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Abstract
We present Unvoiced, a novel unvoiced user interface that leverages
jaw motion to enable users to silently interact with their devices
using earables. The core idea is to translate low-frequency jaw
motion signals into high-frequency information-rich mel spectro-
grams. Our proposed cross-modal translation incorporates phonetic,
contextual, and syntactic information, while the specialized loss
function optimizes for these linguistic features. This ensures that
the generated spectrograms capture nuanced speech characteristics.
Evaluated for 19 users across four tasks, Unvoiced demonstrates
>94% task completion rate and <9% word error rate for over 90% of
phrases. Further, Unvoiced maintains >90% task completion rate in
noisy conditions.

CCS Concepts
• Human-centered computing→ Accessibility technologies;
Interaction techniques.
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1 Introduction
Speech-based interactions are everywhere. In fact, Voice User In-
terfaces (VUIs) have become the de facto interaction modality
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Figure 1: Use cases for Unvoiced. (a) Discreet interaction in public
spaces. (b) VR interaction for a better immersive experience. (c)
Hands-free and reliable voice interaction in a noisy background.

for intelligent assistants (e.g. Alexa [3] or Siri [6]), Virtual Real-
ity (VR) [58, 59], in-vehicle interactions [41, 91], smart home de-
vices [4, 101], and other Internet of Things (IoT) devices [16, 68] in
both, public and private spaces. Despite its success and popularity
as an interaction modality, audible speech has severe limitations
in practical environments. VUIs are often not robust in hearing or
understanding the user in the presence of background noise, can
compromise privacy in public spaces (consider dictating a private
text in a public space), or can simply be impractical in quiet envi-
ronments where it is desirable to not disturb cohabitants (such as
in the library, classroom, or even at home).

To address these limitations, unvoiced user interfaces (UUI), also
known as silent speech interfaces (SSIs), have recently garnered
significant interest [64, 80]. Unlike VUIs, UUIs enable users to com-
municate without vocalization, broadening their applicability to
situations where conventional speech is impractical. A contem-
porary study [65] revealed that UUIs are generally perceived as
more socially acceptable than voiced speech, with users showing
greater tolerance for errors. Research has also highlighted that
social discomfort and privacy issues significantly influence users’
perceptions and willingness to adopt voice assistants [94]. By elim-
inating the need for audible speech, UUIs offer enhanced privacy
protection. These benefits position them as a promising technology
for expanding the functionality of voice assistants through silent
interactions.

While interesting, most existing work in this space is difficult to
realize for widespread adoption. Works that rely on camera-based
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lip reading [26, 62, 63, 67, 86, 102] require unobstructed camera
view, hampering user’s privacy and limiting system usability. Other
systems that employ acoustic sensing face challenges due to non-
hands-free operation, privacy concerns, and often require the user
to be stationary or hold a mobile device [22, 33, 89]. In the realm
of wearable devices, many solutions to recognizing silent speech
involve placing sensors inside the oral cavity or on/around the
lips [43, 96], which may be both, physically uncomfortable as well
as socially unacceptable. Recent research efforts have focused on
positioning less intrusive sensors in less visible locations, such as
behind the ear or under the chin [39, 44, 83, 107]. However, they
often necessitate additional user efforts like slowed speech to main-
tain performance or can only recognize isolated phonemes or words.
It is evident that there is a need for an unvoiced interface that allows
users to seamlessly communicate with their devices privately, with-
out the impact of background noise, but also without using obtrusive
sensing devices that are not socially acceptable.

We design Unvoiced, an unvoiced user interface that can enable
silent interactions ubiquitously. We achieve a robust unvoiced in-
terface that can work across multiple applications by leveraging
the rising trend of sensor-equipped earables [78]. Unvoiced is an
IMU-based system that tracks the user’s jaw motion as they artic-
ulate without vocalizing to recognize silent speech. Recent work
on using jaw motion to recognize silent speech has demonstrated
immense promise [83, 106]. We leverage the unobtrusive around-
the-ear wearable prototype [39] to facilitate Unvoiced. However,
since the jaw is a secondary articulator, deciphering speech from
jaw motion alone is challenging. With the recent success of Large
LanguageModels (LLMs), the questionwe then ask is: Is it possible to
harness the capabilities of LLMs to support unvoiced user interactions
using jaw motion only? To design this LLM-assisted robust UUI, our
key intuition is to translate IMU data to audio spectrograms which
can then be converted to text using off-the-shelf LLMs. Figure 1
demonstrates several use-case scenarios.
Challenges. Developing Unvoiced entails 3 key challenges:

(1) Cross-modal translation faces significant data domain variance.
Translating from jaw motion to Mel spectrograms is challenging be-
cause the source modality (jaw motion) is sampled at a much lower
frequency than the target modality (audio spectrograms), which
is sampled at 103× IMU data. Moreover, spectrograms encapsulate
rich features from audible speech (such as formants and chroma
features), which are challenging to learn from jaw motion only.

(2) Jaw motion and speech are not directly related. Speech results
from a high degree of overlap and continuous movements of multi-
ple articulators [53]. The jaw is a secondary articulator with few
degrees of freedom and is not actively involved in speech produc-
tion (multiple sounds result in the same jaw movement). As a result,
generating rich audio spectrograms from the limited measurements
of jaw motion is challenging.

(3) Variable context across target applications. Applications that
would benefit from UUI have very different contexts and there
exist multiple possibilities for what is considered a valid interaction
phrase within the scope of each application. For example, a voice
assistant can accept both “Add apples to shopping list" and “Delete
apples from shopping list" as a valid command. However, errors in
detecting even one word can completely alter the task output.

Contributions. Unvoiced addresses these challenges by first mod-
eling the relationship between jaw motion and Mel spectrograms
using a multi-modal Transformer model with custom losses that
incorporate phonetic knowledge into the model. This spectrogram
can now be used with any LLM to generate text. However, LLMs
are large and can produce valid outputs outside the context of the
current application. We scope their output by injecting contex-
tual information, derived from phonetic components. Finally, we
demonstrate Unvoiced on 4 applications with different contexts and
accuracy needs. Results reveal that our generated spectrograms are
very close to the target spectrograms. We can achieve task comple-
tion accuracy >94%. We realize Unvoiced using a twin-IMU earable
prototype that was recently developed [83] and has been used in
other works successfully [84]. This prototype allows us to extract
jaw motion while cancelling out motion-induced noise.

To summarize, we make the following contributions:
• To the best of our knowledge, this is among the earliest attempts
to perform cross-modal translation to generate Mel spectro-
grams (high frequency, rich information) from low-frequency
ear-mounted IMU sensors.

• This is the first unvoiced user interface that brings the advances in
LLMs to develop a robust unvoiced interaction modality relying
only on a secondary articulator.

