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While occlusal diseases — the main cause of tooth loss — significantly impact patients’ teeth and well-being, they are the most
underdiagnosed dental diseases nowadays. Experiencing occlusal diseases could result in difficulties in eating, speaking, and
chronicle headaches, ultimately impacting patients’ quality of life. Although attempts have been made to develop sensing
systems for teeth activity monitoring, solutions that support sufficient sensing resolution for occlusal monitoring are missing.
To fill that gap, this paper presents IOTeeth, a cost-effective and automated intra-oral sensing system for continuous and
fine-grained monitoring of occlusal diseases. The IOTeeth system includes an intra-oral piezoelectric-based sensing array
integrated into a dental retainer platform to support reliable occlusal disease recognition. IOTeeth focuses on biting and
grinding activities from the canines and front teeth, which contain essential information of occlusion. IOTeeth’s intra-oral
wearable collects signals from the sensors and fetches them into a lightweight and robust deep learning model called Physio-
aware Attention Network (PAN Net) for occlusal disease recognition. We evaluate IOTeeth with 12 articulator teeth models
from dental clinic patients. Evaluation results show an F1 score of 0.97 for activity recognition with leave-one-out validation
and an average F1 score of 0.92 for dental disease recognition for different activities with leave-one-out validation.
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1 INTRODUCTION

Dental diseases, encompassing conditions such as bruxism [70], temporomandibular joint disorders (TMD) [84],
and periodontal diseases [7], detrimentally affect oral health and the overall quality of life of millions of people
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Fig. 1. IOTeeth’s concept: embedding customized small-sized piezoelectric sensors into dental retainers for recognizing and
monitoring user’s occlusal disease.

worldwide [38, 52, 64]. In addition to physical discomfort, dental diseases can lead to psychological distress,
lowered self-esteem, and reduced social interactions because of aesthetic concerns and functional limitations [47].
Among dental diseases, occlusal disease is often overlooked and is one of the most underdiagnosed dental diseases
[7, 10, 25, 66]. However, it can significantly impact patients’ teeth and well-being, given it is the main cause of
tooth loss [75] and can result in high-impact chronic pain [35]. The term “occlusion” refers to the way the upper
and lower teeth fit together (bite) [6], and occlusal disease refers to pathological effects when upper and lower
jaws, facial muscles and joints work in disorder and teeth do not fit [43]. This musculoskeletal disorder results in
imbalanced force distribution and often leads to worn/damaged teeth, sensitive teeth, and tooth loss [24, 25].
It can also cause excessive muscle activities in the jaw and neck to compensate for the imbalance, resulting in
muscle tension and a chronicle headache [77, 79].

The current dental practice relies on the biannual preventive examination for occlusal disease screening,
which does not capture the fine-grained changes of teeth activities (e.g., stress-induced excessive grinding) and
their impact on the occlusion. These teeth activities and early-stage symptoms (e.g., worn teeth, slight crack)
may be unnoticed by the person or misunderstood as aging issues, and patients’ self-reported outcomes during
dentist visits are not reliable [25]. This kind of neglect could lead to delaying early treatment opportunities and
causing unnecessary aggravation of the occlusal disease condition [76]. Additionally, alterations in people’s
occlusion may occur after dental surgeries, like teeth replacement [4]. Profiling the pre- and post-surgery occlusal
condition is crucial for tracking and rectifying any unwanted alterations in occlusion, ensuring the success of the
surgical intervention and preventing potential occlusal diseases. Therefore, it is essential to conduct continuous
monitoring of the oral occlusal conditions for in-time disease recognition [14, 25], occlusion profiling [8], and
proactive prevention and treatment [9, 25].

Although attempts have been made to achieve intra-oral sensing, existing systems mainly focus on activity
(e.g., clenching) monitoring [26, 30, 34, 56] rather than occlusal disease inference. These systems leverage sensors
(e.g., piezoresistive) that focus on sensing static or quasi-static mechanical stress to measure bite force and detect
activity events. However, they cannot be used to infer the occlusion conditions due to the limited resolution (slow
response to dynamic stress changes) [42], which can not capture the transient information of teeth contact during
activities for deriving occlusion conditions. TeethVib integrates piezoelectric sensors, which focus on capturing
high-dynamic mechanical stress changes (e.g. vibrations) [42], into layers of dental retainers for functional
occlusion monitoring [58]. Nonetheless, it only demonstrates the feasibility of using piezoelectric sensors over
different teeth to acquire signals of different patterns, without inferring any dental conditions or activities.

We propose IOTeeth, a dental retainer-form intra-oral sensing system for continuously recognizing occlusal
diseases to remind the user for an in-time dental diagnose, which is illustrated in Figure 1. The IOTeeth system
monitors and analyzes teeth contact-induced vibration signals to recognize the existence of occlusal disease,
and it can report an aggregated result to the user with the user’s preferred frequency (e.g., daily, weekly, etc.)
IOTeeth comprises an intra-oral sensing platform that captures the vibration caused by teeth contact during oral
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activities via customized piezoelectric sensors embedded between dental retainers. Note that in this work, the
oral activities-induced vibration signals are all collected from articulator-mounted dental models replicated from
dental clinic customers, instead of real humans. The acquired vibration signals are then processed and analyzed
to recognize the presence of occlusal diseases.

Realizing such a system to sense and recognize occlusal diseases is not trivial and faces the following challenges.
(C1) The human mouth has limited capacity and oral occlusion is sensitive to alignment and position, thus it
is challenging to design and manufacture the sensing wearable with minimum interference to the occlusion.
(C2) People’s facial musculoskeletal profile varies significantly, therefore, the human variance (both physical
and behavioral) would make it difficult to generalize the learning model with limited data. To minimize the
interference to the occlusion (C1), we design the intra-oral sensing wearable in the form of thin dental retainer,
and fabricate small-sized sensors with a radius of four millimeters to minimize teeth gaps after the placement. To
ensure the quality of sensors, we develop an automated benchmarking platform for the sensor characterization.
We also optimize the placement of small-sized sensors on the internal side of canines and front teeth, to minimize
the introduced interference. To tackle the human variance-induced significant data distribution shift while
achieving accurate disease recognition (C2), we propose a Physio-aware Network (PAN Net) to process and
extract the most informative patterns from the signal for generalizable modeling. The reason that PAN Net is able
to recognize occlusal disease from teeth contact-induced vibration is that such vibration encodes the relationship
of the dental arches, the teeth morphology, and the musculoskeletal condition implicitly, which are the indicators
that dentists use to determine the occlusal diseases [22, 43]. By extracting and decoding these features, the PAN
Net is able to conduct accurate occlusal disease recognition. The contributions of this work are as follows.

e We present IOTeeth, an intra-oral teeth sensing system that consists of a dental retainer-form sensing
platform and data-driven algorithms to capture teeth contact-induced vibration signals during oral activities
and recognizes occlusal diseases from them.

o We design and custom small-sized piezoelectric-based sensors and strategically integrate them into the
dental retainers to form the sensing platform’s wearable of the IOTeeth, with a minimized interference to
the occlusion.

e We propose a Physio-aware Network as the IOTeeth’s occlusal disease recognition algorithm that allows
generalized modeling while focusing on the teeth that are representative of the individual user.

o We evaluate IOTeeth with 12 articulator-based teeth models built with patients’ bite registrations by the
dentist and achieve over 0.92 average micro-F1-score for leave-one-out occlusal disease recognition.

The rest of the paper is organized as follows. Section 2 introduces the background for occlusion-related dental
diseases and intra-oral vibration sensing, and showcase a feasibility study of measuring fine-grained occlusion
changing with piezoelectric sensing. Section 3 presents the IOTeeth overview, followed by Section 4 and 5 for
IOTeeth’s sensing platform and algorithm details. Section 6 demonstrates the evaluation with real-world data
collection using models with patients’ bite registrations. Section 7 discusses the future directions that can be
further explored and applications beyond occlusal disease monitoring, followed by the related work discussion in
Section 8. Finally, we conclude in Section 9.

