
Page Cache Management in Virtual
Environments

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Prateek Sharma

Roll No: 09305910

under the guidance of

Prof. Purushottam Kulkarni

a
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai

Dissertation Approval Certificate

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

The dissertation entitled “Page Cache Management in Virtual Environments”,

submitted by Prateek Sharma (Roll No: 09305910) is approved for the degree of

Master of Technology in Computer Science and Engineering from Indian Insti-

tute of Technology, Bombay.

Prof. Purushottam Kulkarni

Dept. CSE, IIT Bombay

Supervisor

Prof. Umesh Bellur

Dept. CSE, IIT Bombay

Internal Examiner

Dr. Preetam Patil

NetApp Corp., Bangalore

External Examiner

Prof. Shishir Kumar Jha

SJM SOM, IIT Bombay

Chairperson

Place: IIT Bombay, Mumbai

Date: 28th June, 2012

i

Declaration

I, Prateek Sharma, declare that this written submission represents my ideas in my

own words and where others’ ideas or words have been included, I have adequately cited

and referenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above

will be cause for disciplinary action by the Institute and can also evoke penal action from

the sources which have thus not been properly cited or from whom proper permission has

not been taken when needed.

Signature

Name of Student

Roll number

Date

ii

We investigate memory-management in hypervisors and propose Singleton, a KVM-

based system-wide page deduplication solution to increase memory usage efficiency. We

address the problem of double-caching that occurs in KVM—the same disk blocks are

cached at both the host(hypervisor) and the guest(VM) page caches. Singleton’s main

components are identical-page sharing across guest virtual machines and an implemen-

tation of an exclusive-cache for the host and guest page cache hierarchy. We use and

improve KSM–Kernel SamePage Merging to identify and share pages across guest virtual

machines. We utilize guest memory-snapshots to scrub the host page cache and maintain

a single copy of a page across the host and the guests. Singleton operates on a com-

pletely black-box assumption—we do not modify the guest or assume anything about its

behaviour. We show that conventional operating system cache management techniques

are sub-optimal for virtual environments, and how Singleton supplements and improves

the existing Linux kernel memory-management mechanisms. Singleton is able to improve

the utilization of the host cache by reducing its size(by upto an order of magnitude), and

increasing the cache-hit ratio(by factor of 2x). This translates into better VM perfor-

mance(40% faster I/O). Singleton’s unified page deduplication and host cache scrubbing

is able to reclaim large amounts of memory and facilitates higher levels of memory over-

commitment. The optimizations to page deduplication we have implemented keep the

overhead down to less than 20% CPU utilization.

we argue that second-level page-cache allocation to Virtual Machines plays an im-

portant role in determining the performance, isolation, and Quality-of-Serice of Virtual

Machines. The second-level cache is a contended resource, and also competes with the

memory allocated to the Virtual Machines themselves. We show that the phenomenon of

swapping-while-caching is particularly detrimental to VM performance. Our solution is

to utilize cache-partitioning, and we have implemented a per-file page cache in the Linux

kernel. Our framework allows fine-grained control of the page cache by applications and

virtual machines.

iii

Contents

1 Introduction 1

1.1 Contributions . 3

1.1.1 Singleton . 3

1.1.2 Per File Cache . 4

1.2 Outline . 4

2 Literature Review 5

2.1 Page Deduplication . 5

2.2 Exclusive Caching . 5

2.3 Memory overcommitment . 6

2.4 Cache Management . 6

3 Background: Virtualization with KVM 8

3.0.1 KVM architecture and operation 8

3.0.2 Disk I/O in KVM/QEMU . 9

3.0.3 QEMU caching modes . 9

3.0.4 Linux page-cache and page eviction 10

3.0.5 Page Deduplication using KSM . 11

4 Singleton: System-wide Page Deduplication 13

4.1 Motivation: Double caching . 13

4.2 Potential/Existing approaches For Exclusive Caching 15

4.3 The Singleton approach . 17

4.4 Scrubbing frequency control . 18

4.5 KSM Optimizations implemented . 19

4.5.1 Exploiting spatial locality using Lookahead 19

4.5.2 KSM implementation of Lookahead 20

4.5.3 Performance with Lookahead optimization 21

4.5.4 Filtering by Guest Page flags . 22

4.6 Experimental analysis . 24

4.6.1 Setup . 25

iv

4.6.2 Host-cache utilization . 25

4.6.3 Memory utilization . 27

4.6.4 Memory overcommitment . 30

4.6.5 Impact on host and guest performance 30

4.6.6 Summary of results . 32

5 Per-file Page-cache in Linux 34

5.1 Introduction . 34

5.1.1 Contributions . 34

5.2 Need for fine-grained Page-cache control 35

5.3 Background : The Page Cache . 37

5.3.1 Buffer cache . 38

5.3.2 Linux Page Cache . 38

5.3.3 Linux Page eviction . 39

5.4 Utility based cache partitioning . 42

5.4.1 File Access Patterns . 42

5.4.2 Utility vs Demand-based caching 42

5.4.3 Challenges in MRC generation . 44

5.5 Per-file Cache Design . 45

5.5.1 Synchronization Issues . 50

5.6 Utility based Adaptive Partitioning . 50

5.6.1 File Cache size . 51

5.6.2 Total File-cache size . 52

5.7 Performance Evaluation of Per-file Cache 52

5.7.1 Setup and Workloads . 52

5.7.2 Cache size . 52

5.7.3 I/O Performance . 53

5.7.4 Overhead . 54

6 Conclusion & Future Work 56

6.1 Future Work . 57

A Kernel changes for Singleton 63

B Kernel changes for Per-File Cache 64

C Kernel changes For AMD NPT Dirty-bit KSM scanning 65

v

Chapter 1

Introduction

In virtual environments, physical resources are controlled and managed by multiple agents

— the Virtual Machine Monitor(VMM), and the guest operating systems (running inside

the virtual machines). Application performance depends on both the guest operating

system and hypervisor, as well as the interaction between them. The multiple schedulers

(CPU, I/O, Network), caches, and policies can potentially conflict with each other and

result in sub-optimal performance for applications running in the guest virtual machines.

An example of guest I/O performance being affected by the combination of I/O scheduling

policies in the VMM and the guests is presented in [14].

In this thesis we consider the effects of physical memory being managed by both the

VMM(Virtual Machine Monitor) and the guest operating systems. Several approaches

to memory management and multiplexing in VMMs like ballooning and guest-resizing

exist [54]. We focus on techniques which do not require guest support(page-sharing) and

consider system-wide memory requirements, including that of the host operating system.

The primary focus of our memory-management efforts is on the behaviour of the page-

cache. The page-cache [26] in modern operating systems like Linux, Solaris, FreeBSD etc

is primarily used for caching disk-blocks, and occupies a large fraction of physical memory.

The virtualization environment we focus on is KVM(Kernel Virtual Machine) [31], which

is a popular hypervisor for Linux, and allows unmodified operating systems to be run

with high performance. KVM enables the Linux kernel to run multiple virtual machines,

and in-effect turns the operating system(Linux) into a VMM(also called hypervisors). We

consider the effectiveness of using conventional OS policies in environments where the OS

also hosts virtual machines. We show that the existing operating system techniques for

page-cache maintenance and page-evictions are inadequate for virtual environments.

In contemporary Virtualized environments, the Operating System plays an additional

role of a hypervisor. That is, it enables running multiple Virtual Machines by multiplex-

ing physical resources (such as memory, CPU-time, IO bandwidth) among the virtual

machines. Resource management policies are thus enforced at two levels : within the

Operating Systems running inside the virtual machines (managing the virtualized re-

sources among processes) , and the hypervisor managing the resources among the virtual

machines. We explore this hierarchical control and management of resources for one par-

1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400

M
em

or
y

(M
B

)

Time (seconds)

Free Cached Swap

Figure 1.1: Memory usage graph for a sequential disk-read workload. The start of the

workload corresponds to a sharp drop in free memory and an increase in swap usage. Due

to the heavy I/O, the cache is not dropped inspite of the memory pressure

ticular resource : main-memory. In particular, we analyze the effects of multiple levels of

page cache present in virtualized environments.

In most KVM setups, there are two levels of the page-cache—the guests maintain their

own cache, and the host maintains a page-cache which is shared by all guests. Guest I/O

requests are serviced by their respective caches first, and upon a miss fall-through to the

host page-cache. This leads to double-caching: same blocks are present in the guest as well

as the host caches. Furthermore, the host-cache sees a low hit-ratio, because pages are

serviced from the guest’s page-cache first. This double caching wastes precious physical

memory and leads to increased memory-pressure, causing swapping and performance loss.

In particular, the problem of swapping is detrimental for virtual setups. Figure 1.1 shows

the memory-usage graph when guest VMs execute I/O intensive workloads, and illustrates

that the host system starts swapping even in the presence of cached pages. Note that the

guests maintain their own page-caches, and the host caching leads to swapping of pages

belonging to VMs. While this unfortunate situation can be ameliorated with existing

techniques like using direct I/O and fadvise for the guest VMs etc, we show that they

adversely affect VM performance.

This thesis addresses the problem of multiple levels of cache present in virtual envi-

ronments, and we seek to implement an exclusive-cache. Exclusive caching entails not

storing multiple copies of the same object in multiple locations in the cache hierarchy.

While multi-level caching and exclusive caches are well studied in the context of network-

storage systems [28, 20, 56] and CPU architectural caches, our work is the first to focus

on exclusive caching in KVM-based environments. Furthermore, we implement a com-

2

pletely black-box approach—requiring no guest modifications or knowledge. We do not

rely on graybox techniques like intercepting all guest I/O and page-table updates found in

Geiger [30] and XRAY [9]. Another constraint we adhere to is that our solution must not

cause performance regressions in non-virtualized environments, since the OS(Linux) serves

both as a conventional OS running userspace processes and virtual machines. Thus, we do

not change any critical kernel component. This prevents us from implementing specialized

techniques for second-level cache-management which are found in [25, 56, 60, 61].

Page deduplication across Virtual Machines [54, 32, 33] is an effective mechanism to

reclaim memory allocated to the VMs by the hypervisor in a completely guest-transparent

manner. To implement the exclusive page-cache, we utilize content-based page dedupli-

cation, which collapses multiple pages with the same content into a single, copy-on-write

protected page.

1.1 Contributions

This thesis makes two important contributions.

• An exclusive-cache solution (called “Singleton”) is developed and evaluated.

• A new page-cache design (called “Per-File-Cache”) is proposed, implemented and

evaluated.

1.1.1 Singleton

As part of this work, we design and evaluate Singleton, a Kernel Samepage Merging

(KSM) based system-wide page deduplication technique. Specifically, our contributions

are the following:

• We optimize existing KSM duplicate-page detection mechanisms which reduce the

overhead by a factor of 2 over the default KSM implementation.

• We implement an exclusive host page-cache for KVM using a completely black-box

technique. We utilize the page deduplication infrastructure (KSM), and proactively

evict redundant pages from the host cache.

• Through a series of workloads and micro-benchmarks, we show that Singleton de-

livers higher cache-hit ratios at the host, a drastic reduction in the size of the

host-cache, and significantly improved I/O performance in the VMs.

• We show that proactive management of host cache provides higher levels of memory

overcommitment for VM provisioning.

Our implementation is a non-intrusive addition to the host kernel, and supplements the

existing memory-management tasks of the VMM (Linux), improves page-cache utilization

and reduces system-load.

3

1.1.2 Per File Cache

• A new page-cache architecture for the Linux kernel is designed and implemented.

• The page-cache is partitioned by file, and hence called the per-file page-cache. The

cache design allows for fine-grained control of a file’s cache. For example, the size

of the cache and the caching algorithm can be specified for each file.

• We explore the problem of utility based cache partitioning and show that it yields

significantly higher cache utilization (by upto an order of magnitude) as compared

to the existing unified caches found in all operating systems.

1.2 Outline

A brief overview of existing literature in the areas of page-deduplication, exclusive-caching,

page-caches, partitioned-caches is given in 2. Comparisons with related work are made

throughout the rest of the report wherever applicable. In chapter 3, we introduce the

architecture of KVM, KSM, QEMU, which will help motivate the problems and the solu-

tions that we propose. Chapter 4 describes Singleton — the motivation behind exclusive-

caching in KVM, the design and architecture , and the performance improvements. In

chapter 5 we turn our attention to the problems with unified caches and propose our per-

file cache design. Finally, we conclude in chapter 6 and list the future work. Appendices

contain some implementation details of Singleton and Per-file cache.

4

Chapter 2

Literature Review

2.1 Page Deduplication

Transparent page sharing as a memory saving mechanism was pioneered by the Disco [15]

project, although it requires explicit guest support. Inter-VM content based page sharing

using scanning was first implemented in VMWare ESX Server [54]. While the probability

of two random pages having exactly the same content is very small, the presence of a large

number of common applications,libraries etc make the approach very feasible for a large

variety of workload combinations [33, 32, 29, 34, 19]. Furthermore, page deduplication can

also take advantage of presence of duplicate blocks across files (and file-systems). Storage

deduplication for virtual environments is explored in [63, 47]. Page sharing in hypervisors

can be broadly classified into two categories—scanning-based and paravirtualized-support.

Scanning based approaches periodically scan the memory areas of all VMs and perform

comparisons to detect identical pages. Usually, a hash based fingerprint is used to identify

likely duplicates, and then the duplicate pages are unmapped from all the page tables they

belong to, to be replaced by a single merged page. The VMWare ESX-Server [54] page

sharing implementation, Difference Engine [27] (which performs very aggressive duplicate

detection and even works at the sub-page level), and KSM [7] all detect duplicates by

scanning VM memory regions. An alternative approach to scanning-based page sharing

is detecting duplicate pages when they are being read-in from the (virtual) disks. Here,

the virtual/emulated disk abstraction is used to implement page sharing at the device

level itself. All VM read-requests are intercepted and pages having same content are

shared among VMs. Examples of this approach are Satori [40] and Xenshare [32]. This

approach is not possible with KVM because it does not primarily use paravirtualized I/O.

2.2 Exclusive Caching

Several algorithms and techniques for implementing exclusive caching in a multi-level

cache hierarchy exist. Second-level buffer management algorithms are presented in [61,

60]. Most work on exclusive caching is in the context of network storage systems— [25],

5

DEMOTE [56], XRAY [9].

An exclusive-cache mechanism for page-caches is presented in Geiger [30], which snoops

on guest page-table updates and all disk accesses to build a fairly accurate set of evicted

pages. However it uses the paravirtualized drivers and shadow page-tables features of

Xen, and its techniques are inapplicable in KVM and hardware-assisted two-dimensional

paging like EPT and NPT [1].