• We refine the large space of outputs from LLMs by leveraging
phonetic components leading to contextually correct interaction
phrases.

• Extensive evaluations for 19 users across 4 applications and 3
baseline techniques, achieving a task completion rate of 94.3%.

Applications. Unvoiced aims to enable seamless and private inter-
actions with various voice-enabled applications. It allows users to
silently control media playback and smart home devices, enhancing
privacy and security by preventing eavesdropping and imperson-
ation attacks. The system can facilitate secure transactions using
silent speech as a second-factor authentication [84] and enables
discreet note-taking and messaging in professional and educational
settings. In VR/AR environments, it provides hands-free control, en-
hancing immersive experiences without disrupting the real world.
Importantly, it has the potential to offer an inclusive alternative for
individuals with speech impairments, enabling technology interac-
tion in a hands-free voice-free manner.

2 LLM-Assisted User Interfaces
2.1 Background
Jaw as a cue for speech production.We explore the possibility
of developing a continuous unvoiced speech recognition system
that utilizes jaw motion as the primary input. Despite being a sec-
ondary articulator compared to the lips, teeth, tongue, and palates
involved in sound production, the jaw facilitates its movements
without directly affecting airflow for sound distinction. Specifically,
the temporomandibular joint (TMJ), which allows rotational and
translational movements of the jawbone, supports the necessary
movements of the lips and tongue for articulating words. Therefore,
by tracking the jaw—an articulator associated with speech but not
directly involved in sound production— we enable continuous un-
voiced speech recognition. This possibility has been confirmed by
prior works in phoneme detection [39, 83, 106] for isolated sounds
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and commands, skin’s displacement monitoring [108] for numeric
passcodes, and cheek movement monitoring [45, 46] to enable facial
gesture recognition.

Leveraging LLMs in User Interface Design: VUI techniques
have been significantly improved by advancements in Language
Model (LLM) capabilities, particularly to bridge the gaps between
speech recognition and text generation [42]. Recent LLMs—those
based on Transformer architectures—have vastly improved the accu-
racy of converting human speech into text [60]. By leveraging large-
scale data and sophisticated ML techniques, LLMs enhance VUI
systems’ ability to understand diverse contexts even with accents
in multiple languages [40]. LLM-powered VUI not only enriches
user interactions by making them more intuitive and responsive
but also expands the application of voice-driven technology across
industries, from virtual assistants to automated customer service
and many others [12, 25, 54, 87]. Following the success of LLMs in
enhancing VUIs, we aim to leverage LLMs in our unvoiced user
interface design.

2.2 Preliminary Study
To validate the feasibility of LLM-assisted UUI, we conducted a
preliminary study where a user wore the twin-IMU prototype and
spoke the sentence "Set alarm for six A.M.", at slowed and normal
speech rates of 30 and 55WPM (words per minute) respectively (see
Figure 2). We observe that at 30 WPM, [83] was able to recognize
phonetic components and perform recognition. However, at normal
speech rate, multiple important phonetic features are suppressed
in the jaw motion signal. This leads to sparse information about
phonetic components and few words are recognized compared
to [83]. We feed these recognized words directly into an LLM and
observe the outcomes. Since only 2 words ("alarm" and "six") could
be recognized, the LLM could not provide the desired response,
i.e. the complete phrase. This attempt to develop an LLM-assisted
UUI using jaw motion was unsuccessful due to limited speech
information. From this observation, the key research question of
this work becomes "How can robust spectrograms, which are essential
inputs for LLM-powered speech interfaces, be created from jaw motion
data?". We aim to generate spectrograms as they are widely used
in state-of-the-art open-source speech recognition systems such
as Whisper [72], DeepSpeech2 [5], and DeepSpeech [71], However,
reliable speech spectrograms are challenging to obtain from IMU
due to low frequency and relatively less speech information in jaw
motion.

3 System Overview
Unvoiced enables silent interactions by combining jawmotion track-
ing and deep learning model with a custom loss function. IMU
captures the subtle movements of the jaw during the silent speech,
providing a low-frequency data stream that is converted to high-
frequency mel-spectrograms. Figure 3 presents an overview of
Unvoiced.

During the training phase, synchronized jaw motion, audio data,
and text are used to train a deep-learning model to generate spec-
trograms. Once trained, in the inference phase the model relies on
jaw motion data to generate the audio spectrogram and, convert it
to text.

Set Alarm For Six A M

Set Alarm For Six A M

Plosive 2 peaks 2 syllables Onset Onset

No
OnsetNo

Syllable

No
Plosive Missed

Syllable

Figure 2: Example jaw motions when a user speaks the phrase "Set
alarm for six AM" at 30 WPM and 55 WPM.

This translation is inherently complex due to the sparse nature of
the jaw motion data and the high-fidelity spectrogram required for
speech recognition. To simplify the task for the model, we propose
a phrase segmentation module (§ 4), which breaks down continuous
phrase data into words. The segmentation significantly reduces the
sequence length of the outputs, thereby not only simplifying the
translation task but also increasing the granularity and number of
training samples available.

Despite the task simplification through phrase segmentation,
the goal of interpreting subtle jaw movements to reconstruct spec-
tral features remains challenging. To solve this challenge, we pro-
pose a novel transformer-based encoder-decoder model equipped
with custom-designed loss functions. After the phrases have been
segmented into words, the inputs for the training model are pre-
pared which are the muti-view for the 6-axis IMU word data, the
weighted frequency mask of the audio spectrogram, and the GPT2
text embeddings for the word (§ 5.1). The encoder-decoder model is
trained with these inputs using custom loss functions (§ 5.3). These
loss functions describe the linguistic properties, such as phonetic,
prosodic, and syntactic information from the limited articulatory
data, while minimizing spectral divergence. This novel approach
ensures that the generated spectrogram follows the implicit linguis-
tic rules and achieves a close representation of the intended speech
output (§ 5.3).

During the inference phase, jaw motion data associated with
silent speech is captured, the same pre-processing as in the training
phase is applied, and it is segmented into words. Our trained model
then generates a spectrogram for each word. The final step involves
converting these spectrograms into text with the Whisper speech
recognition system. In instances of missing information like skipped
words due to non-recognizable jaw motion, we employ generative
pre-trained transformers (GPT) to produce contextually accurate
phrases, further refined by incorporating phonetic information (§ 6).
This integration not only showcases the practical utility of our
system but also highlights its compatibility with existing speech-
recognition methods.