2 FUNDAMENTAL OF INTRA-ORAL OCCLUSAL SENSING
2.1 Primer on Occlusion, Malocclusion, and Occlusal Diseases

Dental occlusion refers to the way the teeth meet. When people grow, their occlusion changes due to various
reasons (e.g., bad habit, dental filling, bruxism, etc.) [12]. These changes may develop into adverse oral conditions,
such as malocclusion and occlusal diseases. Malocclusion refers to misalignment or incorrect relation between
the teeth of the two dental arches as the jaws close (e.g., crossbite, open bite, overbite, underbite), and is typically
identifiable through visual examination [51]. Occlusal diseases (such as temporomandibular joint disorders, also
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Fig. 2. Feasibility experiment of detecting fine-grained occlusion change. Figure (a) shows examples when there are different
levels of thin film fillings that change the occlusion. The highlighted right canine’s signal energy gradually decreases with the
number of filling increases. Figure (b) plots the ratio between two signals when there are different numbers of layers placed.

known as TMD) are pathological effects resulting from facial musculoskeletal disorders, leading to excessive tooth
wear, tooth fracture, and complications such as chronic headaches and jaw pain [25]. Among these occlusion-
related problems, occlusal disease is the most destructive process [17] and the most overlooked one due to
misleading symptoms. Patients may consider occlusal disease symptoms to be caused by reasons like lack of
rest, aging, or sports injuries [25]. Unlike malocclusion can be visually recognized, dentists often overlook the
musculoskeletal system’s functionality in their checking routine and miss the signs of occlusal disease [76].
Therefore, we are targeting to recognize it in this work.

2.2 Intra-oral Vibration Sensing

Our upper and lower teeth often contact each other when we close our mouths during daily activities such
as eating, grinding, biting, and others. Characterizing such contact is important to understand how well our
teeth are aligned. Multiple sensors can be used to monitor those vibrations, including IMU, microphone, or
piezoelectric sensor. Yet, the constrained space of the oral cavity has restricted the options, ultimately making
piezoelectric sensing the most practical solution. The piezoelectric sensor is commonly used to measure vibrations
and mechanical stress with high sensitivity. When the piezoelectric material experiences mechanical stress, its
atomic bonding structure deforms and results in a change in the electric dipole distribution. This change generates
an electric charge across the material, resulting in measurable voltage. Guided by this physic principle, there is
a linear relationship between the mechanical stress applied to the piezoelectric material and the amplitude of
output voltage [1, 5]:

dLF

V= ,
€0€rA

(1)

where V is the output voltage, d is the piezoelectric coefficient, L is the material length, F is the applied mechanical
stress, €y and €, are permittivity coefficients of the material, and A is the area that the stress is applied on. Hence,
by placing a tiny piezo sensor at the contact area, we might be able to accurately and reliably measure and
characterize the biting behavior reliably.
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Fig. 3. /OTeeth system overview.

2.3 Feasibility Study

We conduct a preliminary study to demonstrate the feasibility of using the intra-oral piezoelectric sensor to
capture changes in occlusion. A dentist records a person’s dental anatomical landmarks via bite registration,
which describes the relationship between upper and lower dental arches and demonstrates nearly balanced
horizontal teeth contact. A dental plaster model is then cast from the bite registration. We place two piezoelectric
sensors on the internal surface of canines to capture the vibration induced by teeth contact while preserving
the original occlusion. To simulate the changes in occlusion, we use thin films (one-layer thickness ~ 0.15mm)
to fill in the groove of the left first molar. This offset usually happens after a tooth-filling surgery, when the
dimension of the filling material is different from the original tooth structure. With an increasing number of
films, the changes in occlusion increase. For each setting, we simulate the biting motion with the articulator
and collect the vibration signals captured by two sensors. Figure 2 (a) depicts bite-induced vibration signals,
which show observable signal energy differences between the left and right sensors when the occlusion condition
changes gradually. Figure 2 (b) quantifies the ratio of signal energy with different numbers of filling layers. This
result depicts the feasibility of using intra-oral vibration sensors to capture changes in occlusion, which is the
foundation for more complicated occlusal disease recognition.

3 IOTEETH SYSTEM OVERVIEW

We design the IOTeeth system as an intra-oral sensing system for accurately recognizing the existence of occlusal
diseases from teeth contact-induced vibration during oral activities. Figure 3 illustrates the overview of the
IOTeeth system, comprising two modules, namely intra-oral sensing platform and data-driven activity and disease
recognition algorithms.

The proposed intra-oral sensing platform collects and pre-processes the data, with three parts: a retainer-form
wearable, a data acquisition device, and a signal pre-processing unit. The retainer-form wearable device is designed
for comfortable long-term use. And as demonstrated in the feasibility study, small changes in tooth morphology
would result in significant changes in occlusion. Therefore, in order to minimize the interference to natural
occlusion, we design, manufacture, and benchmark piezoelectric sensors that are small enough (2mm-radius) and
place them on the internal surface of front teeth and canines. When the user wears IOTeeth, their oral activities
such as bite and grind will induce vibration that can be captured via the data acquisition device. These signals are
then sent to signal pre-processing unit, which can be deployed on the cloud or the local server, to remove the
noise and extract segments of interest. These segments are the input to IOTeeth’s data-driven activity and disease
recognition algorithms. We introduce details of this module in Section 4.
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Fig. 4. (a): Retainer-form design of the /OTeeth’s intra-oral sensing platform. (b): Comparison of a mouthguard and two-layer
retainers. The annotation indicates the thickness of one layer.

The data-driven activity and disease recognition algorithms need to efficiently extract anatomical character-
istics of the masticatory system. It is challenging because 1) what the sensor directly measures is the skeletal
characteristics and the algorithm needs to infer the musculoskeletal condition indirectly, and 2) the labeled
data is costly and limited. Therefore, in order to extract effective features that are robust across people with
different dental anatomic landmarks, we propose a Physio-aware Attention Network (PAN Net) which
is able to automatically select the most informative sensor for each person for occlusal disease recognition.
Signal segments of different activities represent different musculoskeletal motions and show distinctive signal
characteristics, thus it requires activity-specific occlusal disease recognition models. IOTeeth predicts occlusal
disease for each segment of interest, and these predictions can be used to further generate aggregated results.
The detail of the module is elaborated in Section 5.

4 INTRA-ORAL SENSING PLATFORM

In this section, we first introduce the intra-oral wearable device with the retainer-form design in Section 4.1.
Then, we present the design, fabrication, and characterization process of the customized piezoelectric teeth sensor
in Section 4.2. In Section 4.3, we illustrate how different components are integrated as a sensing platform. Lastly,
in Section 4.4 we present how the vibration signals captured by the intra-oral wearable are processed for the next
module.

4.1 Retainer-Form Intra-oral Wearable Device

We design IOTeeth’s intra-oral wearable in the form of a dental retainer, which is shown in Figure 4 (a). A
dental retainer is made from a thin (0.5-1.2 mm?) thermoplastic sheet customized to fit the people’s teeth shapes.
Compared to other dental appliances, building the intra-oral wearable upon dental retainer helps to reduce
the overall thickness of the platform, hence minimizing the impact on the user’s natural oral activities [78].
Figure 4 (b) shows the comparison of one single-layer mouthguard and two-layer retainers and the two-layer
retainers’ thickness (1.2 mm) is less than half of the mouthguard’s thickness (4 mm). This less intrusive factor
enables the system to minimize the interference to the natural occlusal condition. Also, it enables us to design a
vertical placement of piezoelectric sensors. As shown in Figure 3 and Figure 4 (a), we mount piezoelectric sensors
onto the inner surface of the anterior teeth and canines, placing them securely between two layers of retainers.
The retainer’s snug, customized fit ensures the piezoelectric sensors remain securely in place and facilitates
close attachment to the teeth for optimal vibration sensing. Additionally, the vertical placement minimizes the
added discrepancy between the lower and upper jaw. Therefore, it avoids the discomfort from the altered teeth
fitting from the amplified upper and lower teeth gaps caused by the hinge joint structure of the human mouth.

This is the common thickness range in North America.
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The placement location also coheres with the function of front teeth and canines during oral activities (e.g.,
canine-guided grinding) enabling the system to effectively capture comprehensive information on the user’s
occlusal condition.