2.3 Memory overcommitment

One way to provide memory overcommitment is to use conventional operating systems

techniques of paging and swapping. In the context of VMMs, this is called host-swapping [54],

where the VMM swaps out pages allocated to VMs to its own swap-area. Another ap-

proach is to dynamically change memory allocated to guests via a ballooning method

[54, 49], which “steals” memory from the guests via a special driver. Several other strate-

gies for managing memory in virtual environments, like transcendent memory [37], collab-

orative memory management [50] exist, but they require explicit guest support or heavy

hypervisor modifications.

Transcendent memory [37] is a radical solution to dynamic memory management,

which mandates memory regions which are not in explicit control of the host kernel.

That is, a large area of memory is reserved, and is not directly addressible by the kernel.

It is used to store objects (usually pages). Users (VMs and host) can use this object store

to store pages. The key feature of transcendent memory is that there are no guarantees

made about the availibility of these objects. That is, the objects(pages) which are stored

in the transcendent memory area are not persisent. Thus only clean pages can be stored

in the transcendent memory. If a lookup for a page in the transcendent memory fails,

it must be bought back from the disk. Thus the users of transcendent memory must

make changes to several memory access operations. Transcendent memory has been used

mainly to implement several kinds of cleancaches (a page cache for clean pages). For

example, one application is to provide a compressed pool of pages, as done by ramzswap.

2.4 Cache Management

The work closest to ours is by Pei Cao [18, 16, 17], which describes techniques for

application controlled caching — wherein applications can control the contents of the

page-cache explicitly by specifying which blocks to evict in case the cache overflows.

The LRU-SP [18] algorithm which they have devised allows applications to over-rule the

kernel’s eviction decision. In contrast to our work, the kernel still maintains a unified

LRU list, and thus there is no explicit control on the size of each file’s cache.

Early work in OS disk-caches by [8, 24] models the hit-ratios in a cache hierarchy

when each cache in the hierarchy implements a different demand-paging algorithm (such

as LRU,FIFO,RANDOM). Several optimizations for OS-level disk-caches have been pro-

6

posed and prototyped. The Karma-cache system [58] use marginal gains to guide place-

ment of data in a multi-level cache hierarchy — address ranges with a higher marginal

gain are placed higher. It implements various heuristics for cache allocation, file-access

pattern detection, and replacement.

[5] demonstrate an implementation of a policy controllable buffer-cache in linux.

Policy controllable caches are a natural fit for micro-kernel architectures, where the policy

is implemented by servers which need not run in the kernel-mode. Hence, a the cache-

manager can be abstracted away into a separate server, and it interacts both with the

buffer-cache server itself as well as other userspace servers to determine and control the

policy. An example of such a scheme has been shown for the Mach [36] and HURD [55]

micro-kernels. Disk cache partitioning is also explored in [53]. The RACE system [62]

performs looping reference detection and partitions the cache for sequential, random and

looping files. Similarly, DEAR [22] presents an implementation study of caching using

adaptive block replacement based on the access patterns.

Cache partitioning is a very widely studied problem in CPU architectural data caches

(L2) which are shared among multiple threads. Work by [41, 6] details several cache

partitioning schemes, where the algorithms decide on which application threads get how

many cache ways(lines). The goal is almost always to maximize the IPC count via min-

imizing the number cache-misses. The key insight of the cpu cache partitioning research

is that different applications have vastly different utilities. That is, the miss-ratio vs.

cache-size (Miss-ratio Curve) of each application is different, and it is beneficial to allo-

cate cache space by choosing a size for each application which minimizes the miss-rate

derivative. We must emphasize here that all the utility-based L2 cache partitioning work

has not found application in real CPUs.

Page-cache management for virtual environments is covered in [51], however it requires

changes to the guest OS. Ren et.al., [46] present a new buffer cache design for KVM hosts.

Their ‘Least Popularly Used’ algorithm tracks disk blocks by recency of access and their

contents. Duplicate blocks are detected by checksumming and eliminated from the cache.

LPU does not provide a guest-host exclusive cache, nor does it implement any inter-

VM page sharing. Instead, all VM I/O traffic goes through a custom LPU buffer-cache

implementation. We believe that having a custom high-traffic page-cache would suffer for

scalability and compatibility issues—the page-cache contains millions of pages which need

to be tracked and maintained in an ordered list (by access time) for eviction purposes.

This is not a trivial task: the Linux kernel has been able to achieve page-cache scalability

(with memory sizes approaching 100s of GB and 100s of CPU cores contending for the

LRU list lock) only after several years of developers’ efforts. Hence our goal with Singleton

is to minimize the number of system components that need to be modified, and instead

rely on proven Linux and KVM approaches, even though they may be sub-optimal.

7

Chapter 3

Background: Virtualization with

KVM

This chapter presents the relevant background which will help motivate our solutions. We

present the relevant KVM architecture, and since KVM uses the rest of the Linux kernel

for most of the services, we provide the necessary Linux background as well. In particular,

the Kernel Samepage Merging(KSM) page deduplication mechanism is detailed.

3.0.1 KVM architecture and operation

KVM(Kernel Virtual Machine) is a hardware-virtualization based hypervisor for the Linux

kernel. The KVM kernel module runs virtual machines as processes in the host sys-

tem, and multiplexes hardware among virtual machines by relying on the existing Linux

resource-sharing mechanisms like its schedulers, file-systems, resource-accounting frame-

work, etc. This allows the KVM module to be quite small and efficient.

The virtual machines are not explicitly created and managed by the KVM module, but

instead by a userspace hypervisor helper. Usually, QEMU [11] is the userspace hypervisor

used with KVM. QEMU performs tasks such as virtual machine creation, management

and control. In addition, QEMU can also handle guest I/O and provides several emu-

lated hardware devices for the VMs (such as disks, network-cards, BIOS, etc.). QEMU

communicates with the KVM module using a well-defined API using the ioctl interface.

An important point to note is that the virtual machines created by QEMU are ordinary

user-space processes for the host. Similar to memory allocations for processes, QEMU

makes a call to malloc to allocate and assign physical memory to each guest virtual ma-

chine. Thus, for the host kernel, there is no explicit VM, but instead a QEMU process

which has allocated some memory for itself. This process can be scheduled, swapped out,

or even killed.

8

Figure 3.1: Sequence of messages to fulfill an I/O operation by a guest VM.

3.0.2 Disk I/O in KVM/QEMU

The guest VM’s “disk” is emulated in the host userspace by QEMU, and is frequently

just a file on the physical disk’s filesystem. Hence, the emulated disk’s read/write are

mapped to file-system read/write operations on the virtual-disk file. Figure 3.1 depicts

the(simplified) control flow during a guest VM disk I/O operation. A disk I/O request by

the guest VM causes a trap, on which KVM calls the QEMU userspace space process for

handling. In the emulated disk case, QEMU performs the I/O operation through a disk

I/O request to the host kernel. The host reads the disk block(s) from the device, which

get cached in host-page-cache and passed on to the guest via KVM. For the guest, this is

a conventional disk read, and hence disk blocks are cached at the guest as well.

3.0.3 QEMU caching modes

Writeback: In the writeback mode, the host page cache is used for all IO. But unlike

writethrough, the write notification is sent to the guest as soon as the data hits the

page cache, not the disk. Thus there is a chance of data loss if the host crashes.

The virtual disk corruption problem has also been observed when the qemu process

is forcibly killed.

9

Figure 3.2: Copy-on-Write based hypervisor level page sharing.

Writethrough: This is the default caching mode. All guest IO goes through the host

page cache. This mode does badly with some disk formats (qcow, qcow2 for exam-

ple).

None: Uses direct IO using O DIrect and hence bypasses the page-cache of the host

OS. Supposed to give bad results [4] . Multiple VMs using O Direct can affect

performance since this is equivalent to multi-threaded synchronous IO.

VirtIO: VIRTIO is not strictly a caching mode, but instead a more different IO handling

mechanism. Disks mounted as virtio are not emulated by qemu. Instead the host

kernel has drivers which directly interact directly with the frontends of the corre-

sponding drivers in the guest VMs. Virtio is esentially a ring-buffer implementation.

It requires special drivers in the guests.

3.0.4 Linux page-cache and page eviction

The Linux page-cache [42] is used for storing frequently accessed disk-blocks in memory.

It is different from the conventional buffer-cache in that it also stores pages belonging

to mmap’ed files, whereas traditional buffer-caches restricted themselves to read/write

I/O on file-system buffers. In a bid to improve I/O performance, a significant amount of

physical memory is utilized by the kernel as page-cache.

Linux uses an LRU variant (specifically, a variant of LRU/2 [44]) to evict pages when

under memory pressure. All the pages are maintained in a global LRU list. Thus, page-

cache pages as well as pages belonging to process’ private address spaces are managed for

evictions in a unified manner. This can cause the kernel to swap out process pages to disk

inspite of storing cache pages. The page-cache grows and shrinks dynamically depending

on memory pressure, file-usage patterns, etc.

10

Figure 3.3: Basic KSM operation. Each page during a scan checksummed and inserted

into the hash-table.

3.0.5 Page Deduplication using KSM

KSM(Kernel Samepage Merging) [7] is a scanning based mechanism to detect and share

pages having the same content. KSM is implemented in the Linux kernel as a kernel-thread

which runs on the host system and periodically scans guest virtual machine memory-

regions looking for identical pages. Page sharing is implemented by replacing the page-

table-entries of the duplicate pages with a common KSM page.

As shown in Figure 3.2, two virtual machines have two copies of a page with the same

content. KSM maps the guest-pseudo physical page of both machines A and B to the same

merged host physical page K. The shared page is marked copy-on-write(COW) — any

modifications to the shared page will generate a trap and the result in the sharing being

broken. To detect page similarity, KSM builds a page-index periodically by scanning all

pages belonging to all the virtual machines.

KSM originally used red-black binary-search trees as the page-index, and full-page

comparisons to detect similarity. As part of Singleton, we have replaced the search-trees

with hash-tables, and full-page comparisons with checksum(jhash2) comparisons. In each

pass, a single checksum-computation is performed, and the page is inserted into a hash-

table(Figure 3.3). Collisions are resolved by chaining. To reduce collisions, the number

of slots in the hash-table is made equal to the total number of pages.

Due to volatility of the pages (page-contents can change any time) and the lack of a

mechanism to detect changes, the page-index is created frequently. Periodically, the page-

index(hash-table) is cleared, and fresh page-checksums are computed and inserted. The

KSM scanning-based comparison process goes on repeatedly, and thus has a consistent

impact on the performance of the system. KSM typically consumes between 10-20% CPU

on a single CPU core for the default scanning-rate of 20MB/s. The checksumming and

hash-tables implementation in Singleton reduces the overhead by about 50% compared

to the original KSM implementation (with search-trees and full-page comparisons).

11

To see that KSM can really detect and share duplicate pages, the memory finger-

print [57] of a VM is calculated and compared for similarity. The number of pages

that KSM shares compared to the actual number of pages which are duplicate (which

is obtained by the fingerprint) determines the sharing effectiveness of KSM. The memory

fingerprint of a VM is simply a list of the hashes of each of its pages. By comparing

fingerprint similarity, we have observed that KSM can share about 90% of the mergeable

pages for a variety of workloads. For desktop workloads(KNOPPIX live-CD), KSM shares

about 22,000 of the 25,000 mergeable pages. Ideal candidates for inter-VM page sharing

are pages belonging to the kernel text-section, common applications, libraries, and files

[33, 32, 54, 19]. These pages are often read-only, and thus once shared, the sharing is not

broken.

At the end of a scan, KSM has indexed all guest pages by their recent content. The

index contains the checksums of all guest pages, including the duplicate and the unique

pages. Moreover, this index is created periodically (after every scan), so we are assured

that the checksum corresponding to a page is fairly recent and an accurate representation

of the page content. Thus, the KSM maintained page-index can be used as a snapshot of

the VM memory contents.

12

Chapter 4

Singleton: System-wide Page

Deduplication

In this chapter we present the design, implementation, and performance evaluation of

Singleton, a system which has been developed to implement an exclusive page-cache and

increase memory overcommitment in virtual environments.

4.1 Motivation: Double caching

A pressing problem in KVM is the issue of double-caching. All I/O operations of guest

virtual machines are serviced through the page cache at the host (Figures 3.1 and 4.1).

Because all guest I/O is serviced from the guest’s own page-cache first, the host cache sees

a low hit-ratio, because “hot” pages are already cached by the guest. Since both caches

are likely to be managed by the same cache eviction technique (least-recently-used, or

some variant thereof), there is a possibility of a large number of common pages in the

caches. This double-caching leads to a waste of memory. Further, the memory-pressure

created by the inflated host cache might force the host to start swapping out guest pages.

Swapping of pages by the host severely impacts the performance of the guest VMs. An

illustration of how guest I/O impacts the host page cache is shown in Figure 4.2. A

single VM writes to a file continuously, which causes a steady increase in the amount of

host-page-cached memory and corresponding decrease in the free memory available at the

host.

Double caching can be mitigated if we provide an exclusive-cache setup. In exclusive

caching, lower levels of cache(the host page-cache in our case) do not store an object if it

is present in the higher levels(the guest page-cache). Any solution to the exclusive caching

problem must strive for a balance between size of the host page cache and performance

of the guests. A host-cache has the potential to serve as a ‘second-chance’ cache for guest

VMs and can improve I/O performance. At the same time, large host page-caches might

force guest VM pages to be swapped out by the host kernel—leading to severely degraded

performance. Singleton provides an efficient exclusive cache which improves guest I/O

performance, and reduces host-cache size drastically.

13

Virtual Disk
 (File)

KVM+QEMU

Host
Page Cache

Guest
Page Cache

1

2

3

4

read X

read F(X)

Guest

File read

Emulate Disk
DMA 6

Disk

5

Figure 4.1: A read system-call from the guest application in KVM-QEMU setup. A disk

for the VM is simply a file in the host file system

14

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70

H
o
st

M
e
m

o
ry

si
ze

(M
B

)

Time (seconds)

Free
Cached

VM Running I/O intensive
 workload

Out of Memory

Figure 4.2: Host free and cached memory on a write-heavy guest workload.

The shared nature of the host-cache also makes it important to provide performance

isolation among the virtual machines as well as the processes running on the host system.

Disk I/O from an I/O intensive guest VM can fill-up the host-cache, to the detriment

of the other VMs. Not only do other VMs get a smaller host cache, but also suffer in

performance. The memory-pressure induced by one VM can force the host-kernel to put

additional effort for page allocations and scanning pages for evictions, leading to increased

system load.