4 Phrase Segmentation
The goal of phrase segmentation algorithm is to segment the IMU
signal for a phrase into words after removing noise. Segmenting the
phrase into its constituent words helps us twofold: (1) simplifies the
task of spectrogram generation by allowing the model to generate
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Figure 3: Unvoiced Overview

shorter spectrogram signals compared to entire phrases; (2) allow
us to train the model for individual words. Word-level processing
grants direct access to lexical information like the location of a
linguistic unit (word) that helps in semantic understanding. Recall
that Unvoiced utilizes a twin-IMU noise cancellation design [83, 84],
with IMUs placed at the temporal bone and temporomandibular
joint (TMJ). We employ an adaptive FIR filter to remove head and
body movement artifacts from the TMJ signal. We remove the effect
of gravity and DC bias from accelerometer data, followed by a 25
Hz cutoff third-order low-pass filter to extract jaw motion [84].

Set Alarm For Six A M

Figure 4: Phrase segmentation. (a) KL distance-basedmethod, which
underestimates word counts. (b) Autoencoder method, which overes-
timates word counts. (c) Final detected word boundaries (solid lines)
compared with ground truth (dotted lines).

Word boundaries often coincide with the start and end of sylla-
bles and reveal pauses, during which the jaw returns to its starting
position. While identifying phonemic components, such as sylla-
bles, plosives, etc. can be easily performed at lower speech rates
and for isolated words (Figure 2 [83]), at normal speech rates, the
jaw does not always come to its starting or resting position be-
tween words. As a result, many of these features indicating word
boundaries are suppressed in our data.

To address this, we propose a hybrid method for word boundary
detection that combines signal processing (Kullback-Leibler-Based

(KL) [35, 70] with machine learning solutions (autoencoder anom-
aly detection). This approach leverages the KL method’s ability to
identify significant changes in jaw motion and the autoencoder’s
sensitivity to subtle variations. By integrating these techniques, we
address the underestimation of word boundaries by KL distance
alone (Figure 4a) and the overestimation by the autoencoder (Fig-
ure 4b), resulting in more accurate detection across diverse speech
patterns and jaw motions (Figure 4c).

Figure 4(a) illustrates the word boundaries identified by the KL
distance for the phrase "Set alarm for six AM". However, this ap-
proach fails for smaller words or those with minimal jaw motion,
such as "set" and "M". We notice that since the degree of jaw mo-
tion can vary with the content for each user, KL distance-based
segmentation underestimates the number of words. To address this
shortcoming, we develop a lightweight autoencoder architecture
to detect word boundaries[31, 47, 52], shown in Figure 4(b). We
train the model on 50 ms normalized gyroscope z-axis windows
using mean squared error as loss. We extract the word boundaries
by inputting segmented windows into the model and marking win-
dows with high reconstruction loss. As we observe, the autoencoder
detects numerous false positives, possibly because there can be a
change in the jaw motion within a word the model has not seen in
training and flags it as an anomaly (window).

To overcome the limitations of both approaches, we propose
a hybrid method that leverages their complementary nature. To
remove false peaks from the autoencoder output, we identify peaks
within 0.2-seconds of each other, and then look for corresponding
detections from KL to find a match. Peaks that are further apart,
are accepted as detected boundaries. Figure 4(c) shows the final
detected word boundaries along with ground truth boundaries,
manually extracted from slowed-down audio.

5 Cross-modal Translation: Jaw motion to
Spectrogram

In this section, we detail our design to transform jaw motion into
spectrograms. Our decision to reconstruct spectrograms rather than
directly translating jaw motion to text is driven by several critical
factors. First, the dimensional disparity between low-frequency
jaw motion data and high-dimensional text embeddings presents
a significant challenge for direct translation and requires substan-
tial training data [21]. Spectrograms serve as an ideal intermediate
representation, bridging this gap by encoding rich temporal and
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frequency information, an approach explored in related unvoiced in-
terface works [19, 20]. Furthermore, spectrograms preserve crucial
speech characteristics such as formant structures, pitch contours,
and temporal dynamics, which are essential for accurate speech
recognition but difficult to capture directly from jaw motion [24].
This approach also allows us to leverage state-of-the-art speech
recognition models like Whisper, which are optimized for spec-
trogram inputs, without extensive retraining. Lastly, this modular
architecture enhances flexibility, allowing for independent improve-
ments in either the jaw-to-spectrogram or spectrogram-to-text
components as new techniques emerge. It also facilitates noise ro-
bustness [104] and cross-lingual adaptability [7], while opening pos-
sibilities for data augmentation techniques like SpecAugment [66].
Building upon these advantages of IMU to spectrogram translation,
we now delve into the specifics of our jaw motion to spectrogram
translation model, including the multi-modal input streams and the
architecture, followed by our custom loss functions.

5.1 Input Feature Extraction
The inputs to the model include 6-axis jaw motion data, audio
time-frequency domain features, and textual information.

Jaw motion features. From the segmented words, we only re-
tain those words that have significant jaw motion by determining
if at least 20% of the values are greater than the mean value of
the window [61]. Next, we extract the spatial and geometric infor-
mation from the raw 6-axis IMU data by computing jaw motion
orientation using the Kalman filter and then convert them to iso-
metric views [103], which capture the jaw movement in the 2D
plane from different viewpoints. They allow for maintaining the
true scale of the motion throughout the view and have been used
in previous works [11, 90]. We define 6 rotations to generate the
isometric views: primary rotation is defined with an angle of 45
degrees and five additional rotation matrices are defined using com-
binations of angles (-45, 135, -135, 180, and -180) to capture diverse
perspectives. These isometric views are provided as inputs to the
model.
Audio featuresWe incorporate two audio features into our model:
(1) spectral information and (2) phonetic information. For spectral
features we use the spectrogram of the voiced speech. We extract
word boundaries for the audio data, using OpenAI’s Whisper [72].
After segmenting the phrase spectrogram into words we low pass
filter the spectrogram to retain usable voice frequency ranges(300
to 3400 Hz) [77]. This reduces the size of the output spectrogram
simplifying the task of spectrogram generation. Since jaw motion
has been shown to capture phonetic information, we learn similar
information from audio data, such as the number of syllables and the
presence of plosives. For this, we utilize the envelope of the audio
time-domain signal which exhibits rising and falling peaks of energy
that correspond to the number of syllables in the speech [17, 49].
Plosives manifest as sudden bursts of energy in the time-domain
signal, influencing the overall magnitude [36]. By incorporating the
audio time-domain envelope, we hypothesize that the model can
learn to correlate these phonetic features with IMU signal, thereby
improving its ability to generate accurate spectrograms.

Textual and Syntactic Features. Finally, we leverage the GPT-2
languagemodel [74] to extract word embeddings for the correspond-
ing text of each audio file. These embeddings provide contextual
information that enables the model to identify instances of the same
word across different training samples, hence providing consistent
performance across sessions. Lastly, we incorporate syntactic in-
formation by adding a location token to the model, indicating the
position of each word within the sentence (i.e., beginning, middle,
or end). The model can leverage this location token to predict into-
nation patterns, which vary depending on the word’s position in
the sentence.