4.2 Sensor Design and Characterization

Sensor Design. We design the sensor for the wearable to be sensitive for capturing vibration signals while
being small and thin enough for the designed canines and front teeth placement. To the best of our knowledge,
there are no commodity sensors that suit our requirements. Therefore, we design a customized piezoelectric
sensor. Figure 5 illustrates the design and fabrication process of the sensor. We customize the sensor upon PVDF
piezoelectric films for its high sensitivity of vibration sensing and flexibility in fitting into curved surfaces [42] as
can be seen in Figure 4 (b). The sensor is designed in a circular shape with a four-millimeter diameter. Compared
with other shapes, circular piezoelectric sensors are known to have lower noise and higher sensitivity [2, 50].
The 4mm diameter dimension also enables the sensor to fit the canine and front tooth’s size (around seven
millimeters with a variance of three millimeters in width [93]). Given such small size, a silver coating is applied
to the sensor to improve its sensitivity. This silver coating provides a conductive layer that allows the sensor to
capture fine-grained variations in the generated voltage. To read the output voltage, we place three two circular
copper films (3mm-diameter) on each side of the coated piezo film as electrodes. Under the in-mouth working
conditions, the sensor will be exposed to saliva, which may cause short circuits. Therefore, another epoxy resin
coating is designed to isolate the sensor from the humid working environment and protect the sensor. With the
proposed multi-layer design, the sensor meets our requirements for sensitivity, comfort, and durability.
Sensor Characterization. To ensure optimal performance of the fabricated sensor, a dedicated sensor char-
acterization is required to benchmark sensors’ sensitivity and consistency. Also, the characterization provides
guidance for selecting a data acquisition device compatible with the specific output of the customized sensor.
We first design a procedure to characterize the sensor with conditions that simulate real-world scenarios: 1)
different rates of impact, 2) impacts of different types of impact heads, and 3) consistent long-term impacts. The
first test mimics different frequencies and extent of intra-oral activities. The second test helps us understand
the sensor’s behavior when embedded in the dental retainer. A mild impact head can function as a damper to
mimic the mechanical stress from vibration when the sensor is embedded in the retainer, while the hard surface
impact heads can be used as a reference. The third test mimics long-term usage, which can help us understand
how durable our customized sensor is. These different characterizing tests can provide insights into the sensor’s
behavior and enable us to optimize the sensor’s design and performance for specific applications. To ensure
sensor quality, we examine the sensor in three aspects: The first aspect is examining if there is a broken sensor.
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We consider sensors that cannot output voltage when mechanical stress is applied as broken sensors. Secondly,
we verify the fabricated sensors are generating a sufficient signal amplitude relative to the noise level. In this
paper, we empirically set the signal-to-noise ratio of 40 dB when the impact rate is 240 RPM as the standard.
We also check the consistency of each sensor compared to other fabricated sensors. Based on the pattern of the
generated signals under these tests, we can identify whether the sensor is functioning as expected.

We design the test bench as a platform that can repetitively and constantly hit the sensors to simulate the
impact and vibration caused by human teeth. The test bench comprises of three main components, illustrated in
Figure 6 (a). The first and main component is an impact head consisting of a flywheel, a hammer, and a rod. The
rotation of the flywheel moves the hammer up and down to create impacts on the testing sensor. The driven
power of the flywheel comes from the second component: a brushless motor with a 1-25 rate gearbox. The
gearbox reduces the high-speed motor rotation 2500 revolutions per minute (RPM) to 12000 RPM into a slow
range of 100 to 480 RPM, which is suitable for testing operations. The third component is an RCbenchmark
data collection circuit [72] for controlling and recording the brushless motor speed. We design three different
types of impact heads for the second test in the characterization procedure: an acoustic panel for the damping
characterization, a flat hard surface and a pointy hard surface for the reference.

To measure the sensitivity of the fabricated sensor and guide the selection of the data acquisition device for the
customized sensor, a PicoScope, 16-bit high-resolution oscilloscope [65], is used to read the sensor’s output during
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characterization. Figure 7 (a) and (b) shows the power spectrum of impact-induced signal from the PicoScope
and zoomed-in visualizations, which illustrates the frequency domain’s power distribution. Figure 7 (c) depicts
noise’s power spectrum. We find the energy of noise is lower than —40dB and most of the energy of the output
signals falls below 200 Hz. These findings indicate we can select a low-cost, low-power data acquisition device.

4.3 IOTeeth Sensing Platform Integration

We adopt a customized procedure to integrate the IOTeeth intra-oral sensing platform so that the wearable device
can fit each user’s unique facial musculoskeletal profile and maintain a low-interference wearing experience.
The integration consists of two steps: 1) building dental retainers and embedding the piezoelectric sensors to
build the wearable device, and 2) connecting the wearable device with the data acquisition device. Figure 8 (a-c)
illustrates the process of making one layer of retainer by a professional dentist. First, the dentist duplicates the
person’s teeth shape and size with an alginate impression, as shown in Figure 8 (a). Then an inverted model is
built by plaster from the alginate impression (Figure 8 (b)). After the plaster model is solidified, it is then put
on a thermovacuum machine. One sheet of retainer material is heated and softened by a heat source above the
machine. When the sheet has reached an appropriate temperature and softness, as confirmed by the dentist, it
is formed into the shape of the plaster model with the thermovacuuming technique, as shown in Figure 8 (c).
Finally, the dentist cuts out the outskirt and trims the retainer to a suitable size based on expert knowledge. By
repeating the step in Figure 8 (c) with one retainer placed on the teeth model, the second retainer is built with a
tight fit to the first retainer. We embed four customized sensors between retainers on locations of front teeth
and canines’ center area and fix them with one thin layer of Kapton tape, as shown in Figure 8 (d). The center
alignment ensures a standardized approach while allowing for individualized customization of each person’s
unique oral dimension.

Next, we connect the intra-oral wearable to the data acquisition device. Guided by the sensitivity character-
ization (Figure 7), we select the commodity OpenBCI Cyton board as the data acquisition device for its high
resolution (24-bit 2-A), multi-channel input, convenience to use, and lightweight for comfort wearing. Its high
resolution enables the IOTeeth to capture a fine-grained pattern of transit teeth contact-induced vibration signals.

Its ADS1299 ADC has eight channels, each samples at 250 Hz, which is sufficient for capturing the information
from customized sensors. The low power consumption of ADS1299 also allows the system to be portable without
the need to change the battery during daily long-term wearing. Figure 8 (e) depicts the wearing of IOTeeth. The
person wears the intra-oral wearable in the mouth, and the platform connects to the data acquisition device hung
on the chest.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 7. Publication date: March 2024.



7:10 « Huand Radmehr et al.

4.4 Signal Processing

Signals captured by the intra-oral wearable are further processed to 1) remove non-stationary trends, and 2)
extract segments of interest for following inference steps. The piezoelectric sensor has been known for showing
a non-stationary trend, which is a systematic increase or decrease in the obtained signal due to movements of
the system or change of the temperature [27, 88]. This trend adds the noise for the following prediction tasks,
therefore, the first step of signal processing is detrending the signal. We adopt the temporal differencing method
for the detrending process. Given a time-series signal T consists of [fo, t1, ..., 5], the temporal difference can be
written as [t, —t1, 3 — t2, ..., t, — t,—1]. This process removes the series dependence on time, hence it eliminates the
trend while keeps other information in the data [19]. The comparison of a signal before and after the detrending
is illustrated in Figure 3.

The teeth contact-induced vibrations result impulsive piezoelectric signals, which we define as events. To
extract those events, we conduct an energy-based event detection. We first apply a sliding window to the acquired
sensor signal. When there is no event happening (e.g., before the sensor is worn), we establish a Gaussian
noise model with the energy of the windowed signal. Then we conduct an outlier detection to new incoming
windowed signals based on this Gaussian noise model [49]. The windows whose signals are detected as outliers
are considered events. The event detection is conducted individually for each sensor then aggregate to generate
the final event detection result. We adopt a greedy algorithm over all sensors to avoid missing detection and
aggregate the detected events. For each step in the sliding, if there is one window that detects an event, IOTeeth
considers it an event for all sensors. When there are multiple consecutive windows with detected events, if the
last window’s start index is before the first window’s end index, we consider them as one event, and select the
window with the highest signal energy to represent this event. On the other hand, if the last window’s start index
is after the first window’s end index, we conduct a backward search in these consecutive windows. Once the
window whose start index first comes after the first window’s end index is found, we separate the consecutive
windows into two parts and consider them as (at least) two events. We repeat the separation process to the second
part until there is no more separation needed. The practice of selecting the window with the highest energy as
the representative window ensures the extracted events are of the same length.