4.2 Potential/Existing approaches For Exclusive Caching

In the context of multi-level exclusive caching in storage systems [25, 56, 9], it has been

shown that exclusive caches yield better cache utilization and performance. Exclusive

caches are usually implemented using explicit co-ordination between various caches in

a multi-level cache hierarchy. DEMOTE [56] requires an additional SCSI command for

demotion notifications. Gray-box techniques for inferring cache hits at higher levels in

the cache hierarchy, like X-RAY [9] and Geiger [30] use file-system information to infer

page-use by monitoring inode access-times.

In the host-guest cache setup that virtual systems deal with, notifications can cause a

large overhead since the page cache sees high activity. Furthermore, the host/guest page-

caches are present on a single system, unlike the distributed client/server storage caches.

Solutions to exclusive caching require the lower-level(host) cache to explicitly read-in the

items evicted from the higher-level(guest) cache. This is not desirable in our setup: VM

performance would be impacted if the host does disk accesses for evicted items, leading

to overall system-slowdown.

More pressing is the problem of actually generating the eviction notifications—modifications

to both the host and the guest OS memory subsystems will be required. However, in

spite of the benefits of exclusive caching, modifications to the operating system are not

15

Operations VM using VM using

Direct I/O host cache

putc 34,600 33,265

put block 48,825 51,952

rewrite 14,737 24,525

getc 20,932 44,208

get block 36,268 197,328

Table 4.1: Bonnie performance with and without caching at the host.

straight-forward. The first challenge is to get notifications of evictions—either by explicit

notifications from the guest, or by using I/O-snooping techniques like those developed in

Geiger [30]. The fundamental problem is that there is no easy way to map disk blocks in

the host and the guest page cache. The hypervisor (QEMU) supports a large number of

virtual disk formats (RAW, LVM, QCOW, QCOW2, QED, FVD [52]). The mapping from

a virtual block number to a physical block number (which the host file system sees) can

be determined fairly easily in case of RAW images, but one would need explicit hypervisor

support in other cases. The lack of a common API for these image formats results in a

complex co-ordination problem between the host, the guest, and the hypervisor. Clearly,

we need a better solution which does not need to contend with this three-way coordination

and yet works with all the above mentioned setups and environments.

Direct IO: An existing mechanism to overcome the wastage of memory due double-

caching is to bypass the host page-cache. This can be accomplished by mounting the

QEMU disks with the cache=none option. This opens the disk-image file with the direct-

IO mode (O DIRECT). However, direct-I/O has an adverse impact on performance. Ta-

ble 4.1 compares performance of file operations on two VMs running the Bonnie [2] file

system benchmark. In one case, both Virtual Machines mount their respective (virtual)

disks with cache=writeback option (QEMU default) set and in the other we use the

cache=none option. Table 4.1 shows the Bonnie performance results of one of the VMs.

Bypassing the host cache results in almost all operations with direct I/O to be slower than

with caching. With direct I/O, the block read rates are 6x slower, the read-character rate

2x slower. Further, the average seek rate with Direct I/O was 2x slower than with host-

page-caching—185 seeks per second with direct I/O and 329 seeks/second with caching.

Clearly, the I/O performance penalty is too much to pay for a reduced memory usage at

the host —host cache is not used with direct I/O. Additionally, using O DIRECT turns off

the clever I/O scheduling and batching at the host, since the I/O requests are immediately

processed. Direct-I/O scales poorly with an increase in number of VMs, and we do not

consider it to be a feasible solution to the double-caching problem.

Fadvise: Additionally, the hypervisor can instruct the host kernel to discard cached

pages for the virtual disk-images. This can be accomplished by using the POSIX fadvise

system-call and passing the DONTNEED flag. Fadvise needs to be invoked periodically by

16

the hypervisor on the disk-image file for it to have the desired effect. All file data in

the cache is indiscriminately dropped. While fadvise mitigates double-caching, it fails to

provide any second-level caching for the guests. The DONTNEED advise can also potentially

be ignored completely by some operating systems, including the previous versions of the

Linux kernel.

4.3 The Singleton approach

To implement a guest-exclusive cache at the host, Singleton uses KSM and the page-index

it maintains to search for pages present in the guests. As mentioned earlier (Section 3.0.5),

KSM maintains a snapshot of contents of all pages in its search indexes (red-black trees

in case of default KSM, hash-tables in Singleton).

Singleton’s exclusive caching strategy is very simple and presented in Algorithm 1. We

look-up all the host page-cache pages in the KSM maintained page-index of all the VMs to

determine if a host-cache page is already present in the guest. The host page-cache pages

are checksummed, and the checksum is searched in KSM’s page-index. An occurrence in

the guest page-index implies that the page is present in the guest, and we drop the page

from the host’s page-cache.

A page in the host’s page cache is said to belong to VM V if an I/O request by V

resulted that page being bought into the cache. Pages in the page-cache belong to files

on disk, which are represented by inodes. We identify a page as belonging to a VM if it

belongs to the file which acts as its virtual-disk. To identify which file corresponds to the

virtual machine’s disk, we pick the file opened by the QEMU process associated with the

VM.

Algorithm 1 Singleton’s cache-scrubbing algorithm implemented with ksm.
After scanning B pages of VM V:

For each page in the host-cache belonging to V:

If (page in KSM-Page-Index)

drop_page(page);

Dropping duplicate pages from the host page-cache is referred to as cache-scrubbing.

The cache scrubbing is performed periodically by the KSM thread—after KSM has

scanned (checksummed and indexed) B guest pages. We refer to B as the scrubbing-

interval.

After dropping pages from the host-cache during scrubbing, two kinds of pages remain

in the host cache : pages not present in the guest, and pages which might be present in

the guest but were not checksummed (false negatives due to stale checksums). Pages not

present in the guest, but present in the host-cache can be further categorized thus: 1.

Pages evicted from the guest. 2. Read-ahead pages which were not requested by the

guest. The false-negatives do not affect correctness, and only increase the size of the

host-cache. False negatives are reduced by increasing KSM’s scanning rate.

17

Cache-utilization of the host’s cache will improve if a large number of evicted pages are

present(eviction based placement [56]). Keeping evicted pages in the host-cache increases

the effective size of cache for the guests, and reducing the number of duplicates across

the caches increases exclusivity. To reduce the multiplicative read-ahead [59] as well as

to reduce cache size, read-ahead is disabled on the host. We treat the guest as a black-

box and do not explicitly track guest evictions. Instead, we use the maxim that page-

evictions are followed by page-replacement, hence a page replacement is a good indicator

of eviction. Page replacement is inferred via checksum-changes. A similar technique is

used in Geiger [30], which uses changes in disk-block addresses to infer replacement. To

differentiate page-mutations(simple writes to a memory-address) from page-replacement,

we use a very simple heuristic: a replacement is said to have occurred if the checksum

and the first eight bytes of the page content have changed.

Singleton introduces cache-scrubbing functionality in KSM and runs in the KSM

thread (ksmd) in the host-kernel. We take advantage of KSM’s page-index and page-

deduplication infrastructure to implement unified inter-VM page deduplication and cache-

scrubbing. The cache-scrubbing functionality is implemented as an additional 1000 lines of

code in KSM. The ksmd kernel thread runs in the background as a low-priority task (nice

value of 5), consuming minimal CPU resources. Singleton extends the conventional inter-

VM page deduplication to the entire system by also including the host’s page-cache in the

deduplication pool. While the memory reclaimed due to inter-VM page sharing depends

on the number of duplicate pages between VMs, Singleton is effective even when the work-

loads are not amenable to sharing. Since all guest I/O passes through the host’s cache,

the number of duplicate pages in the host’s cache is independent of the inter-VM page

sharing. Singleton supplements the existing memory-management and page-replacement

functionality of the hypervisor, and does not require intrusive hypervisor changes. While

our implementation is restricted to KVM setups and not immediately applicable to other

hypervisors, we believe that the ideas are relevant and useful to other hypervisors as well.

4.4 Scrubbing frequency control

The frequency of cache scrubbing dictates the average size of the host cache and the KSM

overhead. To utilize system memory fully and keep scrubbing overhead to a minimum, a

simple scrubbing frequency control-loop is implemented in Singleton. The basic motiva-

tion is to control the scrubbing frequency depending on system memory conditions (free

and cached). A high-level algorithm outline is presented in Algorithm 2. The try scrub

function is called periodically (after KSM has scanned 1000 pages). We use two ba-

sic parameters: maximum amount of memory which can be cached (th frac cached)

and minimum amount of memory which can be free (th frac free), both of which are

fractions of the total memory available. The scrubbing frequency is governed by the time-

period t, which decreases under memory pressure, and increases otherwise. With host

cache getting filled up quickly, Singleton tries to increase scrubbing rate and decreases it

18

otherwise. The time-period has minimum and maximum values between which it is al-

lowed to vary(not shown in the algorithm). The time-period is also a function of number

of pages dropped by the scrubber (scrub host cache).

Algorithm 2 Singleton’s frequency control algorithm.

try_scrub (th_frac_cached, th_frac_free) {

Update_memory_usage_stats(&Cached, &Free, &Memory);

//Case1: Timer expires. t is current scrub interval

if(cycle_count-- <= 0) {

Dropped = scrub_host_cache() ;

//returns num pages dropped

prev_t = t ;

t = prev_t*(Cached + Dropped)/Cached;

}

//Case2: Memory pressure

else if(Cached > Memory*th_frac_cached ||

Free < Memory*th_frac_free) {

Dropped=scrub_host_cache();

prev_t = t ;

t = prev_t*(Cached - Dropped)/Cached;

}

cycle_count=t;

}

4.5 KSM Optimizations implemented

To get a better understanding of KSM sharing, the KSM code was instrumented with

static tracepoints using the kernel TRACE EVENTS feature. Trace events allows ftrace

[12] static tracepoints to be placed anywhere in the kernel code and are very light-weight

in nature. We primarily use trace-events to generate a lot of printk output. Every page

that KSM scans is traced, as are all the operations (tree search/insert) it goes through.

This generates a significant amount of trace-log output (about 0.5 GB/minute). We have

used the information obtained from the detailed trace logs to improve our understanding

of KSM operations as well as page-sharing in general.

4.5.1 Exploiting spatial locality using Lookahead

Using the KSM trace logs, it is observed that shared pages are often clustered together,

occurring consecutively. Thus shared pages have a high spatial locality : If a page is

shared, then the next page is also shareable(with some other page) with a high probability.

19

 1

 10

 100

 1000

 10000

 1 10 100 1000

Fr
e
q

u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

Length of contiguous shared region

Occurrence in VM Memory-fingerprint

Figure 4.3: Spatial locality among shared pages.KSM trace is collected for 2 similar

desktop VMs. The graph plots length of consecutive shared-pages vs their frequency of

occurrence in the trace.

This can be seen from Figure 4.3, which shows the frequency of contiguous shared pages

in a trace.

A natural way of expressing the page-sharing problem is to represent the page contents

as alphabets, and the memory contents of a VM as the strings. The degree of sharing is

equal to the number of common characters in two strings. In the context of the previous

observation (that the shared pages are clustered), we can say that the VM-strings have

a large number of common substrings. The presence of substrings can be explained by

the fact that a large amount of common pages are courtesy of common files. These files

can be programs, common data, etc. Thus when the files are loaded into memory, if they

are the same (have the same contents), then the VM memory regions will have a large

number of common pages too. Furthermore, these pages will be consecutive, since files

loaded into memory are typically mapped into consecutive pages as far as possible by

operating systems.

4.5.2 KSM implementation of Lookahead

The presence of spatial locality leads to a very natural improvement in the KSM algorithm.

If a page X is merged with another page Y, then we check if page X+1 can be merged with

Y+1, before searching in the stable and unstable trees(see Figures 4.4 , 3.3). In other

words, we do a lookahead and see if the pages are common, before doing a full search.

A more detailed algorithm follows:

20

Figure 4.4: Lookahead illustration. The consecutive shared-pages are often file-backed. In

this example the Red-blue-green pages probably a common file opened by the two VMs.

The lookahead optimization reduces the average cost of searching for a page. Assuming

that the probability of a page being part of a duplicate file is p, the expected cost with

the lookahead optimization in place is now :

p ∗ Cost(page-merge) + (1− p) ∗ Cost(tree search) (4.1)

Although the lookahead optimization is particularly effective for KSM because of its

existing design, exploiting spatial locality among shared pages will benefit any page dedu-

plication mechanism.

The lookahead trick is particularly effective when the pages are shared for the first

time. Once the pages are merged, there will be no additional overhead in the subsequent

passes (assuming they have not changed and the COW is not broken). To detect whether

a page is shared/merged, KSM simply checks a flag(PAGE KSM). Thus the lookahead

optimization reduces search costs only when the pages can be potentially shared. Once

the sharing is established, it plays no role (and hence can offer no improvements) in the

subsequent passes.

The lookahead optimization has negligible benefits if the page-index is a large-enough

hash-table, and hence is turned-off for the all the experiments. However this observation

of spatial locality among pages for inter-VM page deduplication is the first such work in

literature.

4.5.3 Performance with Lookahead optimization

The main advantage of lookahead is the reduced search cost, and hence a reduction in

KSM overhead. We compared vanilla-KSM(KSM) with KSM+lookahead(KSM-Look) on

the same workloads and recorded the ksm page sharing statistics along with the lookahead

successes, and the ksm overhead on the host. Lookahead gives the most improvements

for the Desktop workload (Table 4.2). This is because desktop environments load a large

number of common-files into memory on bootup (X11 fonts, graphical environment, etc).

21

Algorithm 1 Algorithm for Lookahead optimization
Z=current_page_under_KSM_scanner

//X is pfn of latest merged page

//in the scan.

//X was merged with Y .

% If(equal(Z, Y+1)) :

merge(Z, Y+1)

X = Z

Y = Y+1

else :

Search trees for Z

If matched with W

X = Z

Y = W

The surprising result is the increased shared pages due to lookahead. This is surprising

because without the lookahead the pages would have been merged anyway, albeit after

a tree search. The success of lookahead to increase the shared pages can be explained

thus: Because lookahead decreases the average cost of searching for a duplicate page, the

scanning rate of KSM increases slightly. The increase in scanning rate results in increased

page-sharing, because KSM can detect short-lived sharing opportunities. Correspond-

ingly, the KSM overhead (with lookahead enabled) also increases (Also as evidence of

increased scanning rate).

The lack of success of lookahead in the case of kernel-compile (there are a large number

of shared pages and common files in this workload) also has a subtle explanation. Even

though there are a large number of common files, most of them are small (less than a

page size). Also the files are not explicitly mmapped or read into memory by the compiler.

Instead they are present in the page-cache. Since the duplicate pages are present largely

in the page-cache, they may not be located in contiguous memory regions. This is the

reason that lookahead cannot detect such duplicates. Thus even though the benchmark

accesses the same files in the same sequence, because they are scattered differently in their

respective page-caches, lookahead is not very successful.

