
CMPSCI 687 Homework 4
Due December 7, 2017, 11pm Eastern Time

75 Points Total

Instructions: You may discuss concepts with other students, but should not
discuss implementation details or results. The assignment should be submitted
as a single .zip (not .tar or .tar.gz) file on Moodle. The .zip should include a
.pdf file with your response to all of the questions and with the results plots
included. The .zip should also include your source code. The automated system
will not accept assignments after 11:55pm on the due date specified above.

If you do not include your source code, you will get a 0/75 on this assign-
ment. If the code that you include does not reproduce the results that you
report, it will be handled as a possible academic honesty violation.

For this assignment you should (but need not necessarily1) use the provided
code. When run the code allows you to select an RL algorithm, an environ-
ment, and then asks you to specify hyperparameters. You then must specify
the number of trials (we recommend more than 100 to get consistent results)
and how many episodes to run in each trial (we leave this to you to determine
in this assignment). After running, the code produces an output .csv file that
starts with out , which contains the mean return during each episode and the
sample standard deviation of the returns, which should be used to create error
bars. You should use your own desired plotting method to translate this .csv
file into a plot.2

For this assignment you will implement Q(λ), and Actor-Critic algorithm,
and REINFORCE with a constant baseline.

1. (25 Points - Q(λ)) You will implement ε-greedy Q(λ) using linear func-
tion approximation and the Fourier basis. The code that you must add
is in QLambda.cpp. This implementation uses the “more efficient” form
of linear function approximation with discrete actions, as mentioned in
the previous assignment. That is, the feature vector, φ(s, a), is sparse
and is not computed. Instead, we only compute features given the state,
i.e., φ(s), and take the dot product of these features with a segment of
the weights, w, which depends on the action. See the getAction func-
tion in QLambda.cpp for more details about how the weights are used
to compute q-values. You may wish to review the segment function of

1You may use any language that you want, but you must code the agents entirely from
scratch (you may not use or reference existing agent code). You may use existing code for the
environments, but you must ensure that they are equivalent to the versions that we provide
(e.g., the gridworld that we use is one that we made up). We strongly recommend using
the provided code and C++ because we provide much of the code and the implementation is
computationally efficient and threaded.

2For example, if you open the .csv in excel and select the first column and make a line plot,
this will produce the standard learning curve with horizontal axis “Episode” and vertical axis
“Average Discounted Return”, which you can then add error bars to using the second column.

1



vectors documented here: https://eigen.tuxfamily.org/dox/group_

_TutorialBlockOperations.html.

(A) Find parameters that work well on the provided Gridworld domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(B) Find parameters that work well on the provided Mountain Car do-
main. Report your parameters along with a plot showing the resulting
performance.

(C) Find parameters that work well on the provided Cart Pole domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(D) Find parameters that work well on the provided Acrobot domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(E) Comment on the difficulty of finding optimal hyper-parameters for
this algorithm. Is it getting easier as you have more experience with RL
algorithms? Which parameters did the algorithm appear to be most and
least sensitive to? Did any hyperparameter values surprise you?

2. (25 Points - Actor-Critic) You will implement an actor-critic using lin-
ear function approximation and eligibility traces for both the actor and
the critic. The actor will use softmax action selection with linear func-
tion approximation over states and the Fourier basis. See the getAction

function in ActorCritic.cpp for more details about how the policy is
parameterized. The update that you should implement is:

δ ← Rt + γvᵀφ(St+1)− vᵀφ(St)

ev ← γλev + φ(St)

v ← v + αcriticδev

eθ ← γλeθ +
∂ ln(π(s, a, θ))

∂θ
θ ← θ + αactoreθ,

where αactor and αcritic are two (possibly different) step sizes, the eligibil-
ity traces, ev and eθ are initialized to zero at the start of each episode,
and φ(St+1) is the zero-vector if St+1 is a terminal state. We recommend

that you use a separate function, dlnpi to implement ∂ ln(π(s,a,θ))
∂θ , and

then use this function in the train functions.

2

https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html
https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html


Notice that this algorithm is the actor-critic presented on page 277 of
the November 5’th draft of Sutton and Barto’s new book. It is the same
as the actor-critic algorithm that we wrote on the board in class, but with
eligibility traces added to the actor.

(A) Show a derivation of ∂ ln(π(s,a,θ))
∂θ (this is something that you must

have done in order to be able to code the method).

(B) Find parameters that work well on the provided Gridworld domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(C) Find parameters that work well on the provided Mountain Car do-
main. Report your parameters along with a plot showing the resulting
performance.

(D) Find parameters that work well on the provided Cart Pole domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(E) Find parameters that work well on the provided Acrobot domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(F) Comment on the difficulty of finding optimal hyper-parameters for
this algorithm. How does this algorithm compare to Q(λ)?

3. (25 Points - REINFORCE with Constant Baseline) Implement the REIN-
FORCE algorithm using a baseline, b(s), that is a constant, i.e., that
does not depend on the state. The code that you must fill in is in
REINFORCE.cpp. To simplify this portion, we have implemented the base-
line update for you—you need only implement the computation of the
returns and the policy update, along with the same dlnpi function from
the actor-critic algorithm.

Recall that the REINFORCE update for time step t is:

θ ← θ + α(Gt − b)
∂ ln(π(s, a, θ))

∂θ
,

where b is the baseline. In the code 1) we store the entire episode and then
perform the updates for each time step after the episode has completed, so
that we can compute the returns Gt, and 2) we define an array, errors,
which stores Gt − b for each time step, t.

3



(A) Find parameters that work well on the provided Gridworld domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(B) Attempt to find parameters that work well on the provided Moun-
tain Car domain. Report the best parameters that you find. Comment
on why you think that REINFORCE does not perform well on Mountain
Car relative to the other methods.

(C) Find parameters that work well on the provided Cart Pole domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(D) Find parameters that work well on the provided Acrobot domain.
Report your parameters along with a plot showing the resulting perfor-
mance.

(E) Comment on the difficulty of finding optimal hyper-parameters for
this algorithm. How does this algorithm compare to Q(λ) and the actor-
critic algorithm?

4


