CMPSCI 390A Homework 5

YOUR NAME HERE
Assigned: Mar 4 2021; Due: Mar 16 2021 @ 11:00 am ET

Abstract

In this assignment we will finally create our very first neural network! To submit this assignment, upload a .pdf to
Gradescope containing your responses to the written response questions below. You are required to use BTEX for your
write-up. When submitting your answers, use the template IWTEX code provided and put your answers below the question
they are answering. Do not forget to put your name on the top of the .pdf. To submit the assignment’s coding portion,
upload a single python file called my_hw5.py, to the Gradescope programming assignment for Homework 5. An auto-grader
will check your code for the correct output. As such, your program must meet the requirements specified below. We will
also be using cheating detection software, so, as a reminder, you are allowed to discuss the homework with other students,
but you must write the code on your own. Come to office

1 Install TQDM

For this assignment, we use the TQDM library that will automatically print out a progress bar for your loops. To add it to
your conda environment run the following commands:

conda activate cs390a
conda install tqdm

To have your for loops automatically print out a progress bar you can use the tqdm function on any for loop. For example,

x=0

for n in tqdm(range(num_iterations)):
X t=n
print(x)

This code will output the print statements in for loop and show the progress bar like in Figure

Figure 1: Example of tqdm output.

2 Network Initialization (10 points)

In previous assignments, we have initialized the weights to all be zero, but for our neural networks this will not be an effective
initialization method. Spend some time to think about how initializing all the weights to zero will affect the gradients. There
will be a question on it later. So instead, weights will be initialized by sampling from a Gaussian/normal distribution with
zero mean and standard deviation corresponding to hyperparameter, scale. This initialization is described in more detail
below, but you can look up numpy.random.randn() to see how to this can be implemented.

To create a “fully-connected”, multilayer, feedforward network, each layer will need a 2D array to represent the weights
of that layer. To keep track of all these weights, the weights in each layer will be labeled as Wy to Wy, for a network with L
hidden layers (W, are the weights in the output layer). An example can be seen in Figure[2| Each weight array will be stored
in a dictionary, where the key for a weight array is the string of its label, e.g., the weights W5 will have the label “W2”. In

Figure 2: Example of a L layer neural network (left) and an example of the indexing of some particular weight in weight
layer W, (right) — this is lower-case 1 to denote an index between 0 and uppercase L (the number of layers). On the right
the weight is labelled W;,, because it is a weight in layer 1 that goes from the ith input to the jth output neuron

the code this is called the “init_params” and “param” dictionary (different names in different functions). This function will
be checked by an autograder for correctness.

To initialize the weights of the network, you will complete the function initialize network (), which takes two variables
as input: layer_sizes and scale and returns a dictionary containing the weights of the network. The variable layer_sizes
specifies the number of neurons in each layer and the first number in the list should correspond to the number of inputs to the
network. The variable scale represents the scaling applied to randomly generated weights. For example, given layer_sizes =
[100, 50, 1], you would need to create only two weight matrices — the first, Wy, would have the shape (100, 50). To set this
in your dictionary using numpy, you might write:

init_params["W"+str(0)] = np.random.randn(100,50) * scale

3 Forward Pass (10 points)

Now that you have your parameters initialized, we can start to actually use your neural net (well, ““use””). Now, you’ll need
to complete the forward() method for your network. This method will take your dictionary of parameters and the 2D array, X,
(that’s the input) and will calculate a prediction. We will not be adding a constant term to our input at all for this homework.

Recall that the output of a layer of your network should act as the input to the next — that is, the output of the layer
with weights Wy will be the input of layer with weights W;.

For our networks in this homework we will be using o in every layer besides the first (the real input) and
the last (the prediction).

We must also have our forward pass remember the intermittent values of our calculation so that we are able to perform
backpropagation. Please save all your intermittent values (that is, in; and a; values — the weighted sums and outputs of each
node) in a dictionary, cache. You must create keys for your dictionary of this form for autograding — “AL” where L is an int
and where this key maps to the input to the L-th weight layer, and similarly “INL”. That is, there should be two values in
your cache per value in your param dictionary.

4 Loss and Backpropagation (20 points)

This is the bread and butter of your neural network code — you will be calculating the gradient of the loss using backpropagation.
For this homework we will be using the Least Squares (LS) as the loss, which, as a reminder, is:

n

U(w) = (ys = fulz:)*.

i=1

To calculate the gradient of this loss with respect to the parameters, first calculate the partial derivative of the loss with
respect to our final layer’s weights, and then use the chain rule to propagate that loss backward and find the partial derivative
of loss with respect to each of the layers’ weights.

_ [ol(w) Ol(w) Ol(w)
L OWo T oW, T oWy |

Vi(w)

Hint: you will use the values stored in your cache to calculate the gradient — each layer will have to use the output of the
previous layer. Also here’s an example of the chain rule to find the partial of W; when you know the partial of IN;;1:

8l(w) - 6l(w)) 8A1+1] 61Nl+1
oW, 0A;1 OINy 0w,

~ Ol(w) .GU(INH_l)
0Ary1 OINj

A,

Implement the backprop_and_loss() method, which will take a prediction array, your network parameters, your cache, and
your true labels Y, and will calculate the gradient and loss of your network.

