7* is an optimal policy for M’.
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End of Midterm:

7 Temporal Differenence (TD) Learning

Temporal difference learning, introduced by (Sutton, 1988a), is a policy evaluation algorithm. Like Monte-Carlo algorithms, it
learns from experiences (by sampling—choosing actions using 7 and seeing what happens) rather than requiring knowledge about
P and R. However, like the dynamic programming methods it produces estimates based on other estimates—it bootstraps. This
latter property means that it can perform its updates before the end of an episode (a requirement of the Monte Carlo methods).

Like previous algorithms, TD begins with an initial value function estimate, v. As an evaluation algorithm rather than a
control algorithm, it estimates v™ (as opposed to obtaining 7* by estimating ¢*). The TD update given that the agent was in
state s, took action a, transitioned to state s’, and obtained reward r is:

v(8) < v(s) + alr +yv(s') — v(s)). (252)
Using other notation it can be defined equivalently as:
U(St) — U(St) + OZ(Rt + ’Y'U(St+1) — ’U(St)) (253)

This is very much like the Gradient-Based Monte Carlo Algorithm from Section 6.2, except that instead of using G; as the target,
it uses Ry + yv(Sty1).
The temporal difference error (TD error), d0; is defined as:

(St = Rt + ’Y’U(SIH»I) — U(St), (254)
and allows us to write the TD update as:
v(St) < v(St) + ad. (255)

Notice that a positive TD error means that the observed outcome (the reward, Ry, plus the value, v(S¢y1), of the resulting state)
was better than what was expected (i.e., the value, v(S;), of the current state). Also, note that the TD error can refer to different
terms: it can use the current value estimate, v, or it could use the true state-value function, v™. In both cases d; is referred to as
the TD error.

Question 23. What is E[0;|S; = s] if 6; uses the true state-value function, v™?

‘T IoMSUy

Question 24. What is E[0;|S; = s, Ay = a] if 0; uses the true state-value function, v™?

§661 puang

‘€7 IOMSUY
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Consider further all of the possible causes for a positive TD error. A positive TD error might occur because 1) v(s) was too
small, 2) the random nature of rewards and state transitions, combined with luck, and/or 3) v(s’) was too large. If v = v™,
then the TD errors are due to #2, but will average out to be mean-zero updates (this follows from the Bellman equation). If
v # v™, then the TD update attempts to correct for #1, but does not make corrections due to #3. This is because, by the
Markov property, we know that v™(s") does not depend on how we got to state s’, and yet the TD error is due to the transition
(s,a,r,s')—i.e., the TD error describes events prior to reaching s’, and should not impact our estimates of the value of state s’.

Notice that the TD update can also be viewed as converting the Bellman equation into an update rule, just like with policy
evaluation using dynamic programming. However, whereas we could exactly compute the right side of the Bellman equation when
using dynamic programming (because we assumed P and R are known), the TD algorithm does not assume P and R are known
and so instead uses sampling—it samples A;, R;, and S;11 according to w, P, and R.

Notice that we can write the TD update with function approximation as:

O0vy (S,
w4 w + a(Ry + Y0 (Sit1) —vw(St))%. (264)
Question 25. Consider the function approzimator v, that is defined such that |w| = |S| and the i*" element of w is vy (s).

This tabular representation causes the update using function approximation to be equivalent to the update in (253). Prove
this.

One might think that the TD algorithm is a gradient algorithm, much like the Gradient-Based Monte Carlo Algorithm from
Section 6.2, except with the target replaced with Ry + yv(Si+1). However, this is not the case. Consider how one might try to
derive TD as a gradient algorithm. We begin by defining our loss function:

L(w) =B | 3(Re-+ 10 (Siar) = v (510 (265)
:E[%af]. (266)
We then compute the gradient:
G L) =5 | (Rt (i) = 0 (51 (267)
—E [@ (yavwéi” D _ avgf t)ﬂ (268)
_E [—(% (‘%gf ) _ yavwé‘i” 1))] , (269)

where the sign change in the last term is to obtain a standard form. This suggests a stochastic gradient descent update (notice
that the negative from this being a descent algorithm cancels with the negative before the d;):

w4 w+ ady ((%w(St) - vavw(StH)) .

270
ow ow (270)
Notice that 1) due to subtle reasons, (270) is not an unbiased estimator of (269) (Baird, 1995), and 2) this update is not the
same as the TD update. Consider what this update does when the TD error is positive: it changes w to increase v, (S¢) and
to decrease v,,(St+1), whereas the TD update only increases v,,(S;). To make this more clear, notice that (270) using tabular
function approximation can be written as:

’U(St) — ’U(St> + Oé§t (271)
U(St+1) — U(St—i-l) — a’yét. (272)
This alternate algorithm is not residual gradient (Baird, 1995), but is similar.’

Just because we tried to derive the TD algorithm as the gradient of a loss function and obtained a different algorithm does
not mean that the TD algorithm is not a gradient algorithm—it just means it is not the (stochastic) gradient of L as we defined

5Residual gradient takes the gradient of the mean squared Bellman error, E[§;]2, rather than the mean squared TD error, E[(Sf] However, in doing

so, it requires double sampling to get an unbiased gradient estimate (Baird, 1995).
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it. However, it can be shown that the TD algorithm is not a stochastic gradient algorithm for any objective function. If it were,
then the expected TD update must be the gradient of a loss function (the gradient of an objective function). That is,

E {@a”gft)] : (273)

would be the gradient of a function. We can show that this is not the case: (273) is not the gradient of any loss function (with
continuous second derivatives). More precisely, recall that for any function L that has continuous second partial derivatives at
w, the Hessian, 92 L(w)/0w?, must be symmetric (see Schwarz’s theorem). If (273) were the gradient of the function, then its
derivative would be the Hessian. Rather than compute the complete derivative, let us compute what 92/ Ow;O0w; would be for the
loss function—that is, the partial derivative with respect to w; of the j* element of (273). This term is:

0 81}u,(st) —5 82vw(5t) + 8'Uw(St) 0

8'11}1' 6t 8wj o szaw] 8U}j 87102 (Rt + 7Uw(St+1) B U(St)) (274)
. 8211“,(»515) an(St) avw(st—i-l) 8U(St)
_5t awiawj + Bwj <’}/ 8wz B 8w1 ) ’ (275)

(a) (b)

Notice that, although the term (a) is symmetric—it is the same if ¢ and j are flipped, assuming that v,, has continuous second
derivatives, the term (b) is not symmetric—flipping ¢ and j does change its value. To see why, consider using tabular function
approximation and the case where wj; is the weight for S; and w; is the weight for S i1, and S; # Si41—the (b) term will not
necessarily be zero, but if w; were the weight for S, 1, then this term would be zero. Hence, the derivative of the expected TD
update is not symmetric, and so the TD update cannot be a stochastic gradient update for a loss function that has continuous
second partial derivatives.

Despite the TD algorithm not being a gradient algorithm, it does have desirable convergence properties. When using a
tabular representation for the value function approximation, TD converges with probability one to v™ given standard assumptions
and decaying step sizes (Dayan and Sejnowski, 1994; Jaakkola et al., 1994), and it converges in mean to v™ if the step size is
sufficiently small (Sutton, 1988b). When using linear function approximation—when v,,(s) can be written as v, (s) = wT¢(s)
for some function 7 : § — R™ (for some n)—TD converges with probability one to some weight vector, ws, given standard
assumptions (Tsitsiklis and Van Roy, 1997). If there exists a weight vector such that v,, = v™, then v,,_, = v™—TD will converge
to weights that cause v, to be v™. If, however, there is no weight vector w such that v,, = v™ (if the state-value function cannot
be precisely represented given the class of functions that can be produced by v,, for various w), then the weight vector that TD
converges to (with probability one) is not necessarily the “best” possible weight vector, w*:

w* € argmin E[(vy(S;) — v™(S))?]. (276)

w

However, w,, satisfies the following inequality that ensures that the weights that TD converges to with probability 1 will not be
“too far” away from these optimal weights (Tsitsiklis and Van Roy, 1997, Theorem 1):

El(0u (59) = 0" (S0)7] € T Bllvus (51) = 07 (5))*] (277)

End of Lecture 12, October 23, 2018
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CMPSCI 687 Pop Quiz 5
October 25, 2018

Instructions: You have 5 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do not
discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables. Presenting equalities that are true is not
enough—you must provide the definitions of the symbols on the left.

1. What is the definition of the TD error (in math)?

5,5 = Rt + "/U(St+1) — ’U(St), (278)

§d=r+yv(s) —v(s). (279)

2. If your value function estimate is correct and you are not expecting to get a cake, but you get a cake, what sign would your
TD error have? (Assume that you like cake)

It will be positive.

3. (True or False) TD is stocastic gradient descent on the mean squared value error (MSVE).
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When using non-linear function approximation, TD can diverge.

What makes for a better target, the Monte-Carlo return, Gy, or the target used by TD, R; + yv(Si+1)? Each is an estimator
of v™(S;). The mean squared error (MSE) is a common measurement of how “bad” an estimator is. Let a random variable, X, be
an estimator of § € R. The MSE of X is defined as:

MSE(X) = E[(X — 6)?]. (280)
The MSE can be decomposed into two components: the squared bias and the variance:
MSE(X) = Bias(X)? 4 Var(X), (281)

where Bias(X) = E[X — 6] and Var(X) is the variance of X. Consider again the two possible targets, each of which is an estimator
of v™—which is a “better” estimator?

The Monte-Carlo return is unbiased, and so it has zero bias. However, it often has high variance because it depends on all of
the rewards that occur during an episode. The TD target can be biased if v # v™, since it replaces all of the rewards in the Monte
Carlo return, except for the first, with a biased estimate, v(S;y1) (this is biased because v # v™). However, it can have much
lower variance because it only looks forward a single time-step: both R; and S;11 (the only random terms in the TD target) can
be computed after a single time step. Hence, TD and Monte Carlo are on opposite extremes: the Monte Carlo target has high
variance but no bias, and the TD target has low variance but high bias. Later we will discuss ways to create estimators that can
provide a better trade-off of bias and variance in order to obtain targets that are “better” estimates of v™.

8 Function Approximation

Before continuing, it is worth discussing function approximation in more detail. First, notice that we say that v, is a linear
function approximator if it is a linear function of w. This does not mean that v,, must be a linear function of the states.
Furthermore, we typically write linear function approximators as:

vw(s) = wTe(s), (282)

where ¢ : S — R™ maps states to vectors of features.

One possible choice for ¢ is the polynomial basis, which assumes that s is real-valued (it can be extended to the multivariate
polynomial basis, in which case s is a real vector). Most bases have a parameter that we call the order, which controls how many
features will be produced. The k*® order polynomial basis is:

o(s) = | |- (283)

By the Stone-Weierstrass Theorem, any continuous function can be approximated to any desired level of accuracy given a high
enough order.

The Fourier basis for value function approximation is a common linear function approximator that works very well for most of
the standard benchmark RL problems. The paper presenting the Fourier basis (Konidaris et al., 2011b) should be an easy read at
this point, and can be found here. Please read it. Note that the states should be normalized prior to applying the multivariate
Fourier basis.

8.1 Function Approximation and Partial Observability

A common misconception about RL is that RL methods designed to solve MDPs cannot handle noise or partial observability.
This is not the case: RL algorithms often work well even in the presence of noise and partial observability. Although this is not
often discussed, function approximation and noise/partial observability are equivalent.

Notice that, when discussing how TD converges when using linear function approximation, we did not require ¢(s) to be a
Markovian state representation. Hence, once can view ¢(s) as being the observation of state s if an agent does not have access to
the full state, s. We have from (277) that TD using a linear approximator (with possibly non-Markovian features) will converge,
and will converge to weights that are not much worse than the best possible weights. If the features, ¢(s), contain so little
information about the state that the best possible weight vector results in a poor value function, then TD will not work well.
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However, if ¢(s) contains enough information to get a good estimate of the state-value function, then TD will converge, and will
converge to weights that result in accurate estimates.

Consider for example our gridworld, but where s = [z, y]T, where z is the horizontal position of the agent ant y is the vertical
position. If ¢(s) = [1,z]T, then TD will converge, although it will converge to weights that are not much worse than the best
possible weights. In this case, the best possible weights are not very good—all weight vectors make the same predictions for
states that have the same x-position but different y-positions.

Consider another example: estimating the value function associated with different medical treatments. The true state to
determine how well a drug will work might be all information about a person, down to an atomic level. However, the features,
¢(s), might be a detailed enough description of the person (age, height, weight, temperature, blood glucose, etc.) to accurately
predict how well a drug will work, in which case TD may work well.