5 ACTIVITY AND OCCLUSAL DISEASE RECOGNITION ALGORITHMS

In this section, we introduce the second module of IOTeeth. This section contains three parts, namely, the activity
recognition model (Section 5.1), the motivation experiment for the design of the occlusal disease recognition
model (Section 5.2.1), and the proposed Physio-aware Attentional Network for predicting occlusal disease (Section
5.2.2).

5.1 Activity Recognition

IOTeeth focuses on recognizing biting and grinding, which are the anatomically atomic oral activities and they
respectively represent functional and parafunctional activities in the human mouth [15, 70]. Biting refers to
the activity that the upper and lower teeth fit together from untouched to contact [74], which can be mainly
considered as a movement in the vertical direction. Grinding refers to the jaw moving side to side when upper
and lower teeth are in contact, hence it induces the sliding of upper and lower teeth against each other [89].
Figure 9 illustrates two activities’ movements and exemplary signals captured by a piezoelectric sensor placed on
the left canine’s internal surface. The movement difference makes the signal have distinctive patterns. The biting
signal is more impulsive and has fewer and shorter fluctuations than the grinding signal.

Given the distinct pattern, we propose to leverage the Convolutional Neural Network (CNN)-based model to
recognize activities from signals for its strong performance in local salience pattern extraction [54, 95]. The input
to the model is signal events normalized by its energy, hence the signal pattern won’t be dominated by the absolute
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Fig. 9. Two types of oral activities and respective signal examples.

amplitudes. The pattern extraction network consists of three stacked convolution layers. Each convolution layer
extracts features from the input signal or the output from the previous layer through a convolution operation
with a kernel. The 2-D kernel has a width of four, which equals the number of signal channels, and it moves along
the time direction only, to simultaneously extract four channels’ temporal pattern. Between each convolution
layer, there is one batch normalization layer [21] to stable the training and one rectified linear unit (ReLU) as
the activation function. After the second convolution layer, we apply a max pooling layer to extract the most
representative feature and downsample the feature size. The output of the CNN pattern extractor is sent to
the classifier network, which consists of three feedforward layers and ReLU activation functions in between.
The output from the classifier network (denoted as 0) is sent to a softmax function o to calculate the prediction
probability of each class:

o(0); = ST g0 2)
j=1
where i is the ith class in the total number of J classes. The class with the highest prediction probability is the
predicted label

§ = argmax o(z); (3)

1

We employ the cross-entropy loss to train the activity recognition model:

J
Lact =~ Z yjlog(a(0);) 4

j=1
, where y; is the label of current input signal event. After being predicted the activity, each signal event will be
sent to the occlusal disease recognition module to let IOTeeth recognize if the user has occlusal diseases. In the
deployment, users can also set a prediction confidence threshold (such as 80%) for selecting signal events. In cases
where a user performs a complex motion, like closing the mouth followed by sliding the teeth, IOTeeth’s event
detection might return multiple signal events. However, only those events with high confidence, where signal

events predominantly align with one of the two activities, will be considered for occlusal disease recognition.

5.2 Occlusal Disease Recognition

The occlusal disease recognition algorithm analyzes the signal events and predicts the possibility of having
occlusal diseases. Even with just two classes, the task is challenging because the vibration sensor captures the
skeletal information, and the algorithm needs to infer the underlying musculoskeletal health. Also, different
people have their own unique dental profiles, making it critical to learn a robust feature for inference. On the
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Fig. 10. Motivation study: Ten-time leave-one-out test result of randomly selected one healthy person’s and one patient’s
biting signal events using AttnSense model (with four channels’ signal) and individual channel signal. Sub-figure (a) shows
the test F1 score of each model. Sub-figure (b) shows the attention value of each channel calculated by the AttnSense model.

other hand, the vibrations resulting from teeth contact inherently reflect the dynamics of dental arches, teeth
morphology, and musculoskeletal condition, serving as implicit occlusal disease indicators for the algorithm.
Considering the critical difference in the signal pattern between biting and grinding activities, we design occlusal
disease recognition to have two independent but identical neural network models for signals of different activities,
respectively. This subsection is organized into two parts. In the first part, we conduct a motivation study to
investigate the efficacy and challenge of fusing the signal from multiple sensors in the IOTeeth. The insights from
the result motivate the design of our proposed Physio-aware Attentional network (PAN Network).

5.2.1 A Motivation Study. Sensor fusion has been successfully applied to multi-sensor systems for different
inference tasks, e.g., human activity recognition [96]. The state-of-the-art fusion algorithms like AttnSense [44]
and Cosmo [55] propose to leverage attention-based fusion techniques to combine the information in all sensor’s
signal. These works assign a weight of 0 to 1 for each sensor channel, known as soft attentions [11]. However,
predicting occlusal disease is a much more complex task than human activity recognition due to the high variance
across each individual [81]. A patient diagnosed with occlusal disease may not have every tooth or dental area
impacted by the condition, and the severity of the disease can vary greatly among affected teeth area [53]. In
such circumstances, if the model pays attention to the tooth that is not impacted, the model is prone to fail.
Similarly, a dentist-identified healthy individual might exhibit early signs of occlusal diseases in one or two teeth
area[13]. The signals from those teeth are noisy and misleading to the occlusal disease recognition task. Soft
attention is prone to have difficulty in distinguishing the important channels from the irrelevant ones when the
inputs are noisy [33, 46]. Therefore, a model that can emphasize the most informative one while suppressing the
contribution of potentially noisy sensors is needed for occlusal disease recognition. To justify our argument, we
conduct a feasibility experiment.

We randomly select two test persons, one is dentist-labeled healthy and the other one is a patient with occlusal
diseases. The experiment is conducted in a leave-one-out setting: the test person’s biting signal events will be
used to evaluate the model trained by the other 11 person’s biting signal events. The procedure and detail of data
collection will be elaborated in Section 6.1. We select the AttnSense model as the representative soft attention
model, which has an attention-based module that dynamically learns the weights for combining features of
different sensors [44]. The input to the AttnSense model is the four channels’ signal. Also, we have a CNN-based
model that takes only one channel as the input to train and test the model. The CNN-based model has an identical
architecture to the model proposed in Section 5.1. We repeat the experiment 10 times and report the averaged F1
score as the metric.
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Fig. 11. PAN Net overview. The PAN Net takes extracted signal events as the input, then sends them to the channel-wise
feature extractor. The extracted channel-wise embedding from feature extractors is then sent to the soft-attention block and
physio-aware harder attention block to calculate the attention weights. The embeddings are finally fused with attention
weights and are sent to the classifier block for prediction. We depict the pseudo-distribution of attention weights in each
step to show the designed change of those weights.

The recognition F1 score of five models for two test persons’ data is illustrated in Figure 10 (a). We observe the
AttnSense model has limited performance. It achieves an average of 0.656 and 0.062 F1 scores for healthy person
and the patient’s data. On the other hand, the CNN model with individual sensor input has drastically varied
results. For the healthy user, if the model takes the left canine’s signal into account, it can achieve an F1 score
of 0.989. However, if the model takes the left front tooth’s signal as the input, the test F1 drops to 0.146. Also,
the left canine is not the gold sensor placement location for other cases. For the patient, the model with the left
canine’s signal achieves a 0.0146 F1 score, while the model with the right canine’s signal input achieves a 0.995
F1 score. These results show that sensors placed on different teeth contribute significantly different to occlusal
disease recognition. When the signal from negatively contributing sensors is combined, it adds noise to the data
and reduces the information of the data from the most contributing sensor. Figure 10 (b) shows the distribution
of the mean of the AttnSense model’s attention weights put to each sensor signal in test data. We observe that
the distribution of both test cases is centering around 0.25. This distribution indicates that the model takes four
sensor inputs almost equally, instead of paying more attention to the informative sensor channel and neglecting
the sensor which has misleading information. This experiment leads us to the requirement of a generalizable
occlusal disease recognition model: a model can automatically highlight the most informative sensor channel for
inferring the unseen new data.

