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Epilepsy is one of the most common neurological diseases globally (around 50M people globally). Fortunately, up to 70% of
people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of
seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The current
gold standard, video-EEG (v-EEG), involves attaching over 20 electrodes to the scalp, is costly, requires hospitalization, trained
professionals, and is uncomfortable for patients. To address this gap, we developed EarSD, a lightweight and unobtrusive
ear-worn system to detect seizure onsets by measuring physiological signals behind the ears. This system can be integrated into
earphones, headphones, or hearing aids, providing a convenient solution for continuous monitoring. EarSD is an integrated
custom-built sensing-computing-communication ear-worn platform to capture seizure signals, remove the noises caused by
motion artifacts and environmental impacts, and stream the collected data wirelessly to the computer/mobile phone nearby.
EarSD’s ML algorithm, running on a server, identifies seizure-associated signatures and detects onset events. We evaluated
the proposed system in both in-lab and in-hospital experiments at the University of Texas Southwestern Medical Center with
epileptic seizure patients, confirming its usability and practicality.
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1 INTRODUCTION
Motivations. Epileptic seizures are one of the most prevalent neurological disorders affecting approximately 50
million people worldwide, with an estimated 5 million new cases diagnosed every year [5]. Seizures can occur
suddenly and unpredictably, leading to severe accidents or even death [15]. Fortunately, up to 70% of people with
epilepsy could live seizure-free if properly diagnosed and treated. A reliable and effective prediction technique to
anticipate the onset of seizures could improve the quality of life of patients who are constantly facing the fear
of random seizure attacks. An epileptic seizure is a type of seizure that results in a temporary loss of control
accompanied by convulsions, unconsciousness, or both. Epileptic seizure generates sudden abnormal electrical
discharges at different locations in the human brain. These signals can be captured using a sensitive bio-signal
monitoring system.

Prior Works and Their Limitations. In hospitals, video Electroencephalogram (video EEG/vEEG) is considered
the gold standard for diagnosing and detecting the onset of epileptic seizures by recording EEG signals from the
patient’s head. In particular, patients are required to spend several days (up to a week) in a hospital, mostly at
Epilepsy Monitoring Units in the U.S., for a vEEG test. During the test, they wear a headset with over 20 wired
electrodes to monitor electrical activity in the brain. The patients are under constant video surveillance so doctors
can review the recordings to identify events that might have triggered a seizure. The collected data are used to
diagnose seizures. There has been continuous research to develop automated seizure detection tools to improve
the reliability of EEG-based seizure monitoring over the last 50 years [83]. Most efforts have been devoted to
developing robust seizure detection algorithms using signal processing, feature extraction, and machine learning
techniques[95, 119] based on the collected vEEG data. While these works have demonstrated seizure classification
accuracy of over 90%, vEEG setup is uncomfortable for users and needs to be set up and operated by trained
technicians. Moreover, the study is costly, making long-term data collection unfeasible. More importantly, due to
the rareness of the diseases, many patients went home with zero seizure events detected during hospitalization.
Indeed, seizure data collected at users’ homes before and after hospitalization is critical for monitoring

disease progression and treatment. However, there is currently no robust and practical solution for analyzing
their neurological condition beyond their short hospital stay. When patients are at home, current methods
predominantly rely on self-reporting through seizure diaries. Studies have shown, however, that seizure records
collected in this manner are accurate for only about 50% of patients [21]. The absence of reliable, wearable devices
that patients can use in their daily lives and under any environments or situations means that many seizures go
unrecorded, and the contextual information that could have triggered the event remains incomplete. Doctors
have to rely on this incomplete and subjective information which impacts the treatment method. Therefore,
there is a dire need for a portable, wearable system that can enable continuous, long-term monitoring to provide
consistent and reliable data to doctors for better treatment.

Leveraging advancements in the development of miniaturized sensors and electronics, improved wireless data
transmission techniques, and rechargeable batteries, ongoing research has focused on developing mobile, home
monitoring solutions for seizure detection. A new wrist-worn device, namely Empatica Embrace2 [3], has been
proven to detect a few types of seizure reliably. However, it is only robust with very limited types of seizure [61],
mostly tonic-clonic, as they only capture signals around the wrist areas. Neuronaute EEG System/IceCap EEG
System [20] is a headcap-based system for seizure monitoring, but the device is cumbersome and not socially
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Fig. 1. The vision of EarSD, a socially acceptable wearable that supports real-time epileptic seizure detection. EarSD will be
worn by epileptic seizure patients pre- and post-hospitalization. EarSD can be used as a standalone device or combined with
video EEG to allow caregivers to design an effective treatment plan.

acceptable to wear in public. Other headband devices that can capture brain signals, such as Frenz Brainband
[41], Emotiv [38], NeuroSky MindWave [2], BrainLink Pro [68], Muse [75], Versus [111], Neuroon Open [79],
Naptime [77], etc., are primarily designed for meditation, sleep improvement, and wellness tracking [66]. These
are head-band form factors, which are different from our wearable settings. In addition, they use EEG signals to
provide feedback on brain states to help users maintain focus during meditation or improve sleep quality. They
are not designed, optimized, and clinically validated for seizure detection. Our goal is to integrate EarSD into
existing earable systems that are already socially acceptable.

Proposed Approach. In this paper, we explore a novel and robust sensing system integrated into one of the most
well-accepted wearable form factors – the everyday earbuds– for epileptic seizure detection, as illustrated in Fig. 1.
Our proposed device, namely EarSD, collects physiological signals of EEG, EMG, and EOG from behind the ear
and fetches them into machine learning models to accurately and rapidly detect seizure onsets. Unlink existing
EEG headband devices that focus on the forehead area; this work validates the feasibility of developing a fully
integrated ear-worn system for seizure monitoring. Thanks to the social acceptance of earbuds/earphones, EarSD
could be worn in all environments, making it an ideal solution for continuous patient monitoring. EarSD has the
potential to revolutionize the field of epilepsy management and significantly improve the quality of life for those
affected by the condition. First, timely detection of epilepsy is critical for prompt intervention and mitigating
potential risks and complications. Second, EarSD can enable real-time detection for early warnings and facilitate
swift medical care. Third, the inconspicuous nature of an ear-worn wearable enhances patient compliance and
encourages long-term usage, leading to more comprehensive data collection. Fourth, such unobtrusive devices
will empower individuals to live their lives more freely, with the confidence of timely seizure detection and
improved seizure management. Last but not least, by collecting long-term data using EarSD, we can contribute to
a deeper understanding of epilepsy and facilitate personalized treatment plans.
Besides epileptic seizure monitoring, if successful, EarSD system can be considered as a reference design

for many other brain disorders monitoring systems, including. Neuromuscular Diseases [100], Autism and
Neurodevelopment [81], dementia [16], pain [105], movement disorders [49], and others.

Challenges. However, realizing EarSD is difficult due to the following challenges.
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• The relationship between the signals from around the ear and epileptic seizure onset has not been thoroughly
and clinically analyzed in the literature. Note that no electrodes have been placed exactly around the ear
locations in standard vEEG settings.
• Developing a sensitive wearable system capable of accurately capturing head-based signals in a compact
design is challenging. To be specific, a critical obstacle is devising a resilient method that can effectively
eliminate the influence of human-generated disturbances on the monitored signals. For instance, while
brain (EEG), muscle (EMG), and eye (EOG) signals typically range from microvolts (𝜇𝑉 ) to a few millivolts
(𝑚𝑉 ), bodily movements like head motion, walking, or talking can significantly overshadow the sensor
data, causing noise levels to spike up to several volts.
• Performing real-time data acquisition, signal processing, and computing on resource-constrained wearable
devices is a demanding task limiting their usefulness for timely and effective seizure management. Efficient
frameworks are needed to support real-time data acquisition, signal analysis, and inference while still
operating within the limitations of the hardware.
• Unlike common wearable devices designed for healthy individuals, EarSD is designed as a medical diagnosis
tool to augment and complement the hospital-based vEEG recordings so that doctors can have access
to reliable recordings even when patients are not admitted to the hospital. Its accuracy, efficiency, and
robustness must be evaluated in clinical settings. Developing an end-to-end research prototype, which
utilizes cost-of-the-shelf hardware and software front ends, requires a comprehensive analysis and thorough
engineering efforts and skills in order to approach clinical settings accurately, which is currently only
obtained by tens of thousands of dollars system (EEG).

Contributions. This project addresses the aforementioned challenges and aims to make fundamental contribu-
tions to low-power, low-cost, unobtrusive, high-fidelity, and robust ear-based sensing systems for physiological
signal monitoring. We take a holistic approach from form factor fabrication, sensing circuit design, and imple-
mentation to algorithm development to build and deploy the first ear-based epileptic seizure systems in clinical
settings. We first design a sophisticated hardware and firmware pipeline to reduce the noise and then extract the
mixed physiological signals collected around the ear into EEG, EMG, and EOG. We then explored multiple signal
separation techniques, including ICA, PCA, EMD, and NNMF, and found that the NNMF technique is the most
suitable approach. We evaluate the proposed solution on epileptic patients in a hospital to confirm the approach’s
feasibility, usability, and practicality. We approach this clinical accuracy (up to 97.9% accuracy) using only two
electrodes behind the ear instead of the hospital vEEG [8] which generally have more than 20 electrodes placed
on the scalp.
To summarize, the main contributions of this paper are:
• We develop a high-fidelity, noise-resilient, and socially acceptable EEG ear-based physiological monitoring
method by creating an ear-worn system that can be safely worn behind the ear, allowing patients to wear
it continuously for effective long-term EEG monitoring.
• We develop signal processing and decomposition techniques to capture physiological signals associated
with epileptic seizures from data collected around the ear.
• We analyze the performance of multiple machine learning algorithms on detecting seizure onset events
based on the data collected from the earable devices, confirming the feasibility, robustness, and practicality
of the proposed ear-based platform.
• We conduct experiments on real epileptic seizure patients in the Epilepsy Monitoring Unit at the University
of Texas Southwestern Medical Center in Dallas, Texas, U.S. The preliminary results confirm that EarSD is
able to detect seizure with up to 97.9% accuracy on 32 patients.
• We conduct a user study on 32 patients and 9 medical doctors and caregivers. Most users found the system
to be socially acceptable and easy to use, and doctors have also verified the reliability of our device.
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2 BACKGROUND AND RELATED WORK
In this section, we present the current practice of epileptic seizure monitoring in clinical and off-site settings.