However, note that ¢ is a deterministic function—if it sees a state, s, it will always produce the exact same features, ¢(s).
How then is function approximation equivalent to noise? To model a problem with noisy state observations, construct a new
MDP where the state is augmented to include noise. For example, in our gridworld we might augment the state to be s = (x,y,n),
where 7 is uniformly sampled from {—1,0,1}. We could then define

¢(s) = [min{5, max{1, 2z + n}},y|". (284)

This new MDP models the original MDP, but where our sensors have noise added to the observations of the z-position of the
agent. Applying TD to the original MDP where the sensors have noise when producing observations of the z-position is equivalent
to applying TD to this new MDP with linear function approximation. Hence, TD converges to weights not far from the best
possible weights (as described in (277)) when using linear function approximation, and even if the state observations are noisy
and/or incomplete.

End of Lecture 13, October 25, 2018
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CMPSCI 687 Homework 3
Due November 6, 2018, 11:55pm Eastern Time

Instructions: Collaboration is not allowed on any part of this assignment. Submissions must be typed (hand written and
scanned submissions will not be accepted). You must use BTEX. The assignment should be submitted on Moodle as a .zip (.gz,
.tar.gz, etc.) file containing your answers in a .pdf file and a folder with your source code. Include with your source code instructions
for how to run your code. You may not use any reinforcement learning or machine learning specific libraries in your code (you
may use libraries like C++ Eigen and numpy though). If you are unsure whether you can use a library, ask on Piazza. If you sub-
mit by November 13, you will not lose any credit. The automated system will not accept assignments after 11:55pm on November 13.

Programming: (60 Points)

This assignment only has a programming component. As in Homework 2, you may not use existing RL code for this
problem—you must implement the agent and environment entirely on your own and from scratch. The exception
to this is that you may re-use the code that you wrote for the previous homework assignments.

Implement TD for the 687-Gridworld and Cart-Pole domains using fixed step-sizes. Use TD to estimate the value of the
uniform random policy—the policy that always selects actions from the discrete uniform distribution. For Cart-Pole, use the
third- and fifth-order Fourier basis (Konidaris et al., 2011b) (apply the Fourier basis as though time were not part of the state).
For both domains, initialize the value functions to be zero (all entries in the tabular representation for the gridworld are zero,
and all weights for the linear representation used for Cart-Pole are zero). Create plots where the horizontal axis is the step size
(using a logarithmic scale, and any reasonable range that includes 0.1, 0.01, and 0.001), and the vertical axis is the mean squared
TD-error of the value function output by TD after 100 episodes. To estimate this mean squared TD-error, stop updating the
weights after 100 episodes, and run an additional 100 episodes. During these extra 100 episodes, compute the TD error at each
time step, square it to obtain the squared TD error, and report the average value of these TD errors. Submit one plot with three
curves: one for 687-Gridworld and two for Cart-Pole (one using the third-order Fourier basis, and the other using the fifth-order
Fourier basis).

After presenting this plot, write a reflection on this process. What details did you not notice until implementing the methods?
Is the range of step sizes that works well bigger or smaller than you expected? Answer questions of this sort. Your reflection
should be at least half a page, and no more than two pages.
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CMPSCI 687 Pop Quiz 6
October 30, 2018

Instructions: You have 5 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do not
discuss problems with your neighbors until after everyone has handed in their quiz.

1. When using linear function approximation, what is BUBLUES) equal to?
5”57;(}5) = ¢(s). (285)
2. The TD error is defined as:
6t = Ry + 70" (Sp41) — 0™ (St) (286)

3. Write the TD update (tabular, linear, or using arbitrary function approximation—your choice):

v(St) = v(8t) + a(Re + yv(Seg1) — v(S)) (287)
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8.2 Maximum Likelihood Model of an MDP versus Temporal Difference Learning

If we have data regarding many transitions, (s, a,r,s’), we can use this data to estimate P and dr. Notice that we can do this
regardless of how this data is generated—Dby running complete episodes, by randomly sampling s, etc. For now, we assume that a
is sampled according to m. One common estimator is the maximum likelihood model—the estimates of P and dg that maximize
the probability that we would see the data we have. The maximum likelihood model for an MDP with finite states and actions is
exactly what one might expect. That is:

#(s,a,s")
) #(s,a)
R(s,a) = mean(r|s,a), (289)

P(s,a,s") = (288)

where #(s, a, s') is the number of occurrences of (s, a, s') in our data, #(s, a) is the number of occurrences of (s, a), and mean(r|s, a)
is the average value of r in the samples where action «a is taken in state s.

Once we have our estimates, P and R, we could use dynamic programming evaluation methods to solve for what v™ would be if
these were the true transition function and reward function. An interesting question is then: how does this value function estimate
compare to what TD would produce if it were run on the same data over and over until convergence? Perhaps surprisingly, TD
converges to exactly this same value function estimate (if every state is observed at least once or more). So, one might view TD
as being an efficient way to compute the value function that would result if we built the maximum likelihood model and then
solved for the value function for 7.

In practice, TD will be far more useful. Notice that estimating the model requires storing at least |S|?|.A| numbers, while TD
only requires storing |S| numbers. Also, estimating P (and R) is difficult when the states are continuous, while estimating value
functions using function approximators (like neural networks) is straightforward. This is because P is a distribution, and so
estimating P is more than just regression—it requires density estimation.

9 Sarsa: Using TD for Control

Idea: We can use TD to estimate ¢™, and simultaneously change m to be (nearly) greedy with respect to ¢™. First, we must
determine how to use TD to estimate the action-value function rather than the state-value function. The tabular TD update for
g given a transition (s,a,r, s, a’) is:

Q(sva) A Q(Sva) —|—a(7'—|—’yq(s’,a’) _q(57a))v (290)

and the TD update for ¢, using arbitrary function approximation is:

Oquw (s, a)
ow

We refer to the term r + vq(s’,a’) — q(s,a) as the TD error. However, if someone refers to the TD error, they typically mean the
TD error using the state-value function.

In terms of the TD error (using the action value function), and using random variables for states, actions, and rewards, we
can write the TD update using arbitrary function approximation as:

0t = Rt + Yquw (St41, Arg1) — qu(St, Ar) (292)
aCIw(St; At)
ow

One can view the TD update for the action-value function as being equivalent to the TD update for the state-value function
on a different MDP where the state is augmented to include the action chosen according to the policy being evaluated. That is,
consider an MDP M. We can construct a new MDP, M’, the states of which are x = (s,a), where s is a state in M and a is an
action in M. The transition function for M’ causes s to transition as in M, and selects actions a according to the policy, m, that
is to be evaluated. The actions in M’ are irrelevant—we assume that |A| = 1 so that there is only one action. If we apply TD to
estimate v(x) for this new MDP (there is only one policy, so we omit the policy-superscript), we obtain:

w4 w+ a(r + vq,(s',a") — qu(s, a)) . (291)

Wi41 < Wi + aét . (293)

v(x) =E[G¢| X = z] (294)
[for M| =E[G|S: = s, Ay = a] (295)
[for M] =q¢" (s, a). (296)

where X, is the state of M’ at time ¢. Furthermore, writing out the TD update for M’ in terms of states, x, we obtain the TD
update for ¢ in (290). Hence, applying TD to learn the action-value function is equivalent to applying TD to learn the state-value
function for a different MDP, and thus it inherits exactly the same convergence properties.
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We can now use the TD algorithm to estimate ¢, and we can then act greedily with respect to ¢™. This can be viewed as a
sort of approximate form of value iteration, or a generalized policy iteration algorithm. This algorithm is called Sarsa because the
data used for an update is (s, a,r,s’,a’). Pseudocode for tabular Sarsa is presented in Algorithm 12, and Algorithm 13 presents
Sarsa using arbitrary function approximation. Note: you do not need to store an estimate for ¢(s~,a)—we know that it is zero,
and there is no need to learn this value.
Algorithm 12: Tabular Sarsa

1 Initialize q(s, a) arbitrarily;

2 for each episode do

3 s ~ dy;

4 Choose a from s using a policy derived from ¢ (e.g., e-greedy or softmax);
5 for each time step, until s is the terminal absorbing state do

6 Take action a and observe r and s';
7

8

9

Choose a’ from s’ using a policy derived from g;
q(s,a) < q(s,a) + a(r +vq(s',a’) — q(s, a));
s« s';

10 a< a';

Algorithm 13: Sarsa

1 Initialize w arbitrarily;

2 for each episode do

3 s ~ dp;

4 Choose a from s using a policy derived from ¢ (e.g., e-greedy or softmax);
5 for each time step, until s is the terminal absorbing state do

6 Take action a and observe r and s';

7 Choose a’ from s’ using a policy derived from g;

8 w<—w+a(7‘+vqw(s’,a’)—qw(s,a))%gj’a);

9 s §';
10 a < a';

For Sarsa to be guaranteed to converge almost surely to the optimal action-value function, we require the normal assumptions
(finite states, finite actions, bounded rewards, v € [0, 1), step sizes decayed appropriately), as well as two additional assumptions.
First, all state action pairs must be visited infinitely often. Second, the policy must converge in the limit to a greedy policy
(e.g., € = %) These two additional assumptions are sometimes called the GLIE assumption: greedy in the limit with infinite
exploration.

Question 26. What happens if actions are chosen greedily with respect to q rather than nearly greedily?

*QZ I9MSUY

Question 27. What happens if the q estimate is initialized optimistically (too large)? What if it is optimized pessimistically?
What if € = 0 in these two cases?

*QZ JIOMSUY
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We refer to Sarsa as an on-policy algorithm. This is because it estimates the ¢g-function for the current policy at each time
step. Next we will consider a similar algorithm that estimates the g-function for a policy that differs from the one currently being
executed.

End of Lecture 14, October 30, 2018

10 (@-Learning: Off-Policy TD-Control

While the Sarsa update can be viewed as changing the Bellman equation into an update rule, Q-learning can be viewed as changing
the Bellman optimality equation into an update rule. The Q-learning update based on a transition (s, a,r, s’) is (Watkins, 1989):

q(s,a) = q(s,a) + a(r + 7 max q(s',a") — q(s,a)), (297)

or with arbitrary function approximation:

8(]11)(3’ Cl)

o (298)

w=w+ a(r +ymax q,(s,a") — q,(s,a))
a’eA
Thus, whereas Sarsa changes ¢ towards an estimate of ¢™ at each step (where 7 is the policy generating actions), Q-learning
changes ¢ towards an estimate of ¢* at each step, regardless of which policy is used to generate actions. In this sense it is
off-policy—it estimates ¢* regardless of the policy used to generate data. Notice also that @)-learning can update as soon as Sy is
sampled—before A;y; is sampled, while Sarsa must wait until A;;; was sampled. Q-learning converges to ¢* under the standard
assumptions if all (s,a) pairs are seen infinitely often. This means that Q-learning does not require the GLIE assumption—the
sampling policy does not need to become greedy in the limit.
Because @-learning does not require A¢41 to update, its pseudocode is not just Sarsa with a modified g-update. Pseudocode
for Q-learning is provided in Algorithms 14 and 15

Algorithm 14: Tabular Q-Learning

1 Initialize q(s, a) arbitrarily;

2 for each episode do

3 s ~ dp;

4 for each time step, until s is the terminal absorbing state do
5 Choose a from s using a policy derived from g;

6 Take action a and observe r and s';

7 q(s,a) + q(s,a) + a(r + ymax,caq(s’,a’) — q(s,a));

8 s s';

Algorithm 15: )-Learning

1 Initialize w arbitrarily;

2 for each episode do

3 s ~ dp;

4 for each time step, until s is the terminal absorbing state do
5 Choose a from s using a policy derived from g¢;

6 Take action a and observe r and s';

7 w<—w+a(r+7maxa/€Aqw(s’,a’)—qw(s,a))w;

8 s« §';

The convergence properties of TD, Sasra, and Q-Learning are presented in Table 1.

11 TD()\)
Notice that, like dynamic programming policy evaluation, TD is slow. Consider using TD to estimate the value function for a

policy on 687-Gridworld, starting with initial estimates v(s) = 0, and if the first episode happens to reach the terminal state
without entering the water state. After his first episode, the only state with non-zero value estimate will be the state that
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TD Sarsa Q-learning
Converges to ¢*
Converges to v™ Converges to ¢* (Watkins and Dayan, 1992)
Tabular (Tsitsiklis and Van Roy, 1997) (Singh et al., 2000) (Tsitsiklis, 1994)
Converges to a policy “close” to v™ Converges Can diverge
Linear (Tsitsiklis and Van Roy, 1997) (Perkins and Precup, 2003) | (Wiering, 2004; Baird, 1995)
Non-Linear | Can diverge Can diverge Can Diverge

Table 1: Convergence properties of TD, Sarsa, and @-learning. For complete details (including types of convergence and necessary
assumptions), see the provided references. These references are not the first proofs.

transitioned to the goal. In a sense, the reward at the goal has only propagated backwards a single time step. By contrast, if we
updated using the Monte Carlo target, every state along the path to the goal would have had its value updated.

