CMPSCI 687 Homework 3

Due November 9, 2017, 11pm Eastern Time

Instructions: This homework assignment consists of only a programming
portion. You may discuss concepts with other students, but should not discuss
implementation details or results. The assignment should be submitted as a
single .zip (not .tar or .tar.gz) file on Moodle. The automated system will not
accept assignments after 11:55pm on the due date specified above.

Programming Portion (100 Points Total)

For this assignment you will implement g-learning and Sarsa using linear func-
tion approximation (and the Fourier basis) on the mountain car domain. You
should use the mountain car domain as defined on pages 214 and 215 of Sutton
and Barto’s book (first edition, which is available free online), except where the
initial state always has position —0.5 and velocity 0. You should modify the
domain to terminate episodes after 20,000 time steps (do not give the current
time step to the agent—it should still only observe the position and velocity).
You may use any language that you want. Part 3 below took 3 CPU hours on
my desktop using a C++ implementation. Make sure to finish your code early
enough to be able to generate the plot for part 3 before the deadline. You must
write the environment, agent, and the code interfacing the two entirely on your
own and from scratch (do not use any RL libraries, and do not look at code in
existing RL libraries for inspiration).
Recall that the g-learning update with linear function approximation is:

0t = 1t +ymaxwTd(sy1,a") — wT(se, a)
a
Wiy1 = W + adep(st, ar),

and the Sarsa update has the same update for wy, but uses the alternate equation
for the TD-error:

0 = 1t + YWTP(S41, Q1) — WTP(S¢, ap),

where « is a step size parameter and ¢(sg,a;) is a feature vector. Recall also
that the g-learning update should be applied before a4 is generated, while the
Sarsa update should be applied after a;, 1 is generated.

Use a tabular representation over the actions, and linear function approx-
imation over the states. For the linear approximation component, use the
Fourier basis (http://psthomas.com/papers/Konidaris2011a.pdf). That is,
let 1(s) € R™ denote the features generated by the Fourier basis for state s.
Think of the actions as integers, A = {1,2,3,...,m}. Then ¢(s,a) € R and
all entries in ¢(s,a) are zero, except for the elements (a — 1)n through an — 1,
which are ¢(s) (assuming array indices start with zero, not one). A careful
implementation can avoid constructing this entire sparse feature vector (when


http://psthomas.com/papers/Konidaris2011a.pdf

checking run times in my reference implementation, I did not use this more ef-
ficient careful implementation). Do not use different step sizes for each feature
as described in the section “Scaling Gradient Descent Parameters” of the linked
paper.

Use initial weight vector w_; = 0. Use e-greedy action selection. That is, in
state s, with probability 1 — € select an action uniformly randomly from the set
of actions, a, that maximize wT¢(s, a), and with probability e select an action
uniformly randomly from A. Also, the value of terminal states is always zero.
This must be included in your implementation, and can be implemented by
replacing wT¢(s,a) with zero if s is a terminal state (or the absorbing state).
Although our goal is to maximize the expected return with v = 1, you should
treat v as a hyperparameter of the algorithm, but plot your results using v = 1.

There should be no ambiguity in this assignment: your code should produce
exactly the same results that our reference code produces (except for the random
numbers and differences in floating point computations). If you reach a point
where you are uncertain about how something should work, please ask.

1. (30 Points) Include your code, along with compilation instructions in the
.zip file. Although we do not have the resources to compile and verify
every student’s code, we will randomly select a sub-sample of submissions
and will verify that they compile, run, and produce the reported results.
Submitting code that does not compile, run, and produce the results that
you report below, or code that is similar to code found online or a peer’s
code, will be reviewed as a possible case of academic dishonesty.

2. (40 Points) Find hyperparameters that work well for each method (possi-
bly different hyperparameters for each method). The hyperparameters are
«, 7, €, and the order of the Fourier basis. For the best hyperparameters
that you find, include a plot showing the mean undiscounted return on the
vertical axis and the number of training episodes on the horizontal axis.
Include one curve for each method (two curves total), average the mean
undiscounted returns over at least 500 trials, and include error bars.

3. (30 Points) Run both methods with the parameters « = 0.05, v = 1.0,
€ = 0.5, and the first-order Fourier basis. Run 10,000 trials and plot the
performance the same way that you did for the previous section, where the
horizontal axis spans episodes 0 — 200 and the vertical axis shows returns
from —1000 to 0. If your plot does not precisely match our reference plot,
you will not get partial credit for this portion. Report how long it took
for your code to run.