2.1 Clinical-based Studies
Patients diagnosed with seizures are admitted into the Epilepsy Monitoring Unit in the hospitals, where they
are monitored continuously 24/7 for up to a week using the video-EEG system. During the test, the patients
wear EEG head caps containing electrodes connected to the patient’s scalp. A standard setup includes between
21 to 32 electrodes positioned at specific locations across the scalp following the International 10-20 system as
illustrated in Fig. 2. The electrodes are connected to an EEG reader which amplifies these signals, records the
brain’s electrical activity, and displays them on a screen as a series of waves or patterns. This setup is often
supported by video monitoring allowing the medical team to correlate the recorded brain activity with observable
physical or behavioral changes, aiding in the diagnosis and identification of specific seizure types.

Scalp electrodes

EEG Data 
sent to 

computer

EEG recordings display

User wearing an EEG 
headcap

Fig. 2. Hospital-based video-EEG (vEEG) setup. Scalp
electrodes capture EEG signals which are then
recorded and displayed in the EEG machine for anal-
ysis by doctors.

At the end of the test, eplieptologists interpret these record-
ings to diagnose conditions like epilepsy, tumors, or sleep dis-
orders and formulate a treatment plan or further diagnostic
investigations. To simplify this tedious task and reduce patient
expenses, epileptic seizure detection has been an active research
area since the early 1970s [13, 83]. Over the last few decades,
there has been significant advancement in the field of automated
epilepsy detection primarily using data from vEEG systems in
hospitals.

Improving the accuracy of physiological-based seizure
detection algorithms. Persyst’s [6] algorithms for seizure
detection have been widely used as a suggestion tool to medical
doctors and caregivers, while it is known to have a high false
positive rate [90], posing challenges for adoption in practical
applications. Multiple research groups proposed various deep
learning techniques for epileptic seizure detection leveraging
collected video-EEG data [96]. Asif et al. [10] employed a deep learning framework, utilizing an ensemble
architecture, to learn multi-spectral feature embeddings for cross-patient seizure type classification and classify
seizures with 94% accuracy. However, a major challenge of deep learning models is the limited availability of
clinical data. Most works such as [86, 87, 102, 114], rely on the TUSZ open seizure dataset [93].

The analysis of EEG signals is inherently complex due to the presence of noise requiring extensive preprocessing
to remove unwanted artifacts. Joshi et al. [53] applied a Butterworth bandpass filter to preprocess the CHB-MIT
dataset [94], another public seizure-based dataset. They performed preprocessing in both the time and frequency
domains, segmenting the data into seizure and non-seizure images and processing the resultant dataset through
a CNN to achieve an accuracy of 98.21%. Madhavan et al. [69] proposed an automated classification method
using synchro squeezing transform (SST) and deep CNN. They transformed the one-dimensional EEG signals
into two-dimensional time-frequency matrices using Fourier SST (FSST) and wavelet SST (WSST) techniques.
The processed signals were then fed into a two-dimensional (2D) CNN, resulting in an accuracy of 99.94% when
classifying EEG signals into focal and non-focal events. This highlights that signal processing steps to remove
noise improve the results of seizure detection algorithms.

Reducing computational costs. Feature selection methods play a vital role in reducing computational complex-
ity, improving computing times, and enhancing accuracy. Savadkoohi et al. used T-test and Sequential Forward
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Floating Selection (SFFS) to select significant features from EEG signals, achieving a classification accuracy
exceeding 99.5% [88]. Tran et al. employed the discrete wavelet transform and a binary particle swarm optimizer
to reduce data dimensionality by 75% while achieving an accuracy of 98.4% and reducing the computational
time by 47% [104]. Atal et al. combined a modified Blackman bandpass filter-greedy particle swarm optimization
(MBBF-GPSO) and CNN to achieve a seizure classification accuracy of 99.65% [12]. Through proper data anal-
ysis techniques, it is possible to extract relevant features from the EEG signals which can significantly reduce
computational costs for a more optimized detection method.
Several approaches and commercialized products have emerged using signals from alternative sources such

as Electrocardiography (ECG) and Photoplethysmography (PPG) [35, 50, 108, 110], Electromyography (EMG)
[14, 17, 18, 32, 122], or even Electrodermal Activity (EDA) [3, 44, 82] in a range of form factors. Combining
multiple physiological signals such as EMG, ECG, EOG, motion, as well as audio/video recordings, boosts the
accuracy of seizure detection [61]. Szabó et al. [101] utilized electromyography (EMG) to detect seizures, achieving
high sensitivity and specificity. The works done in [51, 70] utilized electrocardiography (ECG) and heart rate
variability (HRV) analysis to successfully detect seizure events. Our work focuses on EEG signals, which are
commonly used in clinical settings.

However, there remains a significant gap in monitoring patients both before and after hospitalization. There are
currently no devices available that are medically verified, have a convenient design, and have a socially acceptable
form factor, that can provide patients with seamless and continuous monitoring before they get admitted to a
hospital and after they are discharged. This limitation highlights the urgent need for innovative solutions that
can ensure comprehensive seizure tracking and management in all settings.

2.2 Wearable-based Approaches
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Fig. 3. The frequency and amplitude charac-
teristics of ear signals and motion artifacts.

Wearable EEG devices are key to extending seizure studies beyond the
hospital settings [11, 36]. Researchers have developed wearable EEG
recording devices that can be paired with smartphones to continuously
monitor a patient’s EEG signals for later evaluation by doctors [33, 37].
Titgemeyer et al. [103] investigated the usability of wearable EEG de-
vices by comparing them with vEEG signals. EEG recordings were
simultaneously captured using the Emotiv EPOC [38] and a clinical
vEEG system and performed a blind test with 10 independent raters,
asking them to examine the recordings for abnormalities. They found
that the wearable system had lower sensitivity and specificity com-
pared to vEEG and concluded that wearable systems cannot yet replace
classical EEG examinations. However, the lack of convenience with
existing designs highlights the need for smaller and less cumbersome
mobile EEG systems [19, 73]. Several companies are also exploring the
feasibility of developing wearable systems as alternatives to clinical
setups [2, 4, 7]. Wirst-worn devices like Empatica Embrace 2 [3] are unable to capture brain signals due to their
placement away from the head. Conversely, head-worn devices such as [1, 40] are either too unwieldy or obtrusive
for regular use while limitations such as battery life also restrict their continuous use. Finally, most of the current
devices primarily focus on detecting one type of seizure, and including other seizure types lowers sensitivity and
raises false detection rates [64]. The lack of convenience with existing designs highlights the need for smaller
and less cumbersome mobile EEG systems.
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Ear-worn devices offer a promising alternative to
traditional EEG systems for seizure detection, offer-
ing several advantages over scalp EEG and other
wearable types [22, 45, 54, 58, 60, 72, 74, 109, 121].
Wireless, ear-worn devices are less cumbersome and
more socially acceptable, increasing patient compli-
ance for long-term monitoring. The absence of wires
in wireless systems reduces noise degradation due
to electrode wire movement [107]. They also enable
easier and less intrusive data collection, makingmoni-
toring in non-clinical environments feasible. Unfortu-
nately, the limited space inside can introduce difficul-
ties in maintaining stable electrode contact and con-
sistent signal quality. Moreover, EEG measurement
requires differential measurements and the distance
between electrodes needs to be at least 2 cm [67],
otherwise the closely located electrodes could lead to
electrical bridges and this is difficult to achieve in the limited space inside the canal. Developing comfortable and
effective electrode designs for long-term wear without causing irritation or discomfort can also be difficult. In
addition, Gu et al. [46] and You et al. [118] proposed an automated seizure detection system using electrodes
placed behind the ear, confirming the feasibility of the idea. However, these studies did not thoroughly analyze
the impact of motion artifacts, making their solution might not be ready for practical use. Even small artifacts
such as EOG signal can cause poor performance [46]. Hence, more thorough studies on fully integrated systems
in real-world clinical settings are necessary to validate the usability of the solution.
Moreover, epileptic seizure signals exhibit distinct characteristics in EEG recordings, including specific fre-

quency bands, high amplitude spikes and sharp waves, and sudden onset and offset. They often show rhythmic
discharges during the ictal period, with focal seizures displaying localized high-frequency activity and generalized
seizures presenting spike-and-wave complexes. The signals can vary in spatial distribution, duration, and mor-
phology, with interictal epileptiform discharges occurring between seizures. Accurate detection is challenging
due to artifacts, the complexity of seizure patterns, and low amplitude signals, which can sometimes be lower
than the typical amplitude ranges that wearable EEG devices are optimized to detect. As shown in Figure 3, the
amplitude of EEG signal is much lower than the motion artifacts and other physiological types, such as EMG or
EOG, making it hard to detect and recognize, let alone identify its seizure-associated signatures [31, 59, 92, 98].

Last but not least, while vEEG systems can identify various seizure types (shown in Figure 4 [39, 106]), current
wearable devices like Empatica are limited to detecting only tonic-clonic seizures due to their reliance on only
wrist-based signals. While there might be a possibility to detect highlighted seizure types using ear-worn systems
in Figure 4 because those types are what are recognized by vEEG, there have been limited studies that confirm
the hypothesis.