As an intuitive example, imagine that you received an extra $1,000 in your paycheck one week. If this was unexpected, you
might get a positive TD-error. The Sarsa and TD algorithms attribute this TD-error to the most recent state and action: they
declare that whatever actions you took just before receiving the check were responsible for the TD-error. This seems a bit absurd:
it was likely a combination of actions over the past week or two that resulted in this TD-error. The Monte Carlo algorithm has a
similar flaw: if v & 1, it will assign credit to the states and actions from the distant past. That is, it will conclude that the action
value for eating a sandwich five years before should be increased.

In this section we consider trying to find a mix between Monte Carlo Methods and TD methods to try to get the best of both
of these approaches. This algorithm, called TD(\) assigns a “credit” to each state or state-action pair. This credit is discounted
over time, and the updates to states are weighted by this credit. We will present this algorithm from two different points of view:
the forwards view and the backwards view, and we will will show that these two views are approzimately equivalent.

The key to mixing Monte Carlo methods with temporal difference methods is the n-step return. We sometimes refer to n-step
returns as i-step returns. The n-step return is a target that could be used in place of the Monte Carlo target or TD target.
Formally, the n-step return is:

n—1
G = (Z VthJrk) + 7" 0(St4n). (299)

k=0

Notice that G,El) is the TD target, and is sometimes called G{P, or the TD return, and that G,EOO) is the Monte Carlo return, Gy,
and sometimes also called GMC. Notice that longer returns (larger n) results in higher variance in the target, but lower bias, as
discussed previously. We might try to select a value for n that works well for our problem. Intuitively, the n-step return assigns
credit to all of the n most recent states (to see this, consider again what would happen when running TD on 687-Gridworld
starting with the initial value function equal to zero everywhere, but using n-step returns rather than Monte Carlo returns or TD
returns).

Instead of simply selecting one n, we will take a weighted average of all of the different n-step returns. We call this new return
a complex return because it combines different length returns. We also choose a weighting that depends on a parameter A € [0, 1].
We refer to this weighted return as the A-return, and define it as:

GY = (1-1) ) NG (300)
=0

Notice that if A = 0 the A-return is the TD return. In the limit as A\ — 1, the A-return is the Monte Carlo return. When A =1,
G? as defined above is not necessarily defined, since it could become infinity times zero. Hence we explicitly re-define G} to be
the limit as A — 1, i.e., the Monte Carlo return.

End of Lecture 15, November 1, 2018
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Name:

CMPSCI 687 Pop Quiz 7
November 6, 2018

Instructions: You have 7 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do not
discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables.

1. The definition of the state-value function is: v™(s) = E[G¢|S; = s, 7]

2. The definition of the action-value function is: ¢™ (s, a) == E[G¢|S; = s, A; = a, 7]

3. The Bellman equation states that for all s:

v (s) = Z (s, a) Z P(s,a,s")(R(s,a) +vv"(s")) (301)

acA s'eS

4. The Bellman optimality equation states that for all s:

v*(s) = max P(s,a,s")(R(s,a) +yv*(s)) (302)

5. (True or False) Although there may be multiple optimal policies, there is only one optimal value function for an MDP with
bounded rewards, finite actions, etc.
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To better understand what the A-return is doing, consider the weights that would be placed on the different length returns for
an MDP with finite horizon, L = 10. The weight placed on the 1-step return would be (1 — A), the weight on the 2-step return
would be (1 — M)\, the weight on the 3-step return would be (1 — A)A2, ..., the weight on the 10-step return would be (1 — )\,
the weight on the 11-step return would be (1 — A\)A'Y, etc. Notice that the 10-step return is the Monte Carlo return, since the
horizon is L = 10, which means that S19 = s and so R; = 0 for ¢t > 10. Shorter returns may also be the Monte Carlo return if
the agent happened to enter s, earlier, but we know that at some point, before the L-step return, the return from any state will
be the Monte Carlo return. Hence, the A\-return can be written as:

G) = Z NG (303)

1=0

L—-2 )

_ >\) (Z )\iG§1+1)>
=0 i
L—-2 ) 00

—A) (Z AiGS*”) ( S ) GMC, (305)
=0 i 1

i=L—

A) Y NGH© (304)
i=L—

1

That is, all of the weight placed on returns of length at least L is placed on the Monte-Carlo return. So, although the weights are
generally decreasing as the return length increases, a large weight is often placed on the Monte Carlo return. Furthermore, since
the first weight is (1 — \), as A — 1 the sum of the first L weights decreases, and so the weight on the Monte Carlo term increases.

A common question is: why this geometric series of weights? Is the choice of weighting used in the A-return in some way a
statistically principled choice? The original reason for this weighting scheme is that it will make our subsequent math work out
(more specifically, it is not clear how to make a “backwards view” with other weighting schemes—in the next lecture we will
describe what this backwards view is). Konidaris et al. (2011a) investigated conditions under which the A-return is statistically
principled. Below we will review their findings (not the alternative to the A-return that they propose, but their analysis of the
A-return). These findings show a set of conditions under which the A-return could be derived as a principled estimator of v™(s).
Other conditions may exist under which the A-return is a reasonable weighting scheme, but this is the only example that I am
aware of today.

A common point of confusion here is about whether the returns come from the same episode. They do. We are consider an
agent that is currently at S;, the current time step is ¢, and we are deciding what target the agent should use—what value it
should change its estimate of v™(S;) to be closer to. For now, we are ignoring the fact that the agent must wait until the end of
an episode to compute some of these longer returns, and asking: if we had all of the data from now until the end of the episode,
what should our target be? One answer is the TD target, Ggl), while another is the Monte-Carlo target, G;. The one we're
considering here is the A-return, which blends together targets between the Monte-Carlo and TD targets. Also, note that each of
these targets is an estimator of v™(Sy).

Theorem 5. If
1. The i-step returns are all statistically independent,

2. The t-step returns are all normally distributed,
8. The variance of the i-step returns grows with i according to: Var(G ) B/, for some constant 3,

4. E[Ggi)] = v™(St) for all i, i.e., the i-step returns are all unbiased estimators of v™(Sy),

then the mazimum likelihood estimator of v™(Sy) is the A-return, G;.

Proof. The likelihood that v™(S;) = = given the estimators G,El), G,EQ), G§3)7 ... s

L(|6V,6P. 6™, ) =Pr (G§1>,G§2>,G§3>,

v (S,) = x) (306)

H "(8) =), (307)

by the assumption that the different length returns are independent, and where in this proof, L denotes the likelihood function,
not the horizon of an MDP. To find the maximum likelihood estimator, we must search for the value of x that maximizes the
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likelihood:

argmaxﬁ(:c\Ggl),G§2),GE3), )*argmaXHPr G()\v (S) =x) (308)
rcR zeR
=argmaxIn <HPr (@ v™(S) :x)) (309)
z€R i=1
—argr%alen (Pr(GEi) v (S) = m)) (310)
TER =1
00 (1) 2
) 1 —(G;’ —x)
=argmax » In ex 311
ae ; ( BN 2B/N (31D
= L (G} — )’
= arg max In - | +In | exp —————— 312
o (e )+ (o0 S =
G(i) —z)?
—ar max » In|ex 7. 313
SR ; ( P o) (313)
oo ~(E) N2
= arg max Z M, (314)

z€R i—1
where (a) comes from the assumptions that each G,(f) is normally distributed with mean v™(S;) and variance 3/A" and (b) holds
because the dropped term is not a function of z, and so does not impact the result (due to the arg max, p). Solving for the
critical points, we have that any critical point must satisfy:

0 & —(GY — 1)?
= =0 (315)
Ox = 2B/
X9 NG —a)?
= %% =0 (316)
=1
()
— Z M =0 (317)
=1 ﬁ
=Y NG =3 N (318)
=1 =1
= NG = o (319)
=1
D
== PENER (320)
1=1
LA i+1 ~(i41)
=== PR e (321)
=0
=a=(1-1)Y NG (322)
=G (323)

O

Notice that the conditions required by Theorem 5 are egregious. The i-step returns are not statistically independent (the
98-step and 99-step returns with small + are nearly identical), they often are not normally distributed, the variance does not grow
proportional to 1/A? (particularly for longer returns, the discounting makes returns almost identical, and thus they have almost
identical variance), and only the Monte-Carlo return is unbiased (the bias of the TD return was one of the main motivations for
creating the A-return in the first place!). So, right now you might be thinking “this seems like a very bad estimator for us to
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use!” Perhaps, and there is research into producing better estimators (Konidaris et al., 2011a; Thomas et al., 2015a; Thomas
and Brunskill, 2016). However, for now we will proceed using the A-return. Note that the A-return is the current standard in
reinforcement learning research, despite its lack of a principled derivation.

End of Lecture 16, November 6, 2018

6Because it is not clear how to create backwards views for these more advanced estimators, they are not practical for use in place of the A-return.
Making these estimators practical would be a significant advancement. Since they cannot replace the A-return (because they do not have a backwards
form), these latter papers considered a setting where they are applicable: off-policy policy evaluation. Hence, the latter two papers begin targeting this
alternate problem, but their real underlying motivation was an effort to improve and replace the A-return.
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CMPSCI 687 Homework 4
Due November 16, 2018, 11:55pm Eastern Time

Instructions: Collaboration is not allowed on any part of this assignment. Submissions must be typed (hand written and
scanned submissions will not be accepted). You must use BTEX. The assignment should be submitted on Moodle as a .zip (.gz,
.tar.gz, etc.) file containing your answers in a .pdf file and a folder with your source code. Include with your source code
instructions for how to run your code to produce the results you report below. You may not use any reinforcement
learning or machine learning specific libraries in your code (you may use libraries like C++ Eigen and numpy though). If you are
unsure whether you can use a library, ask on Piazza. If you submit by November 25, you will not lose any credit. The automated
system will not accept assignments after 11:55pm on November 25.

We will not be answering question on Piazza over Thanksgiving break, which begins at the end of the day
on November 16. (We may answer some, but do not expect any answers). As in Homework 3, you may not use existing RL
code for this problem—you must implement the agent and environment entirely on your own and from scratch.
The exception to this is that you may re-use the code that you wrote for the previous homework assignments.

Programming: (75 Points)

This assignment only has a programming component. Implement @)-learning and Sarsa using both a tabular estimate of
the g-function and linear function approximation and e-greedy action selection. Apply these two algorithms to the 687-Gridworld
and Cart-Pole problems. You may optimize hyperparameters (step size, €, order of the Fourier basis) manually or using an
automated search (e.g., a grid-search or random search over the space of hyperparameters).

1. (30 Points) For each domain (the gridworld and Cart-Pole) present a learning curve, where the horizontal axis spans 100
episodes. Include curves for both Sarsa and @Q-learning. Average over at least 100 trials, and include standard error bars.

2. (30 Points) Try using a different function approximator for Cart-Pole, and compare the performances of both Sarsa and
Q-learning with this alternate (possibly non-linear) function approximator to the performance you observed using the linear
approximator and the Fourier basis. Your comparison should include text discussion of how difficult it was to tune each
method (or empirical results if you used an automated hyperparameter optimization), as well as learning curves using the
best found hyperparameters. Your alternate function approximator must be either tile coding (see the course book by
Sutton and Barto (1998)), linear function approximation using the polynomial basis (see the class notes), normalized radial
basis functions (see, for example, the appendix of the paper by (Doya, 2000)), or an artificial neural network (for example, a
feed-forward fully-connected network with two layers and Sigmoid activation functions, although other networks are allowed).
You need only select one of these alternate function approximators, and if you are looking to put in the minimal effort, I
suggest using the polynomial basis. You may use code libraries that implement neural networks and backpropagation as
long as they do not include any reinforcement learning code. If you want to use a function approximator not listed here,
confirm that your alternate choice is ok with the instructors (and they will add it to the assignment). Discuss how difficult
it was to tune these methods with the alternate function approximator relative to the Fourier basis. Discuss any noticeable
differences in final performance and why you think these differences occur.

3. (15 Points) Reflect back on your implementation of the CEM algorithm for Homework 2. How do Sarsa and Q-learning
compare? Create one plot for the gridworld and one plot for cart-pole that includes learning curves for CEM (use your
results from Homework 2) and Sarsa and @-learning (using any or all of the function approximators you tested). Which
method was harder to tune? For other MDPs, when do you expect that CEM will be superior, and when do you expect
that Sarsa and Q-learning will be superior?

4. (10 Points Extra Credit) Implement softmax action selection (see (59) in the class notes) for both methods, and optimize
the temperature parameter, . Include in your plots and discussion the results using both e-greedy and softmax action
selection.

