First visit MC:

If each state is visited infinitely often, then \(V_k \rightarrow v^* \).

If each state-action pair is visited infinitely often, then \(Q_k \rightarrow Q^* \).

Doing this: MC Estimation of Action-Values:

\(Q_n (s, a) \) - average return from the first time action \(a \) taken in state \(s \) in each episode.

Problem: What if it never chooses \(a \) in state \(s \)?

Is \(Q_n (s, a) \) still defined? Yes

\(Q_n (s, a) \) will not be estimated.

What to do?

Solution 1: Exploring starts:

Randomize \(s_0 \) and \(a_0 \) s.t. every (\(s, a \)) pair has a non-zero probability.

Not possible for all systems!

Solution 2: Stochastic Policy \(\pi \)

Non-zero probability for every action in each state.
Monte Carlo Control with Exploring Starts

- Avoid generating episodes in the evaluation step by improving after a single episode.
- Accumulate returns over all episodes.

Pseudocode:

Init: For all s \(\in \mathcal{S} \), a \(\in \mathcal{A} \), q _i(s,a) \leftarrow \text{arbitrary value}

\[\pi_i(s) \leftarrow \text{"action"} \]

Returns \((s,a)\) \leftarrow \text{empty list}

Repeat forever

1. Generate an episode using exploring starts using \(\pi_i \)
2. For each \((s,a)\) in the episode,
 \(G \leftarrow \text{return following first occurrence of } (s,a) \text{ in the episode} \)
 Append \(G \) to \(\text{Returns } (s,a) \)
 \(q(s,a) \leftarrow \text{mean } (\text{Returns } (s,a)) \)
3. For each \(s \) in the episode, set
 \(\pi'_i(s) \leftarrow \text{argmax } _i a q(s,a) \)

If this converges, it does so to an optimal \(\pi'_i \).

Proof: Suppose it converges to a suboptimal \(\pi'_i \). Then \(q \) has converged to the actual values for \(\pi'_i \). Then policy improvement must move \(\pi'_i \) to a better policy.

Note: It can fail to converge.
Monte Carlo Control with Stochastic Policies:

E-greedy MC Control:

Init: $q(s,a) \leftarrow$ arb. values
$\pi(s,a) \leftarrow$ arb. s.t. $\pi(s,a)$
Returns $(s,a) \leftarrow$ empty

Repeat Forever:

1. Generate an episode using π
2. For each (s,a) in the episode:
 - $G \leftarrow$ Return following first occurrence of (s,a) in the episode
 - Append G to Returns (s,a)
 - $q(s,a) \leftarrow$ mean (Returns (s,a))
3. For each s in the episode
 - $a^* \in \text{arg max}_a q(s,a)$
 - $\pi(s,a) \leftarrow \begin{cases} 1 - e^{-\frac{e}{|a'|}} & \text{if } a = a^* \\ \frac{e}{|a'|} & \text{if } a \neq a^* \end{cases}$

Properties:

- By variations on the Policy Improvement from Sutton & Barto, Vol. 1, Sect. 5.4, converges to an ϵ-greedy policy.
- In fact to the optimal ϵ-greedy policy (not necessarily optimal among all policies).
TD (Temporal Difference) Learning:

Properties:
- Like MC, learns directly from experiences:
 - does not need P and R.
- Like DP (Dynamic Programming): updates estimates in terms of other estimates.

But first, another MC algorithm:
Consider updates: $f(x) \leftarrow f(x) + \alpha (Y - f(x))$

- weights: w
- gradient descent
 - estimate from one sample: stochastic gradient descent
 - $w \leftarrow w + \alpha (Y - f_w(x)) \frac{\partial f_w(x)}{\partial w}$

Bellman Equation:
$$v(s) = E[R_t + \gamma v(s_{t+1}) | s_t = s]$$

TD Update:
$$v(s_t) \leftarrow v(s_t) + \alpha (R_t + \gamma v(s_{t+1}) - v(s_t))$$

The TD Error:
$$v(s) \leftarrow v(s) + \alpha S_t$$

"Renard Prediction Error"
MC is a stochastic gradient descent.

Is TD stochastic gradient descent?

If it is: \(f(v) = E \left[\frac{1}{2} (R_t + \gamma v(S_{t+1}) - v(S_t))^2 \right] \)

\[= E \left[\frac{1}{2} \Delta t \Delta S_t^2 \right] \]

\(\nabla f(v) = \Delta t \cdot \frac{\partial \Delta S_t}{\partial v} \) (ignoring expectation)

\[= (R_t + \gamma v(S_{t+1}) - v(S_t)) \left(\gamma \frac{\partial v(S_{t+1})}{\partial v} - \frac{\partial v(S_t)}{\partial v} \right) \]

\[\begin{bmatrix} 0 \\ \frac{\partial}{\partial v} \end{bmatrix} \]

\[S_{t+1} \quad \begin{bmatrix} 0 \\ \frac{\partial}{\partial v} \end{bmatrix} \quad \Delta S_t \]

\(v(S_t) \leftarrow v(S_t) + \alpha \Delta S_t \)

\(v(S_{t+1}) \leftarrow v(S_{t+1}) - \alpha \gamma \Delta S_t \)

Some properties:
- TD offers an update at each step.
- Converges a.s. to correct \(v \).

Seems close to s.g.d., but it is not properly sampled. (Will cover later in the course.)