3 EARSD SYSTEM
EarSD is a low-cost, unobtrusive, and comfortable ear-worn system designed with commercial-off-the-shelf
(COTS) components to continuously monitor critical physiological signals associated with epileptic seizure onset.
EarSD utilizes a non-invasive approach by capturing EEG, EMG, and EOG data from the upper and lower areas
of the ears. The signals are wirelessly transmitted via Bluetooth to a host computer for further processing and
analysis to detect if the user is experiencing a seizure. EarSD is equipped with EEG, EOG, and EMG sensors,
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enabling it to detect a broader range of seizure types, particularly those involving eye and muscle activity. This
multi-modal approach offers significant advantages over commercially available devices, which primarily use EEG
sensors. Unlike some studies that consider EOG and EMG signals as noise, our device leverages these additional
data streams to enhance seizure detection accuracy. By combining data from EEG, EOG, and EMG, our device can
better differentiate between actual seizure activity and non-seizure related movements, leading to more effective
noise reduction and fewer false positives and negatives. This comprehensive approach offers a more thorough
monitoring of individuals with epilepsy.

The core components of the EarSD include (1) an ear-worn sensing device, (2) a signal processing/decomposition
pipeline, and (3) ML algorithms for seizure detection.

3.1 EarSD Hardware and Firmware
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Rear view

Fig. 6. EarSD has only 2 electrodes placed behind each ear
whereas the standard placement has over 20 electrodes placed
all over the head, eyes, and chin.

Sensing Hardware. The sensing hardware consists of
two primary components: a brain-computer interface
(BCI) and a pair of biosensor stickers (the wearable
device). The first component, the BCI, featuring an
ultra-low noise analog front-end (TI ADS1299) and
an energy-efficient ARM Cortex-M4 microcontroller
(TI MSP432P401), utilizes ultra-low noise amplifiers
and a 24-bit ADC chip for signal digitization. The first-
order analog filters remove high-frequency noise from
the environment before passing it to the low-noise
differential amplifiers of the ADC. The ADS1299 also
contains an integrated second-order Σ − Δ modulator
that samples the input at 1.024 MHz and shapes noise
across the Nyquist bandwidth (i.e. 0-512 kHz). A third-
order low-pass sinc filter then removes most of the noise at high frequency before decimation to 250 Hz for
Bluetooth streaming to the host computer. The main processing unit, the MSP432 microcontroller, is responsible
for controlling the analog front end, dynamically adjusting amplifier gain, and streaming data to the host device.
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similarity between the dedicated sensors and the EarSD sensors for all three modalities validating the reliability of the signals
recorded by EarSD.

The second component is the biosensor electrodes, embedded on a pair of stickers that are fixed to the skin
using disposable, double-sided adhesives behind the left and right ear. This design allows unobtrusive, continuous
monitoring of the patient’s bioelectrical signals without requiring an invasive or extensive setup. We use Ag/AgCl
electrodes in our device as it is less prone to oxidation than other types of electrodes and thus ensure better
accuracy and reliability of the captured signals. Each electrode is strategically placed, with two positioned
symmetrically on the upper left and right ears while the other two serve as reference and bias electrodes located
on the bottom of the left and right ears, respectively (Figure 6). The electrodes are placed close to the eyes, facial
muscles, and regions of the brain, facilitating the recording of eye movements (EOG), muscle contractions (EMG),
and mid-brain activity (EEG). Since EEG, EOG, and EMG are biopotential signals, they can be captured using the
same electrodes. The electrode contact quality was regularly monitored so that we could detect and remove noisy
signals created by loose electrodes. We also minimized electrical noise from the connecting wires by shielding
them with two layers of aluminum and plastic. They are further shielded inside the stickers when connected to
the electrodes, ensuring the subject’s safety and preventing direct contact with the connections on their skin.
Real-time Acquisition Software. The real-time data acquisition firmware controls the operations and collects

the physiological data measured from behind the ears through Bluetooth. It can be deployed on a laptop or a
smartphone. The system produces low electrical risks as the electricity supplied to the sensing hardware is from
a 3.7V rechargeable Lithium-Polymer battery. The receiver and batteries are enclosed in an electrically inert
cover and casing. The sensing hardware and the battery power supply are enclosed in a small and lightweight
plastic box to increase the subject’s safety while using the system during the study.

3.2 In-lab Validation
We conducted experiments to verify EarSD’s ability to capture EEG, EMG, and EOG signals from behind-the-ear
electrodes. Measurements were compared against ground-truth sensors positioned on the scalp, chin, and eye as
per the standard International 10-20 system as illustrated in Figure 6. The ground truth EEG, EOG, and EMG
signals were acquired using an FDA-approved Lifeline Trackit Mark III device. Data was acquired for one hour
with the subject seated and the resultant signals obtained from both EarSD and the ground-truth sensors are
visualized in Figure 7. In this setup, electrodes were placed side-by-side with the Standard Electrode Placements
at the same positions. This was done to ensure that both sets of electrodes were capturing signals from the same
location as closely as possible to validate that our device was recording accurate signals. Figure 7a represents
the Alpha (𝛼) rhythms seen on both ear electrodes for EEG when the eyes are closed. 𝛼-rhythms are prominent
electrical oscillations in the frequency range of 8 to 12 Hz. Their presence indicates the sensor’s ability to detect
the subtle electrical activities of the brain and proves that EarSD can discern specific frequency bands of different
brain states which are needed for capturing EEG patterns. Similarly, Figures 7b and c show similar EOG and
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EMG outputs between the dedicated sensors and EarSD for actions such as eye blinks, left-right eye movements,
and chewing motion. Thus this confirms that EarSD can capture the important EEG, EMG, and EOG signals for
seizure detection.
Currently, our system is used alongside the hospital’s vEEG device as we shall describe in Section 5. This

comparative approach helps us ensure that EarSD provides reliable data. Once EarSD is fully validated and
optimized, we can deploy it as a stand-alone device in the real world that can complement and augment the
hospital data so that doctors can have access to continuous and reliable recordings from all types of environments
even when they leave the hospital.

4 SIGNAL PROCESSING
In this section, we highlight our approach to mitigate the motion artifacts and decompose the signals of interest.

4.1 Root Cause of Motion Artifacts
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Fig. 8. Electric currents pass through the skull, skin, and
the conductive gel to reach the electrodes. The skull is
modeled as a fixed resistance path, while the skin and
gel have variable resistance and capacitance.

In order to ensure the reliability and practicality of EarSD,
it is crucial to address the issue of artifacts contaminat-
ing physiological signals. Fundamentally, electrodes capture
voltage differences across skin surfaces created by electric
currents from brain tissue (as EEG), muscle (as EMG), and
eye polarity (as EOG). These currents go through multiple
layers, including the skull, skin layers (Stratum Corneum),
and conductive gel to reach the electrodes [30]. The layers
can be electrically modeled as resistors and capacitors as
shown in Figure 8. While the skull has stable electrical prop-
erties, the skin, and conductive gel show electrical variations
that introduce noise and artifacts caused by electrode inertia
during activities like walking, shaking, or other repetitive
activities [25]. Seizure events are particularly problematic due to their associated symptoms such as uncontrolled
muscle spasms, which introduce significant motion artifacts. The relationship between inertial acceleration and
voltage variation is non-linear due to the complex variation of electrical properties of skin layers.

In our proposed EarSD device, motion artifacts are even more severe for two key reasons.

Captured Signals Frequency Amplitude

EEG

Delta (𝛿) <3 Hz

<1mV
Theta (𝜃 ) 3-8 Hz
Alpha (𝛼) 8-12 Hz
Beta (𝛽) 12-25 Hz
Gamma (𝛾 ) >25 Hz

EOG 0.3-10 Hz 0.001-0.3 mV
EMG 10-100 Hz <100 mV

Table 1. Characteristics of the signals captured by EarSD

First, as a mobile device designed for daily use, EarSD
is more susceptible to motion than ambulatory de-
vices. Second, we prioritized user comfort in our de-
sign which means it was not possible to use glue to
fix the electrodes to the skin. This compromises the
stability of the skin-electrode interface. Hence, having
robust noise removal techniques is necessary to min-
imize their impact on the seizure detection algorithm.

As illustrated in Table 1, the overlapping frequency
ranges and significantly higher amplitudes of motion
artifacts compared to physiological signals such as
EEG and EOG present substantial challenges in analyzing real EEG signals. EOG signals, which are related to eye
movements, occupy a frequency range of approximately 0.1 to 10 Hz with amplitudes ranging from 0.001 mV to
0.3 mV. EEG signals, reflecting brain activity, span a broader frequency range from 0.1 to 100 Hz but typically
maintain amplitude levels of less than 1 mV. EMG signals, generated by muscle activity, are the strongest of the
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Fig. 9. VMD yields IMFs with distinct correlation patterns to the IMU data. Selectively reconstructing using IMFs uncorrelated
with motion data filters motion artifacts removing noise while retaining critical seizure waveforms.

signals, covering a wide frequency range from 50 to 3000 Hz and exhibits much higher amplitudes, reaching up
to 100 mV. In contrast, motion artifacts, which is the unwanted portion of the signal analysis step, affect a wide
frequency range (0.1 to 100 Hz) and can reach amplitudes higher than even 100 mV [31, 59, 92, 98]. The overlap
and the higher amplitude of motion artifacts complicate the task of accurately isolating and analyzing the true
physiological signals. Effective noise reduction and artifact removal techniques are essential to mitigate these
challenges and ensure reliable EEG signal analysis, particularly for applications requiring precise detection of
brain activity such as seizure monitoring.
The ADS1299, used in EarSD, features an integrated second-order Sigma-Delta (Σ − Δ) modulator, which

significantly enhances signal quality through advanced noise reduction. By oversampling the input signal, the
quantization noise was spread over a wider frequency range, reducing its impact within the low-frequency
bands of interest. The noise shaping function of the Σ − Δ modulator further pushed the quantization noise
to higher frequencies. After this process, digital filtering attenuates the high-frequency noise, ensuring that
the low-frequency signals remain clear and accurate. The Σ − Δ modulation effectively removed noise from
the low-frequency physiological signals, enhancing the signal-to-noise ratio (SNR) and enabling us to make
high-fidelity recordings. All recorded data is passed through a standard notch filter to eliminate power line
interference at 50/60 Hz. Linear trends are removed to prevent DC drift effects, and an outlier filter is applied to
exclude transient spikes and ripples.