5. (10 Points Extra Credit) Implement the Mountain Car domain, apply Sarsa and @Q-learning, and report your results.
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12 Polynomial Basis

This material was not covered in class, but is being presented to simplify Homework 4. The polynomial basis can be constructed
using the same vectors, ¢;, used by the Fourier basis. Whereas the i*! feature using the Fourier basis is cos(mc; - ¢(s)), the 7!

feature using the polynomial basis is
n

[T, (324)

j=1

where ¢; ; is the 7' element in the vector ¢; and s = (s1, S2,...,5,). That is, where the state is n-dimensional and s; is the gt
component of the state (a real number, normalized to [0, 1] or [—1,1]).
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12.1 AM-Return Algorithm
We can use the A-return as a target to obtain a policy evaluation algorithm. The resulting update is:
v(S) < v(S;) + (G} — v(Sy)). (325)

This algorithm is called the forwards view because, when updating v(S;), we look forward in time to see what states and rewards
occur in the future. Also, after updating v(s), we never look at v(s) again until it is visited another time. The drawback of the
forward view is that we must wait until the end of an episode in order to compute the update to v(S;). We therefore call this
algorithm offline, as opposed to online algorithms, which update at each time step.

13 Backwards View of TD()\)

In the backwards view, at time ¢ the agent looks back to all of the states that have occurred up until time ¢, and determines how
these previous states should be updated based on the newly observed state and reward. We store an additional variable for each
state, called an eligibility trace. We write e;(s) to denote the eligibility of state s at time t. We sometimes refer to eligibility
traces as e-traces. An e-trace quantifies how much v(s) should be updated if there is a TD error at the current time step, t. At
each time step, all e-traces will be decayed by v\, and the e-trace for the current state is incremented. That is:

Aei— if
et(s) — YAEt 1(5) s 7é St (326)
vAer—1(s) +1 otherwise.

This type of e-trace is called an accumulating trace because the traces can accumulate to be larger than one. Other alternatives
exist, like replacing traces, wherein the eligibility of the current state is set to one rather than incremented by one. We will focus
on accumulating traces.

Note: the eligibility traces start equal to zero for all states and should be reset to zero at the start of every episode.

The TD(A) algorithm updates all states at each time step in proportion to their eligibility:

0 =Ry +yv(Sey1) — v(St) (327)

Vs €S, e(s) =yAe(s) (328)
e(Sy) =e(Sy) +1 (329)

Vs €S, v(s) =v(s) + ade(s). (330)

At each time step, this algorithm looks backwards and asks “which states should have their values updated due to the current TD
error?” Notice that if A = 0, this algorithm is clearly identical to TD. Perhaps less obviously, if A = 1, this algorithm is equivalent
to the Monte Carlo algorithm in (221).

The forwards and backwards updates are (approximately) equivalent. That is, if we start with the same value function, after
running a complete episode using the update in (325) and the updates in (327), the resulting value function estimates will be
(approximately) equal. To see this, we begin by establishing some notation.

First, recall that

5,5 = Rt + ’th(St—l-l) — 'Ut(St), (331)

where v; denotes the value function estimate at time t. Let Z, 5, = 1 if S; = s and Z; 5, = 0 otherwise. With this indicator
function, we can write an expression for the eligibility trace at time t that is not recurrent:

er(s) =Y (YN s,. (332)

k=0

Unlike (326), which computed the eligiblities recurrently, this equation looks back from time ¢ at all previous time steps, k, and
adds the contribution to the e-trace at time ¢ that is due to the state at time k. If the state at time k is not s, then there is no
contribution from time k to the eligibility of state s at time ¢. If the state at time k was s, then at time ¢ this contributes (y\)!=*
to the eligibility of state s at time ¢.

Next, let Avf'(s) denote the update at time ¢ to v;(s) according to the forward view. That is,

Avf (s) = a(G} — vi(Sy)), (333)

if S; = s, and Avf'(s) = 0 otherwise. We do not express this by including a 7, s, term on the right side in order to simplify the
use of this term later. Similarly, let AvP(s) denote the update at time ¢ to v;(s) according to the backwards view:

AvP(s) = adeq(s). (334)
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In Theorem 6 we show that the forwards and backwards updates result in the roughly same change to the value function at
the end of an episode. After the proof we discuss the step that makes this equivalence approximate.

Theorem 6. For all s € S,
Z AvP (s Z Al (s)Z s, (335)

Proof. We begin with the left side:

L

Z AvB(s i Z adeer(s) (336)

t=0

~

t

= Zaét Z YN s, (337)
t=0 k=0

| o

()

g}

= I]-

t
ad (YN 5,0 (338)

k=0

A
=
=

a) (YN 'L.s, 0k, (339)
t

B
I
o
Il
<]

where (a) comes from (334), (b) comes from (332), (c) comes from moving the ; term inside the sum over &, and (d) comes
from swapping the variable names ¢ and k (this is a name change only - no terms have changed). Notice that >3;_ >"_ f(i,5) =
Z?:o S i f (i,7), since all of the same pairs of ¢ and j are included. Using this property, we reverse the order of the sums to
obtain:

L L L
> AvE(s) =) aY (YN s, 0 (340)
=0 =0 k=t
L L
i)ZaIS S0 (YN 6. (341)
t=0 ht

where (a) comes from moving the Z; s, term outside of the sum over k, since it does not depend on k. Thus, on one line, we have

that: ; . .
> Avf(s) =D aZis, > (YA (342)
t

t=0 t=0 k=

We now turn to the right hand side of (335), and consider the update at a single time step:
Avf(S;) = a(G) —vi(Sy)). (343)
Dividing both sides be «, we obtain:

A (S0 =G~ u(S) (344)
= —0(Se) + (1 = M)A (Re + y0e(Se41)) (345)
(346)
(347)

+ (L= NA(Ry +9Rip1 +7%0(Ser2)) 346
+ (L = MAY(Ry + YRy +9°Riy2 +7%0:(S1+3)) 347
(348)
Consider all of the R; terms:
> . 1-A
> (1=MXNR, =—ZR, (349)
gt 1-X
=R;. (350)
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Now consider all of the R;,; terms:

D (L= MXYR1 =(1=X)(7A) Y N Rip (351)
i=1 1=0

=(YA) Rt (352)

In general, all of the R;,j terms combine to (7)\)th+;€. We now rewrite (348), but combining all of the R; terms, R;11 terms,
etc.

éA’UtF (St) = — ’Ut(st) (353)
+ Ry + (1 = A)yve(St41) (354)

+ (YA Rt + (1= A)(vA)yve(Si42) (355)

+ (YA)?Riga + (1 = A)(7A)*yvr(Sty3) (356)

(357)

Pulling out a (yA)? from each row and expanding the (1 — ) term, we obtain:

1
EAUf(St) = —vy(S)

(358)

+ (YN (Re + i (Sig1) — vA0e(Ses1)) (359)

+ (YA (Reg1 4 yve(Sei2) — YAvi(Se42)) (360)

+ (7>\)2 (Rig2 + vvie(St43) — YA0L(Se43)) (361)

(362)

Shifting the right-most v; terms all down one line, and plugging the —v;(S;) from (358) into (359), we obtain:

1

aAvf(St) =(YN)° (Re 4+ vve(Ser1) — ve(St)) (363)

+ (YA (Reg1 4+ 70 (Ser2) — ve(Seq1)) (364)

+ (VA)? (Reg2 + yve(Sess) — ve(Sir2)) (365)

(366)

Consider the term Ry + vvi(Si4k+1) — vt (Set+k). This term resembles the TD-error that occurs k steps in the future from time
t, that is 0y,. However, it is not precisely ¢4k, since ;1 (when computed using the backwards algorithm—the way we defined
TD-errors) will use vy when computing d¢1x, not v;. That is, this is the TD-error k steps in the future if we were to use our
value function from time ¢ to compute the TD error. If the step size is small, then the change to the value function should not
have been significant within an episode, and so Ry + Y0t (Str+1) — ve(Sitk) = 0rk. Using this approximation, we obtain:

o0

AU (S~ Y (A b (367)
k=0
=3 ()t (368)
k:t
SN, (369)

ES
Il
ES

since §; = 0 if k > L. So, returning to the right side of (335),

L L L
> A (S)Tes, DY (YN 0T s, (370)
=0 t=0 k=t
L L
=Y _oZus, ) (WMo, (371)
t=0 k=t
which is the same as the left side, as expressed in (342). O



Name:

CMPSCI 687 Pop Quiz 8
November 13, 2018

Instructions: You have 5 minutes to complete this quiz. This quiz is closed notes—do not use your notes or a laptop. Do not
discuss problems with your neighbors until after everyone has handed in their quiz.

Use the notation from class. Don’t forget to capitalize your random variables.

1. A positive TD error means that:
(a) The actual outcome was better than expected.
(b) The actual outcome was worse than expected.

(c) A terminal state has been reached.

2. (True or False) Although derived differently (via the forwards and backwards views), v and A are approximately equivalent—
increasing one is equivalent to increasing the other.

3. The TD error is defined as:
6,5 = Rt —+ "‘/’U(SH_l) — U(St). (372)
We will accept other forms (using v™, ¢™, ¢, and (s,a,r,s’,a’) or (St, A¢, Ry, St41, Art1)-

4. (True or False) If a real-world problem has small amounts of noise in the sensors making observations of the state, then
reinforcement learning methods should not be applied.

5. (True or False) TD is stochastic gradient descent on the mean-squared TD-error.
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13.1 True Online Temporal Difference Learning

The equivalence of the forwards and backwards views of TD(\) is only approximate. Seijen and Sutton (2014) showed how the
TD(A) algorithm can be modified so that the modified backwards view is actually equivalent to the forwards view (Van Seijen
et al., 2016). This true online TD(X) algorithm is only designed for the tabular and linear function approximation settings—it is
not applicable with non-linear function approximation. In practice, true online TD(\) is more robust to the step size parameter
than ordinary TD(A). The same goes for true online Sarsa(\) (the control form of true online TD(A)).

13.2 Sarsa(\) and Q())

We can use TD()\) for control, just as we used TD to create the Sarsa and Q-learning algorithms. The resulting algorithms
are called Sarsa(A) and Q(\), respectively. Pseudocode for Sarsa(\) is provided in Algorithm 16, and pseudocode for Q()) is
provided in Algorithm 17. In both algorithms, e is the vector of eligibility traces—one real-valued trace per weight.

Algorithm 16: Sarsa(\)

1 Initialize w arbitrarily;

2 for each episode do

3 s ~ dpy;

4 e + 0;

5 Choose a from s using a policy derived from ¢ (e.g., e-greedy or softmax);
6

7

8

9

for each time step, until s is the terminal absorbing state do
Take action a and observe r and s';
Choose a' from s’ using a policy derived from g;

ee’y)\eer;

10 dr+ 'qu(s/a a/) — qu(s;a);
11 w + w + ade;

12 s+ &

13 a< a';

Algorithm 17: Q())

1 Initialize w arbitrarily;

2 for each episode do

3 S~ d();

4 e <+ 0;

5 for each time step, until s is the terminal absorbing state do
6 Choose a from s using a policy derived from g;

7 Take action a and observe r and s';

8

9

ee’y)\eJrW;

6 ¢ r+ymaxeea qu(s’sa’) — qu(s, a);
10 w < w + ade;
11 s+ &

Question 28. If we store one weight per state-action pair (i.e., if we use a tabular representation) and always sample
actions from a fixed policy, m, that does not depend on q.,, confirm that the Sarsa(X\) algorithm is equivalent to TD(X) for
estimating the action-value function.

There are other Q(\) variants—particularly ones that use different eligibility traces, like replacing traces. The one that we
present here is the most simple, and perhaps the most common. If someone refers to QQ-learning, they are typically referring to
this variant of the Q(\) algorithm.

14 Actor-Critic Methods

Actor-critic algorithms are algorithms that have an actor, which selects actions, and a critic, that critiques the actions chosen by
the actor. That is, the actor stores m, and the critic estimates v™. Intuitively, the critic watches what the actor does, and passes
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the TD errors to the actor. If the actor receives a positive TD error, it means that the action it took turned out better than it
expected, and so the probability of the action should be increased. If the actor receives a negative TD error, it means that the
action it took turned out worse than it expected, and so the probability of the action should be decreased.

We could construct a simple actor-critic by using TD to update a tabular critic:

(St < Rt + ’yU(St+1) — ’U(St) (373)
v(St) < v(s) + ads. (374)

We could then use a softmax policy, parameterized as in (59). To capture our intuition, we can then use the actor update rule:
p(St, A¢) < P(St, Ar) + ady. (375)

Notice that the actor and critic updates are very similar—they both add «ad; to a stored variable. However, this update
causes the actor to tend towards an optimal policy, and the critic to tend towards v™. This different behavior is due to the
different conditioning of the updates: the expected update to the critic is the expected TD-error given the current state, while
the expected update to the actor is the expected TD-error given the current state and action.

14.1 Policy Gradient Algorithms

Policy gradient is not just one algorithm—it is a class of algorithms. Many policy gradient algorithms are actor-critics, but not
all. Similarly, actor-critic is not a single algorithm, but a class of algorithms, and many (but not all) actor-critics are policy
gradient algorithms.