5.2 Model Design
Unvoiced’s model architecture consists of an encoder, a decoder
with attention, and a GPT-2 embedding layer.
Encoder. The encoder takes the jaw motion features as input, rep-
resented as a sequence of vectors. We pad the IMU and the audio
data with zeros to be of equal length of 6 seconds. Then the IMU
data is passed through a multi-layer bidirectional LSTM (BiLSTM)
network to capture the temporal dependencies and extract features.
The BiLSTM layers in the encoder have 512 hidden units each,
and multiple layers are stacked to capture more complex tempo-
ral patterns. Additionally, dense layers with ReLU activation are
inserted between the LSTM layers to learn abstract representations.
The final hidden states of the forward and backward LSTMs are
concatenated using a dense layer to obtain the encoder’s output
representations
Decoder with Multi-Head Attention. The decoder is a multi-
layer BiLSTM network with 512 hidden units in each layer. We use
multi-head attention in the decoder to capture the complex rela-
tionships between jaw motion and speech features. Additionally, it
helps the decoder attend to relevant parts of the input sequence at
different time steps, which is crucial for generating accurate spec-
trograms from jawmotion. Similar to the encoder, we stack multiple
LSTM layers, and dense layers with ReLU activation. The decoder
takes the target audio spectrogram as input during training and
predicts them from jaw motion during inference. The multi-head
attention mechanism allows the model to capture more complex
and diverse relationships between the input and output sequences,
enabling the generation of high-quality Mel features.
GPT-2 Text Embedding Layer. Textual features allow the model
to tag the jaw motion-spectrogram input pairs with labels helping
the model to generate generalizable spectrograms. For instance,
the spectrograms for the word "Alarm" from different sessions
should be close to each other. We use GPT2 text embeddings to
incorporate textual information into the model as they are trained
on similar datasets as with open-to-use prompt-based LLMs (GPT-
4). For each phase, the corresponding text data is tokenized and
padded to a fixed length of 512. The tokenized text is then passed
through a pre-trained GPT-2 model to obtain text embeddings,
which are then repeated tomatch the sequence length of the decoder
outputs using a RepeatVector layer. The repeated text embeddings
are concatenated with the multi-head attention output along the
feature dimension to form a combined context vector. This allows
the model to condition the audio feature generation process on
both the IMU data and the textual input.
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Figure 5: Information captured by each loss function for the word "Reminder".

Output Layer and Training. The combined context vector, which
contains information from the IMU data, target audio features, and
textual input, is passed through a time-distributed dense layer to
generate the final audio feature predictions. The dense layer has 80
units, corresponding to the dimension of the target audio features. A
linear activation function is used in the output layer since the target
audio features are continuous values. We train the spectrogram
generation model on 20 audible samples of each of the phrases,
isolated commands, and digits per user, using custom loss functions
as discussed in §5.3.

5.3 Custom Loss Functions
We introduce a custom loss function that combines 6 metrics to
ensure that the generated spectrogram closely matches the target
spectrogram.
• The weighted spectral convergence loss (L𝑊𝑆𝐶 ) is calculated
as the weighted mean squared error (MSE) between the predicted
spectrogram 𝑆 (𝑓 , 𝑡) and the target spectrogram 𝑆 (𝑓 , 𝑡), where 𝑓

and 𝑡 represent the frequency and time dimensions, respectively.
The weights𝑊 (𝑓 ) are assigned to each frequency bin to emphasize
the importance of lower frequency ranges, which often contain
more critical speech information [9, 79].

L𝑊𝑆𝐶 =
1
𝐹𝑇

∑︁
𝑓 = 1𝐹

𝑇∑︁
𝑡=1

𝑊 (𝑓 ) (𝑆 (𝑓 , 𝑡) − 𝑆 (𝑓 , 𝑡))2 (1)

𝑊 (𝑓 ) is the masking function that assigns weights to each fre-
quency bin based on the linear increase from 0 to 4000 Hz with a
window of 100 Hz.
• To ensure that the generated speech accurately captures the pho-
netic content of the input text, we introduce a phoneme-level
loss(L𝑃𝐿) that compares the predicted phoneme sequence with the
target phoneme sequence. This loss is calculated using Connection-
ist Temporal Classification (CTC):

L𝑃𝐿 = −
𝑇∑︁
𝑡=1

log𝑝 (𝜋𝑡 |y𝑡 ) (2)

where 𝜋𝑡 represents the target phoneme at time step 𝑡 , and y𝑡
represents the predicted phoneme probability distribution.
• We incorporate a correlation loss (L𝐶𝑜𝑟𝑟 ) between the audio
time-domain envelope and the predicted time-domain envelope.
The predicted time-domain envelope is obtained by applying an
inverse short-time Fourier transform (ISTFT) to the generated spec-
trogram and then creating an envelope. This loss encourages the

model to learn features from the temporal audio domain, such as
the number of syllables:

L𝐶𝑜𝑟𝑟 = 1 −
∑𝑇
𝑡=1 (𝑥 (𝑡) − 𝑥) (𝑥 (𝑡) − ¯̂𝑥)√︃∑𝑇

𝑡=1 (𝑥 (𝑡) − 𝑥)2
√︃∑𝑇

𝑡=1 (𝑥 (𝑡) − ¯̂𝑥)2
(3)

where 𝑥 (𝑡) and 𝑥 (𝑡) represent the audio time-domain envelope
and the predicted time-domain envelope, respectively, and 𝑥 and ¯̂𝑥
represent their respective means.
• To generate speech with more natural prosody (i.e., rhythm, stress,
and intonation), we incorporate a prosody loss (L𝑃 ) that compares
the predicted pitch and energy contours with the target contours.
This loss is calculated using dynamic time warping (DTW):

L𝑃 = 𝐷𝑇𝑊 (𝐶,𝐶) (4)
where 𝐶 and 𝐶 represent the predicted and target pitch and energy
contours, respectively.
•We use cosine similarity loss (L𝐶𝑆 ) between the model’s higher
dimensional representation and the text embeddings. The higher
dimensional representation is obtained by aggregating the outputs
of a dense layer in the model. By minimizing the cosine distance
between these representations, the model learns to generate similar
spectrograms for IMU signals corresponding to the same word:

L𝐶𝑆 = 1 − h · e
∥h∥∥e∥ (5)

where h represents the model’s higher dimensional representation
and e represents the text embedding.
• To account for the continuous nature of speech and allow for
abrupt changes around the word boundaries, we introduce a tem-
poral coherence loss(L𝑇𝐶 ). This loss is calculated by applying
a masking layer to the spectral convergence loss, with values of 0
near the word boundaries and 1 elsewhere:

L𝑇𝐶 =
1
𝐹𝑇

𝐹∑︁
𝑓 =1

𝑇∑︁
𝑡=1

𝑀 (𝑡) (𝑆 (𝑓 , 𝑡) − 𝑆 (𝑓 , 𝑡))2 (6)

where𝑀 (𝑡) represents the masking function.
To ensure that each loss function contributes equally to the total
loss, we normalize the individual losses. The weights for each loss
function are determined using a grid search and the total loss is
then calculated as a weighted sum of the normalized individual
loss functions. During training, the model weights are optimized to
minimize the total loss using standard optimization techniques. By
combining these carefully selected loss functions, the model learns
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to generate accurate spectrograms from jaw motion data. Figure 5
shows the effect of skipping different loss functions on spectrogram
generation.