4.2 EarSD Software-based Motion Removal.
We found motion artifacts to span all frequencies of interest with high unpredictability, making their removal
challenging through filtering or Independent Component Analysis (ICA) [27]. It is important to note that our data
was collected in a hospital setting, which is much more ideal than the home setting. Even under such controlled
conditions, we found noise to be a consistent feature. This problem will only be exacerbated when the device is
deployed in the real world. While Active Electrodes (AE) have been proposed to mitigate motion artifacts [115],
conventional designs do not consider behind-the-ear signals which are weak, overlapping, and constrained by
limited space. Hence, we implement tailored measures to address the noises.
We employed Variational Mode Decomposition (VMD) to decompose the physiological signal into various

components called Intrinsic Mode Functions (IMFs) [48]. IMFs are Amplitude Modulated-Frequency Modulated
(AM-FM) signals 𝑢𝑘 (𝑡) = 𝐴𝑘 (𝑡)𝑐𝑜𝑠 (𝜙𝑘 (𝑡)) where 𝜙𝑘 (𝑡) is the phase (non-decreasing function) and 𝐴𝑘 (𝑡) is the
non-negative envelope. The VMD process yields several IMFs with distinct correlation patterns to the IMU signals,
allowing for selective reconstruction of the physiological signal. By computing correlations between physiological
IMFs and IMU data, we can identify motion-related components for selective reconstruction, excluding any distor-
tions due to noise. The reconstructed signal post-VMD showcasing the mitigation of motion artifacts is illustrated

, Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:12 • Abdul Aziz et al.

by Figure 9a. As can be seen from the figure, most of the motion-related events are removed from the signal. The
same technique can be applied to remove most of the motion artifacts caused during a seizure (Figures 9b and 9c).

a) Signals captured by EarSD during motion

b) Signals captured by EarSD during a mild seizure event
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Fig. 10. Comparison of bandpass filtering with signal reconstruction
using VMD

To evaluate VMD’s effectiveness, we also com-
pared the reconstructed signal with a [1 30] Hz
bandpass filter. In Figure 10a, we can see that
the 1 – 30 Hz filter cannot fully remove the mo-
tion artifact from the raw signal, while the VMD
reconstructed signal has no motion artifacts Fur-
thermore, during seizure events, VMD recon-
structed signal still preserves the rhythmic slow
wave artifacts and is comparable to the filter tech-
nique (Figure 10b). Therefore, we observe that
VMD can retain seizure-characteristic informa-
tion while excluding motion-induced distortions.
Finally, we evaluated the impact of motion arti-
facts on our seizure detection algorithms by run-
ning them on our dataset, once with motion and
then again with the motion artifacts removed.
We discuss the results in detail in Section 6.2.3.

4.3 Decomposing the Denoised Signals into EEG, EMG, and EOG Constituents
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Fig. 11. EMD IMFs 1 and 2 typically capture EMG activity, IMF 3
aligns with EEG, and IMFs 4-6 show EOG, but IMF 2 for EMG is in-
consistent, sometimes including EEG artifacts due to the overlapping
nature.

Combining EEG, EMG, and EOG in the algorithm
helps reduce false positives in seizure detection
algorithms by providing a more complete pic-
ture of neurological activity. The ML algorithms
can learn to distinguish seizure signatures span-
ning the modalities that are distinct from normal
traits present in each signal. Further, training on
multidimensional input can better discriminate
artifacts from neurological phenomena, and sep-
arating the signals is an important step in the
process. Table 1 shows the frequency and am-
plitude ranges of the key biosignals acquired by
EarSD, specifically 3-25 Hz/1mV for EEG, 0.3-10
Hz/0.001-0.3mV for EOG, and 10-100 Hz/100mV
for EMG. However, it is challenging to separate
the low-amplitude EEG and EOG signals overlapped with high-amplitude EMG signals. To overcome this, we
investigated various signal decomposition techniques commonly utilized in seizure detection applications. Stan-
dard EEG data analysis often uses filtering methods [23, 26], which have limited efficacy when signals overlap.
Alternative approaches such as Independent Component Analysis (ICA) [76, 99] and Principal Component
Analysis (PCA) [56, 57], typically presuppose signal independence which is not always met by physiological
signals. Through our analysis, we determined that Empirical Mode Decomposition (EMD) effectively separates the
composite signal into distinct components with unique frequency resolutions. These components, when properly
combined, facilitate the accurate reconstruction of the original signals. Additionally, we evaluated Non-Negative
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Fig. 12. Overview of supervised NNMF signal separation algorithm, Using templates of known EEG, EOG, and EMG signals
in the training phase, NNMF can decompose a mixed physiological signal through an iterative process that minimizes
divergence between the original and generated signals for accurate reconstruction in the execution phase.

Matrix Factorization (NNMF), which leverages pre-trained frequency templates for signal differentiation. EMD
and NNMF were chosen due to their advanced capability in signal separation tasks.

4.3.1 Empirical Mode Decomposition (EMD). EMD is a robust technique for analyzing non-linear and non-
stationary data by decomposing a signal into its Intrinsic Mode Functions (IMFs). This facilitates detailed
time-frequency analysis while retaining the data in the time domain [84, 113]. IMFs exhibit three key properties:
(1) Each IMF represents a single frequency at any given time, enabling multiresolution decomposition of the
composite signal. (2) The average value of the oscillatory components within each IMF is zero. (3) The IMFs are
mathematically orthogonal to one another.

By correlating IMF frequencies with known EEG, EOG, and EMG ranges across two separate data segments of
the same patient, we observed that IMFs 1 and 2 typically capture EMG activity, while IMF 3 aligns with EEG, and
IMFs 4, 5, and 6 with EOG. However, as Figure 11 shows, the assignment of IMF 2 to EMG is not consistent, as the
range of an IMF is contingent upon the frequency content present in the mixed signal. Through our analysis, we
determined that assigning IMF 1 for EMG, IMF 3 for EEG, and IMFs 4 to 6 for EOG yielded more accurate results.

4.3.2 Non-Negative Matrix Factorization (NNMF). NNMF factors a non-negative matrix into two lower-dimension
matrices through multiplication [63]. The equation is given by 𝑉 =𝑊 ∗𝐻 where 𝑉 is the original non-negative
matrix,𝑊 is the frequency template matrix), and 𝐻 is the activation matrix. NNMF has various applications,
including dimension reduction [62, 91], feature extraction [55, 117], and blind source separation [112, 116] making
it suitable for our purpose. In signal processing, NNMF is particularly useful for disentangling one-dimensional
signals by leveraging the non-negative properties of their spectral representations [9, 28, 85]. If 𝑉 is a spectral
representation of a signal, its factorization𝑊 would be considered as the frequency template and 𝐻 is the
temporal activation of the signal. That is to say,𝑊 will represent for the frequency inside the signal and will
not change for EOG, EEG, and EMG and we can decompose and reconstruct the signal accordingly if we know
the frequency template of EOG, EEG, and EMG. Supervised NNMF-based separation algorithm utilizes known
physiological signals to train the model, then applies that model to signal separation and reconstruction [52].
Figure 12 shows the overview of our supervised NNMF approach.
Training Phase. During training, signal-specific templates are extracted from channels known to be dominated
by each modality to derive the frequency basis matrix𝑊 . EEG segments are extracted from the C3-P3 and C4-P4
channels. EMG artifacts are typically pronounced in channels P7-TP9 and P8-TP10, so this is chosen as the EMG
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template, and channels FP9 and FT10, known for capturing EOG artifacts like blinks and saccades, are used to
obtain EOG templates. We also used signals during well-studied seizure events for each of the three modalities to
ensure that our signal templates included traces from both seizure and non-seizure periods.

Once the EEG, EMG, and EOG templates are acquired, NNMF with multiplicative updates is applied to construct
the frequency template𝑊 . The updates progressively refine𝑊 and the activation matrix 𝐻 through an iterative
process, minimizing the divergence between matrices [42]. The error in the factorization process necessitates a
metric for the distance between two matrices. One well-established measure is the 𝛽 divergence [65] with three
common variations defined as:

𝑑𝛽 (𝑋 |𝑌 ) =



1
𝛽 (𝛽 − 1) (𝑋

𝛽 + (𝛽 − 1)𝑌 𝛽 − 𝛽𝑋𝑌 𝛽−1) 𝛽 ∈ R{0, 1}

𝑋 log
𝑋

𝑌
+ (𝑌 − 𝑋 ) 𝛽 = 1

𝑋

𝑌
− log 𝑋

𝑌
− 1 𝛽 = 0

The 𝛽 divergence includes three commonly utilized variations [43]:

• Euclidean divergence (𝛽 = 2) : 𝑑𝐸𝑈𝐶 (𝑋,𝑌 ) =
√︁
Σ𝑖, 𝑗 (𝑋𝑖, 𝑗 − 𝑌𝑖, 𝑗 )2

• Kullback-Leibler divergence (𝛽 = 1) : 𝑑𝐾𝐿 (𝑋,𝑌 ) = Σ𝑖, 𝑗 (𝑋𝑖, 𝑗𝑙𝑜𝑔
𝑋𝑖, 𝑗

𝑌𝑖, 𝑗
− 𝑋𝑖, 𝑗 + 𝑌𝑖, 𝑗 )

• Itakura-Saito divergence (𝛽 = 0) : 𝑑𝐼𝑆 (𝑋,𝑌 ) =
𝑋

𝑌
− 𝑙𝑜𝑔(𝑋

𝑌
) − 1

One important characteristic that affects our approach is their scale invariance properties:

• 𝑑𝐸𝑈𝐶 (𝜆𝑋 |𝜆𝑌 ) = 𝜆2𝑑𝐸𝑈𝐶 (𝑋 |𝑌 )
• 𝑑𝐾𝐿 (𝜆𝑋 |𝜆𝑌 ) = 𝜆𝑑𝐾𝐿 (𝑋 |𝑌 )
• 𝑑𝐼𝑆 (𝜆𝑋 |𝜆𝑌 ) = 𝑑𝐼𝑆 (𝑋 |𝑌 )

The Itakura-Saito divergence (𝑑𝐼𝑆 ), due to its scale-invariance, is particularly suitable for representing data with
significant dynamic ranges, such as physiological signal spectra. NNMF with a multiplicative update rule for 𝑑𝐼𝑆
divergence is then applied in the training phase.