For example (referencing algorithms we will describe later), our simple actor-critic is an actor-critic, but is not a policy
gradient algorithm. REINFORCE (Williams, 1992) is a policy gradient algorithm, but it doesn’t have a critic and therefore is not
an actor-critic. So, although most policy gradient algorithms will also be actor-critics, and most actor-critic algorithms are policy
gradient algorithms, these two terms are not interchangeable.

The idea underlying policy gradient algorithms is that we can use a parameterized policy, with parameters § € R™, we can
define an objective function:

J(0) =E[G|6], (376)

and then we can perform gradient ascent to search for policy parameters that maximize the expected discounted return:
0+ 0+ aVJjh). (377)

Policy gradient methods have several benefits over value function based methods like Sarsa and @-learning. First, policy
gradient methods work well with continuous actions (we can easily parameterize a continuous distribution), while Q-learning and
Sarsa often do not (and solving for the action that maximizes ¢(s, a) when a is continuous can be computationally expensive) (Baird
and Klopf, 1993). Second, since they are (stochastic) gradient algorithms, policy gradient algorithms tend to have convergence
guarantees when value-function based methods do not (e.g., using non-linear policy parameterizations is not a problem for policy
gradient methods). Furthermore, whereas value-based methods approximately optimize an objective (minimizing some notion of
expected Bellman error), this objective is merely a surrogate for the primary objective: maximizing expected return. Policy
gradient methods take a more direct approach and directly maximize the expected return.

Notice however, that @)-learning and Sarsa are global algorithms in that they are guaranteed to converge to globally optimal
policies (when using a tabular representation), whereas gradient methods can often become stuck in local minima. This common
argument is flawed: when using tabular representations for finite MDPs, the objective function has no local optima (Thomas,
2014). The proof presented in this citation is not complete because it does not address the fact that global optima also do not
exist, since weights will tend to +00. A complete proof showing convergence to an optimal policy is in-progress.

The crucial question that we will address in future lectures is: how can we estimate V.J(¢) when we do not know the transition
or reward function?

End of Lecture 17, November 13, 2018

14.2 Policy Gradient Theorem

How can we efficiently compute V.J(8)? One option is to use finite difference methods, which approximate the gradients of
functions by evaluating them at different points. However, these algorithms do not take advantage of the known structure of the
problem: that the objective function corresponds to expected returns for an MDP. One might also use automatic differentiation
tools, but these require knowledge of the transition function and reward function.
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The policy gradient theorem gives an analytic expression for V.J(6) that consists of terms that are known or which can be
approximated. Here we will follow the presentation of Sutton et al. (2000). The policy gradient theorem states:

Theorem 7 (Policy Gradient Theorem). If w exists for all s, a, and 0, then for all finite finite MDPs with bounded
rewards, v € [0,1), and unique deterministic initial state sg,

B (s a@)
_Zda Zq sa 20 (378)

s€S acA
where d°(s) = >_72 7 Pr(S; = s6).

Although we present the policy gradient theorem here for finite MDPs, extensions hold for MDPs with continuous states
and/or actions, and even hybrid (mixtures of discrete and continuous) states and actions. Extensions to MDPs without unique
deterministic initial states, and to the average reward setting also exist. Recall that

Oln(f(x)) _ 10f(x)

ox Tz Oz (379)
and so d1n(r(s, a,0)) 1 on(s,a,0)
n(n(s,a, B (s, a,
00 -~ 7(s,a,0) 00 (380)

Thus, we can rewrite (378) as
0l 0
=3 ds) Y w(s,a.0)q" (s Ly 2n(m(s,a,0)) (381)
00
SES acA
Also, if we were to view d? as a distribution over the states (it is not, as we will discuss shortly), then we could write the policy
gradient theorem as:

(382)

VJ()=E [q”(s, A)W‘&] ,

where S ~ d’ and A ~ 7(S, -, ).
To obtain an intuitive understanding of (378), recall that
f(z,y). That is, it is the direction of steepest ascent of f(x,-) at y. So, if we consider each term:

dln(n(s,a,0))

& is the direction of change to y taht most quickly increases

vIiO)= Y d'(s) D w(sa0)  d(s0) 5 (383)
€S €A ~—_—
;/—’ L/_/ how good is a in s7 How to change 6 to make a more likely in s

average over states average over actions

Consider d? in more detail. This term is sometimes called the discounted state distribution. However, notice that it is not a
probability distribution. Since >~ ,< ~* 7 we could make d? into a distribution by multiplying it by 1 — ~. Intuitively, what

d? does is it averages over state dlstrlbutlons at different times, giving less weight to later state distributions. So, J(6) favors
changes to the policy that increase the expected return at earlier time steps.
The policy gradient theorem can be written as:

31n(7r(St, At, 0))
00

O(E Z’Y St,At

9] , (384)

where here states and actions are generated by running the policy with parameters §—mnot by sampling from (1 — ~)d?.
In practice, most algorithms ignore the 7! term preceding ¢™(S;, A;) in (384). For further discussion of this term (and why it
is usually ignored), see the work of Thomas and Barto (2012); Thomas (2014).

14.3 Proof of the Policy Gradient Theorem

In this section we may switch freely between using 7 and 6 to denote a policy. Writing m emphasizes parameters. A more precise
notation might be to always write 7(-, -, #), but this is too verbose. So, for example, we may switch between writing ¢™ and ¢’ to
both denote the action-value function when when using the parameterized policy 7, with parameters . We will tend towards
using the # notation to make it clear which terms depend on the policy parameters. Note that, since Sy = s always,

J(0) =E[G6] (385)
=09 (s0). (386)
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So, to obtain an expression for the policy gradient we will obtain an expression for the derivative of the value of a state with
respect to the policy parameters. We begin by showing this for all states, not just so. That is, for all states s € S:

onl(s) 0 0
Tl PILCLUIE (387)
on(s,a,0 9q°(s,a
= Z %qe(s, a) +7(s,a, 9)% (388)
acA
on(s,a,0d 0
= %q%, @)+ Y m(5,0,0) 55 > Pls,a, ') (R(s,a) + 0 (s)) (389)
acA acA s'eS
9 ’ ’0 o 0
= Z %qe(s’ a) + "y Z Pr(St+1 = $,|St =S, 9) Uaés ) (390)
acA s'eS
— Wq9(s’a)+7 Z Pr(5t+1 — S/|St — 379)% (Z 77(3/7a/7€)q9(3/’a/)> (391)
acA s'eS a’eA
O (s, 0,0 On(s',a',0 0¢(s', o'
=3 P () 4 3 Pr(Sin = 5180 = 5.0) <Z On ) (s, +w<s’7axe>q§;‘”> (392)
acA s’eS a’eA
o (s, a,0 on(s',d',6
= %qe(s’ a) + Z PI’(St+1 = 3/|St =S, 9) Z %q0(817a/> (393)
acA s'eS a’eA
O( 1
+ Z Pr(Siy1 = §'|S; = s5,0) Z W(s’,a’,ﬁ)w (394)
s'eS a’€eA
on(s,a.0 on(s', a’,8
— Z %QG(S,Q) + ~y Z PI‘(StJ,-l = S,|St = 8,9) Z %qe(slva/) (395)
acA s'eS a’€A
0
+7 Z Pr(Sii1 = &Sy = s,0) Z ﬂ(s’,a',ﬁ)% (Z P(s',d,s")(R(s',a") + 'yva(s”))> (396)
s'eS a’eA s""eS
or(s,a,0 on(s',a',0
— Z %QG(S,G) + o Z PI‘(StJ,-l = 8/|St = 8,9) Z %qe(slval) (397)
acA s'eS a’€A
0
+ Z Pr(Siy1 = §'|S; = 5,0) Z 7(s',d,0) Z P(s’,a’,s”)vava(; ) (398)
s'eS a’'€A s'"eS
or(s,a,0 on(s',a',0
:Z%q9(57a)+72f’r(5t+1:5/|St:579) Z %qe(tﬂ’a/) (399)
acA s'eS a’'€eA
first term second term
8 O( M
+ Z Pr(Sio = s"[S; = 879)7%8)~ (400)
s"eS

Notice what we have been doing: we are expanding the state value function by looking forward one time step, and writing
the value function in terms of the value of the next state, and then repeating this process. Above we have “unravelled” two
times, resulting in two terms, marked in the final expression. If we were to unravel the expression one more time, by expanding
Ov?(s")/00 and then differentiating, we would obtain:

ol (s on(s,a,d or(s',a,0
Quls) 5~ 0800 o 04y ST Pr(Spn = 180 = 5,0) 3 LD por o (401)
00 060 00
acA s'eS a’€A
first term second term
1 "
+92 3 Pr(Spps = 8IS, = 5,6) 3 onls”,a",0) 8’9“ 0 00, o (402)
s""eS a’cA
third term
(I
+92 3" Pr(Se = 8"|S, = 5,007 2" 8(; ). (403)
s'"es

90



Notice that in each term the symbol used for the state and action does not matter, and we can write x for the state and a for the

action (we also replace the final term with ... to denote that we could continue to unravel the expression):
o (s on(s,a,l on(x,a,l

) S O o a4 3 Pr(Sn = ali = 5.0) 3 P00 o ) (104)

acA €S acA
first term second term
F 2 Y Pr(Sign = 1S = 5,0) 3 2B o oy 4 (405)
t+2 t 9 80 , .
€S acA
third term

We now index each term by k, with the first term being k& = 0, the second k = 1, etc., which results in the expression:

'[}0 S - T™x,a
Ov (5) :ZZPF(StJrk:$|St:S,0)nyqu9(x’a). (406)

90 k=0z€eS acA 09

Notice that we have modified the first term by including a sum over states. This is not a change because when k£ = 0, the only
state, x, where Pr(Si1o = z|S; = s,0) is not zero will be when x = s (at which point this probability is one).
Notice that, in the notation used by Sutton et al. (2000), Pr(Siyr = z|S¢ = s,0) is denoted by Pr(s — z, k, 7).

End of Lecture 18, November 15, 2018

With this expression for the value derivative of the value of any state with respect to the policy parameters, we turn to
computing the policy gradient in the start-state setting:

VJ(6) :%J(G) (407)
0
5}
=50 E [G[St = s0, 0] (409)
_9 9
=" (50 (410)
S on(w,a,0
= Z Z Pr(Si4r = x|St = s0,0) Z vkmqe(x, a) (411)
00
k=0z€eS acA
= Z ZVk Pr(Sirx = 2|Sy = s0,0) Z qu(x,a) (412)
00
€S k=0 acA
=d(x)
=30 () Y0 D) o ), (413
a0
sES acA

where the last term comes from replacing the symbol z with the symbol s. This completes the proof of the policy gradient
theorem.

14.4 REINFORCE
The REINFORCE algorithm (Williams, 1992) uses unbiased estimates of the policy gradient to perform stochastic gradient ascent

on J. To obtain stochastic gradient estimates, notice that the policy gradient can be written as:

VJ(0) < E |v'¢" (S, Ar)

aan(St, At,9) ‘0:| 7 (414)

00

where oc is due to the dropped missing (1 — «y) term necessary to make d’ a distribution, and where S; and A; are sampled
according to the on-policy distribution (by running the policy with parameters 6 and observing the resulting states and actions),
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and where ¢ is uniformly distributed from 0 to L — 1. Alternatively, we can avoid the uniform distribution of ¢ by summing over
time steps in the episode:
Oln 7'('(54,57 At, 9)

) xE Zv (S0, A) 5

9] . (415)

We can obtain unbiased estimates of this gradient by samphng running an episode to obtain samples of S; and A;, and using G,
as an unbiased estimate of ¢?(S;, A;). In Algorithm 18 we present the unbiased REINFORCE algorithm—true stochastic gradient
ascent on J.

Algorithm 18: Stochastic Gradient Ascent on J (REINFORCE)

1 Initialize 0 arbitrarily;
2 for each episode do
3 Generate an episode Sy, Ag, Ro, S1, A1, R1,...,Sr-1,Ar_1, Rp_1 using policy parameters 6.;

vI0) =L, L 4G, 2o,
0+ 0+ aVJ(0);

'

o

Question 29. Consider the REINFORCE algorithm presented on page 328 of the second edition of Sutton and Barto’s book
(Sutton and Barto, 2018). Compare their algorithm to the one presented above. Notice that they are not equivalent. Are they
both true stochastic gradient ascent algorithms? Is one not?

G667 Swortm

Q7 JoMSUy

In practice, the ¢ term appearing in the REINFORCE pseudocode is ignored. This term came from the discounted state
distribution, and results in a discounting of the updates that degrades performance empirically. This theory surrounding the
removal of this ¢ term has been discussed by Thomas (2014)—at present, it is not known whether this algorithm without the ~*
term is even a true stochastic gradient function (just for a different objective). Still, in your implementations, you should likely
drop this 7* term.