4.5.4 Filtering by Guest Page flags

The cost of KSM scanning is dictated by the number of page-comparisons. To reduce

the number of page-comparisons, we filter the pages and thus do not scan (or compare)

certain pages in the guests. The guest pages can be classified according to their page-flags,

and pages which do not have certain flags set can be ignored by KSM.

Having looked at the feasibility of inter-VM page sharing, in this section we analyze

22

Workload Avg. Shared Avg. Shared CPU util. CPU util. Total

(on Two VMs) Pages Pages Lookahead

(Vanilla) (with Lookahead) (Vanilla) (with Lookahead) successes

Boot up 8,000 11,000 12% 12% 4,000

Kernel Compile 26,000 30,000 19% 22% 16,000

Desktop VM use 31,000 62,000 14.6% 16.8% 50,000

Table 4.2: Lookahead performance on 3 workloads. Using lookahead increases the number

of shared pages significantly with a small increase in CPU utilization.

what kinds of pages contribute to sharing. We start off by analysing the page-sharing

ratio of pages by their guest-flags. The guest OS keeps track of all the pages in its physical

memory in the mem map array. Each page has with it information associated with it like

its page-flags, reference-count (map-count), etc. This page information is not available at

the host, because the guest physical memory is just a process address space (since QEMU

guests are simple user processes).

Obtaining guest pageflags

Since the guest page-flags and other memory-management data maintained by the guest

OS is transparent to the host and not accessible, co-operation with the guest is required.

For our experiments, a simple guest daemon runs in the guest periodically. This deamon

reads the page flags from /proc/kpageflags, and writes to a pre-determined memory

location. The host kernel accesses this memory location by simply reading the corre-

sponding page. To ensure that the daemon can write to a fixed physical memory location,

a memory-hole is created at guest’s boot-time. This prohibits the kernel from mapping

any pages at the hole location, and we are guaranteed that the daemon has an exclusive

access to that location. Since the boot-hole is not mapped, we need to use the ioremap

mechanism (which is typically used for mapping DMA regions).

It turns out that filtering pages by their flags is not a consistent way of obtaining

pages with a high probability of being shareable. On different workloads, different kinds

(by flags) pages were found to be shared. Hence no uniform filter can be used to reduce

scanning and comparison cost.

Assume that the boot-hole is created at 100MB, and the size is 1MB. The host kernel

then simply reads the contents of the page at Guest starting virtual address + 100MB.

In this way, the host kernel can directly read the guest page flags without any userspace

interaction.

Scanning only dirtied pages: A fundamental limitation of KSM (and all other

scanning-based page-deduplication mechanisms) is that page-dirty rates can be much

higher than the scanning rate. Without incurring a large scanning overhead, it is not

possible for a brute-force scanner to detect identical pages efficiently.

23

We are interested in reducing the scanning overhead by only checksumming dirtied

pages—similar to VM Live Migration [23], where only dirtied pages are sent to the desti-

nation. Conventional techniques rely on write-protecting guest pages, and incur expensive

faults on a guest access to that page. Instead, we intend to use a combination of tech-

niques based on hardware-assisted page-dirty logging and random sampling. In some

cases, like AMD’s Nested Page Tables (NPT) implementation [1], it is possible to ob-

tain a list of dirtied pages without the expensive write-protect-trap approach seen in VM

Live-migration. AMD’s NPT implementation exposes dirty page information of the guests

(pages in the guest virtual address space),which can be exploited to perform dirty-logging

based scanning. Further, dirty logging overhead or scanning overhead can be reduced by

sampling and subset of pages and by eliminating “hot” pages from the working set in the

scan process.

4.6 Experimental analysis

Cache scrubbing works by proactively evicting pages from the host’s page-cache. In this

section we explore why additional cache management is required for the host’s page cache,

and why the existing Linux page eviction and reclaiming mechanisms are sub-optimal for

virtual environments. We show how Singleton improves memory utilization and guest

performance with a series of benchmarks. Our results indicate that significant reductions

in the size of the host page-cache, an increase in the host page-cache hit-ratio, and

improvement in guest performance can all be obtained with minimal overhead.

Workload Description

Sequential Read Iozone [43] is used to test the sequential read performance.

Random Read Iozone is used to test random-read performance.

Zipf Read Disk blocks are accessed in a Zipf distribution, mimicking many

commonly occurring access patterns.

Kernel Compile Linux kernel (3.0) is compiled with make allyesconfig with 3

threads.

Eclipse The Eclipse workload in the Dacapo [13] suite is a memory-intensive

benchmark, which simulates the Eclipse IDE [3].

Desktop A desktop-session is run, with Gnome GUI, web-browsing, word-

processor.

Table 4.3: Details of workloads run in the guest VMs.

24

4.6.1 Setup

Since scrubbing is a periodic activity and can have drastic impact on system performance

when the scrubbing operation is in progress, all experiments conducted are of a sufficiently

long duration (atleast 20 minutes). The workloads are described in Table 5.1. The

scrubbing interval thresholds are between 100,000 and 200,000 pages scanned by KSM

(scrubbing-interval algorithm presented in section 4.4), and is of the order of once every

30-60 seconds. The cache-threshold is set as 50% of the total memory and the free-

threshold is 10%. For read-intensive benchmarks, the data is composed of blocks with

random content, to prevent page deduplication from sharing the pages. For guest I/O,

virtIO [48] is used as the I/O transport to provide faster disk accesses.The experiments

have been conducted on an IBM x3250 blade server with 8GB memory, 2GB swap-space

and one 150GB SAS hard-disk(ext4 file-system). In all the experiments otherwise stated,

we run 4 VMs with 1 GB memory size each. The hosts and the guest VMs run the same

kernel (Linux 3.0) and OS(Ubuntu 10.04 x86-64 server). To measure the performance on

each of the metrics, a comparison is made for three configurations:

Default: The default KVM configuration is used with no KSM thread running.

Fadvise: This runs the page deduplication thread and calls fadvise(DONTNEED) peri-

odically.

Singleton: Page deduplication and eviction based cache placement is used.

4.6.2 Host-cache utilization

The host cache sees a low hit-ratio, because “hot” pages are cached by the guest. Because

of double-caching, if the host’s cache is not large enough to accommodate the guest

working set, it will see a low number of hits. Our primary strategy is to not keep pages

which are present in the guest, and preserve pages which are not in the guest. This

increases the effective cache size, since guest cache misses have a higher chance of being

serviced from the host’s page-cache. Presence of pages being present in the guest provides

additional knowledge to Singleton about a cached page’s usefulness, which is not available

to the access-frequency based page-eviction mechanism present in the host OS(Linux)

kernel. We exploit this knowledge, and remove the duplicate page from the host cache.

Singleton’s scrubbing strategy results in more effective caching. We run I/O inten-

sive workloads in the guest VMs and measure the system-wide host cache hit-ratio. The

hit-ratio also includes the hits/misses of files accessed by the host processes. Details of

the workloads are in Table 5.1. The results from four VMs running sequential,random,

and Zipf I/O are presented in Figure 4.5. For four VMs running sequential read bench-

mark (Iozone) the cache-hit ratio is 65%, an improvement of about 4% compared to

default case (vanilla KVM). A significant reduction in cache-hits is observed when us-

ing fadvise(DONTNEED) (16% less than Singleton). Calling fadvise(DONTNEED) simply

drops all the file pages, in contrast to Singleton which keeps pages in the cache if they

25

 0

 0.2

 0.4

 0.6

 0.8

 1

Seq Rand Zipf Kerncompile

C
ac

he
 h

it-
ra

tio

Workload

Default
Fadvise

Singleton

Figure 4.5: Host page-cache hit ratios.

are not present in the guest. Thus, Singleton’s eviction based placement strategy is more

effective, and keeps pages to accommodate a larger guest working set.

Scrubbing impacts random-reads more, since the absence of locality hurts the default

Linux page-eviction implementation. By contrast, keeping only evicted pages leads to

a much better utilization of cache. The cache-hit ratio with Singleton is almost 2x the

default-case (Figure 4.5). For this experiment, the working set size of the Iozone random-

read was kept at 2GB, and the VMs were allocated only 1 GB. Thus, the host-cache serves

as the second-chance cache for the guests, and the entire working set can be accommodated

even though it does not fit in the guest memory. For workloads whose working-sets aren’t

large enough, the host-cache sees a poor hit ratio : about 35% in case of the kernel-

compile workload. In such cases, the scrubbing strategy only has a negligible impact

on host cache utilization. We have observed similar results for other non I/O intensive

workloads as well.

The increased cache utilization translates to a corresponding increase in the perfor-

mance of the guest VMs. For the same setup mentioned above(four VMs executing the

same workloads), sequential-reads show a small improvement of 2% (Table 4.4). In accor-

dance with the higher cache-hit ratios, random-reads show an improvement of about 40%

with Singleton over the default KVM setup. Similar gains are observed when compared

to fadvise(DONTNEED)—indicating that by utilizing the host-cache more effectively, we

can improve the I/O performance of guests. We believe this is important, since disk-I/O

for virtual machine is significantly slower than bare-metal I/O performance, and one of

the key bottlenecks in virtual machine performance.

26

Sequential

reads

(KB/s)

Random

reads

(KB/s)

Zipf Reads

(KB/s)

Default 4,920 240 265,000

Fadvise 4,800 280 260,000

Singleton 5,000 360 270,000

Table 4.4: Guest I/O performance for various access patterns.

4.6.3 Memory utilization

The Linux kernel keeps a unified LRU list containing both cache and anonymous(not

backed by any file, belonging to process’ address space) pages. Thus, under memory

pressure, anonymous pages are swapped out to disk even in the presence of cached pages

(Figure 1.1). Without the proactive cache-scrubbing, we see an increased swap traffic,

as the host swaps pages belonging to the guest’s physical memory. This swapping can be

avoided with scrubbing. The preemptive evictions enforced by Singleton also reduce the

number of pages in the global LRU page-eviction list in Linux. This leads to reduction

in the kernel overhead of maintaining and processing the list of pages, which can be

quite large (millions of pages on systems with 10s of gigabytes of memory). Scrubbing

supplements the existing Linux memory-management by improving the efficiency of the

page-eviction mechanism.

The periodic page evictions induced by scrubbing reduces the size of the cache in the

host significantly. We ran I/O intensive benchmarks, which quickly fill-up the page-cache

to observe Singleton’s ability to reduce cache size. Figure 4.7 shows the average cache size

over the workload-runs, when the workloads are running on four virtual machines. The

host cache size with Singleton is 2-10x smaller than the default KVM. Compared to the

fadvise(DONTNEED) approach which drops all cache pages, Singleton has a larger cache

size. The cache-size can be further reduced if needed by increasing the frequency of the

cache-scrubbing. However, our scrubbing-frequency algorithm (presented in Section 4.4)

enables us to make a more judicious use of available memory, and increases the scrubbing

frequency only when under memory-pressure.

A lower average cache size increases the amount of free memory available, prevents

swapping, and reduces memory pressure. In addition to scrubbing, Singleton also employs

inter-VM page deduplication, which further decreases the memory usage. A reduction in

the amount of swapping when different workloads are run in the guests can be seen in

Figure 4.8. Without scrubbing, the swap is utilized whenever the guests execute intensive

workloads which fill-up the host page-cache. In contrast, using fadvise(DONTNEED) and

Singleton results in no/minimal swap-space utilization.

As Figure 1.1 shows, pages are swapped to disk even though a significant amount of

memory is being used by the page-cache. Scrubbing prevents this kind of behaviour, as

illustrated in Figure 4.6. The periodic scrubbing results in sharp falls in the cache-size,

27

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400 450

M
em

or
y

(M
B

)

Time (seconds)

Singleton-Free
Singleton-Cached

Default-Free
Default-Cached

Figure 4.6: Memory usage graph for a sequential read workload with and without Single-

ton.

Workload Pages-shared

Sequential 80,000

Random 133,000

Kerncompile 350,000

Desktop 300,000

Eclipse 215,000

and increases the amount of free-memory. This reduction in memory pressure and the

reduced swapping reduces the system load and paging activity. In the kernel-compile and

eclipse workloads, a further reduction in memory-usage is observed because of the inter-

VM page-deduplication component of Singleton. When identical workloads are running in

four guest VMs, we can see significant amount of pages being shared (seen in Table 4.6.3).

Out of a total 1 million pages (1 GB allocated to each of the 4 VMs with 4KB pages), the

percentage of pages shared varied from 8% in the case of sequential read workload to 35%

with the kernel-compile workload. The page-sharing is dependent on the workload—same

files are used in the case of kernel compile, whereas only the guest kernel pages are shared

with the sequential read workload.

An additional benefit of Singleton is that it helps provide a more accurate estimate

of free memory, since unused cache pages are dropped. This can be used to make more

informed decisions about virtual-machine provisioning and placement.

28

 0

 1000

 2000

 3000

 4000

 5000

Seq Rand Eclipse Zipf Kerncompile

H
os

t c
ac

he
 s

iz
e

(M
B

)

Workload

Default
Fadvise

Singleton

Figure 4.7: Average Cache size

 0

 500

 1000

 1500

 2000

 2500

Seq Rand Kerncompile

S
w

ap
 u

sa
ge

 (M
B

)

Workload

Default
Fadvise

Singleton

Figure 4.8: Swap occupancy

29

4.6.4 Memory overcommitment

The increased free memory provided by Singleton can be used to provide memory over-

commitment. To measure the degree of overcommitment, the total amount of memory

allocated to virtual machines is increased until the breaking-point. The breaking-point is

the point at which the performance degradation is unacceptable(cannot SSH into the ma-

chine, kernel complains of a lock-up, etc) or the Linux Out-Of-Memory killer(OOM) kills

one of the VMs. On a system with total 10GB virtual memory(8GB RAM + 2GB swap),

8 virtual machines(1 GB allocated to each) are able to run without crashing or being

killed. Three kinds of VMs running different workloads(sequential-reads, kernel-compile,

and desktop). The desktop VMs run the same OS (Ubuntu 10.04 Desktop), and benefit

from the inter-VM page-deduplication, since the GUI libraries, application-binaries etc

are shared across all the VMs. The number of desktop VMs were increased until the

system crashed, and with Singleton we were able to run 7 desktop VMs in addition to 2

kernel-compile VMs and 2 sequential-I/O VMs (Table 4.5). A total of 11GB of memory

was allocated to the VMs, with 1.5GB used by the host processes. Without Singleton,

the number of VMs able to run is 8, after which the kernel initiates the Out-of-memory

killing procedure, and kills one of the running VMs to reduce the memory pressure. Thus,

the page deduplication and the cache-scrubbing provides a good combination for imple-

menting memory overcommitment for virtual machines.