𝐻 ←− 𝐻.𝑊
𝑇 (𝑊𝐻 )−2 .𝑉
𝑊𝑇 (𝑊𝐻 )−1

;𝑊 ←−𝑊 .
((𝑊𝐻 )−2.𝑉 )𝐻𝑇
(𝑊𝐻 )−1𝐻𝑇

By leveraging known EEG, EMG, and EOG patterns containing both normal and epileptic traits, supervised
NNMF can effectively decompose the composite ear signal for selective reconstruction of each modality.
Execution Phase. In the execution phase, mixed signals obtained from EarSD are separated using the frequency
template𝑊 derived in the training phase. Since the frequency template remains unchanged for each signal, we
apply an STFT to each data segment to acquire its spectral form. The multiplicative update rule is subsequently
employed on matrix 𝐻 to extract temporal activation of individual signal components within the mixed data.
This process strives to minimize the distance between the reconstructed and the original signals, hence reducing
the error inherent in the factorization. The final reconstructed signal is obtained by inverse STFT using the
component matrices𝑊 and 𝐻 once divergence is sufficiently minimized.
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5 SEIZURE DETECTION USING EARSD: A REAL-WORLD STUDY

5.1 Study Protocol
Patient Recruitment To evaluate the effectiveness of the proposed EarSD device in seizure detection, we
conducted a clinical study at the EpilepsyMonitoring Unit (EMU) of UTSWMedical Campus hospital. Through our
collaboration with the hospital, we gained access to patients admitted to the EMU for long-term vEEG monitoring.

Video-EEG 
electrodes

(Ground truth)

EarSD sensing 
electrodes

Connecting 
wires

EarSD sensing 
electrodes EarSD 

Hardware 
case

Video-EEG 
electrodes

(Ground truth)

Fig. 13. A patient in the hospital wore the standard vEEG electrode
and the EarSD wearable behind the ears at the same time for data
collection.

Our study aimed to demonstrate that EarSD’s
performance is comparable to the “gold stan-
dard" of video EEG monitoring in hospitals. To
be eligible for our study, individuals had to be at
least 18 years old at the time of enrollment and
willing to wear the EarSD device. Patients wear-
ing any other ear device, such as hearing aids,
or intracranial electrodes, were excluded from
the experiment. Anyone unable or unwilling to
provide informed consent was also excluded. We
required patients to wear both the EarSD device
and standard 21-channel scalp-EEG with video
recording simultaneously to ensure that both
devices were collecting the same data from the
same patient for the same times (Figure 13). This
allowed us to compare the results and verify if
the same events were detected by both. Follow-
ing these rules, we were able to recruit 32 pa-
tients aged between 19 and 74, with 16 biological males and 16 biological females represented in the sample over
09 months. Description of the participants are listed in Table 2. Note that SD_015 was omitted from data analysis
as this was the same patient as SD_020. This patient was enrolled twice and only had seizures during his second
admission. As such, only the data from EarSD_020 were used for analysis and reporting.

Patient ID Age/Sex Seizure Freq. Duration
(Hours) Patient ID Age/Sex Seizure Freq. Duration

(Hours)
EarSD_001 74 M ≤1/year 72 EarSD_018 Unknown ≥1/year 24
EarSD_002 51 M ≥1/year 0 EarSD_019 36 M ≥1/year 48
EarSD_003 53 M ≥1/year 48 EarSD_020 26 M ≥1/month 96
EarSD_004 55 F ≤1/year 48 EarSD_021 53 F ≤1/year 24
EarSD_005 38 M ≥1/year 24 EarSD_022 65 F ≥1/year 24
EarSD_006 44 F ≥1/week 12 EarSD_023 73 F ≥1/year 24
EarSD_007 40 M ≤1/year 48 EarSD_024 24 F ≥1/month 24
EarSD_008 49 F ≤1/year 12 EarSD_025 38 F ≥1/month 96
EarSD_009 40 M ≥1/month 24 EarSD_026 53 F ≥1/week 24
EarSD_010 49 F ≥1/year 48 EarSD_027 35 F ≥1/year 48
EarSD_011 46 M ≤1/year 72 EarSD_028 63 M ≥1/year 24
EarSD_012 19 M ≥1/year 48 EarSD_029 21 F Daily 48
EarSD_013 27 F ≥1/year 48 EarSD_030 33 F ≥1/year 48
EarSD_014 66 M ≥1/week 72 EarSD_031 43 M ≥1/year 48
EarSD_016 35 M ≥1/year 24 EarSD_032 24 F ≥1/year 24
EarSD_017 40 M ≥1/year 48 EarSD_033 64 M ≥1/week 24

Table 2. Patient demographics and EarSD usage details. F = female; M = male.
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Data Collection Procedure. At the start of the study, before the device placement, the area behind each ear
was examined for any pre-existing skin condition that might have hampered the skin-electrode contact. After
obtaining formal written consent, the subject wore EarSD and the standard 21-channel scalp-EEG with video
recording (Natus NeuroWorks EEG Software [97]) simultaneously. The EarSD board, was placed around the
patient’s neck using a detachable lanyard, and the sticker electrodes were attached behind the patient’s ears using
collodion glue to ensure firm contact between the skin and the electrode. We ensured that the impedance of the
EEG electrodes was regularly monitored and maintained within acceptable ranges (typically below 5 𝑘Ω [80]) to
ensure high-quality signal acquisition. We measured the impedance at each electrode regularly during our routine
checks and adjustments during the data collection. Impedance was measured using the ‘Lead Off Detection’ feature
of the ADS1299. This technique involves injecting a tiny (6nA) current into the electrode, resulting in a voltage
that can be measured. The high input impedance of the differential amplifier ensures that no current flows into
the other electrode line, allowing for accurate impedance measurement. Therefore, we can easily measure just the
voltage drop across the first three elements — the 5 𝑘Ω in-series resistor, the electrode-to-skin impedance, and
the impedance of a portion of the human body. Because the series resistor is known and the body’s impedance is
too small to matter, we have only one unknown remaining — the impedance of the electrode-to-skin interface.
We modeled the electrode-to-skin interface as a simple resistor to estimate the result accurately. Using these

values, we could then calculate the impedance (Z) using: 𝑍 =
𝑉
√
2

𝐼
− 5𝑘Ω where 𝑉 is the measured voltage and 𝐼

is the known current. We measured the voltage as an RMS value, whereas the 6nA current is an amplitude, not
an RMS value. So, our calculation included a factor of

√
2 to convert RMS into amplitude and we subtracted the

5kOhm to remove the built-in resistor of the board. This, combined with our regular impedance checks, enabled
us to obtain and maintain high-fidelity EEG recordings.
Once the electrodes were placed comfortably over each ear, the sensing circuit was paired via Bluetooth to a

tablet for real-time data storage and viewing. The participants were encouraged to wear our device for as long
as they felt comfortable during their EMU stay, including during sleep. As per standard clinical protocol, they
were then monitored in their rooms for the duration of their stay in the hospital. Among all participants, EarSD
was worn for a total of 1250 hours with each patient wearing the device for an average of 41 hours. Given our
device is an early prototype, such extended use gives us confidence that our device is robust for long periods.
Additionally, we tested the device in various conditions as the patients always wore it, even sleeping with it, so
we ensured that EarSD can consistently capture high-quality signals across different situations. Furthermore,
consistently recording physiological signals from 32 patients, each using the device for 1 to 4 days on average,
we are confident that our signal acquisition process is repeatable as we were successful in collecting their data
over multiple sessions under similar conditions. Note that most of the patients enrolled in our study did not
experience a seizure during their time in the hospital. Of the 32 participants, only 7 had a seizure attack which
further highlights the need for continuous seizure monitoring devices that patients can wear outside of the
hospital, as seizures happen at any time.

At the end of the evaluation, all information that was gathered was deidentified, except for the patient’s study
identification number. The data was then stored on an encrypted and password-protected laptop for processing
before being uploaded to the REDCap (Research Electronic Data Capture) Database. Local data on the laptop was
destroyed after uploading to REDCap. The data collected from subjects is unidentifiable and was only shared
between the researchers participating in this study.

5.2 Data Preparation and Clinical Verification
After the data was processed using the signal processing method described in Section 4, we plotted the EEG
signals from the EarSD device alongside hospital video-EEG recordings as shown in Figure 14, allowing our
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collaborating doctors to review the signals and annotate seizure onset and offset times on both the hospi-
tal EEG and EarSD EEG signals. Given that all three signals (EEG, EMG, and EOG) were recorded simulta-
neously, we could use the same timestamps to identify the EMG and EOG signals during seizure periods.