6 LLM-assisted text generation
After training the model, the final step in the inference phase is to
convert the spectrogram into text. It’s important to note that while
we utilize additional inputs like GPT-2 text tokens and audio fea-
tures during training to enhance the model’s learning process, these
are incorporated into the loss functions and are not required during
inference. At inference time, our model generates spectrograms
solely from IMU data.

For speech recognition using spectrogram instead of developing
a custom model, we use Whisper [72] speech recognition model.
To construct phrases from the generated word spectrogram, we
stitch together the spectrogram for each word, inserting 0.2 seconds
of silence between words. Recall from Section 4 that some of the
words were eliminated from the input. These words may contain
important information about the phrase and need to be filled into
the final sentence. To fill in the missing words (blanks) for speech-
based interfaces language-based models have been widely adopted
in previous works [38, 96, 98]. While rule-based or template-based
language models could potentially fill these gaps, they often fail
in critical cases. For instance, if the word "add" is skipped from
the phrase "Add apples to shopping list", a simple model might
incorrectly insert "remove" based on its training data, completely
altering the intended meaning. To overcome this limitation of pre-
dictive language models, we leverage generative models which can
fill in the blanks with multiple candidates, and the most appropriate
can be chosen based on the application context. We use a general
LLM (GPT4) instead of ASR-specific language models like Kaldi [69]
as it provides greater flexibility in handling ambiguous or partial
inputs, which is crucial in a speech interface [56]. While many
language models like BERT exist, we specifically chose GPT for
text completion and correction. GPT is a state-of-the-art language
model that allows us to use prediction probabilities in the form of
prompts without the need for any fine-tuning or training. While
similar capabilities might be possible with BERT, it would require
complex fine-tuning as it is trained on text data from sources like
Wikipedia, unlike GPT which is trained on instruction sets [74].
This characteristic of GPT aligns well with our need for flexible
and context-aware text generation.

We carefully craft input prompts that encourage GPT to produce
outputs with contrastive intents, ensuring a range of contextually
appropriate options. However, it is not straightforward to integrate
GPT with our system. This is because while GPT can generate mul-
tiple candidates for the blanks, there is not enough information
available in the skipped word segments to determine the correct
candidate. To refine GPT’s output, we utilize linguistic informa-
tion from the skipped words. While we cannot extract all phonetic
components from these segments, we can still derive valuable data,
such as the number of syllables and the vowel category (low, mid,
or high) [8]. High vowels (like ‘i’ in "eat" or ‘u’ in "boot") require
minimal jaw opening, with the mouth remaining relatively closed.
Mid vowels (like ‘e’ in "bet" or ‘o’ in "boat") involve a moderate jaw
opening. Low vowels (like ‘a’ in "father") necessitate the widest

Figure 6: Steps in Unvoiced for the phrase Add apples and bananas
to shopping list.

jaw opening, with the mouth in its most open position. These
distinctions in jaw motion contribute to the unique jaw motion
properties of each vowel category [50]. We extract 4 statistical fea-
tures: mean, area under the curve, skewness, kurtosis, and the first
8 FFT coefficients and train an SVM for vowel category classifica-
tion. This classifier processes the linguistic information to identify
the best candidate among GPT’s suggestions, effectively filling in
the missing words. Our approach allows us to incorporate GPT
and potentially other large language models without the need for
fine-tuning, while still maintaining context-appropriate and lin-
guistically plausible outputs. Figure 6 shows our GPT prompt and
end-to-end inference pipeline. Whisper’s predictions, along with
their probabilities and a "Blank" token, are input to GPT. As we do
not expect GPT to fill long words or generate creative text we set
a small max token length of 500 and temperature to 0.5 (controls
the randomness). Finally, we filter the GPT output using phonetic
information from "Blank" token word segments to produce the final
text.

7 Implementation and Setup
This section will explain our user study design, metrics, and base-
lines for evaluation.
■ Data Collection Our earable prototype incorporates a twin-
IMU setup to mitigate body motion artifacts for jaw motion [83],
strategically placing one IMU on the TMJ and the other on the
temporal bone. We log timestamps, 3-axis accelerometer (± 2g), 3-
axis gyroscope (250 DPS) data, and 48kHz audio. We conducted an
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Reference 
IMU

TMJ 
IMU

Figure 7: Our prototype is inspired by [83]. Our system was evalu-
ated in different settings: U-Unvoice, V-voiced.

IRB-approved user study with 19 participants (11 females, 8 males)
in noise-free and different noisy conditions. All our participants
were fluent in English and had varied native languages, including
Hindi (6), English (5), Tamil (3), Spanish (3), and Kannada (2) which
challenges the system’s ability to process various accents, dialects,
and pronunciation patterns. We collected data in three settings: (1)
free of motion and acoustic noise, (2) with motion noise, and (3)
with acoustic noise. Data collection occurred in a quiet room, and
users were instructed to sit still without performing body move-
ments unless otherwise stated. The user study aimed to assess (a)
the system’s ability to achieve the user’s expected output, (b) its
accuracy for phrases, numerical codes, and words, (c) the precision
of spectrograms, and (d) robustness compared to a voiced assistant.
Our data collection prototype and summary are shown in Figure 7.
Interaction tasks (Row 1): We evaluate the system’s performance
as an UUI for four tasks shown in Table 1. Each task consisted of
5 phrases, repeated 20 times unvoiced reflecting scenarios when
voice-based systems are affected by noise, or the user requires pri-
vate communication. Phrases (Row 2): We asked participants to
speak 30 phrases, 20 voiced, 20 unvoiced. These phrases ranging
from 2 to 11 words are commonly used for interaction with voice
assistants and do not overlap with the interaction phrases. Isolated
Commands and Digits (Row 3): We selected twenty single or double-
word commands with multiple syllables. We instructed users to
repeat each command and digit (0-9) 20 times voiced, 20 unvoiced.
Numerical Data (Row 4): We asked users to create 10 unique 6-digit
passcodes and repeat each passcode 10 times unvoiced. Noisy Con-
ditions (Row 5):We asked 8 users to repeat each phrase in the 4 tasks
10 times unvoiced. We collected data (a) seated and moving freely,
performing head motions, (b) walking in a corridor, and (c) with
restaurant and machine noise (60dB) playing in the background.
■Metrics. We use the following metrics.
• Task Completion Rate (TCR): TCR is the proportion of times that
the system generates the expected output for a given silent phrase
(max/best value: 1). For media and smart home control, we convert
outputs to speech for a voice assistant, assigning TCR 1 if executed
correctly and 0 otherwise. For messaging and note-taking, we com-
pare outputs word-by-word with inputs. Perfect matches receive
TCR 1; even if the output is off by a single word, TCR is 0.
• Word Error Rate (WER): WER quantifies the minimum number
of edit operations (substitutions (S), deletions (D), and insertions
(I)) needed to transform the predicted text into the ground truth,
normalized by the total number of words (N) in the ground truth [51,
105].