Sequential Kerncompile Desktop Total

Default 2 2 4 8

Fadvise 2 2 4 8

Singleton 2 2 7 11

Table 4.5: Number of running VMs till system crashes or runs out of memory.

4.6.5 Impact on host and guest performance

The improved cache utilization provides better performance for guest workloads. Perfor-

mance for I/O intensive workloads running concurrently in four guest VMs is presented in

Table 4.4. The overhead of building and maintaining a page-index periodically (done by

the KSM thread) does not interfere with guest execution because of the minimal CPU re-

sources it requires. The CPU utilization of Singleton and the system load-average during

various workloads shown in Table 4.9. The CPU utilization stays below 20% on average

for most scenarios. Due to the lower memory-pressure, the system load-average is signifi-

cantly reduced. Most of the resource-utilization of Singleton is due to the cache-scrubbing,

which needs to checksum and compare a large number of cache pages periodically. With

the scrubbing turned off (only inter-VM page deduplication), our optimizations to KSM

result in an average CPU utilization of just 6%, compared to 20% for the unmodified

KSM.

30

Avg.

pages

Cache

pages

Scan

scanned/s dropped/s efficiency

Default 1,839,267 1459 0.07 %

Singleton 7 109 99.87 %

Table 4.6: Page eviction statistics with and without Singleton.

Another important improvement is the reduction in the number of pages that the

kernel page-eviction process has to scan to evict/drop a page from memory. As mentioned

earlier, the kernel maintains a global LRU list for all the pages in memory, and this list

can contain millions of entries(pages). Without any proactive cache scrubbing, the cache

fills up this LRU list, and the kernel needs to evict some pages in order to meet page

allocation demands. The overhead of scanning a large number of pages is significant, and

is one of the causes of the system load. We show the average number of pages that the

kernel scans (pgscand of sar tool) during VM workload execution, and also the scan

efficiency. The scan efficiency is defined as the ratio of the number of pages dropped

to the number of pages scanned, and a higher efficiency indicates lower overhead of the

page eviction process. The results are presented in Table 4.6, which shows the average

number of pages scanned and the scanning efficiency for the host system during an I/O

intensive workload. Because singleton drops pages which are not going to be used (since

they are present in the guests), the efficiency is very high (99%). This means that 99% of

all the cache pages scanned by the kernel for dropping were actually dropped, and thus

the overhead of scanning paid off. In contrast, we see very low efficiency (less than 1%)

in the default case. The average number of pages scanned during the eviction process is

also very high (1.8 million), which also explains the low efficiency. With cache-scrubbing,

there are negligible number of pages which are scanned by the swap daemon (kswapd),

partly because of the lower memory pressure, and also because of the guest cache-content

aware eviction process which ensures that only pages which might be used in the future

are kept in the cache.

Guest performance isolation: The host-cache is a shared resource among guests,

and it can potentially benefit the VMs. However, the host-cache is not equally or pro-

portionally distributed amongst the VMs. VMs doing heavy I/O will have more pages in

the host-cache, and can potentially interfere with the operation of the other VMs. The

memory pressure induced at the host can trigger swapping of guest pages and increased

page-eviction activity, resulting in decreased guest performance. By scrubbing the host-

cache, Singleton is able to provide increased performance isolation among guests. With

two VMs doing heavy I/O and the other two running kernel-compile workload, the I/O

activity floods the host page-cache, and reduces the kernel-compile performance(Table

4.7). Scrubbing prevents this from happening, and the result is improved kernel-compile

performance(6%).

In addition to providing isolation among guests, cache-scrubbing can also provide im-

31

Sequential Read speed Kernel compile time

Default 7,734 KB/s 3165 s

Fadvise 7,221 KB/s 3180 s

Singleton 7,432 KB/s 2981 s

Table 4.7: Impact of I/O interference on the kernel-compile workload.

Eclipse benchmark time Kernel compile time

Default 65 s 3300 s

Fadvise 62 s 3500 s

Singleton 60 s 3200 s

Table 4.8: Impact on host performance (Eclipse) due to kernel-compile workload running

in VM.

proved performance for applications running in the host system. Processes running on the

host (along with the virtual machines) also share the page-cache with the VMs. With-

out scrubbing, the cache-size can increase, and the memory pressure can adversely affect

the performance of the other host-processes/VMs. A common use-case of virtualization

is running desktop operating systems in virtual machines. These VMs run along with

existing host processes. On a desktop-class system (3GB memory), we run one VM(1 GB

memory) running the kernel-compile workload, and run the Eclipse workload on the host.

This mimics a common usage pattern. The workload executing in the VM results in per-

formance degradation on the host. With Singleton, a 10% improvement in the workload

running in the host(Eclipse) is observed(Table 4.8).

4.6.6 Summary of results

The important results based on our experimental evaluation are as follows:

• Singleton provides increased host-cache utilization due to system-wide page dedu-

plication. In our case, upto 2x increase in host cache hit-ratios was observed with

random-read workload.

Singleton

CPU %

Singleton

load aver-

age

Default

load aver-

age

Sequential 17.74 5.6 12.3

Random 19.74 4.8 10.3

Kerncompile 11.7 5.3 6.0

Zipf 10.2 4.9 4.9

Table 4.9: Scrubbing overhead and host load averages.

32

• The exclusive cache enables larger guest working sets to be present in memory,

resulting in improved I/O performance in the guests, especially for random I/O,

where we have observed a 40% improvement.

• Memory utilization with Singleton is significantly improved. Host cache sizes show a

2-10x decrease. The lower memory-pressure results in much lesser swapping—with

4 VMs and over different workloads, we observed close to no swap usage.

• Singleton’s page deduplication and exclusive cache enable increased levels of memory

overcommitment. In our setup, we were able to run 11 VMs instead of 8 VMs

without Singleton.

33

Chapter 5

Per-file Page-cache in Linux

5.1 Introduction

Page caches are used to cache frequently accessed data on disk, and are present in all

modern operating systems. They are an important component of the memory hierarchy,

and are certainly the largest component of the same. Conventionally, page-caches have

been unified — there exist a single page-cache for the entire system, which consists of

pages belonging to various files. The page-eviction mechanism is typically LRU, and

there exists a single LRU list which tracks all the pages in the page-cache.

We argue that unified caches are suboptimal for modern workloads and usage patterns.

Instead, we propose a new page-cache design, which splits the page-cache (logically) by

file. We call our page-cache the per-file page-cache. Thus, each file gets its own page-cache,

and can be managed differently. For example, we may have different eviction algorithms

for different files depending on their access-patterns, usage, priority, etc. While these

benefits may be possible to obtain in unified page-cache, the partitioned-cache design

yields a much cleaner design and implementation.

Our per-file page-cache is an attempt to improve the cache utilization and memory

management in general purpose operating systems, and its utility is not restricted to

virtualization. In the context of KVM, the per-file page-cache allows for fine-grained

control of secondary cache associated with each VMs. The virtual machines can ofcourse

use the per-file page-cache if they are running the linux kernel.

5.1.1 Contributions

The following page-cache improvements have been made:

• We study the need for paritioned page-caches and disk caches.

• A per-file page-cache is implemented in the Linux kernel. Our changes significantly

alter the architecture of the memory-management subsystem of the kernel.

• Preliminary experimental results suggest that the per-file cache is able to keep the

size of the cache down without sacrificing the cache hit-rates.

34

5.2 Need for fine-grained Page-cache control

Historically, the page-cache presents a black-box optimization — its contents,policies are

not exposed to the applications. We argue that allowing more fine-grained control of the

page-cache should increase the effectiveness of the cache.

The reason why some control of the page-cache should be exposed to applications are

:

• The page-cache occupies a very significant amount of physical memory, and thus it

is important to be able to control the use of that resource.

• Because of ever increasing memory sizes, the cached memory is growing at a faster

rate. Thus the need to split the giant LRU list, so as to make it more manageable,

and make better eviction decisions. Because of giant CLOCK-managed lists, it

is difficult to accurately estimate the relative-recency of pages — a long scanning

interval implies that almost all pages will be marked as ‘active’.

• While the page-cache is ubiquitous and has been for more than 3 decades in all UNIX

variants, read system-calls are still expected to hit the disk. Due to lack of control

over the cache, several applications (such as HTTP-caching services like Squid and

Varnish) manage their own cache (in user-space). This can lead to double-caching,

and increased work for application developers. If control of the cache is exposed,

the caching applications can use the existing kernel infrastructure to maintain pages

in LRU order etc.

• The cache hierarchy of modern computing systems are getting deeper and more

complex. Virtual environments have an additional level of page-cache at the host.

Solid State Devices with low read-latencies are being frequently used to augment in-

memory page-caches. With more complex cache hierarchies, the need may arise to

manage the kernel-maintained page-cache in a more fine-grained way. For example,

on a virtual-machine host with a flash-based SSD, the hypervisor may need to decide

on the cache composition of the data belonging to the various virtual machines it

hosts to guarantee certain quality of service and latency requirements. A VM with

a high working-set might be given a large cache on the SSD, while another might

be allocated a smaller amount of in-memory page-cache at the host. Such multi-

layered, multi-object, multi-agent cache optimization needs caches which allow and

enable such optimizations.

While the page-cache can be reorganized in several ways, we have chosen to do so by

partitioning it by file. Some of the benefits of our partitioned per-file page-cache are listed

below:

Eliminating Double caching With multiple levels of page-cache present, the phenomenon

of double-caching is observed. Since the disk IO operations of the guests go through

the hypervisor(also called the host), the block is cached in both the host and the

35

guest. This wastes memory without improving the overall cache-hit rates. Further-

more, due to the unified page-cache and memory-management found in Linux(and

other OSes like FreeBSD,Solaris, etc), the cache pages compete with the other

pages(belonging to user processes) for memory, and can cause pages to swapped

out to disk.

Eliminating Cache Interference Since the host page cache is shared between multiple

VMs, the performance of Virtual Machine guests is liable to be affected by the

activity of the other VMs. For example, a VM doing heavy IO can hog all the host

page-cache, and even cause the pages allocated to some other virtual machine to

be swapped out, severely affecting its performance. To combat this, we propose a

page-cache partitioning scheme wherein we split the page-cache by file.

Controlling Cache size and eviction policy With the cache-partitioning, we can con-

trol the size of the cache allocated to the file. Furthermore, depending on the access

patterns and other user-given parameters, different files can choose to run their own

cache-eviction algorithm/policy.

Improved Scalability An additional benefit of page-cache partitioning is that it presents

a very natural solution to the page-cache scalability and LRU-list lock contention

problems which are being encountered for large-memory systems with multiple

SMPs. We show that our implementation shows good SMP scalability and reduced

lock contention. We have also replaced the default linux page-eviction algorithm

with CAR (Clock with Adaptive Replacement, which is CLOCK approximation of

the Adaptive Replacement Cache). Using CAR improves the overall cache hit-ratios

in most cases.

Fadvise integration In certain situations, it is not beneficial to cache file data. For ex-

ample, files which are used only once do not benefit from keeping their data in the

cache after the file has been closed, etc. This pattern is extremely prevalent — files

opened by common UNIX utilities like cat, cp, rsync etc all pollute the cache. While

any LRU scheme will evict these pages eventually, they can potentially increase the

memory pressure, and can hang-on to the LRU lists for too long. Furthermore, it

may be prudent to not use memory for cache which does not contribute to perfor-

mance improvement at all. The POSIX fadvise system-call allows applications to

control the cache behaviour by allowing them to specify how the file is going to be

used via certain flags (such as DONT NEED, NO REUSE, WILL NEED, SEQUENTIAL,

RANDOM). However, the only action of these flags is on the cache contents already

present and not the future accesses. For example, DONT NEED on linux simply

drops the cache when called — future reads on the file still pollute the cache. A

policy controllable cache (such as ours) allows a much more effective implementa-

tion of fadvise. We have modified the fadvise implementation so that it calls the

per-file-cache, and the flags have the desired effect and are “sticky” and persistant

rather than single-shot.

36

Energy savings With memory banks taking a significant portion of the energy budget,

turning-off DRAM is a viable solution. Our per-file-cache can thus enable saving

energy as well.

5.3 Background : The Page Cache

The page cache is a key piece of the memory hierarchy, and provides reduced latency for

reads and writes by caching data in memory and batching writes. Essentially, the page

cache maps:

(file, offset)→ page (5.1)

It provides the page-frame where the data corresponding to the (file,offset) pair resides.

If the data is not present in memory, it performs a disk read to fetch the data. All file

I/O operations such as read,write,mmap system calls are serviced by the page cache.

User Program

Page Cache

Disk

mmap File read/write

(file,offset)->Page

Main Memory

File-system

Cache-missCache-hit

Figure 5.1: The logical architecture of the Page Cache found in almost all Operating

Systems. The file I/O requests get serviced without going through the file-system itself.

Mmap calls are handled the same way.

37

5.3.1 Buffer cache

Traditionally, UNIX has had a Buffer cache for caching disk data. The buffer cache

layer was directly above the disk subsystem, and provided caching for all disk data,

and deferred writes. However, the introduction of the mmap system call necessitated the

introduction of the unified Page cache in the seminal 4.0 release of SunOS [26]. SunOS

4.0 had the first complete implementation of mmap, and that necessiated a divergence

from the contemporary UNIX memory-management design. The SunOS virtual-memory

architecture [26] still acts as a blueprint for the modern unix derivates, and the current

linux architecture closely matches the one described in the 1987 paper.

With mmap, the files are accessed in a page granularity, which is typically larger than

the block/buffer size. Moreover, a page cache allows a unified cache to be used for

read/write and mmap system calls. Without a page cache, a separate cache would have

to be maintained for mmap’ed files.

User Program

Page Cache File-System

Buffer Cache

Disk

mmap File read/write

(file,offset)->Page (file,offset)->block

Figure 5.2: The traditional Buffer Cache architecture, as found in early versions of UNIX.

Since buffer and page sizes differ, mmap handling is messy.

5.3.2 Linux Page Cache

The linux page cache implementation is very sophisticated — it implements a completely

lockless read-side page cache [42], and stores the offset → page mapping in a radix-

tree. By lockless, we mean that requests for pages present in the cache do not acquire

a spin-lock in the absence of any writers. Writers need to take the radix-tree spin-lock

to prevent concurrent writers. Readers need only take the light weight RCU read lock.

RCU (Read Copy Update) [38] is a modern synchronization primitive which replaces

38

conventional reader-writer locks. RCU disables preemption and avoids the expensive spin-

lock acquiring cost (which is equivalent to a inter-CPU cache-line invalidation). The fast

‘read-lock’ on RCU comes at a price — writes are slower than reader-writer locks. Hence,

RCU is primarily meant for situations and scenarios where reads heavily outnumber the

writes. The kernel has an RCU API for linked-lists, allowing kernel subsystems to use

RCU synchronization in a safe,easy manner.