Seizure Onset

EEG 
Channels 
(middle)

EarSD 
Channels

Fp1_F7

P7_O1
Fp1_F3

F7_T7

Fz_Cz

Pz_Oz
Cz_Pz

P3_O1
C3_P3
F3_C3

T7_P7

Fp2_F4
F4_C4
C4_P4
P4_O2
Fp2_F8

T8_P8
P8_O2

F8_T8

EarSD_left
EarSD_right

Correlated features 
between EEG and EarSD

Fig. 14. Seizure event onset marked by the doctors shows a
strong correlation between the vEEG and the EarSD channels.
The spikes can be seen on the right channels of both devices,
allowing EarSD to classify seizures as well.

The annotated onset and offset times on EarSD data
provided us with a labeled dataset to train the super-
vised machine learning algorithms. Given that seizures
occur only for short periods, using all the recorded
data, which includes long non-seizure periods, would
create a highly unbalanced dataset.

This imbalance leads to ineffective ML models that
might not producemeaningful outputs. To address this,
we created a balanced dataset by including seizure sig-
nals, non-seizure signals from periods before and after
the seizures, as well as non-seizure signals from pe-
riods of daily activities such as talking, eating, and
walking ensuring a more balanced dataset between
seizure and non-seizure signals. Having a balanced
dataset is crucial for training effective machine learn-
ing models, as it prevents the model from being biased
towards non-seizure periods, thereby improving the reliability and accuracy of the seizure detection algorithm.

Patient ID Start Time End Time Type
SD_004 21:42:56 21:43:21 Focal Right
SD_005 01:01:01 01:01:58 Generalized
SD_016 15:01:49 15:02:55 Focal Left
SD_017 22:55:36 22:56:53 Focal Left
... ... ... ...

Table 3. Seizure log labeled by doctors

Per American Clinical Neurophysiology Society
guidelines, an event is considered a seizure if it lasts
for at least 10 seconds [47]. Thus, we segmented the
events into 10-second chunks for analysis. A chunk
entirely within the labeled seizure onset and offset
time was labeled as a seizure, while chunks partially
overlapping or out of seizure onset and offset times
were labeled as non-seizure. Table 3 shows a subset of
the dataset containing the onset and offset times.

5.3 EarSD’s Seizure Detection Algorithms
5.3.1 Feature Extraction. We used the dataset prepared as described above for our machine learning task. Before
passing our signals to the classifiers, we performed feature extraction to aid the algorithms in their detection
task. We used the signals in our dataset (2 EEG, 2 EMG, and 2 EOG for the left and right ears, respectively) and
extracted features in the time and frequency domains. For the time domain, we computed statistical features,
namely the mean, standard deviation, average deviation, skewness, kurtosis, lowest Value, highest Value, and the
root mean square amplitude. We calculated the Mel-Frequency Cepstral Coefficients (MFCCs), widely used in
time-series signal processing for the frequency domain. We extracted 10 MFCCs per signal segment, resulting in
58 features per channel. Combining frequency and time domain features, we obtained 348 features, normalized
between 0 and 1. The concatenated signals, which included all three modalities, were then used to train our
machine learning models for seizure detection.

5.3.2 Traditional Machine Learning. We chose to examine three classical machine learning algorithms - Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random Forest Classifier (RFC). We determined that
since our eventual goal is to perform machine learning directly on the device, we wanted our model that would
be accurate but also have low size and computation requirements. Additionally, since seizure signals are rare in
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the overall recordings, our signals of interest were not very large. We had to work with a subset to balance out
the seizure to non-seizure signals and get an unbiased machine learning model. We found traditional machine
learning models to fulfill our requirements, providing good accuracy with low computational overheads.

SVMs perform classification by finding the optimal maximum margin hyperplane that separates the classes. We
used a Gaussian radial basis function (𝑟𝑏 𝑓 ) kernel to enable the SVM model to capture non-linear relationships
in the feature space. The 𝑟𝑏 𝑓 kernel maps the input data into a higher dimensional space where classes can be
separated by a linear decision boundary. The kernel coefficient, 𝛾 , was optimized at 0.5 and the penalty term,𝐶 , at
20 through grid search cross-validation to balance model complexity, accuracy, and overfitting. Overall, the SVM
identifies the maximum margin decision boundary that best separates seizure and non-seizure EEG recordings.
KNN is a non-parametric algorithm that classifies data points based on the class of their nearest neighbors in
the feature space. We computed the Euclidean distance between points and set the number of neighbors, 𝐾 , to 5
based on empirical tuning. The seizure/non-seizure label of each data point was determined by a majority vote
among its 5 nearest neighbors enabling local, neighborhood-based classification. RFC is an ensemble method
that aggregates the predictions of multiple decision trees. Each tree is trained on a random subset of features,
which enables robust predictions even with correlated features. The forest consisted of 10 trees, each with a
maximum depth of 100 based on optimization experiments. The consensus seizure/non-seizure label predicted by
the forest was taken as the final output. Randomness introduced through bagging and feature subspacing makes
RFC resilient to overfitting.
Due to the size of the dataset, we opted to use a Leave-one-out cross validation strategy as it allows us to

get a more robust model that is less prone to overfitting and is more generalizable. The model was trained on
all samples from the full dataset except one held-out patient in each fold. All data from this patient was kept
separate from the test set and only used to test the model performance. We obtained a rigorous estimate of the
model’s ability to generalize to new patients by iterating through folds where each patient serves as the test set
once and used the average accuracy from these runs to report the final accuracy. The same method was followed
to test all three machine learning models (SVM, KNN, and RFC).
To avoid data leakage, we used the scikit-learn package. For each fold in the leave-one-out cross validation

step, normalization parameters were computer exclusively from the training data of that fold, ensuring that
the test data remained unseen during the calculation of these parameters. Specifically, we used ‘StandardScaler’
function to calculate the mean and standard deviation from the training samples, applying the ‘fit_transform’
method to the training data and the ‘transform’ method to the held-out test data. This ensured that the test data
was normalized using parameters derived solely from the training data, maintaining a strict separation between
training and test sets.

5.3.3 Neural Network Model. We have also developed a Convolutional Neural Network (CNN) model for the
seizure detection task. A key advantage of the CNN approach over traditional machine learning is that they can
automatically learn features from the data for which they can pick up more complex features that we may have
missed when manually selecting the features.
We trained a 1D CNN network consisting of three 1D convolutional layers with 32, 64, and 128, filters

respectively. The kernel size was kept to 3 with padding and stride both set to 1 for all layers. We applied the
ReLU activation function and used MaxPooling with a kernel size of 2 after each convolution. The convolutional
layers were followed by three fully connected layers with 128, 128, and 64 units respectively. We also used a
dropout layer with a probability of 0.5 after the first and second fully connected layers. The final fully connected
layer outputs the binary classification outcome. We trained the model using the Adam optimizer and a weighted
loss function (LF):

𝐿𝐹 = 𝛼 · (1 − 𝑝𝑡 )𝛾 · −𝑙𝑜𝑔(𝑝𝑡 )
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Fig. 15. Signal-to-Noise Ratio (SNR) between EMD and NNMF. The NNMF algorithm demonstrated superior EEG and EMG
signal quality compared to EMD, with average SNR improvements of 1.64dB and 1.84dB respectively. For EOG signals, both
NNMF and EMD yielded approximately equivalent SNRs.

where 𝛼 is the weighting factor for each class and is set to be inversely proportional to the class frequencies, 𝛾 is
the focusing parameter that controls the weighting of hard-to-classify samples, and 𝑝𝑡 is the model’s estimated
probability for the target class. This loss function approach addresses the issue of data imbalance by putting more
focus on hard-to-classify samples, thereby enhancing model performance and reducing class bias. We trained the
model for 350 epochs using 80% of the data for training and 20% for testing. Out of the training set, we use 20% as
the validation set.

6 PERFORMANCE EVALUATION

6.1 Sensitivity Analysis
6.1.1 Noise Removal. To demonstrate the effectiveness of the developed EMD-based and NNMF-based signal
separation algorithms, we performed a thorough validation using data captured from the EarSD device in a
clinical setting. For each patient, we extracted 2-hours of data - one hour during the daytime (between 1 p.m. to 3
p.m.) and one hour during the night (between 10 p.m. to 4 a.m.). The two-hour (7,200 seconds) recordings are
segmented into 720 10-second epochs to enhance computational efficiency.
Signal-to-noise ratio (SNR) is a well-known metric in digital signal processing, quantifying the target signal

strength relative to noise. We estimated SNR based on the known frequency ranges of EEG, EOG, and EMG

components. SNR for a signal within the frequency range [𝑎 𝑏] Hz was calculated as 𝑆𝑁𝑅[𝑎 𝑏 ] =
𝑃 [𝑎 𝑏 ]
𝑃𝑜𝑡ℎ𝑒𝑟

where

𝑃 [𝑎 𝑏 ] is the mean power of the signal in the frequency band of [𝑎 𝑏] Hz and 𝑃𝑜𝑡ℎ𝑒𝑟 is the mean power outside
this band. After computing SNRs for each epoch, we determined the average SNR per patient shown in Figure
15. We can see that compared to the EMD-based algorithm, the NNMF-based algorithm demonstrated better
performance in EEG and EMG signal quality, with comparable outcomes for EOG signals. Specifically, as can be
in in Figure 15a, the average SNR values for EEG signals using the EMD-based algorithm ranged from 24.20dB to
27.66dB, with a mean of 25.69dB, while the NNMF-based algorithm ranged between 26.84dB and 27.77dB with a
mean of 27.33dB. For the EOG signals, both algorithms yielded nearly equivalent average SNRs, 33.94dB for EMD
and 33.77dB for NNMF as shown in Figure 15b. Figure 15c shows the results for the EMG with an EMD average
SNR of 6.23dB, while NNMF averaged 8.07dB. So, we can conclude, that the NNMF approach provided an SNR
enhancement of 1.64dB for EEG and 1.84dB for EMG signals over the EMD approach.