Task Example Phrases

Media Control (Task 1) Play music on YouTube,
Play songs from dance playlist.

Home Control (Task 2) Order the speaker from
wishlist, Set alarm for 6 AM.

Messaging (Task 3) Send: On my way home talk soon,
Message mom talk to you later.

Quick Notes (Task 4)
Add Note: Buy apples on the way
back home, Save note: Meeting at 3
PM with the advisor.

Table 1: We collect data for 4 common voiced tasks.

• Top-1 Accuracy: Top-1 accuracy measures the fraction of test
instances for which the correct label is among the top predicted
labels, respectively, when the model outputs a ranked list of predic-
tions [83, 96].
• Spectral Convergence (SC): Spectral Convergence is our primary
metric for evaluating the quality of reconstructed spectrograms.
SC quantifies the similarity between the reconstructed spectro-
gram 𝑆 (𝑓 , 𝑡) and the target spectrogram 𝑆 (𝑓 , 𝑡) in the frequency
domain [34, 93]. A SC score of 0 indicates perfect reconstruction,
with no difference between the reconstructed and ground truth
spectrograms. Unlike previous works [19] that employ metrics
such as Short-term objective intelligibility [88] or Perceptual eval-
uation of speech quality [76], our focus is on generating accurate
spectral features rather than optimizing for speech signal intelligi-
bility or quality. This approach aligns with our goal of producing
high-fidelity spectrograms for subsequent processing, rather than
directly generating audible speech signals.
■ Baselines. We compare against the following baselines. It’s im-
portant to note that our LLM-assisted approach is an integral part
of Unvoiced’s system design, not an additional feature. The prompt
engineering, which includes specifying blank locations and vowel
categories derived from our algorithm, is a key component of our
method. This approach demonstrates the potential of combining
traditional techniques with LLM assistance. While the baselines
represent standard implementations and do not use LLMs, Unvoiced
showcases how LLM integration can enhance performance in un-
voiced speech recognition tasks.
• MuteIt (Signal Processing Based): MuteIt [83] is designed for
silent speech recognition of isolated single-word commands spoken
slowly (at a lower than normal speech rate). To match the word-
level input, we apply our phrase segmentation technique to extract
individual words first. We utilize MuteIt’s technique to extract
vowels and other phonetic components, training a personalized
model for each user with the same amount of data as suggested by
the authors.
• LIMU-BERT (IMU Modelling Based): We use their pre-trained
model [99] to extract representations, followed by a bidirectional
LSTM head serving as a classifier. Similar to MuteIt, we train a
personalized model for each user.
• BiDiLSTM(Deep Learning Based): Lastly, we implement a Recur-
rent Neural Network (RNN) model called BiDiLSTM, which consists
of two Bidirectional LSTM layers, five fully connected layers, and a
classifier layer.
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Unvoiced

Figure 8: The Mean TCR for our system is more than 93% for 4 different tasks. ↑ is better.

For LIMU-BERT and BiDiLSTM, we construct an n-class classifier
for n words in the dictionary and perform an 80-20 train-test split
on our data. These models are fine-tuned with 15% of the data from
the train set to ensure a fair comparison by fine-tuning the baseline
models for optimal performance.

8 Evaluation
In this section, we present details on the 5 key takeaways from our
evaluation. (1) Unvoiced achieves a task completion rate exceed-
ing 94% while maintaining a word error rate below 0.09. (2) It can
be seamlessly integrated with existing off-the-shelf speech recog-
nition and large language models (LLMs) without requiring any
fine-tuning. (3) We showcase the system’s ability to generate high-
fidelity spectrograms for words outside the training data. (4) Our
system exhibits robustness to motion noise and surpasses Siri’s task
completion rate in the presence of acoustic noise, demonstrating
its resilience in challenging environments. Finally, our exit survey
reveals that 90% of users found our system comfortable and easy to
use.
■ Unvoiced as a User Interface. We report the Task Completion
Rate (TCR) of Unvoiced compared to the three baseline methods
across four different tasks in Figure 8. Our system achieves TCR
of 98.6%, 97.7%, 94.8%, and 93.1% for tasks 1, 2, 3, and 4, respec-
tively, and demonstrates a substantial improvement of at least 26%
over any of the baseline methods for all tasks. Notably, our system
exhibits higher TCR for tasks 1-2 than for tasks 3-4. This can be
attributed to the inherent differences in these tasks. Tasks 1-2 are
evaluated using Siri, which operates within a more limited context.
In contrast, tasks 3-4 involve text editing, which requires a lower
Word Error Rate (WER) to be considered complete. These results
validate our system’s efficacy in achieving the user’s desired output
for various applications.
■ Continuous Speech Recognition. We present the Word Error
Rate (WER) for recognizing phrases and numerical passcodes to
show the ability of continuous speech recognition in Figure 9. Our
approach yields a WER of less than 10% for over 90% of the phrases,
a 35% reduction in WER compared to any of the baseline methods.
These results demonstrate that the spectrograms generated by our
system can be successfully fed into an off-the-shelf speech recog-
nition model without requiring any fine-tuning, highlighting the
compatibility of our approach.
■ Isolated Command Recognition.We depict the top-1 accuracy
of recognizing isolated commands, where individual commands

(0.09, 0.90)

Unvoiced

Figure 9: Word Error Rate (WER) for our system is as low as 9% for
more than 90% of the phrases. ↓ is better.