Note that the lockless design implies that readers can proceed in the presence of

writers. The mapping returned by the radix-tree lookup might be stale or not accurate.

Thus, readers only do the read on the mapping speculatively, and then lock the page

itself (which is the output of the mapping), and then verify whether the page is the

correct object requested. This is possible since each page contains pointers to the address-

space object that it belongs to, and also the offset of the page within the file/address-

space(Figure 5.3). Overall, the lockless radix-tree design is very clever, sophisticated,

elegant, and cleanly implemented.

5.3.3 Linux Page eviction

Linux has a unified page-eviction mechanism, wherein every page in the system is present

in a single logical LRU list(Figure 5.4). Thus, every cached page, anonymous page

belonging to the processes, pages belonging to the slab-caches — all compete for staying

in main-memory. This eviction process is co-ordinated by the swap-daemon (kswapd).

If a page is a cached page and is clean (its contents match those on disk), the page is

unmapped from the radix-tree, and put into the free-list. Anonymous pages are written

to a swap-area and then freed.

39

File

Dentry

Inode

address_space

mapping

File

Dentry

Radix Tree

Page Page Page

Figure 5.3: Important structures for memory management in Linux. The mapping con-

tains the radix-tree. Multiple files can have the same inode structure. Each inode has an

address-space associated with it, which contains the mapping.

The kernel implements a variant of the LRU-2 [44] page-eviction algorithm. The LRU

lists are approximated by using the CLOCK heuristic — a flag(PageActive) is set if a page

is accessed, and the CLOCK hand resets the flag during the page eviction scan of the list.

Maintaining a strict LRU order is prohibitively expensive since it requires a list update

on every cache-hit. On SMP systems, this would imply a spin-lock on every cache-hit.

All Operating Systems adopt the CLOCK strategy and shun strict LRU ordering.

40

Page

mapping

PTE/page-cache

Zone LRU list

Page

mapping

PTE/page-cache

Figure 5.4: Linux global(Zone) LRU list architecture. Each page stores the object that

maps it (reverse mapping). The reverse mapping is either the radix-tree mapping in case

of file-backed pages, or the vm-area in case of anonymous pages. The vm-area locates the

Page Table Entry (PTE) of the page.

The LRU list is divided into the Active and the Inactive list. Pages start on the inactive

list, and upon being referenced are promoted to the active list. All list updates/movement

happens during the scan, and not synchronously on page accesses. For eviction, the

inactive list is scanned since it consists of ’cold’ pages which have been accessed only once

recently, and the pages are evicted/freed. If a page is marked active, it is moved to the

active list and its active-flag is cleared. The active list is also scanned — pages which are

active are given one more chance on the active list, while the others are moved back to

the inactive list.

The LRU lists are periodically scanned, and the scanning frequency increases under

memory pressure. Pages which are to be evicted are handled appropriately. The clean

pages (pages which contain data which is also found on disk) are simply evicted . Anony-

mous pages need to be written to a swap-device. In any case, the evicted pages are then

put into the free-lists, and are free for reuse. The situation is complicated by the pres-

ence of pages with the ’swap-token’. The swap-token is given to the anonymous pages

which are swapped to disk. Instead of putting the pages on the free-list immediately, the

pages are given the swap-token to ’hold’. If the page is requested by a process in a short

time-frame after granting the token, then the swap-token is reclaimed, and the page is

ready for use. This avoids bringing the page from the swap-space(disk) to memory. The

swap-token is shown to increase the page-reclaim efficiency. The primary advantage of

the swap token is that it reduces the blocking time of the reclaim operation.

The LRU list are protected by a spinlock (zone-lock), which needs to be taken for

every operation (scan, evict, insert). The zone-lock is heavily contended, and several

attempts have been made by the kernel developers to reduce the contention. The primary

problem is that the lock overhead is very high. That is, the cost of acquiring and releasing

the zonelock is much higher than the cost of the critical section itself. Here, the critical

section either tests-and-sets some page-flag (PageActive), or evicts the page and removes

it from the list, or inserts the page into some other location on the list (or some other LRU

list entirely — Active → Inactive and vice versa). To counter the lock overhead, several

41

optimizations have been implemented. The most effective is the ’gang-locking’. Instead

of taking the lock for every page, several pages are removed (isolated) from the LRU list

and moved to a temporary list. Pages on this temporary list are then scanned/evicted.

5.4 Utility based cache partitioning

One of the key benefits of a partitioned our per-file cache is the cache allocation is based

on the utility of the cache, and not just purely on the basis of the recency or frequency

of usage, as is common in most other simple cache management techniques. A ‘one

size fits all’ caching policy cannot handle the myriad of file sizes, access patterns, user-

requirements, etc.

5.4.1 File Access Patterns

The access-pattern of a file is the trace of all the block accesses for that file over time.File

access patterns have been shown to have a lot of variation. For example, some files

are accessed sequentially, others show a random behaviour, while some others are cyclic.

Ofcourse, the access pattern of a file is dynamic and changes depending on the application.

One can observe that if the access-pattern of a file is known apriori, the effectiveness of

the caching will increase. For example, if a file is known to display cyclic reference-patter,

and if the cycle length is known, then the file can be allocated blocks equal to the length of

the cycle. Several studies have documented file access patterns for various workloads [21].

Work by [22] also shows that the automatic classification of file access patterns (into

sequential, random, cyclic, etc) can be exploited to increase the cache hit-ratio, since

the caching algorithms can be tuned for a particular access-pattern. If the files shows

consistent access-patterns, then the this knowledge can be exploited to move the caching

strategy closer to the optimal, since the competitive-ratio of online-caching algorithms is

bad only because of lack of oracle-access to the access-patterns. If the access pattern is

know, an optimal algorithm can be easily implemented. While such access-pattern based

caching is not implemented in any production operating system, a prefetch variant of

this is found in Apple’s Mac OS X Operating Systems. Instead of doing a sequential

readahead for file prefetch operations, OS-X records the file’s access patterns and stores

it permanently on disk. When the file is opened the next time, the blocks which are

present in the prefetch history are fetched. This optimization is deployed specifically for

launching executables to reduce the launch-time of frequently used applications.

5.4.2 Utility vs Demand-based caching

A important advantage of partitioned caches is that they allow for utility based cache

partitioning. In unified caches with a single LRU list,the cache allocation to various

agents(files in our case) is demand based. That is, the files doing the most I/O get the

most cache, since the pages are more likely to be recently used. The cache Utility of a

42

file [45], on the other hand, is the the benefit it gets from an extra cache page allocated

to it. The benefit is measured in terms of decrease in the number of misses that the file

encountered. Marginal Utility(MU) is function of cache size, and is in fact the slope of

the Miss-Ratio-Curve. Thus,

MU s = miss(s + 1)−miss(s) (5.2)

A generalization is to arbitrary changes in cache sizes (the Utility U) is:

Ua
b = miss(a)−miss(b) (5.3)

Where miss(s) is the number of misses that occur with a cache size of s.

The optimum partition of a cache among k files is obtained by solving this:

TotalUtility = Ux1
1 (f1) + Ux2

1 (f2) + . . . + Uxk
1 (fk) (5.4)

Where U(fi) is the utility function of file fi.

Assuming a cache size of F , an additional constraint is:

F = x1 + x2 + . . . + xk (5.5)

Thus, given accurate and complete miss-ratio curves, a cache can be partitioned op-

timally. This general cache-partitioning problem is NP-Complete [?]. However, if the

Utility functions are convex, then a simple greedy algorithm [45] suffices for the case

when there are only two competing files.

Algorithm 3 A simple greedy algorithm to find the optimum cache partitioning for two

files, assuming that the miss-ratio curves are convex

while(free_space) {

foreach(file) {

size = file.size ;

file.util = get_util_value(file) ;

if(file.util > MAX_UTIL) {

file.size++ ;

free_space-- ;

}

}

}

int get_util_value(file f)

{

return file.misses(file.size) - file.misses(file.size-1);

}

43

The miss-ratio graphs can be of a variety of shapes. Most workloads and applications

exhibit a ’flat’ graph, where the miss ratio drops to a constant value and remains constant

even with an increase in the cache size. In such cases, it would not make sense to increase

the cache size, since there would be no decrease in the miss-rate and hence no utility for

the cache.

The LRU algorithm obeys the stack property, meaning that a larger LRU-managed

cache always has more hits than a smaller one, given the same access pattern. This allows

the calculation of the number of misses for all the sizes smaller than the current one.

Sampling techniques can be used. To exploit the stack property, a the page must be

identified in the LRU list, and its access-counter updated. This technique may not be

applicable in the case of LRU approximations like CLOCK.

5.4.3 Challenges in MRC generation

In this section we enumerate some of the challenges in generating Miss-Ratio Curves

(MRC) for every file. An ideal cache-partitioning scheme minimizes the total misses,

given the a fixed cache-eviction algorithm. This is done by finding the minimum value of

the sum of all the miss-ratio-curves. Thus the first challenge is to obtain the miss-ratio

curve. If the eviction algorithm is LRU or its variant, then the stack-distance [] property

can be used. The stack-distance property allows the calculation of the number of misses

that would have occurred had the cache been smaller than its current size. Thus, we can

obtain the number of misses for all cache sizes smaller than the current size. The stack-

distance algorithm has a time-complexity of O(n), where n is the number of pages in the

cache. This must be repeated for all cache sizes, which brings the total time complexity

of generating a full Miss-Ratio Curve to be O(n*n).

While MRCs have been shown to be generated with low costs for a variety of cases

such as hardware caches and storage caches, the cost is simply too prohibitive if done for

each file inside the kernel. Some of the other reasons why generating MRCs inside the

kernel is challenging are:

• Most stack-distance based MRC construction techniques need an access-trace. That

is, every access of the cache must be recorded. In an operating system page cache,

cache hits must be fast. In the default configuration, the kernel simply performs

the index to page mapping and returns the page, with no additional computation.

We do not intend to make this fast-path slow due to recording every access and

storing it. Standard techniques like hash-tables [] which are used for stack-distance

calculation cannot be easily used inside the kernel, because dynamically allocated

memory is scarce, and there is no bound on the number of accesses. Also, there

is very limited apriori information about the number of accesses and the eventual

size of the file-cache. Thus, even allocating hash-table buckets might prove to be

tremendously wasteful, since the in-kernel memory footprint of small-files (due to

the page-cache book-keeping) might be much larger than the file itself.

44

• There is a high variability in the number and sizes of the files. This rules out any

algorithm which is linear in the size of the files or the number of files.

• Lastly, the access patterns for a file access are dynamic, hence the MRC construction

needs to be done dynamically.

These are the primary reasons why we have chosen to shun the standard MRC based

cache partitioning approach.

Miss-ratio curves can also be obtained by assuming a Zipf-like access pattern and using

modelling techniques to obtain fairly accurate curves [35].

5.5 Per-file Cache Design

Throughout the rest of this document, we shall use the terms file, inode, address-space

interchangeably. While the relation between files and address-spaces is not one-to-one,

and multiple files may have the same address-space structure associated with them, we

are only interested in the address-space.

We have re-designed the linux page cache with the following major changes:

1. Each address-space i contains its own fixed-size cache Ci. There is a many-to-one

relation between files and the address-spaces.

2. Exclusion from system(zone) LRU lists. The pages belonging to the file cache are

removed from the zone LRU lists by putting them on the Un-evictable LRU list.

This prevents the swap daemon from touching these pages.

3. Each address-space maintains its own cache state: the size, eviction-algorithm, etc

are all configurable via the sysfs interface. The existing linux LRU/2 implementation

is replaced by CLOCK approximation of the Adaptive Replacement Cache(ARC).

4. The file-cache eviction and free-space management is performed by a reaper thread,

which is called when the total number of pages present in caches of all the files exceed

a fixed limit (F-Size). The reaper thread maintains a list of all inodes ordered by

LRU order of file accesses. To approximate the LRU, we use a 4-chance CLOCK —

a file is declared ’cold’ after being given four scans during which it has the chance

to get accessed again.

45

Radix Tree

Address SpaceReaper

Reaper List

Cache Manager

Page List
 (LRU)

Inode

Page ReferencesInode References Offset->Page

Same Pages(Strict)

Cache Miss/Hit

Expand File

Shrink File (Evict)

Figure 5.5: The architecture of the per-file-cache. Arrows indicate flow of control or

data-dependence.

We now present in detail our design (Figure 5.5). Each file open corresponds to an

in-kernel inode creation, which is added to the super-block inode-list of the corresponding

file-system’s super-block. In addition to this list, we also add the inode to a ‘reaper-

list’. The reaper-list contains all the inodes which are referenced, and may contain inodes

from different superblocks. The reaper-list is protected by a reaper-lock spinlock, which

protects against concurrent additions and removals. In Linux, inodes are lazily deleted if

there is no reference to them. Typically, this happens after all the files which correspond

to the inode have closed, and there are no dentry-cache entries pointing to the inode either.

Thus, inode reclaim is either an effect of dentry objects being freed, or a reduction in the

inode-cache slab-cache. The slab-cache reclaim is either manual (via sysfs) or performed

by vmscan page-eviction to keep the sizes of slab-caches in check.

In the per-file cache, the pages belonging to file address-spaces are not put on the global

file-LRU lists. Instead, all pages of a file’s address-space are handled by its corresponding

cache algorithm. The cache algorithm handles radix-tree hits, misses, and deletes. This

way, we achieve isolation between files, and allows us to have different cache configurations

and algorithms for different files. The interface for dealing with files and address-spaces

remains the same (via find-get-page). Since most cache algorithms do not update the

LRU list on every access and instead just toggle a bit, we have provided a PageActive

bit for every page, which can be used by any page-eviction algorithm.

Cache-manager. A key feature of our design is that all the caching decisions are

local, and are made by the file’s cache manager. The cache manager is delegated the

task of handling the file’s cache pages for the purpose of eviction. The cache manager

maintains some sort of a page index (usually some variant of the LRU list) to keep track

of page hits, misses, and evictions. Any caching algorithm such as LRU, ARC, LIRS, etc

can be used in the cache-manager module. For our prototype, we have implemented ARC

46

and FIFO.

The cache manager is required to implement three interfaces :

1. Update cache state on cache-hit

2. Update cache state on cache-miss

3. handle eviction request

CAR: The CAR(Clock with Adaptive Replacement) [10] algorithm is the default

cache-manager algorithm for page-evictions. CAR is a CLOCK approximation of the

ARC(Adaptive Replacement Cache) [39], and it eschews the strict LRU lists for CLOCKs.