5.2.2  Physio-aware Attentional Network. In this section, we introduce our proposed Physio-aware Attentional
Network (PAN Net). The design goal is: the model can automatically amplify the attention weight of the most
informative sensor/channel for occlusal disease recognition given the input, and surpass the attention weight of
other channels. We propose to sharpen the distribution of attention weights with a harder attention block. In
this study, we build our harder-attentional network upon the AttnSense model. The overview of the network is
illustrated in Figure 11. The network consists of individual channel-wise feature extractors, a soft attention block,
a harder attention block, and a classifier block.
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Feature Extractor. The feature extractor takes extracted signal events as the input and output embedding
(feature) vector of each channel. We adopt the same structure of three CNN layers used for activity recognition.
After each layer, we append a dropout layer to regularize the training [82]. The different part from that in the
activity recognition model is we utilize individual CNN feature extractors for each sensor’s input. As shown in
Figure 11, the extracted signal event of k-th sensor, xj is sent to its own CNN feature extractor, which outputs a
channel-wise feature (embedding) vector vg. All K sensor’s embedding vectors are sent to the soft attention layer.

Soft Attention Block. The soft attention block, which is identical to the one used in the AttnSense model,
takes sensors’ embedding vectors [0y, vy, ..., vx] as the input and returns an attention weight [S;, Sz, ..., Sk ] for
each sensor. It first projects each sensor’s embedding vector to a latent space by one feedforward layer, and we
denote this latent representation as . Then the block calculates the weight of k-th sensor by measuring the
similarity between py and a learnable sensor context vector C [44]. Finally, the calculated weights of each sensor
are normalized via a softmax function to get the final soft attention weights. The calculation steps can be formed
as follows:

U = tanh(W - o + b), (5)
()"0
SF exp((u)7C)

where W and b are the weight and bias parameters in the feedforward layer, and tanh is the hyperbolic tangent
activation function. The parameter W, b, and sensor context vector C are randomly initialized and jointly learned
during the training process [44].

(6)

Physio-aware Harder Attention Block. The physio-aware harder attention block automatically amplifies the
most informative channel(s)’s attention weight while decreasing other uninformative ones’. The harder attention
block consists of four arithmetic steps: mean subtraction, scaling, sigmoid function, and softmax function. The
mean subtraction step lets each sensor’s soft attention weight minus the mean value of all sensor’s weights. This
step pushes attention weights center around zero. After this step, we denote the mean-subtracted Si as 5. The
S, will be further scaled by a scalar parameter, A, then pass a sigmoid function. This step pushes the positive
values close to 1 and negative values close to 0, i.e., semi-binarized distribution. This is realized by leveraging the
sigmoid function’s property: the A is also known as the gain value that controls how steep the sigmoid curve is.
The gain value is a hyperparameter to be set for the PAN Net. When it equals one, for input that is bigger than 10
or smaller than -10, the output is almost one (> 0.999) or zero (< 0.001). The higher the gain value, the more
sensitive the output is to the input. We denote the processed S; as S;’. Each person’s musculoskeletal profile
is unique , thus the input data also has a high variance across different persons. The semi-binarized attention
distribution is prone to cause training oscillations when the input data has a high variance [36, 69], hence we
append an additional softmax function to slightly smooth the distribution. The calculation can be formed into
the following:

, s
Sk = S = = ()
1
S = ———a (®)
1+exp(-AS;)
exp(S;) ©)

k= "% 0
S exp(Sy)
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where the Hy is the harder attention weight. The last step is the multiplication between each channel’s harder
attention weight and its embedding vector, then concatenate into the fused embedding Z for the classification:

Z = <H1 'UI,HZ 'Ul,...,HK '0K>, (10)
where <> represents the concatenation operation.

Classifier Block. The classifier block takes the fused embedding as the input and outputs the occlusal disease
recognition, i.e., if these events show a sign of having a occlusal disease. Inspired by AttnSense and other previous
signal classification studies, we adopt a two-layer Gated Recurrent Unit (GRU) with a three-layer MLP as the
classifier block. The logits output from the MLP pass a softmax function to calculate the prediction probability of
each class and the highest one is the predicted label. We employ a cross-entropy loss for training the occlusal
disease recognition model. The forward pass’s calculation can be expressed as:

Q = MLP(GRU(2)), (11)
e9Qi
i —7 12
o(Q):= 5 "o (12)
J
Lireairn == ), yjlog(a(Q),) (13)
Jj=1

where i is the ith class in the total number of J classes.

6 EVALUATION

In this section, we describe the implementation details and setups of data collection (Section 6.1), introduce
data-driven learning baselines and the metrics for evaluation (Section 6.2), and present the system’s performance
in activity and occlusal disease recognition in Section 6.3. We also examine our customized piezoelectric sensors
(Section 6.4), assess sensor placement’s interference to teeth fitting (Section 6.5), and conduct the ablation study
and sensitivity analysis for the proposed PAN Net in Section 6.6 and Section 6.7.

6.1 Data Collection

6.1.1 Teeth Activity and Occlusal Disease Data. Despite our best efforts, we were unable to ensure that all
required source materials for building the IOTeeth intra-oral sensing wearable are FDA-approved. Therefore,
in regard to bio-safety, we use teeth models installed on articulators to replicate teeth contact and intra-oral
activities for data collection. An articulator is a mechanical tool used by dentists to fix plaster teeth models and
reproduce jaw movements. In total there are 12 plaster teeth models provided by a professional dentist clinic
are used for data collection. Those teeth models are randomly selected and they reproduce the teeth contact
conditions of the people when they are in their natural states. Six out of 12 teeth models are built from patients
diagnosed with occlusal diseases, while the rest six models are built from people who a dentist identifies to
be healthy. To understand how representative these 12 models are, we compare two anatomic landmarks with
the large-population general distribution from a panel study [3]. The inter-canine distance and retromolar pad
distance are anatomic landmarks commonly used for assessing the overall dental arch form, potential spacing or
crowding issues, and occlusions [71, 92]. Results shown in Figure 12 (a) and (b) illustrate these randomly selected
teeth models encompass a comprehensive range of both anatomical landmarks, ensuring a broad representation
of dental variations and a fair evaluation of the IOTeeth’s generalizability. To collect the data, we mount each
teeth model to the articulator as shown in Figure 12 (c). Guided by the dentist, we operate the incisal pin of the
articulator to replicate the jaw movement of human’s biting and grinding activities. For each teeth model, we
collect 150 times of biting movements and 150 grinding movements for left- and right-directional grinding. The
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Fig. 12. Testing models’ dental anatomic landmark illustration (sub-figure a and b), and occlusal disease data collection
illustration (c). Sub-figures (a) and (b) show the comparison of the dental anatomic landmark between testing models’
measurements and general human adults’ distribution from a panel study [3]. Blue curves show the distribution of anatomic
landmarks. Each vertical bar indicates one tooth model’s measurement. The random-selected testing models cover most of
the range. Sub-figure (c) shows the mounting of the articulator teeth model and the illustration of data collection movements.

force, speed, angle, and extent of those movements are randomly adjusted each time to mimic human nature
moves. During the data collection, we log the time of each movement. In total, we collect over 5000 movements
from 12 different teeth models.

6.1.2  Sensor Sensitivity Data. To validate the design of the sensor and a comprehensive characterization, we
conduct two sensor sensitivity experiments and collect the sensor output. First, we collect the sensor output
of different diameter sizes (2/3/4/5/6/7/8/9/15 mm) with impacts generated by the test bench. Then, we collect
the output of the 4mm sensor with different testing settings following the designed sensor characterization test
introduced in Section 4.2. For each characterization experiment, the speed of the test bench starts at approximately
90 RPM, i.e., every two seconds there are three impacts. We then gradually increased the speed by an incremental
step of 18 RPM and stop at 460 RPM, recording the signals generated by each impact at the same time with the
OpenBCI Cyton board. In total, for each experiment, there are around 10 impacts. Throughout the experiment,
we monitored the RPM of the brushless motor with RCBenchmark at 40Hz to ensure a precise speed adjustment.