6.1.2 Energy Consumption. We measured the power consumption of the EarSD device using a Monsoon Power
Monitor with a sampling rate of 5 kHz. Each measurement lasted 180s, resulting in 900,000 data points to get
stable results. Under conditions of 250◦𝐶 and a nominal battery voltage of 3.7V, the average power usage of our
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device was (1) Active state (sensing physiological signals, recording, and streaming via Bluetooth) consumed
241.5mW, (2) Idle state (MCU active with other components and streaming turned off) consumed 51.60mW.

Sensing (Amplifiers, ADCs)

Processing 
(MSP432 MCU)

85.2
mW

93.5
mW

62.8
mW

Communication 
(BT Streaming)

Fig. 16. Power Consumption of EarSD

With a 500mAh Li-Po battery, the EarSD device can operate for ap-
proximately 7.7 hours in the active state and 35.9 hours in the idle
state. We also conducted component-level measurements during the
active state by individually turning off each component and repeating
the measurements. The sensing components (amplifiers and external
ADCs) and the Bluetooth communication module were the primary
power consumers, with an average power consumption of 93.5mW and
85.2mW, respectively, while the processing unit (MSP432) consumed
only 62.8mW.
These power consumption figures demonstrate the EarSD device’s

capability to monitor a user for extended periods. The current high
energy consumption is due to engineering limitations, as direct power
from the earbuds is not feasible and so requires a separate power source.
However, optimization and implementation on a System-on-Chip (SoC)
can enable power supply from the earbuds. By reducing the number of sensing components, optimizing Bluetooth
transmission, and leveraging the MCU’s deep power-saving modes, power consumption can be further reduced.

6.2 System Performance
The performance of the detection algorithms is evaluated over the dataset collected from our study at the hospital
which contained all events from the patients who experienced seizures during our study. We test the performance
of the machine learning algorithms (SVM, KNN, and RFC) through a leave-one-out strategy where we trained
on all samples from the full dataset except one held-out patient which was used for testing. We also rotated the
test sample so that all patients were tested in successive iterations. This approach showed the performance of
the algorithms over specific events from each of our patients and can simulate the algorithm’s performance in a
real-world setting with unknown events.
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Fig. 17. All three algorithms show the best performance when there is
maximum overlap between successive sliding windows and the dataset
contains a 1:1 ratio between seizure and non-seizure samples.

6.2.1 Identifying the Sliding Window Size.
We augmented our dataset using sliding
windows. To evaluate the impact of sliding
windows on the algorithm performance,
we extracted the data with different over-
lapping windows. We varied it from 1 to
9 seconds to find the best configuration.
With a 1-second sliding window, we slid
the window 1 second forward which kept
a 9-second overlap between the successive
windows. Similarly, with a 2-second slid-
ing window, the window was moved 2 sec-
onds forward, which means there was an 8-
second overlap between the two windows
and so on. Using sliding windows also enabled us to capture spatial information and feed co-dependent data
from earlier windows to the next window, helping the machine learning models improve their accuracy.

It is evident from Figure 17a that all three algorithms show an accuracy of over 70% indicating their reliability
in seizure detection using only data recorded from our EarSD device. We can see that when the stride size is set
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Fig. 18. Results of the seizure detection task. All three algorithms show accuracies of over 90% at seizure detection. SVM
performs the best with an average accuracy of 95.3% at distinguishing between seizure and non-seizure events.

to 1, the results get vastly better, exceeding 90% accuracy for all three algorithms, with SVM achieving the best
accuracy of 94.5%. In this configuration, there is maximum overlap between consecutive windows resulting in
better training of the algorithms.

6.2.2 Identifying the ratio of Seizure to Non-seizure samples in the dataset. To investigate the impact of dataset
bias, we calculated the F-1 scores by examining various ratios of seizure to non-seizure samples in the dataset.
An imbalanced dataset leads to a decline in accuracy as the machine learning model becomes biased towards
the majority class as we see in various other works [89, 120]. This disproportionality results in the algorithm
producing false negatives making them unreliable. Our experimental results are depicted in Figure 17b which
illustrates the F-1 scores achieved by the three algorithms when the ratio of seizure to non-seizure samples in the
dataset are 1:1, 1:2, and 1:3. Even though all three algorithms attain high F-1 scores (exceeding 85%) indicating
their capability in detecting seizures, the best results are obtained when there is an equal number of seizure
samples to non-seizure samples with SVM showing the best F1-score of 95% in this case as well.

6.2.3 Impact of Motion on Seizure Detection. We investigated the effect of motion removal on the performance
of the machine learning algorithms. We tested all three algorithms once on the dataset without removing motion
and then again after motion is removed. For the SVM algorithm, accuracy increases from 84.3% without motion
removal to 94.85% with motion artifact removal, showing a 10% improvement. The KNN classifier also sees an
increase from 83% to 92%, demonstrating a similar improvement as SVM. Most significantly, RFC exhibits the
most impact, with accuracy rising from 55% without motion removal to 93% with motion artifact removal, a
substantial 40% improvement. Overall, the results illustrate that removing motion artifacts significantly boosts
the accuracy of all classifiers, with SVM achieving the highest accuracy after motion artifact removal, and RFC
showing the greatest sensitivity to such artifacts and the most dramatic improvement upon their removal.
Based on the conclusions drawn from these experiments, we perform our seizure detection task using a

1-second sliding window and keeping a 1:1 ratio between seizure and non-seizure samples in the dataset that has
the motion artifacts removed.

6.2.4 Seizure Onset Detection Performance.
Traditional Machine Learning: The confusion matrices of Figure 18 show the performance of the ML
algorithms by comparing the predicted labels with the actual labels. From this, we can assess the model’s ability to
correctly classify both positive (seizure) and negative (non-seizure) instances and evaluate its overall performance.
From Figure 18a, we can see that the SVM algorithm is able to correctly detect seizures 93.67% of the time and
non-seizures 96.61% of the time indicating its ability to correctly distinguish between seizure and non-seizure
events. Similarly, Figure 18b, shows that the KNN algorithm achieves a seizure detection rate of 90.83% and
a non-seizure detection rate of 94.80%. RFC also shows good performance in Figure 18c. We can see that it
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correctly detects seizures 88.96% of the time and non-seizures 96.44% of the time. We can thus conclude that SVM
outperforms the other two algorithms showing the best overall results.
Neural Network Method: Neural networks offer some critical advantages over the traditional machine learning
methods which makes their development an important step in our overall task of seizure detection. CNNs can
automatically learn relevant features from raw data through multiple layers of convolutional filters allowing
them to capture intricate patterns and representations in the data that might be missed with manual feature
extraction. Traditional machine learning requires manual feature extraction, which involves domain expertise
and can be time-consuming. The quality of the model depends heavily on the chosen features and this makes
them unmanageable as the dataset increases. They are also dependent on the quality of features chosen which
can affect the outcome of the models and deep learning methods are more robust in this respect. Therefore, we
trained the CNN model on the same EEG dataset used for traditional machine learning models and present the
results in Figure 20b.
As can be seen in the figure, the CNN model demonstrates superior performance compared to the SVM

model (the best performing model of the traditional methods). The CNN model correctly identified 98.95% of
non-seizure instances, outperforming the SVM’s 96.61%, and significantly reduced the false positive rate from
3.39% to 1.05%. Additionally, the CNN model achieved a higher accuracy in identifying seizure instances, with a
correct identification rate of 95.13% compared to the SVM’s 93.67%. It also reduced the false negative rate from
6.33% to 4.87%, indicating improved sensitivity in detecting seizures. These enhancements underscore the benefits
of using advanced machine learning techniques like CNNs, which can automatically learn and extract relevant
features from the data, leading to better overall performance in complex tasks such as seizure detection.

The key performance metrics of all the machine learning algorithms that we investigated are presented in Figure
19. It shows the Precision, Recall, and F1 Score for both non-seizure and seizure events. Precision shows howmany
of the detected seizures were actual seizures, Recall shows what proportion of actual seizures was detected by
EarSD and F1-score provides a balancedmeasure of the system’s overall performance in detecting seizures correctly.

100

98

96

94

92

90

88
Precision Recall F-1 Score Precision Recall F-1 Score

Non-seizure events Seizure Events

SVM KNN RFC CNN

Fig. 19. Performance Metrics of all the Machine
Learning Algorithms we investigated

For non-seizure events, CNN achieved the highest precision at
99%, followed closely by SVM and RFC at 97%. CNN also led in
recall with 96%, outperforming SVM, KNN, and RFC. The highest
F1 Score for non-seizure events was 98%, achieved by CNN. For
seizure events, CNN again showed the highest precision at 98%
and recall at 99%, indicating its superior performance in capturing
true positive seizure events.
In summary, the results show that with just two electrodes

placed behind the ear, we are able to capture signals that can be
used to reliably identify seizure events proving the effectiveness
of our device. These promising results were achieved using our
EarSD device, which captures EEG, EMG, and EOG data from two
electrodes placed behind the ear, demonstrating the feasibility
and effectiveness of our wearable device for continuous, non-invasive seizure monitoring. It should be noted
that although EarSD has only been tested on a small number of patients due to limitations of funding, such high
accuracy of detection is encouraging and approaches the standard of accuracy needed for medical devices to
receive approval from regulatory bodies [29, 71].