CAR has the same features of ARC : split LRU lists and shadow-lists, and has been

shown to have performance very close to that of pure ARC. Our implementation of CAR

very closely mirrors the canonical one [10]. CAR was chosen because of the benefits

of ARC (scan-resistance, adaptive-nature, absence of tunable magic-parameters). Since

CAR uses CLOCKs, the cache-hits do not need to update any LRU list. Updating LRU

lists is expensive since it requires acquiring a spin-lock on every page-cache hit. Note that

the linux page-cache mapping (via radix-tree) is itself lockless for reads, hence it would

be prohibitively wasteful to block on list-updates. Figure 5.6 describes the high-level

flow-chart of our CAR implementation.

47

Read/mmap

find-get-page
Radix-tree Lookup

Add to CAR T1 list SetPageActive

Rotate Clock hand
Evict from T1 or T2

Cache Full

Too many evictions from File

Expand file cache

Remove victim page
from mapping

Cache HitCache Miss

Figure 5.6: Flow-chart of the CAR algorithm implemented. CAR, which acts as the

cache-manager for a file, requests the reaper for additional space if it is forced to perform

too many evictions

Reaper thread The reaper-thread(Figure 5.7 is a kernel thread which balances the

size of each file’s cache as well as the global file-cache size (total number of pages present

in all file caches).

The primary weapon of the reaper is the ability to evict/reap pages. The reaper

maintains a list of all the file inodes, and requests the corresponding cache-manager to

evict pages. The files in the reaper-list are ordered by least recently used. Like any other

LRU list in the kernel, a CLOCK approximation is used. The reaper-list is updated by

the reaper-thread whenever evictions have to be performed. Thus, the least recently used

files are the victims of the reaping, and the file’s cache-manager gets to choose which

pages to evict from their cache.

The reaper implements three important functions:

48

1. Make space for new file

2. Make space for a file asking for more cache

3. Shrink total file cache if pressure on anonymous memory is high.

The reaper is called by the cache managers(Figure 5.5) when they request for ad-

ditional space(either for a new file, or if the cache manager deems that the file could

benefit from additional cache). All the reaper’s external interfaces are non-blocking, and

simply update the number of pages to reap. The thread periodically runs and evicts the

requested number of pages in an asynchronous manner. The eviction flow of control is

described in 5.8.

Reaper File list

Inode

CAR

Radix Tree

Inode

CAR

Radix Tree

Inode

CAR

Radix Tree

Reaper
Lock

Tree Lock
(For Updates)

Figure 5.7: The reaper list. Each entry is an inode. The list is protected by the reaper-

lock, and the nodes are protected by the tree-lock and inode-lock

Reaper Cache Manager

Reaper List

1.Walk List in
LRU Order

Victim Inode
2. Evict Pages from File

Evict from CAR list

Address Space

Radix Tree
4. Delete from
Radix Tree

3. victim page

Free List

5. Insert into Free List

Figure 5.8: Flow of control during a page eviction. The cache manager(CAR) is always

responsible for evicting pages. On successfully deleting from the radix-tree, the page is

put into the free-list and then reused.

49

5.5.1 Synchronization Issues

Our implementation is SMP-ready, and a few challenges were faced in resolving deadlocks

and page-cache safety.The spinlocks used in the implementation and their usage is detailed

below:

reaper-lock: The reaper thread protects its list using the reaper-lock. The lock is

acquired during inode additions/deletions, and the reaping itself, when the reaper walks

down the reaper-list and updates it, or evic pages from the inodes on the list. Since the

number of inodes which need to be scanned during the reaping may be very large, reaping

may take a long amount of time. The reaper-lock overhead is reduced by releasing and

reacquiring the lock after scanning every inode, so that file open/close operations are not

affected for a long period of time.

inode-lock: The inode-lock is an important part of existing linux inode synchroniza-

tion. The inode-lock is acquired to prevent concurrent deletes of the inode via the reaper

and the dentry mechanism.

CAR-lock. The cache manager (CAR in our case) needs to protect its page index

against concurrent reads to the same file. We must emphasize that the lock does not

destroy the lockless property of the page-cache implementation. The lock is

only acquired under two conditions:

1. Page additions (which corresponds to cache misses). On a cache-miss, the radix-tree

lock has to be taken anyway.

2. Page evictions

In the CAR algorithm, the transitions between shadow lists occurs on cache misses only.

Cache hits only affect the T1/T2 ratio (sizes of the two CAR lists respectively).

5.6 Utility based Adaptive Partitioning

In this section we describe the adaptive nature of the per-file cache. While our per-

file cache implementation can be used for implementing strict limits on the cache-sizes

for various files etc(through a sysfs interface), general situations demand an adaptive

solution.

For systemwide page caches, there exist two important dynamically changing values:

the number of pages cached for a given file, and the total number of file-cache pages.

In systems with a global LRU list(current Linux design), these values are not explicitly

manipulated, but change depending on the number of pages evicted and added. One key

advantage of system-wide LRU approach is that it naturally adapts to the changes in

workload, system-load, and memory pressure.

With partitioned page cache, manipulating these parameters (cache size of each file

and the global cache size) is an explicit task. While very sophisticated marginal-utility

based approaches can be attempted, we have implemented very simple, proof-of-concept

50

adaptive algorithms to manage the cache sizes. Part of the reason we have not considered

complicated heuristics is that the insertions and deletions from the caches are performed

from inside critical sections(thus holding spinlocks), and need to be extremely fast.

We now present a formal definition of our problem:

Each address-space i , when instantiated, is soft-allocated Ci number of pages. This

represents the maximum possible size that it can grow. If this maximum size is reached,

then there are two possible cases:

1. The page-eviction algorithm of i evicts pages to make room for new pages.

2. The address-space asks for an increase in Ci.

The cache-partitioning problem is thus: Given n files, with a total of M physical

memory present in the system, determine Ci and F , where:

F =
∑n Ci

and F + A = M , where A is the number of ’other’ pages which are managed by

kswapd’s vmscan. There may be user and system-defined constraints on the minimum

and maximum limits for each Ci. The objective function is to assign values to Ci so as

to minimize the expected number of cache-misses, given recent cache access history. As

mentioned earlier, an optimal solution to the cache partitioning problem is not feasible

to calculate inside the kernel’s hot cache-hit path.

5.6.1 File Cache size

If there is a lack of free space (F = M), and if a file needs grow, then some other files

must evict pages. The magnitude of growth is a function of its utility. If the file’s utility

is greater than the global average utility (of all the files so far) then the file has high

utility, and will presumably benefit from the extra cache. If free space exists, then the

file’s soft-limit Ci is increased in proportion to the free-space and the number of files and

their utilities.

An important to note is that we also consider the read-ahead successes when deter-

mining the utility. If the read-ahead success-rate is very high, then the file is a sequential

file, which will most likely not benefit from the cache. Therefore the utility is calculated

like:

Utility =
Misses−ReadAheadSuccesses

Accesses
(5.6)

Also, files which have been advised via fadvise are handled appropriately in the cache-

growth algorithm. Small or use-once files do not get additional cache even if they ask.

This allows us to quickly detect sequential accesses and not waste precious cache on

them. This approach also nicely integrates with the ARC’s ’single-use’ list, since we can

potentially also use the shadow-list success-rate as a guide for sequentialness and utility.

That is, a file with very high hits in the shadow-list should get a larger cache. A shadow-

hit implies a cache-hit had the cache been double the size, thus is a perfect input for a

utility function.

51

5.6.2 Total File-cache size

In our current implementation, the total space allocated for all the files in the cache F ,

keeps growing until the system starts to swap. On swapping, it decreases to reduce the

memory pressure.

A more sophisticated approach would be to integrate with the existing page-eviction

metrics of pages scanned and pages evicted, which are used by kswapd to determine the

proportion of file and anonymous pages to keep/evict.

5.7 Performance Evaluation of Per-file Cache

This section presents preliminary experimental results to test the effectiveness of the

per-file cache.

5.7.1 Setup and Workloads

To test the effectiveness of our cache, we run multiple I/O intensive workloads. The

workloads are described in Table 5.1. All I/O workloads are generated by using fio

(flexible I/O tester) , and the working set size of each workload is atleast two times larger

than the total memory available.

Workload Description

rand-seq 2 processes doing sequential and random file reads.

kerncompile Kernel compile(Linux 3.0). 3 threads are used.

Table 5.1: Workload description.

5.7.2 Cache size

Case Average Cache Size Max size

Default 372 400

PFC 40 44

Table 5.2: Cache sizes with the rand-seq workload

Table 5.2 compares the average and maximum size of the page-cache for the random-

sequential workload 5.1. With the per-file cache, we use only 40 MB of cache, while the

default uses almost all the memory available and occupies 400 MB. This is an order of

magnitude difference in the cache sizes.

52

5.7.3 I/O Performance

Case Random Seq

Default 390 4488

PFC 388 4668

Table 5.3: IO performance (IOPS) for the random-sequential workload. Per-file ca che’s

IO performance is very close to that of the default.

Case Hit-ratio

Default 0.622

PFC 0.714

Table 5.4: Cache hit ratios. We see a 15% improvement.

The I/O performance is shown in Table 5.3. The I/O performance in this case is not

perturbed much. However, as Table 5.2 shows, the per-file cache uses an order of magni-

tude less cache size to achieve the same performance. This increase in cache effectiveness

(we are able to use a much smaller cache for the same performance) is primarily because

of the utility based cache sizing. In both the cases - Sequential and Random workloads,

the marginal utility is very low. We identify the sequential workload on the basis of the

a high read-ahead-success to cache-hit ratio, and thus penalize that file when it asks for

more memory. For the random-read case, the working set is larger than the total memory,

thus the hit-rate is again quite low. Since margin utility is hit-rate based, and since utility

guides the allocation, the file having random accesses is also prevented from growing at a

very fast rate.

The systemwide cache hit-ratios for the same workload(random-sequential) are pre-

sented in Table 5.4. The overall hit-ratios increase by about 15%. Thus, the per-file-cache

is able to provide an increase in hit-ratios with a 10x smaller cache.

Case Compile time Average Cache size

Default 293 s 120 MB

PFC 268 s 100 MB

Table 5.5: Kernel compile times. Per-file cache does about 10% better than default.Cache

hit ratios are 0.984792 for pfc and 0.989283 for default

53

5.7.4 Overhead

Case Average Load Max Load

Default 1.0 1.40

PFC 0.8 1.09

Table 5.6: Load average during the random-sequential workload. The load is about 40%

less with the per-file-cache.

Since several key components of the memory-management subsystem have been substan-

tially modified, the performance of our unoptimized system was expected to be inferior.

However, as Table 5.6 shows, the load averages with the per-file cache are lower. We hy-

pothesize that this is because of not maintaining and scanning a global LRU list of pages.

The CPU utilization of the reaper thread was too close to 0% to measure accurately. In

profiling runs conducted, it has been found that the shadow-list linear search function is

the most expensive component of the entire setup. Replacing the linear search by a hash

table is part of future work, but several challenges reamin to be tackled. For example,

the size of the hash-table. If the number of buckets is too big, then the memory-footprint

for small files will be large. However we do need large hash-tables for large files, and we

do not know apriori if a file will occupy a large cache footprint.

54

Algorithm 4 Algorithm for expanding a file’s cache

static int expand_file(struct CAR_state *CAR_state)

{

int dAccess = CAR_state->dAccess ;

int dMisses = CAR_state->dMisses ;

int dRA = CAR_state->dRA_success ;

int MU_i = dAccess/(dMisses+dRA+1) ;

int global_MU_i = (rstat->dHits+rstat->dMisses)/ \

(rstat->dMisses+rstat->dRA) ;

enum CAR_filetype type = CAR_state->CAR_filetype;

if (type == PFT_small || type == PFT_dontneed) {

return 0; /* No pages for you. */

}

int MU_inv = dAccess/(dMisses+1) ;

to_grow = (CAR_MISS_DELAY/2)*(dAccess+dMisses)/ \

(dMisses+1) ;

/* This function is called only after a certain number

of misses from a file. Say,10. Thus worst case slowdown is 10.

If empty space exists, grab it? */

if (file_cache_full()) {

pages_freed = do_reaping(CAR_state, to_grow);

CAR_state->C += pages_freed;

} /* Else, we have enough space. Allocate the request. */

else {

rstat->soft_alloc += to_grow;

CAR_state->C += to_grow;

}

return pages_freed;

}

55

Chapter 6

Conclusion & Future Work

In this thesis, we have looked at the problems of page-cache management in virtualized

environments. An exclusive-cache solution using page deduplication (Singleton) has been

developed. Singleton allows risk-less memory overcommitment, allowing more virtual

machines to run on given hardware. Singleton represents the first such exclusive-cache

solution for KVM.

A closer examination of the linux page-cache has been done, and a new design (the

per-file cache) proposed and implemented. We believe that managed page-caches are the

future of memory-management because of ever increasing memory sizes and deepening

memory hierarchies. Our per-file page-cache is the first such modern step in that direction,

and has several axillary benefits like fadvise integration, utility-based partitioning, per-file

caching algorithm selection, etc. We have implemented a highly efficient modern caching

algorithm (ARC : Adaptive Replacement Cache) to obtain higher hit ratios with an order

of magnitude smaller cache sizes.

Lastly, the underlying theme of this work is the idiosyncrasy of resource management

by operating systems in virtual environments. Resources are now managed by two agents

completely oblivious of each other (the guest and host OS). This leads to several situations

where the two agents enact redundant optimizations and services. The real impact on

performance is when the optimizations are complementary, and reduce the performance,

as happens in disk-scheduling. While we have focused primarily on page-caches and disk

I/O in this work, the idea of resolving the dual-agent conflict is almost immediately

applicable to the problem of OS scheduling, paging, security in virtual environments. It

is hoped that operating systems of the future have a greater awareness of their place in

the virtual machine hierarchy (whether they are hosts or guests), and the work presented

herein represents a tiny step in that direction.

56

6.1 Future Work

Page deduplication

• Extend the dirty-bit guided scanning for AMD NPT to Intel’s EPT. This is chal-

lenging since EPT does not expose the dirty-bit to the hypervisor.

• Page deduplication in the real world : A comprehensive study about the prevalence

and effectiveness of page-deduplication would give a good idea about its benefits.

• KSM for host pages. Currently, KSM only scans anonymous memory areas. However

if VM self-sharing is high, then it could be used for host pages as well, and eliminate

duplicate libraries etc loaded.

Exclusive Caching

• Eviction based exclusive caching for KVM, by tracking QEMU disk read requests

and mapping them to guest reads. Tracking evictions(black-box) is still an open

problem.

• Some more performance measurements for different guest operating systems.

Per-File cache

• The performance profiling done is preliminary and needs to be extended and im-

proved. Workloads with combinations of several benchmarks, memory-sizes, cache-

parameters (size, policy) etc all need to be varied, and the performance impact of

per-file cache measured.