6.2 Baseline Models and Implementation

We compare our system’s performance with the following baseline models.
Support Vector Machine (SVM) SVM is a shallow machine learning model that has been successfully applied
to vibration signal classification tasks. Inspired by prior works, we extract each sensor signal’s frequency (1-125
Hz) component and concatenate them together as the feature [60].
Convolutional Neural Network (CNN) A CNN-based model has a same structure to the one for activity
recognition is used as the baseline for the disease prediction task.
DeepSense DeepSense is one of the state-of-the-art sensor fusion approaches for multi-sensor signal classification
task. Features from different sensors are concatenated together for fusion [96].
AttnSense AttenSense is an attention-based supervised multi-sensor fusion algorithm which dynamically assigns
weights to features from different sensors, then fuses the weighted feature [44].

Given the complexity of activity and disease recognition models in IOTeeth, the activity recognition task will be
evaluated with SVM only. The SVM model is tuned with a hyperparameter grid search with 3-fold cross-validation
in the training data, and the best hyperparameter setting is used for predicting the testing data. All deep learning
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models are implemented with PyTorch [62] framework. To ensure a fair evaluation, all deep learning models are
trained with the same hyper-parameters: the batch size is set as 512, the learning rate is 0.002 and the training
epoch number is 50 with the early stopping. The A in the physio-aware harder attention block of the PAN Net
is empirically set as 100. The IOTeeth system is designed to report an aggregated result to the user, but for a
quantitative test and a fair comparison with baseline models, we evaluate all models’ performance at the event
level. We use the F1 score as the evaluation metric, calculated as:

TP

1= e R —— (14)
TP + L(FP + FN)

where TP is the number of signal events that are true positives, FP is the number of false positives, and FN is
the number of false negatives. Each experiment is in the leave-one-out setting: one person’s data is used as the
testing data and the rest 11 person’s data are used for training. We repeat the experiment of each person’s data as
the testing data 20 times and report the mean F1 score as the final result.

6.3 Overall Performance of Benchmarking Test

We conduct the benchmarking test to evaluate the effectiveness of IOTeeth in detecting occlusal disease and
recognizing different activities, with both training and testing data collected from articulator-mounted dental
models replicated from real-world dental clinic customers. The occlusal disease detection results are evaluated and
discussed independently since there is no dental reference for a fair fusion of the two activities” detection results.
Figure 13 shows the average leave-one-out test F1 score of occlusal detection across all participants’ models
(hereafter abbreviated as "participants"). IOTeeth’s PAN Net achieves an average of 0.924 and 0.922 F1 score in
the leave-one-out test setting, which indicates that our system is accurate and robust to various participants.
All deep learning-based models significantly outperform the SVM baseline by a clear margin, which illustrates
the efficacy of extracting the signal feature with the CNN-based feature extractor layers. Compared with deep
learning baseline models, PAN Net achieves at least 0.2 higher F1 score. This confirmed the necessity of adding
the physio-aware harder attention block to the network for selecting the most contributing sensor/channel.
The AttnSense model and DeepSense model have comparable results in both activities. Considering the only
difference between these two models is that DeepSense combines the channel-wise embedding without a soft
attention weight, the comparable results of the two models indicate that soft attention fails to pay more attention
to the informative sensor but pays roughly equaled attention to all sensors’ data. The CNN model achieves the
second-to-best result, outperforming both AttnSense and DeepSense models. This phenomenon suggests a few
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different sizes of the sensor (c) Some of the fabricated sensors in different sizes.

key insights. First, the CNN model processes all four channels’ features simultaneously, which is able to model
inter-channel relationships more effectively in the early stage. Also, the max pooling operation in the CNN model
acts like the Physio-aware Harder Attention Block that keeps the most informative pattern in the signal and
discards the rest. Unlike AttnSence and DeepSense models that extract individual channel’s features and then
attempt ineffective fusion, the combination of early-stage inter-channel modeling and pooling operation makes
the CNN model perform better in the occlusal disease recognition task. Additionally, the absence of recurrent
neural network (RNN) layers after the CNN model’s feature extractor indicates for intra-oral activities-induced
vibration signals, RNN layers for modeling the temporal dependency are not a core contributor to the model’s
performance. Also, we observe that each model achieves a comparable F1 score in both activities. We believe this
phenomenon is potentially related to the nature of these oral activities and their relationship to occlusal disease.
Biting and grinding are two distinct activities that can provide different perspectives on a person’s occlusal health,
as they can contribute to the development and progression of various occlusal disease conditions [41, 67]. These
comparable results from both activities also align with the real-world dental practice, where dentists evaluate and
consider multiple factors, including both functional and parafunctional activities, when diagnosing and managing
occlusal diseases [16, 80].

Figure 14 depicts the average leave-one-out test F1 score of activity recognition of the CNN-based model
and SVM baseline model. We observe that both models achieve an over 0.9 F1 score, and our CNN-based model
outperforms the baseline model by a 0.05 F1 score. This result indicates that signals of different activities show
consistently distinctive patterns, and the design of a CNN-based activity recognition model that is driven by
extracting patterns is validated. Also, these results show the system can accurately send each signal event to the
according disease detection model, which ensures the IOTeeth’s overall disease detection accuracy.

6.4 Sensor Sensitivity Analysis

This subsection characterizes the sensors’ performance, sensitivity, and reliability with multiple sizes in multiple
settings. We particularly focus on the 4mm sensor as it is the smallest sensor that can be manually crafted.

Signal outputs of different sizes of sensors. Figure 15 shows the comparison of sensors in different diameter sizes
and measurements of output. From subfigure (a), we observed a positive correlation between the size of the sensor
and the output voltage it produces. This phenomenon is aligned with Eq. 1, the output voltage (V) increases with
the size (L). Also, from subfigure (b), we observe that a bigger size of the sensor can output signals with a higher
signal-to-noise ratio (SNR). This result indicates that during the design of customized PVDF piezoelectric sensors,
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Fig. 16. (a) Signal pattern of the 4mm sensor with different impact Table 1. Results obtained from the test using
heads. (b) Relation between the frequency of the impact and the OpenBCI.

peak-to-peak voltage of the output signal.

we should select the biggest size that is acceptable. Given the statistic of human canines’ and front teeth width of
seven millimeters with a variance of three millimeters [93], the 4-mm diameter design is at the balanced point of
adapting to most person’s teeth and keeping a high sensitivity and low noise.

Signal outputs of different impact heads. Figure 16 (a) shows the signal pattern of different impact heads. From
this figure, we observe that compared to the output from pointy impact, both acoustic panel vibration and flat
impact induce a weaker signal. This phenomenon coheres with Eq. 1, the output voltage (V) decreases when
the area of receiving mechanical stress (A) increases. Table 1 shows the quantitative results of the measured
signal-to-noise ratio. The output signal from the pointy impact head shows the highest SNR range, indicating
that the sensor is most sensitive to direct impact with a small impact area. Comparing the SNR of signals from the
acoustic panel and signals from the flat impact head, the sensor is more sensitive to vibration. The SNR of signals
from the acoustic panel is significantly higher than the other, even they have similar amplitudes. This result
shows that the customized sensor is suitable for being embedded in between retainers for vibration sensing.

Signal outputs of different impact frequency. Figure 16 (b) shows the relationship between the frequency of
mechanical stress applied and the output’s amplitude. We observe that the output with the panel test head has the
least change over different frequencies, indicating high stability and consistency. This result indicates the sensor
is able to stably generate signals with identical patterns when the oral activity frequency changes. Table 1 shows
cross-correlation between each sensor’s output given the same mechanical stress. All three tests’ results show an
over 98 % average correlation coefficient, which indicates the sensor fabrication error and the variance between
each sensor are low. The results from two testing illustrate the customized sensor has a high consistency.