6.2.5 Comparative Study. We further evaluated the performance of traditional machine learning and CNN
methods for seizure detection using data from our proposed EarSD device and the hospital’s ‘gold-standard’ vEEG
system. As expected, when using only data from the vEEG device, our CNN network yielded the best results,
achieving 99.44% accuracy for non-seizure detection and 96.61% for seizure detection, with minimal false positives
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Fig. 20. Comparing the detection performance of the machine learning methods using data from EarSD device and the
hospital-based vEEG system separately.

(0.56%) and false negatives (3.39%) as shown in Figure 20c. The EarSD device, although slightly less accurate,
showed impressive results with the CNN model, indicating that the wearable device is highly effective despite
being more susceptible to noise and using a less direct measurement method. In comparison, the traditional SVM
model using wearable data performed lower relative to the more advanced deep learning methods highlighting
their limitations when handling complex data.
While there are challenges in capturing neurological signals from behind the ear, as shown by the slightly

reduced accuracy of the EarSD device compared to the results using only the vEEG data, we see only a small
difference in performance between the systems. This further strengthens our belief that such a device has massive
potential to be deployed in the real world and help medical professionals monitor their patients continuously
outside of clinical settings for a more comprehensive seizure management system. The goal remains to optimize
the wearable technology to match the performance of traditional scalp-based EEG systems, making seizure
monitoring more accessible and practical for patients.

Table 4 shows a comparison of EarSD against some other seizure detection systems available in the literature.
Our comparative study revealed some limitations in existing seizure detection systems. Many are wrist-worn,
compromising EEG signal detection due to distance from the source, while head-worn alternatives often prove
uncomfortable or impractical for continuous use.

Systems Forms Signal Algorithm Sensitivity (%) #Subjects
Fully-

integrated
Earable

Low-cost
COTS

Motion Artifact
Analysis

Patients
/ Doctors
Survey

[34] Wrist-worn IMU RFC 88.01 5 No Yes Low-pass Filter No

[110] Wrist-worn ECG, PPG SVM 70 11 No Yes Filtering (linear,
low pass, bandpass) No

[24] Wrist-worn EDA, IMU Gradient Tree
Boosting 91 10 No Yes Bandpass Filters No

[78] Wrist-worn EDA, IMU,
PPG, Temp. LSTM 93 10 No Yes No No

[108] Behind
ears EEG, ECG RFC 92 135 No No No No

[46] Behind
ears EEG SVM 94.5 12 No No Bandpass Filters No

[118] Behind
ears EEG GAN 96.3 12 No No No No

EarSD Ear-worn EEG, EMG,
EOG CNN 95.13 32 Yes Yes VMD, NNMF Yes

Table 4. EarSD and parallel research efforts in wearable-based seizure detection.

Additionally, the high cost of commercial systems restricts accessibility for many patients. Addressing these
issues, we developed EarSD, a lightweight, low-cost, and user-friendly device designed in an earphone form factor
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using COTS components. This design ensures both affordability and social acceptability, crucial for long-term
monitoring as confirmed by positive user feedback in our study (Section 6.3).

EarSD’s unique integration of EEG, EMG, and EOG signals provides a comprehensive view of seizure-related
physiological changes, distinguishing it from single-modality systems. We employed advanced signal processing
techniques like Variational Mode Decomposition (VMD) and Non-Negative Matrix Factorization (NNMF) for
enhanced signal quality and reliability. Our clinical trials, conducted with a diverse age range (19-74) of real
patients, demonstrate the system’s generalizability and robustness. Notably, our Convolutional Neural Network
(CNN) approach achieved a high sensitivity of 95.13%, comparable to or surpassing many existing methods.
This combination of innovative design, multi-modal signal integration, advanced processing techniques, and
strong clinical performance positions our device as a significant advancement in accessible and effective seizure
detection technology.

6.3 User Study & Focused Group Discussion
Upon patient discharge, an anonymous, 14-question survey was given to the patients to gather feedback about
their experience with EarSD. The survey included questions on the users’ perspective of EarSD’s comfort, ease of
use, sleep disruption, social acceptability, and willingness to use such a device. In addition to the anonymous
patient survey, a one-hour focus group discussion (FGD) with nine epileptologists was held at the hospital to
obtain their opinion on portable seizure detection devices. Conducting such end-user studies allows us to gather
insights from experts and patients alike which will help lay the foundations for future improvements. We discuss
the results of the survey and the FGD here.

6.3.1 Survey Results. Out of the 32 participants who participated in our experiment, 30 (94%) completed the
post-survey. Figure 21 presents the questions that we asked our participants to find their opinions and experiences.
The results show that 73% found EarSD comfortable, while 17% reported discomfort due to pressure and the
adhesive glue. An interesting insight that we found was that discomfort was more prevalent among users wearing
eyeglasses, likely because both items rely on the ear as a support point. Nevertheless, an overwhelming 87% agreed
it was far simpler than conventional hospital EEG setups. A particularly important result was that 80% of the
participants indicated that they would be willing to continuously wear the device for prolonged periods (between
3 days to 1 week) and 60% thought the device would be socially acceptable. Finally, 67% of the respondents said it
did not hamper their sleep.

In addition to answering the questions in our survey, users provided qualitative feedback on desired features and
areas for improvement. Many expressed interest in a user-friendly, self-applicable design to facilitate independent
use and enhance comfort and control. Patients were also interested in monitoring their signals through an app,
which would provide a summary explanation of their measurements so that they could be more informed about
their condition.

6.3.2 FGD Results. The purpose of the FGD session was to find out epileptologists’ and medical professionals’
perspectives on a seizure detection device. Nine epileptologists were invited to a one-hour, recorded focus group
to determine the preferences of epileptologists regarding a wearable, EEG-based seizure-detection device. The
participants expressed considerable enthusiasm regarding the potential of an EEG-based seizure-detection device
like EarSD. They acknowledged the immense value of recorded EEG data for their practice, emphasizing that it
offers a more dependable source of information compared to patient-reported data. However, the epileptologists
did express some reservations and concerns offering valuable suggestions regarding wearable EEG devices. The
reliability of the device emerged as a main issue with particular emphasis on the fact that EarSD operates as a
2-channel EEG system. Epileptologists stressed the need to maximize the sensitivity and specificity of the device
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Fig. 21. Responses to User Study Questionnaire showing overwhelmingly positive perception about EarSD among the users
in our study. This emphasizes the need for an inexpensive, comfortable, and convenient wearable device among patients
suffering from epileptic seizures. Devices like EarSD can significantly improve the quality of life for such patients.

prior to any commercial use as false positives could lead to unnecessary anxiety and possible overmedication for
patients.

7 LIMITATIONS AND FUTURE DIRECTIONS

7.1 Limitations
As a preliminary proof-of-concept study, our results are somewhat limited in terms of our sample size. We had
a sample size of 32 patients and larger studies will be needed in the future to better understand the device’s
generalizability. The strong positive outcome shown by our proposed EarSD warrants further investigation
through expanded trials to provide a better understanding of the device’s generalizability. In addition, while our
results have shown promising outputs in detecting seizures, our testing was conducted in controlled hospital
settings. It is important to assess real-world factors including external wearables like jewelry and hearing
aids, physical conditions such as perspiration, and environmental conditions such as rain, all of which may
impact signal quality and electrode contact. Robustness to such potential interferences will be critical for reliable
performance outside of clinical settings. Finally, the device was applied using collodion glue to ensure reliable
skin contact during this proof-of-concept study, which requires a better solution for long-term usage.

7.2 Future Directions
Future iterations of EarSD will incorporate the recommendations made by users and epileptologists, especially
when it comes to device comfort and ease of use. Further technical improvement is also needed to make the
data collection more reliable and feasible in the real world. For example, it is important to have electrodes that
can be applied without adhesives like collodion glue and still obtain strong skin-electrode contact to obtain
reliable signals. We also plan to improve overall performance and battery life through on-device machine learning,
eliminating the need for constant wireless connectivity. A larger, multi-center study will be needed to gather
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more patient data and minimize sample selection bias. Furthermore, improving the traditional machine learning
approaches is difficult since these algorithms depend heavily on feature engineering. The quality of the selected
features greatly impacts their performance and identifying the most relevant features for the model can be
time-consuming and may require domain expertise. Also, as the dataset increases, training and inference times
may become impractically long. Therefore, applying deep learning models could make the system more scaleable
and adaptable to complex patterns with their automated feature extraction capabilities. They can also scale much
better with larger datasets which can improve detection accuracy and generalization. We also aim to integrate
additional capabilities such as classifying seizure types and predicting seizures for proactive interventions. Lastly,
the form factor requires continued refinement to improve comfort, aesthetics, and discreetness for easier long-
term use. Once optimized, home studies will reveal the strengths and limitations of real-world performance
across diverse environments and lifestyles.

8 CONCLUSION
In this work, we present EarSD, a wearable device designed to enhance the lives of epilepsy patients by providing
continuous and at-home monitoring for the detection of seizures. The device contains only two electrodes, worn
behind each ear, and records vital physiological signals of EEG, EMG, and EOG, analyzing them to detect seizures
and eliminate the need for unnecessary hospital visits. Through our collaboration with a hospital, we were able
to test our proposed device on real-world patients and compare it with the gold-standard scalp EEG test. Our
study involved 32 patients who simultaneously wore the hospital vEEG setup and our EarSD device to ensure
both devices captured the same events. The recorded signals were preprocessed using our signal processing
algorithm to remove noise and extract features. The processed signals were then analyzed using machine learning
algorithms of SVM, KNN, RFC, and CNN. We obtained a seizure detection accuracy of 97.9% with CNN using
just the recordings of EarSD from behind each ear. We also conducted a user study and a focus group discussion
with patients and epileptologists to learn the limitations of EarSD and receive feedback to further improve the
system for future studies. Their responses provide clear directions on the key priorities of end users and lay the
foundation for future development. Overall, this work provides substantial evidence that our proposed EarSD can
reliably capture seizures and contribute to a more effective management of the disease.
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