
CMPSCI 687 Homework 2
Due October 17, 2017, 11pm Eastern Time

Instructions: This homework assignment consists of only a written portion.
You may discuss concepts related to the written portion with other students,
but should not discuss how to solve the specific questions with other students.
Submissions must be typed (hand written and scanned submissions will not
be accepted). We recommend that you use LATEX. The assignment should be
submitted as a single .pdf on Moodle. The automated system will not accept
assignments after 11:55pm on the due date specified above.

Written Portion (65 Points Total)

1. (10 Points) Apply value iteration to the gridworld used in class (with
stochastic state transitions and zero reward for hitting obstacles, as it was
originally presented). Remember that Rt is −10 if St+1 is the state with
water, and Rt is +10 if St+1 is the bottom-right state. Use γ = 1.0.
Begin with the value of every state being zero. Draw the value function
as a 5 × 5 grid with two cells missing (the obstacles), with numbers in
each cell of the grid correspond to the current estimate of the value of
that state. After computing vk+1, round all values to three decimal places
before continuing (your answer should include three decimal places, and
future computations should use the rounded values). Show the first ten
iterations of value iteration. Below is the initial value function:

v0:

0 0 0 0 0
0 0 0 0 0
0 0 N/A 0 0
0 0 N/A 0 0
0 0 0 0 0

2. (10 Points) Prove that multiplying all rewards (of a finite MDP with
bounded rewards) by a positive scalar does not change which policies are
optimal, using either of the definitions of optimal policies that we covered
in class (that is, show it for at least one of the definitions that we covered
in class).

3. (5 Points) Prove that adding a positive constant to all rewards (of a finite
MDP with bounded rewards) can change which policies are optimal, using
either of the definitions of optimal policies that we covered in class.

4. (5 Points) Your boss asked you to estimate the state-value function associ-
ated with a known policy, π, for a specific MDP. You misheard and instead
estimated the action-value function. This estimation was very expensive,
and so you do not want to do it again. Explain how you could easily
retrieve the value of any state given what you have already computed.
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5. (10 Points) Consider a finite MDP with bounded rewards, where all re-
wards are negative. That is, Rt < 0 always. Let γ = 1. The MDP
is finite horizon, with horizon L, and also has a deterministic transition
function and initial state distribution (rewards may be stochastic). Let
H = (S0, A0, R0, S1, A2, R1, . . . , SL−1, AL−1, RL−1) be any history that
can be generated by a deterministic policy, π. Prove that the sequence
vπ(S0), vπ(S1), . . . , vπ(SL−1) is strictly increasing.

6. (15 Points) The Bellman operator for q-functions is:

T : Q → Q,

where Q is the set of all functions, q : S ×A → R and

Tq(s, a) :=
∑
s′

P (s, a, s′)
(
R(s, a, s′) + γmax

a′
q(s′, a′)

)
.

Prove that the Bellman operator for q-functions is a contraction mapping.

7. (10 Points) A researcher proposes an estimator, Ĵ , of J . The estimator
uses data to estimate the performance of a policy. That is, Ĵ(π,H) corre-
sponds to the estimator’s estimate of J(π), where H is a history produced
by running π for one episode. Specifically:

Ĵ(π,H) =

∞∑
t=0

γt (Rt −R(St, At, St+1))+

∞∑
t=0

γt
∑
s′

P (St, At, s
′)R(St, At, s

′).

Now consider the case where we have a data set, Dn, that includes n ∈ N>0

i.i.d. histories, i.e., Dn = (H1, . . . ,Hn), each produced by running the
policy π. We construct a new estimator, Ĵn(π,Dn) = 1

n

∑n
i=1 Ĵ(π,Hi).

Prove that Ĵn(π,Dn) converges in probability to J(π). That is, for all ε,

lim
n→∞

Pr
(
|Ĵn(π,Dn)− J(π)| > ε

)
= 0.
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