6.5 Sensor Placement

This experiment aims to examine the efficacy of IOTeeth’s sensor placement design in reducing the interference.
We compare the occlusal fitting conditions with three sensor placements: 1). there is only a retainer with no
sensor, 2). the sensor is placed with IOTeeth’s front teeth and canines placement design, and 3). placing two sensors
in the front teeth side and two sensors in the location of the left and right first molars. The molar placement is
commonly adopted in previous works [26, 58]. The "no sensor" setting represents the natural occlusion condition
when a person is wearing a retainer, which is used as the reference. Figure 17 (a) shows an example of occlusal
fitting with different settings. We observe that the IOTeeth placement does not introduce significant interference
to the occlusal fitting compared to the "no sensor" setting. On the other hand, the molar placement causes a gap
between the upper and lower front teeth due to the amplification effect of the human jaw’s hinge joint structure.
This gap indicates the deviation from the natural fitting. In order to quantify the interference, we measure the
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Fig. 17. Sub-figure (a) shows an example of sensor placement and its interference with the teeth fit. (a-i) shows the teeth fit
with the retainer but with no sensor placement. (a-ii) shows the teeth fit with the /OTeeth’s placement. (a-iii) shows the teeth
fit when moving two canine sensors to the place of the two first molars. The molar placement causes an open bite which

significantly interferes the normal teeth fitting. Sub-figure (b) shows the upper and lower front teeth gap size distribution of
different sensor placements.
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Fig. 18. Ablation study of removing the last softmax layer in the leave-one-out test setting. "P" stands for the patient, while
"H" stands for the healthy person. Sub-figure (a) is evaluated with biting activities, and sub-figure (b) is evaluated with
grinding activities. For simplicity, both sub-figures share the same legend.

gap distance between the upper and lower front teeth with a feeler gauge as an indicator of the occlusal fitting,
which is commonly used in dental practice [48, 87]. The feeler gauge we use has a precision of 0.05 mm. The
distribution of 12 models’ front teeth gap distance in three settings is shown in Figure 17 (b). From the result, we
observe the molar placement significantly enlarges the front teeth gap, and the median value of the gap increases
from 2.4 mm ("no sensor" setting) to 3.25 mm. On the other hand, the IOTeeth placement has a median of 2.55
mm, which reduces 82% less interference compared to the molar placement. This result validates the design of
IOTeeth’s sensor placement can minimize the interference to natural occlusal fitting.

6.6 PAN Net Ablation Study

In the design of the PAN Net’s physio-aware harder attention block, we add one more softmax layer in the end
to slightly smooth the amplified attention weights. In this ablation study, we compare the difference between
models with and without the last softmax layer (denoted as the baseline model in this section). Figure 18 depicts
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the F1 score of two models. We observe that for most participants, the PAN Net’s mean F1 score of 20 rounds
of experiments is clearly higher than that of the baseline model. One of the main reasons for this reduced F1
score is the high instability of the baseline model’s performance. We notice that the baseline model’s results have
a significantly bigger range than that of the PAN Net, and the baseline model has a bigger standard deviation
in the result for each of the test users. This phenomenon indicates that the training is unstable if the attention
weights after the A-scaling and sigmoid layer. The reason behind this is the semi-binarized attention weight
introduces high randomness and uncertainty in the sensor selection process and makes the model easily fit into
the data noise or outliers [32, 36, 69]. The added last softmax layer serves as the normalization to regularize
the uncertainty for stable training. From the standard deviation of individual testing participants’ results, we
observe that the added last softmax layer achieves different levels of stabilization. For instance, for patients 1, 4,
and healthy participant 4, PAN Net’s test results show a high standard deviation. We explore different network
designs and methods of regularization (e.g., batch normalization, layer normalization, dropout, weight decay, and
schedule of training), but there are no fundamental improvements. In summary, a method for better regularization
is an open question left for us.

6.7 PAN Net A Value Sensitivity Analysis
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Fig. 19. Sensitivity analysis of different A value and average leave-one-out testing result. Sub-figure (a) is evaluated with
biting activities and sub-figure (b) is evaluated with grinding activities.

The A in the physio-aware harder attention block is the sigmoid function’s gain value that controls how steep
the sigmoid curve is. In this experiment, we examine the model’s sensitivity to different A values. For a vanilla
sigmoid function (A = 1), if the input is bigger than 10, the output is close to 1, and for the input value is smaller
than 10, the output is close to 0. Therefore, we choose five different A values for investigation: A = 1, 2, 5, 10,
100. The value five is in the middle between 1 and 10, while the value two is in the middle between 1 and 5. The
value 100 is the big value we select to test the model’s performance when a very small (absolute value bigger
than 0.1) input to the sigmoid can have an output close to 0 or 1. Figure 19 illustrates the testing result. From
the result, we observe when 1 < 10, the model is sensitive to the value. A bigger value can help the model to
achieve a higher average testing F1 score. The model with A = 10 and A = 100 achieves a comparable result. For
the two activities, we can observe identical sensitivity trends. This sensitivity trend is related to the function
of the sigmoid layer in the PAN Net: a bigger A value can amplify the attention weight of the most informative
sensor closer to one. Therefore, compared to models with small A values, models with bigger A values are more
effective in emphasizing the contribution of the most informative sensor’s signal and surpassing others. Note
that this does not equal that the PAN Net only focuses on one single channel. Even with a large A, the softmax
layer is able to mild the semi-binarized attention weight, letting the model take input from channels with lower
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attention. Also, the model saturates with A between 10 and 100, this indicates that there’s an optimal range for A.
Beyond this, increasing its value doesn’t provide significant performance gains.

7 DISCUSSION
7.1 User Study

We recognize one of the limitations is the lack of a real-person user study. The primary reason for this limitation
stems from the challenges associated with acquiring FDA-approved materials for fabricating the sensors. As the
sensors are to be embedded within retainers and placed in mouth, ensuring the safety and biocompatibility of the
materials is of paramount importance. In the future, we will continue our efforts to identify and obtain medically
safe materials for fabricating the sensors. Once the appropriate materials are found, we plan to conduct a user
study with real human participants to validate the effectiveness of our system in recognizing oral activity and
predicting dental disease. To enhance the precision of our data collection, we will integrate Electromyography
(EMG) technology and record oral motion videos, thereby capturing detailed muscle activity and joint coordination
during oral activities. With the data collected from human participants and labels from dental professionals, we
envision the IOTeeth can not only recognize more complicated oral activities and fine-grained occlusal diseases,
but also contribute to the broader understanding of dental health research.

7.2 Beyond Occlusal Disease Recognition

We envision IOTeeth as a versatile system extendable for a range of applications, including: 1) wellness monitoring,
2) assistive dental technology, and 3) interactive systems. One practical application is in the monitoring of
involuntary oral activities during sleep. By tracking these activities, IOTeeth can offer valuable insights into
an individual’s daily stress levels, serving as an indicator of overall well-being and sleep quality [45]. Another
application falls into orthodontics treatment [4]. By continuously monitoring the vibration patterns generated
during teeth movements, the system could serve as a teeth fitting profiler and for pre- and post- teeth realignment
treatments’ reference. This would not only offer orthodontists a handy tool to gauge the progress of treatments
but also provide them with timely data to make any necessary adjustments. The IOTeeth can also be integrated
with other facial wearable systems, broadening its scope of applications. For instance, when combined with the
TeethTap system [85], they could create a mouth-based human-computer interaction platform, offering users a
convenient way to interact with their devices via both jaw movements and teeth contacts.

7.3 Musculoskeletal Sensing

This study focuses on skeletal sensing using teeth models on an articulator. In the future, we plan to extend
our approach with a combination of related facial sensing systems to encompass musculoskeletal sensing. The
primary motivation behind this direction is the recognition that real human data encompasses not only the
anatomical bone structure and bone movement relationship but also the contribution of muscles to the motion
of the masticatory system. For instance, the Mutelt system [83] provides the motion monitoring of the lower
jaw and temporomandibular joint, while the FaceSense system [23] measures the facial physiological signals.
Integrating those systems’ functions with IOTeeth enables us to develop a more complete and accurate model
of the masticatory system, potentially leading to better diagnostic and therapeutic strategies beyond occlusal
diseases recognition, like fine-grained temporomandibular disorders diagnostic.

7.4 Smaller Sensor

In our current design and implementation, we utilize piezoelectric sensors with a dimension of 4mm. While
this configuration allows us to sense signals from oral activities like biting and grinding, there is room for
improvement in terms of sensor size. As shown in previous sections we can still capture signals with a sensor size
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of only 2mm. Smaller sensors would enable more comprehensive sensing, as we could potentially place multiple
sensors on a single tooth. This increased sensing resolution may lead to finer-grained activity monitoring, as well
as facilitate the identification of specific occlusal issues that may be challenging to detect with larger sensors.
However, the current sensor size presents significant challenges for mass production, particularly in terms of
soldering and assembly. Therefore, we plan to investigate advanced fabrication methods that can enable the
production of smaller sensors in the future.