Unvoiced

Figure 10: We achieve more than 90% Top-1 for words of different
syllabic lengths. ↑ is better.

are issued without the context of surrounding words in Figure 10
for mono-, di-, tri-, and multi-syllabic (>3 syllables) words. We sur-
pass 90% accuracy for all word categories, highlighting our ability
to effectively recognize unvoiced speech even in the absence of
contextual information. In contrast, the baseline methods fail to
achieve accuracy scores above 72%. Even MuteIt, a system designed
for isolated command recognition, does not perform well in this
evaluation with a normal speech rate.
■ Spectrogram Generation. It is important to evaluate how our
audio spectrogram generation preserves important speech informa-
tion. Figure 11(a) illustrates the audio spectrogram for the phrase
"Read notification from bedroom speaker" alongside the correspond-
ing IMU-generated spectrogram Figure 11(b). We observe similarity
in (1) energy configuration, (2) pitch variation patterns (start and
end of different energy events within the spectrogram), (3) temporal
alignment, and the correct number of syllables. This indicates the
system’s ability to preserve intonation and speech rate informa-
tion and verifies the importance of employing carefully crafted loss
functions.
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Figure 11: Spectrogram for the phrase "Read notification from bedroom speaker". Our system is able to achieve low spectral convergence (SC).

Spectral
Convergence

RMSE
(x10-5) WER

In Training
Phrases 0.14 (0.12) 0.24 (0.21) 0.07±0.008

Out of
Training Phrases 0.16 (0.13) 0.28 (0.25) 0.11±0.006

Unseen
Words 0.22 (0.18) 0.32 (0.27) 0.14±0.009

Table 2: Performance Metrics: SC, RMSE, and WER for training
schemes. Parenthesis contain SC and RMSE for the same phrase in
another session from audio data. WER includes mean and SD. ↓ SC,
RMSE, and WER are better.

To quantitatively assess the system’s spectrogram generation
capabilities, we utilize the Spectral Convergence (SC) metric. Ta-
ble 2 presents the SC and Root Mean Square Error (RMSE) values
for different data split techniques. Considering inherent variability
between word samples and the fact that the generated spectrogram
relies solely on jaw motion data, Unvoiced achieves SC scores be-
low 0.17, showing the system’s strong performance in generating
accurate spectrograms.
■ Unseen Words Recognition. To further investigate whether
the system is learning a one-to-one mapping between IMU data and
audio, we conduct tests on words that are subsets of the training
words but have never been encountered by the model before. We
make a subset of 50 unseen words from the dataset and report
low SC and WER <0.15 (Table 2). These findings provide evidence
of Unvoiced’s ability to generate high-fidelity spectrograms that
are close to the spectral-temporal features of ground truth, even
for words and phrases outside the training set.
■ Impact of Noise. We analyze the robustness of Unvoiced under
different motions (head motion and walking) and acoustic noise
(machine and restaurant).
Motion Noise:We evaluate the impact of motion noise on our sys-
tem’s performance by training the model using noise-free data and
testing on data with motion noise. The first two bars in Figure 12
present the mean Task Completion Rate (TCR) for head motion
and walking. The high TCR (>0.9) indicates that motion noise re-
sulting from body movement has minimal effect on the system’s
performance.

Motion Noise Acoustic Noise

Unvoiced

Figure 12: Our system is robust to different types of motion and
acoustic noises. ↑ is better.

Acoustic Noise: A key advantage of our system is its ability to
function effectively in noisy acoustic conditions. To test this, we
play two common noise types, machine noise (drilling) and people
talking in a restaurant (cocktail party), at 60 dB. Since our model
does not rely on acoustic features during inference, we achieve a
high TCR of 93% in both noisy conditions, Figure 12 last two bar
sets.

We compare our system’s performance with Siri in both noisy
environments, not as a speech recognition system but as an inter-
action medium. We use Siri as a baseline since it is one of the most
common speech-based interaction systems available on commercial
mobile devices. While Siri outperforms our system by 13% in terms
of TCR in the presence of motion noise, our system achieves a
higher TCR when exposed to acoustic noise. This suggests that our
system can be a preferred choice for interaction over traditional
voice assistants when moving through noisy environments, such
as hallways.
■ Impact of Different Factors. In this section, we gauge the
effect of different settings (training data, phrase length and rate,
native language, wearing position, and choice of speech recognition
model) on the system’s performance.
Impact of Speech rate and Length. User-dependent features,
such as speech rate and content length, can significantly influence
our system’s performance. Figure 13 shows the effect of speech
length and rate on the Word Error Rate (WER) for phrases. We
evaluate speech rate at multiple levels (<50, 50-100, 100-150, >150
WPM). WER decreases as the number of words increases, aligning
with the expectation that the Whisper model relies on contextual
information. Our system maintains a WER lower than 0.1 when
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Figure 13: WER for phrases with various
lengths and speech rates. Even with the
phrase’s short length (4 words) and high
speech rates (>150 WPM), our WER was <
0.15.
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Figure 14: We achieve WER <0.13 with only
16 minutes of training data for a user pool
of 5 different native languages.
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Figure 15: Out-of-training performance:
WER is 0.15 for 1-word commands and as
low as 0.07 for 5-word phrases.

the number of words exceeds 7. Remarkably, even at fast speech
rates above 150 WPM, our model’s WER never exceeds 0.12, show-
casing its ability to capture rapid changes in speech content. The
above results show that our system can maintain high robustness
at various speech rates, especially in medium and long sentences.
Impact of Training Size. We train a personalized model for each
user. However, to make the system widely acceptable minimal data
must be needed from a new user. Toward this end, we investigate
the data required from each user to achieve WERs. As previous
works have shown it is efficient to train a native language-specific
model [14, 92], we categorize users based on native languages and
perform leave-one-user-out evaluation. We fine-tuned the model
for the test user and achieved 0.12 WER with only 15 minutes of
data for 4 out of 5 languages (Figure 14). The Kannada language
requires more data, which can be obtained from a single Kannada-
speaking user. As we expand our user pool and employ domain
adaptation techniques, we expect to further reduce the WER while
requiring less data. These findings highlight the adaptability and
scalability of our system, as it effectively learns from limited user-
specific data to accommodate linguistic variations with minimal
data requirements.
Out of training phrases. We evaluate our system’s ability to
recognize phrases that are not included in the training set. The
words in these phrases may be present in the training at a different
location. For each user, we randomly select 15 phrases for training
and use the remaining phrases for testing, repeating the experiment
until all phrases have been tested at least once. The average WER
across all users and phrases is 0.14. Figure 15 illustrates the WER
for different sentence lengths. We observe a clear decreasing trend
inWER as the sentence length increases. For single-word sentences,
the WER is 0.14 and decreases to 0.08 when the sentence contains
seven words. This behavior is expected, as longer sentences provide
more contextual information that can be effectively captured by
the end-to-end network, leading to improved recognition accuracy.
These results demonstrate our system’s ability to generalize well
to unseen sentences, even with limited training data per user.
Longitudinal Study. To assess our system’s performance in captur-
ing speech mannerisms over time as well as robustness to variations
in sensor placement, we conducted a 25-day longitudinal study with
8 users. We utilized data collected during the initial training phase
and randomly selected 20 phrases. Users were asked to silently
articulate these phrases 10 times each in multiple sessions over 3
weeks, resulting in an average of 8 sessions and 160 samples per