Since REINFORCE is using a Monte Carlo estimator, Gy, of ¢’ (S, A;), it has high variance. Consider how we might reduce
the variance of this update. One approach is to use a control variate. Consider a general problem unrelated to reinforcement
learning: estimating p = E[X] for some random variable X. Consider doing so given a single sample, X. The obvious estimator
of p is 7hu = X. This estimator is unbiased: E[] = E[X] = p, and has variance Var(j) = Var(X).

Now consider estimating p given a single sample, X, as well as a sample, Y of another variable whose expectation, E[Y] is
known. Can we somehow create an estimator of y that is better? One approach is to use the estimator i = X — Y + E[Y]. This
estimator is still unbiased:

E[i] =E[X — Y + E[Y]] (416)

=E[X] - E[Y]|+ E[Y] (417)

=E[X] (418)

=p. (419)

However, its variance is:

Var(fi) = Var(X — Y + E[Y]) (420)

=Var(X —Y) (421)

=Var(X) + Var(Y) — 2Cov(X,Y). (422)

This variance is lower than the variance of the original estimator when:

Var(X) + Var(Y) — 2Cov(X,Y) < Var(X), (423)
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or equivalently, when
Var(Y) < 2Cov(X,Y). (424)

We refer to Y as a control variate.

So, if Y is similar to X—if X and Y have positive covariance, then subtracting Y from X can reduce the variance of the
estimate. However, even if Y and X have positive covariance, if Y is very noisy, the additional variance introduced by adding Y
can result in a net increase in variance. So, Y helps if it is low variance, yet similar to X. In some cases, Y might be an estimate
of a random process X, built from a model that has error (see the discussion of the doubly robust estimator in the appendix of
the paper by Thomas and Brunskill (2016)). This provides a way to use a model that has error to reduce the variance of Monte
Carlo estimates while preserving the unbiased nature of the estimate. In more general cases, if you know something about the
randomness in X, but you don’t know X precisely, you can subtract off your random estimate, Y, of X, and add back in the
expected value of the amount that you are subtracting off, and this will often reduce variance.

Consider again the REINFORCE update. We will insert a control variate to get the update:

L—1
31n(7r(St At 0))
0«0 Gy —b(S 0 22 425
CO+a X oG- HE) T (425)
where b: S — R is any function of the state. To see this in the form of a control variate, we can rewrite it as:
L—1 L—1
811’1 St,At, )) ¢ alH(W(St,At,e))
0«0 — b 42

< + @ Z 9 o — Py (St) 89 I ( 6)

X Y

where X is our unbiased gradient estimate (ignoring the (1 — ) normalization term) and Y is the control variate for this estimate.
The E[Y] term is not present because, in this case, it is always zero (regardless of the choice of b). That is:

L-1 L-1
3111( (St,At, o t ah’l(ﬂ'(St,At,G))
tE > ) (St) 20 01 =« E Y'E {b(St) 20 0 (427)

7a2fy ZPr St = s0) ZPr Ay = alS; =s,0)b ()M (428)

t=0 se§ acA 09

_ d1n(rn(s,a,0))

agv ;Pr Sy = s]0)b(s )(;4 (s,a,G)T (429)

—aZ'y ZPr (S; = s]0)b ()Zw (430)
t=0 SES acA

—aZ’y ZPr (St = s]0)b(s ) Z (s, a,0) (431)
= SES aG.A

—aZ’y > Pr(S; = s[0) () (432)
= seS

—aZ’y ZPr (S; = s]0)b(s)0 (433)
= sES

=0. (434)

So, inserting the b(s) control variate in (425) did not change the expected value of the update—we still obtain unbiased
estimates of the policy gradient. This raises the question: what should we use for b7 A common choice is the state-value function:
v?. This is because we expect v?(S;) to be similar to Gy, and thus the covariance term when computing the benefit of the control
variate to be positive. Hereafter we will use the state-value function as the baseline. Bhatnagar et al. (2009, Lemma 2) showed
that the optimal baseline in the average-reward setting is the state-value function, while Weaver and Tao (2001) showed that the
optimal constant (state-independent) baseline is the average reward. Although I cannot find it at the moment, I recall hearing
that the optimal baseline (minimal-variance baseline) in the discounted start-state setting is not exactly the state-value function,
but something similar.”

7If anyone discovers the appropriate reference and posts it on Piazza, I will update this document.
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We can estimate the baseline using the TD()) algorithm to obtain Algorithm 19.

Algorithm 19: Stochastic Gradient Ascent on J (REINFORCE) including a baseline (control variate). Here oo and § are
step sizes.

1 Initialize # and w arbitrarily;

2 for each episode do

3 Generate an episode Sy, Ag, Ro, S1, A1, R1,...,Sp-1,Ar_1, Rp_1 using policy parameters 6.;
4 VJ(6) =0;

5 e + 0;

6 fort=0to L—1do

7 VJ(0) = VJ(0) + 71 (Ge — vy, (Sy)) Hr S0

8 e+ yle + Lgfﬂst);

9 O — Rt + ’YUw(St+1) — vw(St);
10 w 4+ w + ade;
1 | 00+ BV/J\W);

As in the REINFORCE algorithm without the baseline, you should ignore the 4* term in the policy update. Also notice that
the update using v,,(S) as the baseline occurs before w is updated based on data that occurred after S;. This is to ensure that
w is not changed based on A;, which would in turn make v,,(S;) depend on A;, and thus would result in the control variate
(baseline) not being mean-zero.

Although REINFORCE with the baseline term is an improvement upon REINFORCE, it still uses a Monte Carlo return, G;.
If we are willing to introduce bias into our gradient estimates in an effort to reduce their variance, then we can replace the Monte
Carlo return, Gy, with the TD return, R; + yvy,(S¢+1). This results in the update to the gradient estimate:

VJ(8) = VI(0) + 7' (R + 10 (Si41) — Uw(St))aln(ﬂgz 41,6))

If we further reverse the order of the updates so that the TD-error is computed before the gradient estimate is updated, and if we
introduce bias by updating the policy parameters at every time step (as Sutton and Barto did in their REINFORCE update), we
obtain an Actor-Critic that follows biased estimates of the gradient, as presented in Algorithm 20.

. (435)

Algorithm 20: Basic Actor-Critic

1 Initialize 6 and w arbitrarily;

2 for each episode do

3 s ~ do;

4 e + 0;

5 for each time step, until s is the terminal absorbing state do
/+ Act using the actor */
ar~7(s,-);
Take action a and observe r and s';
/* Critic update using TD(A) */
e < yle + Lawugs);
0 71+ YU (8') — vy (8);

10 w — w + ade;
/* Actor update */

11 0 < 0 + arytednlrls.a) ln(”a(;’a’e));
/* Prepare for next episode */

12 s+ §';

As in the previous algorithms, the 4% term in the actor update should not be included in real implementations (Thomas,
2014). Another way to see why this basic actor-critic uses a reasonable update is to consider what would happen if § were to use
v™ rather than an estimate thereof. Specifically, recall from question 23 that E[0;]S; = s, A; = a,0] = ¢?(s,a) — v?(s). Thus, if
v = v™, then the basic actor-critic’s update would be, in expectation:

0+ 0+ay'E |(¢"(Se, A)) — 0" (Sy)) (436)

81n(7r(zté A, 0)) ’0] ’
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which is the policy gradient (with v%(S;) as a baseline, and if we ignore the fact that changing @ within an episode will change the
state distribution).

The basic actor-critic presented above has also been presented with eligiblity traces added to the actor. To the best of my
knowledge, there is no principled reason to do so. I believe that this change is similar in effect to modifying the objective function
to emphasize obtaining a good policy for states that occur later in an episode, but at this point this is an educated guess. Still,
this alternate actor-critic algorithm performs remarkably well. Pseudocode for this actor-critic algorithm, with the pesky 7! term
also removed (this algorithm is so unprincipled, there’s no need to pretend we’re going for unbiased estimates or a real gradient
algorithm—we’re going for good performance here) is provided in Algorithm 21.

Algorithm 21: Actor-Critic that looks like a policy gradient algorithm if you squint hard enough (ACTLLAPGAIYSHE)
1 Initialize 6 and w arbitrarily;
2 for each episode do
3 s ~ doy;
4 ey + 0;
5 eg <+ 0;
6 for each time step, until s is the terminal absorbing state do
/* Act using the actor */
7 a~7(s,-);
8 Take action a and observe r and s';
/* Critic update using TD()) */
9 €y < YAy + BU#ES);
10 0 14 YUy (8") — v (8);
11 w — w + ade,;
/* Actor update */
12 ep — YAeg 4 Lnlr(s.0.0) 1n(7ré(,;’a’9));
13 0 < 6 + Bdey;
/+ Prepare for next episode */
14 s+ §';

To be clear, Algorithm 21 is not a true policy gradient algorithm because:

1. It ignores the 7* term that came from the discounted state “distribution”.

2. It includes eligiblity traces in the actor update (I am unaware of any analysis of what these traces do theoretically).
3. It uses a value function estimate in place of the true value function.

4. The policy parameters are updated at every time step, and so the resulting state distribution is not d? or the on-policy
state distribution for any particular policy—it comes from running a mixture of policies.

Still, this algorithm is often referred to as a policy gradient algorithm. This same algorithm (with the «* terms implemented via
the variable I'), appears on page 332 of the second edition of Sutton and Barto’s book (Sutton and Barto, 2018).

Note: Assume that the softmax policy’s weights take the form of a vector, and that the weights for action 1 are followed by
the weights for action 2, the weights for action 2 are followed by the weights for action 3, etc. The derivative of the natural log of
this softmax policy is:

—(s,a1,0)d(s)
—71'(8, asz, 9)¢(8)
dlnn(s,ay,0) :

20 [1— (s, ar, 0)]6(s)

(s, am, 0)6(s)

Note that each line represents |$(s)| elements of the vector. This results in a vector of length n(|¢(s)|) (where n = |A|).

End of Lecture 19, November 27, 2018
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CMPSCI 687 Homework 5
Due December 11, 2018, 11:55pm Eastern Time

Instructions: Collaboration is not allowed on any part of this assignment. Submissions must be typed (hand written and
scanned submissions will not be accepted). You must use BTEX. The assignment should be submitted on Moodle as a .zip (.gz,
.tar.gz, etc.) file containing your answers in a .pdf file and a folder with your source code. Include with your source code
instructions for how to run your code to produce the results you report below. You may not use any reinforcement
learning or machine learning specific libraries in your code (you may use libraries like C++ Eigen and numpy though). If you
are unsure whether you can use a library, ask on Piazza. The automated system will not accept assignments after 11:55pm on
December 11.

As in Homework 3, you may not use existing RL code for this problem—you must implement the agent and
environment entirely on your own and from scratch. The exception to this is that you may re-use the code that you
wrote for the previous homework assignments.

Written: (20 Points Total)

1. (5 Points) If A, is sampled from a normal distribution with mean 67¢(S;) and variance o2, what is & In(r(s, a, 6)) (here
7(s,+,0) is a probability density function)? If o is considered a tunable policy parameter, What is 8 ~ In(7(s,a,0))?

dn(r(s,a,0)) 1 9 1 (a —07¢(s))?
o = rG.a0) % 53 exp ( 952 > (437)
a—0Tp(s))?

W(S’1a79)ﬂ(s7a’9)§9(g§)) (438)

=5 520 — 676(5)(~0(5)) (439)

=0 67()6(s). (440)

Om(n(s,a,0)) 1 9 1 (a —07¢(s))?

80' (S a, 9 8 \/ 71'0'2 ( 20'2 > (441)

( — <(“§;i’(5))2> +exp (W){fe (\/%)) (442)
1

5’9( L >+ e () e
esge?, L () 4 (=)
_—(a=07¢(s)* o

o o]’

(443)

(445)

2. (15 Points) Consider evaluating a fixed policy, 7. The fixed-point of the TD update using linear function approximation
occurs when the expected TD update is zero—when E[(R; + ywT@(Si+1) — wTd(S:))p(S:)] = 0. This can be equivalently

written as:
E[R:¢(S)] + E [6(Se) (v(Se41) — ¢(Se)) T w =0, (446)
E [¢(St)(¢(5t) - 7¢(St+1>)T] w = E[R;¢(St)] - (447)
A b

Consider the problem of estimating the state-value function for a policy, 7, using a fixed batch of data containing many
(s,a,r,s’) tuples generated from running the policy. One way to do this would be to run linear TD over and over on the
data until it converges. Another would be do directly solve for the fixed-point of TD by solving the least-squares problem in
(447), which has the form Aw = b, where the data could be used to construct unbiased estimates of A and b, and the system
of linear equations solved to obtain the fixed-point for w. This algorithm is called Least Squared Temporal Difference
Learning (LSTD), and you can read about it in the work of Boyan (1999), or the original paper by Bradtke and Barto

96



(1996). For this problem, derive the corresponding least-squares algorithm for the residual-gradient-like algorithm (see
(271))® that uses the update:’

w = w+ Ry + ywTd(Sey1) — wT(St))(9(St) — ¥(Si+1))- (448)

Show the derivation of the corresponding least squares problem for this residual-gradient-like update and present pseudocode
for your least squares residual-gradient-like algorithm.