Recall the following as well:

Al = O’(IN[)
and

Oo(x)
Ox

=o(z)* (1 —o(z))

and
Ol(w) Al(w)

e . W
94, OINi

Look in the course notes if you are having trouble with these calculations

5 Gradient Descent(10)

Now that all the parts are in order we can finally put them all together. Implement your gradient_descent() method which
will perform gradient descent on you network. You may begin with your implementation from previous homeworks, but you
will need to modify it to work on an arbitrary number of layers.

Once you have your gradient descent working you can run your code and you should get a graph that looks somewhat
like figure 2. Because random initial weights are used the learning curves will be different on each run.

Gradient Descent

10000

8000 4

6000 4

Sguared Loss

4000 4

2000 1 .
—— single layer

two layer
—— many layer

10° 10! 102 103 104
lterations

Figure 3: Example Learning curve plot with default hyperparameters.

6 Hyper Parameters and Best Model (10 points)

Now that we have some results, let’s try to get good results. Try changing the scale, alpha, and number of iterations on each
of the three provided models and see what performance you're able to get out of each. You should be able to get them all
down to about 350 training loss.

You'll notice now that we are also finding the testing loss of each of your models — this is the measurement of how your
models are performing on data that it has not trained on but which is from the same dataset (we call this the testing data).
Take a look at which cases are doing well on that metric, particularly, is there a case when better training loss means worse
testing loss?

fu (X
w(X) <> = Train data

O = Test data
1= Model 1

/
IS /@/<> [= Model 2

©
¢>

X

Figure 4: A model that is very well fit to training data (model 1) vs a model that is not as well fit to the training data but
better fit to the training + test data (model 2)

To understand the need for a testing dataset take a look at Figure 4. Although our model may fit extremely well to the
training data like model 1 — the second we try to use it on any data that we didn’t have for training (like when it’s deployed
and using real world data) it fails tremendously. In this case we say that model 1 is overfit on the training data.

So now imagine we reserve some of the data from the training dataset such that our model can’t be trained on it. Will
an overfit model do well on our reserved data? No! So now we have a way to identify when our model is overfitting. Take
note of the testing loss scores of your models while tuning the hyperparameters and see if you can see any overfitting.

Once you’ve worn yourself out playing with the hyperparameters, change the values in the train_best_model() method to
values that you think would have very good performance on data that it isn’t trained on (this new data would be the testing
data). Be careful though! We are going to be testing your best model on a different test dataset than the one provided (but
still taken from the same distribution of data). Your best model must average below a test loss of 700 for you to get the 10
points in this section.

Written Report (40 points)

. (10 points) Include a plot of the losses of each of your 3 tuned models as well as your best model (you’ll need to change
code in main to plot this) — Describe your best model and list the values of its hyperparameters here.

. (15 points)

(a) Remove the forward and backward of your o and make sure that your networks still run. Tune the hyperparameters
until you get alright results (remember your best hyperparams with sigmoid though). How does the performance
compare?

(b) Now, try using a very low (close to zero) value for scale and a very high value (significantly larger than 1) for
your multi-layer network. Print out the gradients of each layer during training (don’t include this in the write up
please). How do the gradients of the weights in different layers compare?

(c) Write out the equation for the gradient without o (it’s simpler than with). Based on the gradient calculation, why
is the behavior in part b expected?

(d) What happens to the gradient with high and low values of scale, where there are sufficiently many layers? (5-10
layers should be enough here — what ever you can run)

(e) Try adding back sigmoid and see if it still behaves the same way, do you see the same behavior?

. (5 points) Propose some solution, using something you worked on in HW4 (and not using sigmoid), to the issue observed
in question 2, explain your reasoning.

. (5 points) Why is it important to use a different training and testing dataset? Think up a real world example where
measuring your performance off of your training loss would cause serious issues (See section 6 if you're not sure).

. (5 points) In choosing our best model, we could look at its performance on the given test dataset to tune the hyperpa-
rameters — Is this a good method to avoid the problem from question 47

Extra Credit (15 points)

. (5 points) Implement the method extra_credit_fit() which will create models and train them very similarly to our main()
method, except it will do the normalization and basis expansions (on your input X) from the previous homework.

Plot the training losses of each permutation of basis expansion, normalization and model size (one-layer, two-layer,
many-layer) — there should be 2 x 3 x 3 = 18 lines in total. Briefly describe any findings that you found interesting

. (5 points) Using your add_constant() function from the previous homework, add a constant term to each layers’ output
(besides the final output) and change the size of the initialized weights such that they take an input one larger than
normal. This will add a bias term to each of your layers. Plot the performance (and show it here) of your three models
with and without the new bias terms, does the performance improve?

. (5 points) Modify your network so that the activation function is o(x) = max{0,z}. This activation function is called
a rectified linear unit (ReLU).

Make sure that you work out how this new definition of ¢ impacts both the forwards and backwards passes. Note
that the derivative of this activation function should be extremely simple, except at the point = 0, where you should
assume that do(z)/0x = 0.

	Install TQDM
	Network Initialization (10 points)
	Forward Pass (10 points)
	Loss and Backpropagation (20 points)
	Gradient Descent(10)
	Hyper Parameters and Best Model (10 points)
	Written Report (40 points)
	Extra Credit (15 points)