7.5 Data Acquisition Platform

We adopt the OpenBCI Cyton board for data collection, while it shows promise, there is an opportunity to enhance
its usability and comfort by exploring new data acquisition platforms. For example, the current setting requires
a wired connection, which limits the comfort for a long-time wearing. A wireless data collection platform can
enhance convenience and comfort for users, as it eliminates the need for cumbersome cables and allows for
greater freedom of movement during data collection. In the future, we will extend the current IOTeeth setting with
a low-energy Bluetooth function. However, a wireless solution could raise safety concerns due to the presence of
a battery inside the user’s mouth and may significantly interfere with the user’s occlusion. Therefore, we want
to explore the capabilities of piezoelectric sensors [20]. By utilizing their voltage output, we aim to develop a
wireless system that does not require an in-mouth battery. In addition, the extent of the wired solution’s impact
on users’ life and experience is under-explored. The future real-life user study is important to gather feedback for
guiding the wired or wireless design.

8 RELATED WORKS
8.1 Oral Sensing Systems

Attention has been paid to oral sensing systems with applications ranging from health characterization to hands-
free device control. Table 2 shows a comparison of related oral sensing systems. These systems can be categorized
into intra-oral and extra-oral systems. Intra-oral systems are generally built upon dental appliances that are to be
worn inside the user’s mouth, while extra-oral systems are wearable devices mounted around the user’s ear and
jaw. Notable extra-oral systems include (but are not limited to) Mutelt by Srivastava et al. [83] and TeethTap by
Sun et al. [85], both utilizing jaw motion for device control. Pataranutaporn et al’s Wearable Lab sticks to the
cheek for facial and saliva sensing [63]. These systems, however, face challenges in capturing specific dental-level
information due to the complex anatomy of the human mouth. In contrast, intra-oral systems focus on teeth
motion and kinematics, using various sensors like piezoresistive force [26, 28, 31], IMU [28, 34, 94], pressure
[57, 86], and piezoelectric [59]. Despite their ability to monitor teeth motion or kinematics, these systems fall
short in recognizing occlusal diseases, primarily due to design limitations like mouthguard-based builds or large
sensors that interfere with occlusion and limit sensing resolution. Additionally, the placement of batteries inside
the mouth raises comfort and safety concerns. IOTeeth, however, stands out by recognizing occlusal diseases with
minimal interference to occlusion. Its design allows for fine-grained teeth-level sensing without the need for
an internal battery, addressing the limitations of existing systems. The retainer-form design of IOTeeth is also
cost-effective compared to mouthguard-based systems like s-Guard [34]. Customizing two layers of retainer costs
under 100 US dollars? and we envision the total cost of the IOTeeth system to be approximately 180 US dollars®,

%The calculation is based on the dental lab technician’s average wage in the USA (22 USD/hour in 2023, source: www.indeed.com/career/dental-
technician/salaries) and material cost.

3This calculation is based on one STM32H743 Microcontroller Unit (MCU), one ADS1299 Analog-to-Digital Converter (ADC) and accessory
materials.
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Table 2. Comparison of Oral Sensing Systems

Systems System Sensing Motion/Kinematics ~Occlusal Disease Low No Battery Fine-grained Thickness
Type Modality Monitoring Recognition Interference In Mouth  (Teeth-level) Sensing (Lower is better)
Wu et al. [94] Intra-oral MU Yes No No No No -
Kinjo et al. [26] Intra-oral Piezoresistive Yes No No - No 4mm
Force Sensor
Lantada et al. [31]  Intra-oral Piezoresistive Yes No No Yes No 5mm
Force Sensor
Toma et al. [86] Intra-oral Pressure Sensor Yes No No - No <3mm
Kuo et al. [28] Intra-oral IMU, Force Sensor Yes No No No No >4mm
s-Guard [34] Intra-oral MU Yes No No No No -
iBrux [57] Intra-oral Pressure Sensor Yes No Yes No No -
TeethVib [59] Intra-oral Piezoelectric Sensor No No Yes Yes Yes <3mm
Mutelt [83] Extra- oral MU Yes No Yes Yes No -
TeethTap [85] Extra- oral IMU, Microphone Yes No Yes Yes No -
Wearable Lab [63] Extra- oral IMU, Biosensor (e.g., saliva) Yes No Yes Yes No -
I0Teeth (Ours) Intra-oral Piezoelectric Sensor Yes Yes Yes Yes Yes <3mm

more affordable than systems built on a customized mouthguard, which typically cost over 300 US dollars?. This
affordability enhances IOTeeth ’s accessibility.

8.2 Piezoelectric Sensing

There has been active research on wearable sensors and devices leveraging piezoelectric sensing. Wang et al.
developed a piezoelectric MEMS sensor for unvoiced speech recognition based on oral airflow, which recognizes
words based on their unique voltage-signal characteristics and is less affected by external noise [91]. Park et
al. introduce an earable device using piezoelectric sensors to capture the in-ear pulse waves on the surface of
the ear canal for heart rate monitoring [61]. Yi et al. present a continuous blood pressure monitoring wearable
that leverages a piezoelectric sensor to measure arterial pulse waves on the elbow [98]. Roopa Manjunatha et al.
integrate piezoelectric sensors into the eyeglass frame [73]. Sensors are hit by airflow from each nostril, then the
system derives the user’s respiration pattern from signals. Lanata et al. et al. propose a chest-mounted wearable
system for cardiopulmonary activity monitoring [29]. By placing the piezoelectric sensor near the heart and lung,
the system can measure both heart apex movements and the respiration pattern. These studies illustrate the
versatility and potential of piezoelectric sensing in health monitoring applications. Different from these systems,
our work is the first effort to leverage piezoelectric sensors for continuous occlusal disease recognition.

8.3 Multi-sensor Learning for Human Sensing

Multiple studies have been published in the area of multi-sensor learning for human sensing, along with the
progress in deep learning algorithms. Learning from multiple sensors provides a holistic view of the sensing target
hence increasing the model’s inference accuracy. One of the most explored areas is human activity recognition.
Yao et al. propose the DeepSense model that concatenates latent features from different sensors together to
fuse their information [96]. Beyond concatenation, there are studies that model sensor interactions and fuse
the information via shared neural network layers [18, 37, 40, 68]. While these multi-sensor learning approaches
show promising results in combining individual sensor data to form global information, the weight of individual
sensors is predefined or static [39]. The static weight limits the learning model’s generalizability and adaptability
to variance in the real-world sensing data. Hence there is a challenging requirement for multi-sensor learning:
dynamically assess and adapt to which inputs or features are most relevant or important in any given context,

4The estimated cost of over 300 US dollars is derived from market research on mouthguard customization and additional expenses for
accessory materials such as piezoelectric sensors, MCU and ADC.
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and the attention mechanism is actively studied. These works propose to model attention weights as learnable
parameters for each sensor input, thus the model can dynamically adjust its emphasis by weighting the features
of each sensor accordingly [39, 44, 90, 97, 99-101]. Even though they show promising results in human activity
recognition, it is not a plug-and-play transfer to our occlusal disease recognition task. Unlike human activity
recognition, signals captured by the in-mouth vibration sensor array contain misleading information (e.g., an
occlusal disease patient may not have all dental areas showing symptoms.) Therefore, [OTeeth’s PAN Net is built
upon previous attention studies and extends its capability to signify the most indicating sensor.

9 CONCLUSION

In this paper, we presented IOTeeth, an intra-oral sensing system with a dental retainer-form design to continuously
monitor teeth activities and recognize occlusal diseases. IOTeeth consists of an intra-oral sensing wearable that
leverages customized mini-sized PVDF piezoelectric sensors embedded between dental retainers to sense teeth
activities-induced vibration. To ensure the sensitivity and consistency of customized sensors, we design and
implement an automated testing bench for validating and characterizing the sensor. The vibration signals are then
further processed for teeth activity recognition. The signals of different activities are sent to the corresponding
model for occlusal disease recognition. We propose a Physio-aware Network (PAN Net) to automatically extract
the most informative patterns from the signal for generalizable occlusal disease recognition. We evaluate IOTeeth
with 12 real-world patients’ articulator-based teeth models from a dental clinic. The IOTeeth achieves a leave-
one-out testing F1 score of 0.97 for activity recognition and an average leave-one-out testing F1 score of 0.92 for
dental disease recognition for different activities.
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