• The CAR shadow list hit-rate and T1-T2 ratio can be used to guide the utility

function.

• Measurement of how the new cache design impacts second-level caching — by run-

ning multiple VMs.

• Implementation of various caching algorithms like LIRS,MQ, etc to supplement

CAR.

• Replace CAR shadow lists by a different data structure.

57

Bibliography

[1] AMD-V Nested Paging. http://developer.amd.com/assets/NPT-WP-1%201-final-

TM.pdf.

[2] Bonnie++ File System Benchmark. www.coker.com.au/bonnie++/.

[3] Eclipse IDE. http://eclipse.org/.

[4] Linux Kernel Mailing List. http://www.mail-

archive.com/kvm@vger.kernelorg/msg30649.html.

[5] C.J. Ahn, S.U. Choi, M.S. Park, and J.Y. Choi. The design and evaluation of policy-

controllable buffer cache. In Parallel and Distributed Systems, 1997. Proceedings.,

1997 International Conference on, pages 764–771. IEEE, 1997.

[6] G. Almási, C. Caşcaval, and D.A. Padua. Calculating stack distances efficiently. In

ACM SIGPLAN Notices, volume 38, pages 37–43. ACM, 2002.

[7] A. Arcangeli, I. Eidus, and C. Wright. Increasing Memory Density by using KSM.

In Proceedings of the Linux Symposium, pages 19–28, 2009.

[8] Ö. Babaolu. Hierarchical replacement decisions in hierarchical stores, volume 11.

ACM, 1982.

[9] L.N. Bairavasundaram, M. Sivathanu, A.C. Arpaci-Dusseau, and R.H. Arpaci-

Dusseau. X-ray: A Non-invasive Exclusive Caching Mechanism for Raids. In 31st

Annual International Symposium on Computer Architecture., pages 176–187, 2004.

[10] S. Bansal and D.S. Modha. Car: Clock with adaptive replacement. In Proceedings

of the 3rd USENIX Conference on File and Storage Technologies, pages 187–200.

USENIX Association, 2004.

[11] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of

USENIX Annual Technical Conference, FREENIX Track, pages 41–49, 2005.

[12] T. Bird. Measuring Function Duration with Ftrace. In Proceedings of the Japan

Linux Symposium, 2009.

58

[13] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, et al. The DaCapo Benchmarks:

Java Benchmarking Development and Analysis. In ACM SIGPLAN Notices, vol-

ume 41, pages 169–190, 2006.

[14] D. Boutcher and A. Chandra. Does Virtualization Make Disk Scheduling Passé?

ACM SIGOPS Operating Systems Review, 44(1):20–24, 2010.

[15] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running Commodity Operating

Systems on Scalable Multiprocessors. ACM SIGOPS Operating Systems Review,

31(5):143–156, 1997.

[16] P. Cao, E.W. Felten, A.R. Karlin, and K. Li. A study of integrated prefetching and

caching strategies, volume 23. ACM, 1995.

[17] P. Cao, E.W. Felten, A.R. Karlin, and K. Li. Implementation and performance of

integrated application-controlled file caching, prefetching, and disk scheduling. ACM

Transactions on Computer Systems (TOCS), 14(4):311–343, 1996.

[18] P. Cao, E.W. Felten, and K. Li. Application-controlled file caching policies. In Pro-

ceedings of the USENIX Summer 1994 Technical Conference, pages 171–182, 1994.

[19] C.R. Chang, J.J. Wu, and P. Liu. An Empirical Study on Memory Sharing of Virtual

Machines for Server Consolidation. In IEEE Symposium Parallel and Distributed

Processing with Applications (ISPA), pages 244–249, 2011.

[20] Z. Chen, Y. Zhou, and K. Li. Eviction-based Cache Placement for Storage Caches.

In Proceedings of USENIX Annual Technical Conference, pages 269–282, 2003.

[21] J. Choi, S.H. Noh, S.L. Min, and Y. Cho. Towards application/file-level charac-

terization of block references: a case for fine-grained buffer management. ACM

SIGMETRICS Performance Evaluation Review, 28(1):286–295, 2000.

[22] J. Choi, S.H. Noh, S.L. Min, E.Y. Ha, and Y. Cho. Design, implementation, and per-

formance evaluation of a detection-based adaptive block replacement scheme. Com-

puters, IEEE Transactions on, 51(7):793–800, 2002.

[23] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield. Live Migration of Virtual Machines. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), pages 273–286, 2005.

[24] C.D. Cranor and G.M. Parulkar. The uvm virtual memory system. Proceedings of

the 1999 USENIX Annual Technical, 168:117–130, 1999.

[25] B.S. Gill. On Multi-level Exclusive Caching: Offline Optimality and why Promotions

are Better than Demotions. In Proceedings of the 6th USENIX Conference on File

and Storage Technologies, pages 1–17, 2008.

59

[26] R.A. Gingell, J.P. Moran, and W.A. Shannon. Virtual memory architecture in

SunOS. 1987.

[27] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M. Voelker,

and A. Vahdat. Difference engine: Harnessing Memory Redundancy in Virtual Ma-

chines. Communications of the ACM, pages 85–93, 2010.

[28] X. He, M.J. Kosa, S.L. Scott, and C. Engelmann. A Unified Multiple-level Cache

for High Performance Storage Systems. International Journal of High Performance

Computing and Networking, 5(1):97–109, 2007.

[29] M. Jeon, E. Seo, J. Kim, and J. Lee. Domain level Page Sharing in Xen Virtual

Machine Systems. Advanced Parallel Processing Technologies, pages 590–599, 2007.

[30] S.T. Jones, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau. Geiger: Monitoring the

Buffer Cache in a Virtual Machine Environment. In Proceedings of ASPLOS, pages

14–24, 2006.

[31] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the Linux Virtual

Machine Monitor. In Proceedings of the Linux Symposium, pages 225–230, 2007.

[32] J.F. Kloster, J. Kristensen, and A. Mejlholm. Efficient Memory Sharing in the Xen

Virtual Machine Monitor. Technical report, Aalborg University, 2006.

[33] J.F. Kloster, J. Kristensen, and A. Mejlholm. On the Feasibility of Memory Sharing:

Content-based Page Sharing in the Xen Virtual Machine Monitor. Technical report,

Aalborg University, 2006.

[34] J.F. Kloster, J. Kristensen, and A. Mejlholm. Determining the use of Interdomain

Shareable Pages using Kernel Introspection. Technical report, Aalborg University,

2007.

[35] I. Kotera, R. Egawa, H. Takizawa, and H. Kobayashi. Modeling of cache access

behavior based on zipf’s law. In Proceedings of the 9th workshop on MEmory per-

formance: DEaling with Applications, systems and architecture, pages 9–15. ACM,

2008.

[36] C. Maeda. A metaobject protocol for controlling file cache management. Object

Technologies for Advanced Software, pages 275–286, 1996.

[37] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel. Transcendent Memory

and Linux. In Proceedings of the Linux Symposium, pages 191–200, 2009.

[38] P.E. McKenney and J.D. Slingwine. Read-copy update: Using execution history to

solve concurrency problems. In Parallel and Distributed Computing and Systems,

pages 509–518, 1998.

60

[39] N. Megiddo and D.S. Modha. Arc: A self-tuning, low overhead replacement cache. In

Proceedings of the 2nd USENIX Conference on File and Storage Technologies, pages

115–130, 2003.

[40] G. Mi los, D.G. Murray, S. Hand, and M.A. Fetterman. Satori: Enlightened Page

Sharing. In Proceedings of USENIX Annual technical conference, pages 1–14, 2009.

[41] M. Moreto, FJ Cazorla, A. Ramirez, and M. Valero. Online prediction of applications

cache utility. In Embedded Computer Systems: Architectures, Modeling and Simu-

lation, 2007. IC-SAMOS 2007. International Conference on, pages 169–177. IEEE,

2007.

[42] Piggin Nick. A Lockless Page Cache in Linux. In Proceedings of the Linux Symposium,

pages 241–250, 2006.

[43] W.D. Norcott and D. Capps. Iozone Filesystem Benchmark. www.iozone.org.

[44] E.J. O’neil, P.E. O’neil, and G. Weikum. The LRU-K page Replacement Algorithm

for Database Disk Buffering. In ACM SIGMOD Record, volume 22, pages 297–306,

1993.

[45] M.K. Qureshi and Y.N. Patt. Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches. In Proceedings of

the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pages

423–432. IEEE Computer Society, 2006.

[46] J. Ren and Q. Yang. A New Buffer Cache Design Exploiting Both Temporal and Con-

tent Localities. In 2010 International Conference on Distributed Computing Systems,

2010.

[47] S. Rhea, R. Cox, and A. Pesterev. Fast, Inexpensive Content-Addressed Storage in

Foundation. In USENIX Annual Technical Conference, 2008.

[48] R. Russell. VirtIO: Towards a de-facto Standard for Virtual I/O Devices. ACM

SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[49] J.H. Schopp, K. Fraser, and M.J. Silbermann. Resizing Memory with Balloons and

Hotplug. In Proceedings of the Linux Symposium, pages 313–319, 2006.

[50] M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek, and J.H. Choi. Collab-

orative Memory Management in Hosted Linux Environments. In Proceedings of the

Linux Symposium, 2006.

[51] B. Singh. Page/slab Cache Control in a Virtualized Environment. In Proceedings of

the Linux Symposium, pages 252–262, 2010.

[52] C. Tang. FVD: a High-Performance Virtual Machine Image Format for Cloud. In

Proceedings of the USENIX Annual Technical Conference, pages 229–234, 2011.

61

[53] D. Thiébaut, H.S. Stone, and J.L. Wolf. Improving disk cache hit-ratios through

cache partitioning. Computers, IEEE Transactions on, 41(6):665–676, 1992.

[54] C.A. Waldspurger. Memory Resource Management in VMware ESX server. ACM

SIGOPS Operating Systems Review, pages 181–194, 2002.

[55] N.H. Walfield and M. Brinkmann. A critique of the gnu hurd multi-server operating

system. ACM SIGOPS Operating Systems Review, 41(4):30–39, 2007.

[56] T.M. Wong and J. Wilkes. My cache or Yours? Making Storage More Exclusive. In

Proceedings of USENIX Annual Technical Conference, pages 161–175, 2002.

[57] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M.D. Corner.

Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized Data

Centers. ACM SIGOPS Operating Systems Review, pages 31–40, 2009.

[58] G. Yadgar, M. Factor, and A. Schuster. Karma: Know-it-all replacement for a

multilevel cache. In Proceedings of the 5th USENIX conference on File and Storage

Technologies, 2007.

[59] Z. Zhang, A. Kulkarni, X. Ma, and Y. Zhou. Memory Resource Allocation for File

System Prefetching: from a Supply Chain Management Perspective. In Proceedings

of the 4th ACM European conference on Computer systems, pages 75–88, 2009.

[60] Y. Zhou, Z. Chen, and K. Li. Second-level Buffer Cache Management. IEEE Trans-

actions on Parallel and Distributed Systems, pages 505–519, 2004.

[61] Y. Zhou, J.F. Philbin, and K. Li. The Multi-queue Replacement Algorithm for Second

Level Buffer Caches. In Proceedings of USENIX Annual Technical Conference, pages

91–104, 2001.

[62] Y. Zhu and H. Jiang. Race: A robust adaptive caching strategy for buffer cache.

Computers, IEEE Transactions on, 57(1):25–40, 2008.

[63] K. Jin and E.L. Miller. The Effectiveness of Deduplication on Virtual Machine

Disk Images. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems

Conference. ACM, 2009.

62

Appendix A

Kernel changes for Singleton

Documentation/vm/page-types.c | 3 +-

arch/x86/include/asm/kvm_host.h | 4 +

arch/x86/include/asm/pgtable_32.h | 1 +

arch/x86/kvm/x86.c | 83 +

arch/x86/mm/gup.c | 1 +

drivers/block/virtio_blk.c | 9 +-

drivers/net/usb/dm9601.c | 1 +

fs/drop_caches.c | 42 +

fs/proc/page.c | 90 +-

fs/proc/task_mmu.c | 2 +-

include/linux/ksm.h | 4 +-

include/linux/mm.h | 3 +

include/trace/events/ksm.h | 144 +

mm/filemap.c | 27 +-

mm/ksm.c | 4999 ++++++++++++++------

mm/rmap.c | 5 +-

mm/truncate.c | 50 +-

mm/vmscan.c | 109 +-

samples/trace_events/trace-events-sample.h | 2 +

.../perf/scripts/python/bin/syscall-counts-record | 2 +-

virt/kvm/kvm_main.c | 215 +

21 files changed, 4362 insertions(+), 1434 deletions(-)

63

Appendix B

Kernel changes for Per-File Cache

Makefile | 2 +-

fs/drop_caches.c | 2 +-

fs/inode.c | 15 +-

fs/proc/base.c | 25 +-

fs/super.c | 1 +

include/linux/fs.h | 54 ++-

include/linux/per-file-cache.h | 185 +++++++

mm/Kconfig | 1 +

mm/Makefile | 2 +-

mm/fadvise.c | 6 +-

mm/filemap.c | 20 +-

mm/page_alloc.c | 5 +-

mm/per-file-cache.c | 494 +++++++++++++++++

mm/pf_cart.c | 711 +++++++++++++++++++++++++

mm/pfifo.c | 87 +++

mm/reaper.c | 1135 ++

mm/truncate.c | 1 +

mm/vmscan.c | 19 +-

18 files changed, 2722 insertions(+), 43 deletions(-)

64

Appendix C

Kernel changes For AMD NPT

Dirty-bit KSM scanning

arch/x86/include/asm/kvm_host.h | 1 +

arch/x86/kvm/mmu.c | 36 +

arch/x86/kvm/mmu.h | 3 +-

arch/x86/kvm/vmx.c | 3 +

arch/x86/mm/hugetlbpage.c | 2 +

fs/inode.c | 3 +

fs/read_write.c | 2 +

include/linux/fs.h | 22 +

include/linux/mm.h | 1 +

include/linux/mm_types.h | 2 +

include/linux/mmu_notifier.h | 48 +

include/linux/pagemap.h | 1 +

include/linux/rmap.h | 26 +-

mm/Makefile | 1 +

mm/filemap.c | 43 +-

mm/filemap_xip.c | 6 +-

mm/ksm.c | 189 +-

mm/mmap.c | 3 +

mm/mmu_notifier.c | 33 +

mm/rmap.c | 61 +-

mm/swap.c | 1 +

mm/vmscan.c | 1 +

virt/kvm/kvm_main.c | 27 +

24 files changed, 6344 insertions(+), 66 deletions(-)

65