We want to solve for the weights, w, such that the expected update is zero:

E[(R; +ywT¢(St41) — wTd(S:))(¢(St) — ¥6(Se+1))] = 0. (449)

We begin by putting this into the form Aw = b, with new definitions of A and b.

E [(vwT¢(St1) — wTo(Se))(4(S ) Y9(St+1))] =E [Re(v¢(Si11) — &(St))] (450)
E [(wT(v¢(St11) — ¢(51))) (6(Sr) = 7¢(Se41))] =E [Re(v9(Se41) — ¢(S))] (451)

E [(¢(S) — V¢(5t+1))(7¢(5t+1 ¢(St>>T)] =E [R(y¢(St41) — ¢(S0))] (452)
E [(¢(St) = 79(St4+1)) (Y (St+1) — St))T)] =E [Ri(v9(St+1) — ¢(St))] (453)

For full credit, pseudocode similar to that of Bradtke and Barto (1996) should be provided as well.
Programming: (50 Points)

1. (20 Points) Convert your Q-learning and Sarsa implementations into implementations of Q(A) and Sarsa(\), and apply
these algorithms to the gridworld and to mountain car (using the function approximator of your choice). Present learning
curves for Q-learning, Sarsa, Q(\), and Sarsa()\), all using the best parameters that you found for each method, and with
one plot for the gridworld and one plot for Mountain Car. Run at least 100 trials and include error bars. Comment on this
experience—did you observe a big difference between the A\ and non-\ variants of these algorithms?

2. (30 Points) Implement the actor-critic algorithm presented in Algorithm 21. Use the function approximator of your choice.
Apply the algorithm to the gridworld and mountain car domains. Present learning curves using the best parameters
that you found, compare to your results from the previous problem (you may include all methods in two plots—one per
domain—you do not need separate plots for each problem). Describe the function approximator that you used, as well as
the best hyperparameters that you found. Write a brief description of this process: how hard was it to tune the actor-critic?
How well did you find it worked in comparison to the other algorithms?

3. (15 Points Extra Credit) Implement REINFORCE with or without the baseline. Apply it to the gridworld problem and
present the resulting learning curve, which should obtain a mean return of at least 1.55. Describe the policy representation
you used and any hyperparameter settings. Try to get REINFORCE working on Mountain Car, and report the best results
that you find and the hyperparameters that you used. Describe this experience: how hard was it to tune REINFORCE and
how well did it work?

8This link will not work in the homework assignment on its own, but will work in the class notes
9This algorithm is stochastic gradient descent on the squared TD error, not the squared Bellman error, which, as you saw in a previous assignment,
is not what we actually want to minimize.
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15 Natural Gradient

As mentioned in class, you are not responsible for this lecture (it will not be on any exams, quizzes, or assignments). Also, notes
will not be typed up in full (we covered a lot!). Instead, I will give a brief summary and references.

Natural gradients were popularized by Amari in 1998 in two papers (Amari, 1998; Amari and Douglas, 1998). He argued that,
when optimizing a function f(x), where x is a vector, you may not want to assume that x lies in Euclidean space. If you want to
measure distances differently between inputs, x, natural gradients give you a way to do so. Specifically, if the distance between x
and z + A is /ATG(z)A, where G(z) is a positive definite matrix, then the direction of steepest ascent is G(z) "'V f(z). This

direction is called the natural gradient, and is often denoted by V f(z). Note that G(z) can be a function of z—we can measure
distances differently around different points, x.

This raises the question: what should G(z) be? If the function being optimized is a loss function of a parameterized distribution,
e.g., f(dg), where f is the loss or objective function and d is a parameterized distribution, parameterized by vector 6, then Amari
argued that the Fisher information matriz (FIM), F (), of the parameterized distribution d is a good choice for G. The FIM is

defined as: od od ;
F(O) = 3 dr) 20D 00) (454)

where dg(x) denotes the probability of event x under the distribution with parameters 6 (e.g., # could be the mean and variance
of a normal distribution).

I do not know who was first to show it, but it has been shown that the Fisher information matrix results in using a second
order Taylor approximation of the KL-divergence as the notion of squared distance. A review of these results so far can be found
in the introduction to my paper (Thomas et al., 2016), and the appendix includes a derivation of the Fisher information matrix
from KL divergence. The introduction to another of my papers (not the remainder of the paper) (Thomas et al., 2018) also
provides a clear example of why the “invariance to reprameterization” or “covariance” property of natural gradient algorithms is
desirable.

After Amari introduced the idea of natural gradients, Kakade (2002) showed how it could be used for reinforcement learning.
Specifically, he showed that, when using compatible function approximation (this is also not covered in the class notes, but first
appears in the paper by Sutton et al. (2000)), the natural gradient is %J(G) =w.

That is, if you solve for weights w that are a local minimizer of the loss function:

L(w) = Z d’(s) Z 7(s,a,0) (¢"(s,a) — qu(s,a))?, (455)

seS acA

where

Oln(n(s,a,0))

20 , (456)

Guw(s,a) =wT

then the natural gradient is w.

Kakade did not promote a particular algorithm, but soon after many natural actor-critic algorithms were created. These
algorithms use different policy-evaluation algorithms and baselines to estimate ¢™ (s, a) with ¢, (s, a), and then use the update
w + w + aw. Popular examples include Morimura’s linear time NTD algorithm (Morimura et al., 2005), which was later
reinvented separately (with slight tweaks) by Degris et al. (2012a, INAC) and Thomas and Barto (2012, NAC-S) (neither of us
knew of Morimura’s work at the time). Perhaps the most popular natural actor-critic was that of (Peters and Schaal, 2008),
previous variants of which they published earlier (Peters and Schaal, 2006), and which uses least squares temporal difference
(LSTD), discussed in the last homework assignment, to approximate the value function.!’ Average-reward natural actor-critic
algorithms were also created (Bhatnagar et al., 2009), and the TRPO algorithm is a natural actor-critic (the “trust region”
part denotes that the step size is measured in terms of the KL-divergence between the policy before and after the step, but the
direction of the step is just the natural gradient) (Schulman et al., 2015). The idea of natural gradients has also been applied
to value function based methods, resulting in natural variants of g-learning and Sarsa (Choi and Van Roy, 2006; Dabney and
Thomas, 2014).

On the theory side, shortly after the derivation of natural gradients for RL by Kakade, Bagnell and Schneider (2003) showed
that the Kakade’s guess as to what the Fisher information matrix should be is correct. The Fisher information matrix is defined
for parameterized distributions, and a policy is one distribution per state. Kakade averaged these Fisher information matrices,
weighted by the state distribution d™. Bagnell showed that this is the Fisher information matrix that you get if you view policies
as distributions over trajectories, and also proved that natural gradient ascent using the Fisher information matrix is invariant to

107 you implement their algorithm, note that one version of the paper has an error in the pseudocode (I believe v and w are reversed), and be sure to
clear the eligibility trace vector between episodes. You can also use WIS-LSTD (Mahmood et al., 2014) in place of LSTD to better handle the off-policy
nature of old data.
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reparameterization. A connection between natural gradient methods and mirror descent (a convex optimization algorithm) has
also been established (Thomas et al., 2013; Raskutti and Mukherjee, 2015). For a discussion of the relation to Newton’s method,
see the works of Furmston et al. (2016) and Martens (2014).

End of Lecture 20, November 29, 2018

Andy Barto gave a guest lecture on designing reward functions. His slides are available as a .key or .pdf.

End of Lecture 21, December 4, 2018

Andy Barto gave a guest lecture on neuroscience and psychology (and their relation to reinforcement learning). His slides are
available as a .key or .pdf.

End of Lecture 22, December 6, 2018

16 Other Topics

In this lecture we very briefly discussed other topics in reinforcement learning. We began by watching the first 14 minutes of this
fantastic TED talk by Gero Miesenboeck, which describes work by Claridge-Chang et al. (2009).

16.1 Hierarchical Reinforcement Learning

For many problems, learning at the level of primitive actions is not sufficient. A human brain implementing e-greedy @Q-learning
would never learn to play chess if the primitive actions correspond to muscle twitches. Some learning must occur at a higher
level—at the level of deciding which skills to apply next. Here skills might correspond to picking up an object, standing up,
changing lanes while driving, etc. Hierarchical reinforcement learning (HRL) aims to create RL agents that learn a hierarchy of
reusable skills, while also learning when these skills should be applied. For the chess example, we might want to learn a skill to
grasp an object, a skill to move our arm to a position, a skill that uses these two to move a particular piece, and then a policy
that uses all of these skills to play chess. This top-level policy would be learning (and exploring) at the level of moves in a game
of chess rather than muscle twitches. Although there are several different frameworks for HRL, one of the most popular is the
options framework, introduced by Sutton et al. (1999). If you plan on studying reinforcement learning in the future, you should
absolutely read their paper in detail.

An open problem in reinforcement learning is determining automatically which skills are worth learning. Should a baby learn
a skill to balance a book on its head while standing on one foot during a solar eclipse? Or, would it be more useful for it to learn
a skill to walk? How can an RL agent autonomously determine that the skill to walk is useful, while the other is not?

Several heuristic solutions to this problem have been proposed, with notable examples including the work by Simsek and
Barto (2008) and Machado et al. (2017). A perhaps more principled approach, which involves solving for the gradient of the
expected return with respect to parameterized skills, was proposed recently by Bacon et al. (2017).

16.2 Experience Replay

Q-learning only uses samples once. This is wasteful because some experiences may be rare or costly to obtain. Lin and Mitchell
(1992) suggested that an agent might store “experiences” as tuples, (s, a,r, s’), which can then be repeatedly presented to a learning
algorithm as if the agent experiences these experiences again. This experience replay can improve the data efficiency of algorithms
(make them learn faster) and help to avoid forgetting. Forgetting occurs when an agent uses function approximation, and some
states occur infrequently. If updates to one state change the value for other states (due to the use of function approximation), the
updates to infrequent states may be small in comparison to the updates that occur as a side-effect of updates for other more
frequent states. Thus, and agent can forget what it has learned about states (or state-action pairs) if they are not revisited
sufficiently often. Experience replay helps to mitigate this forgetting.

However, experience replay in its standard form is not compatible with eligiblity traces, and so usually experience replay is
only used when A = 0. This is not necessarily desirable—the DQN algorithm’s lack of eligibility traces is not a feature, but an
unfortunate consequence of using experience replay (Mnih et al., 2015).
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16.3 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) involves a set of agents acting in the same environment, where the actions of one
agent can impact the states and rewards as seen by other agents. Research has studied both cooperative problems, wherein all of
the agents obtain the same rewards, and thus work together, as well as more game theoretic problems wherein the agents obtain
different rewards, and so some agents might actively work to decrease the expected return for other agents so as to increse their
own expected returns. For a review of MARL, see the work of Busoniu et al. (2008).

A common concept in MARL research, and multi-objective machine learning research in general, is the idea of a the Pareto
frontier. A solution 6, is on the Pareto frontier for a multi-objective problem if there does not exist another solution ¢’, that
causes any of the objectives to increase without decreasing at least one of the other objectives (assuming that larger values are
better for all objectives). Formally, if f1,..., f, are n objective functions, then the Pareto frontier is the set

P= {9 €OV o, (3¢ e{l,....n}, fi(0)> fi(0) = 3je{1,....,n}, f;(¢) < fj(o))}. (457)

Solutions on the Pareto frontier provide a balance between the different objectives, and an algorithm should ideally return a
solution on the Pareto frontier since any other solution could be improved with respect to at least one objective function without
hindering performance with respect to any of the other objective functions. In the context of MARL, the Pareto frontier is a set
of joint-policies (a set, where each element contains a policy for all of the agents), such that increasing the expected return for
one agent necessarily means that another agent’s expected return must decrease. Some MARL research deals with the question of
solving for this Pareto frontier (Pirotta et al., 2014).

16.4 Reinforcement Learning Theory

An RL algorithm is said to be Probably Approximately Correct in Markov Decision Processes (PAC-MDP) if, with probability at
least 1 — §, after executing a fixed number of time steps less than some polynomial function of |S|, |A|, 1/, and 1/(1 — ), it
returns a policy whose expected return is within € of J(7*). The sample complexity of an algorithm is this polynomial function.
For discussion of PAC-MDP algorithms, see the works of Kearns and Singh (2002), Kakade (2003), and Strehl et al. (2006). Other
researchers focus on other theoretical notions of data efficiency, including regret (Azar et al., 2017). Although the algorithms that
are backed by strong theory in terms of regret and PAC bounds might seem like obvious choices to use in practice, they tend to
perform extremely poorly relative to the algorithms mentioned previously when applied to typical problems. An active area of
research is the push to make PAC and low-regret algorithms practical (Osband et al., 2016).