Figure 16: Increase in WER and SC when removing system compo-
nents. ↓ WER and SC are better.

user. Word Error Rate (WER) was consistently below 0.15 through-
out the 4-week period, confirming the robustness and stability of
our system over time. The low WER highlights the system’s adapt-
ability to individual speech patterns and its capacity to preserve
learned mannerisms.
■ Ablation Study.We conduct ablation experiments to quantita-
tively investigate the performance of spectrogram generation. We
remove each component of the system one by one and report the
increase in WER and increase in SC. Figure 16 shows our findings.
Without Custom Loss: We do not use our loss function. Instead,
we use mean squared error as the loss function. Removing the
custom loss function causes the highest increase in the WER of the
system.
Without Transformer Architecture: We do not use multi-head
attention mechanisms in our system. Instead, we use a traditional
RNN network with no attention blocks, causing an increase of
almost 250% in WER.
Without Isometric Views: We input 6-axis IMU data into the
model after removing the effect of gravity and orientation from the
accelerometer and normalizing the 6-axis data. This causes a 73%
increase in the spectral convergence.
Without word embedding and audio time domain features:
In the model training, we skip the block of correlating word embed-
dings with the input IMU data and the audio time domain features
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like the number of syllables, signal envelope, and other audio time-
domain features. The removal of these blocks increases the WER
by 178% and 68% respectively.
Without phonetic correction: In this experiment, we do not
correct the output from the GPT but directly use the most probable
phrase as the prediction.

9 Related Work
Unvoiced User Interfaces have garnered significant attention as an
alternative mode of interaction, particularly for their non-intrusive
nature and high user acceptance. While UUIs have recently been
explored extensively, UUIs with LLMs are still uncharted space.

VUI with LLMs. VUIs have gained significant attention in re-
cent years, leveraging the advancements in speech recognition and
language modeling [29]. LLMs have been employed to enhance
the natural language understanding and generation capabilities of
voice-based systems [100]. They can capture the context and se-
mantics of spoken queries, enabling more accurate and contextually
relevant responses [2, 73, 110]. Additionally, they have been used
to generate human-like responses, improving the naturalness of
the generated speech [27].

Contact FreeMethods.Contact-free UUIs leverage non-physical
touch sensors, like cameras, wifi, and ultrasonic sensors. Early im-
plementations mainly employed camera-based technologies to cap-
ture facial movements, particularly lip motions, using extensive
video datasets to achieve robust performance despite challenges
such as variable lighting and privacy concerns [26, 62, 63, 67, 86,
97, 102] Technologies like Radio Frequency (RF) signals [18, 82],
and ultrasonic [10, 13, 44] have also been employed to track ar-
ticulator movements. While these systems address the privacy is-
sues of camera-based systems, they are sensitive to environmen-
tal conditions, require calibration, and can be affected by inter-
ference from other devices, which impacts their robustness. Re-
cent advancements have shifted towards acoustic sensing tech-
nologies, which utilize high-frequency sound transmissions from
mobile devices captured by microphones to infer articulator move-
ments [15, 19, 22, 32, 33, 51, 89, 105, 109]. Although these methods
are portable and less affected by environmental conditions, they
often require user interaction, such as holding the device, which
can be impractical in situations like driving or for individuals with
accessibility needs. Our system provides a hands-free and robust
alternative to voice-based interactions.

Wearable Methods.Wearable UUIs typically involve placing
one or more sensors on the face, inside the mouth, or on the ar-
ticulators to detect unvoiced speech. Electromyography (EMG)
sensors are used to measure muscle activity in the lips, jaw, and
cheeks during speech production [37, 55]. These sensors, which
require attaching skin electrodes around the cheek and lips [21, 57]
are often not socially acceptable and difficult to integrate with
commercial wearable products. Sensors placed on the articula-
tors [23, 30, 43, 48, 75, 81, 95], or even retrofitted to masks [28],
can capture articulator motion and infer unvoiced speech. How-
ever, many of these techniques are intrusive, involving magnetic
sensors on the tongue or inside the mouth, or tattoos around the
lips, making them socially unacceptable and requiring calibration.
IMUs placed on the temporomandibular joint (TMJ) have been used

to capture jaw movements during speech production, but these
systems can only recognize phonemes, or words, limiting their
applications [39, 83, 85, 106]. While speech enhancement systems
offer a viable method for speech-based interactions in noisy envi-
ronments, they require users to vocalize commands, which might
not be desirable for private information sharing or discreet com-
munication. Moreover, these systems often utilize multiple sensory
inputs (IMU and microphone [29, 97] or ultrasound and microphone
[14, 16, 88]) at inference, unlike our system which only needs IMU
input, making it more challenging. With Unvoiced, we present, to
the best of our knowledge, the first ear-worn UUI that can perform
multiple interaction tasks in both noise-free and noisy conditions
in an unvoiced manner using only an IMU. This approach over-
comes the limitations of previous methods, offering a more socially
acceptable and versatile solution for unvoiced speech interaction.

10 Discussion
Unvoiced is the first jaw motion-based UUI that can enable silent
communication with devices that expect voice input. It is a first
step in making unvoiced interactions as common as voice inter-
actions. There are, however, areas for improvement that we aim
to address in the future. (1) Currently, we train personalized jaw
motion to spectrogram models for each user. We will investigate
techniques that require minimal training data from each user and
explore possibilities for a generalized model. (2) We utilize an early
research prototype. While the position of sensors is similar to many
commercially available earables, we will assess compatibility with
a range of commercial devices. (3) The system evaluation covers
limited types of noise. In the future, we will evaluate performance
in the presence of other motion sources, such as traveling in a car,
running, etc. (4) We plan to conduct a more robust study with a
larger, more diverse user base to better understand the effect of
factors such as native language and vocabulary size on system
performance. (5) The current study did not specifically address
age-related variability or users with speech impediments. In the
future [1], we will include participants from these groups to ensure
the system’s effectiveness across a broader range of users.

11 Conclusion
In conclusion, Unvoiced presents a novel approach to silent device
interaction using earables. At its core, Unvoiced translates jaw mo-
tion, captured via IMU, into Mel spectrograms. This cross-modal
translation incorporates phonetic, contextual, and syntactic infor-
mation, while our specialized loss function optimizes for these
linguistic features, ensuring the generated spectrograms capture
nuanced speech characteristics. By exploiting recent advances in
LLMs and combining them with our spectrogram reconstruction
technique, Unvoiced achieves a remarkable >94% task completion
rate for 4 diverse applications that typically expect voice input.
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