16.5 Off-Policy Policy Evaluation

As you have seen throughout the assignments for this course, reinforcement learning algorithms almost never work on the first try.
If any of the hyperparameters is not set properly for the problem at hand, or if the wrong representation is used, the algorithm
might fail to learn (or diverge). In some cases, no settings of the hyperparameters will allow for convergence (c.f., REINFORCE
for Mountain Car, or Q(0) for Cart-Pole), unless the algorithm is modified in some way. How then can an RL algorithm be
applied responsibly to a high-risk problem (e.g., medical applications, autonomous vehicle applications, etc.)?

Off-policy policy evaluation algorithms aim to give users confidence that a newly proposed policy will work well if it were to
be used. The goal is to evaluate a new policy using data collected from executing some current policy. For a review of off-policy
policy evaluation methods, begin with the work of Precup et al. (2000), which presents importance sampling, as a way to estimate
the performance of one policy using data from another. Then, see the work of Thomas et al. (2015b), for a description of how we
can construct confidence intervals around these predictions, and then the work of Thomas et al. (2015¢) for examples of how
these tools can all be combined to create RL algorithms that guarantee that they will only change the current policy if it will
result in an increased expected return (with probability at least 1 —§). A further example of a “safe RL” algorithm of this sort is
presented as an example in the work of Thomas et al. (2017).

16.6 Deep Reinforcement Learning

Deep learning and reinforcement learning are largely orthogonal questions. Deep learning provides a function approximator, and
reinforcement learning algorithms describe how to train the weights of an arbitrary function approximator for sequential decision
problems (MDPs). That is, deep networks are, from the point of view of reinforcement learning algorithms, simply a non-linear
function approximator.

However, there are some special considerations that become important when using deep neural networks to estimate value
functions or represent policies. For example, the large number of weights means that linear time algorithms are particularly
important. For example, the NAC-LSTD algorithm (Peters and Schaal, 2008), although useful for problems using linear function
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approximation with a small number of features, is completely impractical for policies with millions of weights due to its quadratic
to cubic per-time-step time complexity (as a function of the number of parameters of the policy). Furthermore, the high
computation time associated with training deep neural networks has resulted in increased interest in methods for parallization
(Mnih et al., 2016).

Also, a notable paper worth reading is that of Mnih et al. (2015), and the follow-up papers by Liang et al. (2016) (which shows
that the same results are obtainable using linear function approximation), and Such et al. (2017) (which shows that random
search outperforms RL algorithms like DQN for playing Atari 2600 games).

End of Lecture 23, December 11, 2018
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Name:

CMPSCI 687 Final Exam
December 18, 2018

Instructions: This exam is closed notes. Do not use any notes or electronic devices. You have until 8:00pm to complete this

exam.
Problem ‘ Possible Points | Points Obtained | Comments
1 (total) 15
la 3
1b 3
1lc 3
1d 3
le 3
[ 2 (total) | 5 ‘ ‘ |
[ 3 (total) | 5 | | |
4 (total) 15
4a 3
4b 3
4c 3
4d 3
4e 3
[ 5 (total) | 15 | | |
| 6 (total) | 15 ‘ ‘ |
7 (total) 15
7a 5
b 4
Tc 6
8 (total) 15
8a 3
8b 6
8c 6

Exam Total Score (out of 100):
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1. [15%] Define the following (using math, and the notation used in class):

o v"(s) = B>, 2V Resr|Si = s, 7]

e ¢"(s,a) = E[Y 0 oV Riyk|St = s, Ar = a, 7]

o Tw(s) = maxsea ) cs P(s,a,5") (R(s,a) +yv(s'))

e P(s,a,8') =Pr(Siy1 = ¢|S: = s, 4; = a)

Using a state-value function estimate, v, the TD error is defined as

(St = Rt + ")/’U(St+1) — U(St)

2. [6%)] Let v™ be the value function for the policy 7. Write an expression for the greedy action with respect to v™ in state s:

arg max Z P(s,a,s")(R(s,a) +~v"(s"))
acA s'eS

3. [6%] Write the Bellman equation (using state-values, not action-values):

v (s) = Z (s, a) Z P(s,a,s")(R(s,a) +~yv™(s)). (458)

acA s'eS
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4. [15%)] For each of the following, circle either true or false:

(True or False) Every finite MDP with bounded rewards and « € [0,1) has at least one optimal policy.

(True or False) All policy gradient algorithms are actor-critic algorithms, but not all actor-critic algorithms are policy
gradient algorithms.

(True or False) Using smaller values of A in TD()) is one way to further discount rewards (i.e., similar to decreasing 7).

(True or False) In class, Andy Barto discussed research suggesting that the firing of some dopamine-producing neurons
in human brains corresponds to a negative TD error.

(True or False) For an MDP with horizon L > 0, the 2L-step return from S, GEQL), is always equal to the Monte
Carlo return, Gy.

5. [15%] For this problem you will derive an expression for the policy gradient for a new objective function, J’. This new
objective is similar to one used in off-policy actor-critics (Degris et al., 2012b). Assume that there is a fixed policy 7. Let

=) Pr(S; = s|m,). (459)

The objective function J' is given by:
= d(s)E[R|S; = s,0]. (460)

SES

Derive an expression for the policy gradient for this objective. We will only grade the math written in the sequence of
equations below. In the last line, fill in the terms inside the expectation. These terms should only be terms that we defined
when defining an MDP (including the reward function), and the only terms that include differentiation with respect to 6
should be d7(...)/90 or dln(x(...))/00. You do not have to use all of the lines provided. Your equations should fit easily
in the space provided—if you are trying to write particularly small, you are doing something wrong. There is a blank page
after this page that you can use to draft your answer before writing your final answer here. During the exam we stated that
0 are not the parameters of m,, but the parameters of some other policy, 7, and that your final answer should not have d’
terms.

T and’ Z (s,a,0)E[R:|S; = s, Ay = a, 0]

s aca
_;gprst_sm;% 7(s,a,0)R(s,a)
_;gprst_sm ;Rea Sae)
;)E HgRSt, o S;éa 0) m,}
—E ;;R Sy, ) ‘S;é“ ,9) wbl.
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6. [15%)] Let 7 and p be two different stochastic policies. Let H = (Sy, Ao, Ro, S1,...,5L-1,Ar—1, R,—1) be a history. For
now, assume that rewards are sampled from a finite set, and R(s,a,s’,r) = Pr(R; = r|S; = s, A; = a,St4+1 = s’). Show
how the term below can be simplified so that it only contains terms from the definition of an MDP. Furthermore, ensure
that your final expression is one that could be computed by an agent that does not know the transition function, reward
distribution, or reward function. (After the exam, you can see how this result is used by Precup et al. (2000)).

Pr(H|m) :do(SO)W(SO,Ao)P(So,Ao,Sl)R(So,Ao,517R0)7T(51,A1)P(51,A1,S2)R(517A1,52731)77(527AQ)---
Pr(H|p)  do(So)u(So, Ao)P(So, Ao, S1)R(So, Ao, S1, Ro)p(S1, A1) P(S1, A1, S2)R(S1, Ay, S2, Ri)pu(S2, Az) . ...
_ (S0, Ao)m(S1, A1)7(S2, Ag) . ..
(507140) (S1, A1) p(S2, Az) . ..
_ St7At
=0 ,LL Stv
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7. [15%)] Some natural actor-critic algorithms estimate the action-value function with a linear approximator wTw +
vT¢(s), where w and v are two weight vectors that together form a combined weight vector that parameterizes the
g-approximation for a fixed policy, 7. In this question we will derive an important property about estimating the action-value

function in this way.

e (5%) Below, write out the TD(\) update equations using this function approximator. Write e, to denote the e-traces
for the parameters v and e,, to denote the e-traces for the parameters w.

T 8 ln(W(St_H, At+17 0))
00

+ UT¢(St+1)) —w' aln(ﬂ(gg 4.9)) —vT9(St)

0 Ry + Y (w
461

€y —YAey + O(St) 462
31n(7r(5t, At, 9))

€w YNey + 20

464
465

(461)
(462)
(463)
v v + ade, (464)
W 4—w + adey, (465)

e (4%) Create updates for an equivalent algorithm, but using the provided update for §. To get the right answer, you
should include in the other updates corrections necessary to make up for the terms missing from the provided update

for 0.
1) %Rt -+ "}”UT¢(S,H,1) — UT¢(St) (466)
ey <yAey + o(Sy) (467)
euw +- ey, + ZT5 A1, 0) (468)
Vvt a 6+’wa81n(7r(St+17At+l79)) _wTaln(ﬂ'(St,At,@)) € (469)
a0 00
w—w + o (5 + ywT aln(”(stgz Apy1,0)) wT aln(ﬂ(gté A, 9))) e (470)

107



e (6%) For stochastic gradient updates, adding mean-zero noise to gradient updates is not usually beneficial—it does not
change the expected updates but increases the variance of the updates. Although TD(]) is not a gradient algorithm,
we usually do not want mean-zero terms in our updates. The updates above contain at least one mean-zero term that
could be removed without changing the expected update. This term is easier to identify in the second form. Identify
one term that is mean-zero noise in the update to v (and which depends on S;), and prove that its expected value is
zero. Use the equation blocks below. Ouly the math that you write will be graded. [Note: If you made a mistake in
the previous questions, you may necessarily miss all points on this problem—double check your previous answers.]

”]
Your term here

B B ;0In(m(s, A, 0))
_gPr(St =smE| « (w — 0 ) e

E

81n(7r(5t, At7 9))
T
« (w 90 €y

Sy :s,ﬁ]

Your term here, replacing S; with s

=S Pr(S = fm) 3 o0 (wr G ) o)

seS €A
B B 0In(n(s,a,0))
_gsPr(St = s|m)a < P (s,a 6‘)39> o(s)
=3 Pr(S; = s|m)a <Tza”“9>¢>()

seS acA
:Z Pr(S; = s|m)a <wTa (s,a 9)) (s)

sES acA

seS

—Z Pr(S; = s|m)a (wT %1 o(s)
<~

=0.
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8. [15%] The TD(0) update for estimating the state-value function with the estimator v,, can be written in the form:
w 4 w + aAw, (471)

where Aw is the change to w at time step ¢ due to the transition (S, A¢, Rt, St+1). To show that the TD update is not a
gradient algorithm, we argue that, if it was, then Aw must be the gradient of the objective function, i.e., Aw = 9 f(w) /0w
for some function f. The gradient of a function, df(w)/0w, is called the Jacobian, and sometimes written as V f(w). The
Hessian of a function is 8% f(w)/0w?. The Hessian of all functions (with some smoothness assumptions) is symmetric. To
show that TD is not a gradient algorithm, we will compute what the Hessian of f(w) would be if the TD update was
gradient ascent/descent on f(w), and will argue that it is not always symmetric.

e (3%) Write the expression for Aw (this will be a vector):

Oy (St)
ow

e (6%) Write an expression for the entry in the i*" row and j*® column of the Hessian of f (this will be a scalar, while
the Hessian is a matrix). Read the next question and ensure that your final expression allows you to answer the next
question.

During the exam, we said that here you could assume linear function approximation if you want. We give the
answer for arbitrary function approximation. Note also the typo below where the order of ¢ and j is reversed—this is
inconsequential in the end—we’ve just solved for 92 f(w)/0w;Ow;.

Aw = (Rt + ’}/’Uw(st+1) — vw(St)) (472)

*f(w) 9 O
:%Awi (474)
J
0 Oy (S,
= (Bt yvulSnn) — v(5) 2t (475)
J 7
0%v,, (S, 0 T Oy (S,
:(Rt + ’}’Uw(StJrl) — vw(St))ama(wj) + (M(Rt + vvw(StH) — Uw(st))> 611()L t) (476)
_ 821}11)(516) 8Uu)(st+1) avw(St) T avw(St)
=+ 0 (Sesa) = v (5 i) 4 (2 Be) _ Dol ) Sl (477
(478)

where Aw; denotes the i*® entry in Aw.
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e (6%) Explain why your final expression above implies that the Hessian would not be a symmetric matrix. Draft your
answer elsewhere (e.g., the back of this page), and write your final answer clearly on this page. Your answer to this
question may be a clear English description—it does not have to be formal math.

2
The first term, (Ry + vy (Si4+1) — vw(St))%a(it) is the same if ¢ and j are swapped, since the Hessian of v,,(S;) is typically
i 3

O (Sii1) _ avw(sn)T Qv (St)

awj (’)Mj 8w1 ?
Specifically, consider the tabular setting where there is one weight per state and a case where S;11 # S;. If w; is the weight
for S; and w; is the weight for S;1 1, then the second term will be . However, swapping ¢ and j so that w; is not the weight
avw(st) _ O

awi

symmetric. However, the second term, (7 is not necessarily the same if ¢ and j are swapped.

for Syi1, the second term is necessarily zero, since
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