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ABSTRACT
This paper introduces MobiChem, a low-cost, portable, practical,
and ubiquitous smartphone-based toolkit for fruit monitoring. The
key idea is to leverage the light emitted from a smartphone’s screen
and front camera, coupled with a custom-built screen cover, to
perform comprehensive hyperspectral analysis on targeted objects.
Specifically, we designed a zero-powered screen cover that selec-
tively filters wavelengths essential for hyperspectral sensing. We
then incorporate a CNN-based algorithm and a novel ranking-based
learning technique that manipulates the latent space to classify ma-
turity stages and characterize their chemical and physical factors.
To demonstrate MobiChem’s feasibility, robustness, and practicality,
we showcase its application in tomato, banana, and avocado sensing.
Our system examines the maturity, chlorophyll, lycopene content,
free sugar levels, and firmness, enabling various dietary assess-
ments and food safety applications. Experimental results using 117
tomatoes, 98 bananas, and 73 avocados show MobiChem achieved
95.67% accuracy in chlorophyll concentration measurement, 98.76%
for lycopene detection, 93.53% for sugar concentrations analysis,
and 91.34% average accuracy in classifying maturity (96.64% for
tomato, 86.37% for banana, and 91.03% for avocado).
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Figure 1: MobiChem Application Scenarios. The smartphone
display illuminates, capturing a hyperspectral datacube
through passive optical filters. It then analyzes maturity
stage, chemical, or physical properties.

1 INTRODUCTION
In recent years, the expansion of global markets has significantly
heightened the demand for high-quality fresh products. This trend
emphasizes the critical need for rapid and accurate methods to
assess fruit maturity. Assessing fruit maturity is a multifaceted pro-
cess that involves analyzing factors such as color, internal quality,
and firmness. For example, tomatoes and avocados are rich in many
vitamins and minerals and contain bioactive compounds such as
carotenoids, flavonoids, and phenolic acids, which contribute to
their antioxidant properties [8, 23]. However, as the fruits ripen,
they undergo significant physiological changes post-harvest [18].
This variability in maturity can lead to increased risks of spoilage
in overripe fruits, causing considerable losses during transport and
storage [53]. In addition, unripe fruits can cause stomach discomfort
or constipation, while overripe fruits can lead to excessive sugar
intake or fermentation [30].

Today’s fruit monitoring methods, such as compression and
puncture tests [41, 56], are destructive and can reduce the profitabil-
ity of the produce by damaging the goods during the assessment pro-
cess. Existing non-destructive techniques fundamentally adopt one
of the two strategies: (a) radio-frequency (RF) sensing or (b) hyper-
spectral imaging (HSI). The former seeks to identify maturity indi-
cators using magnetic resonance imaging (MRI) [29, 44], Wi-Fi [34],
or Sub-Terahertz sensing [2]. The latter captures information in
multiple wavelengths across the optical spectrum [28, 70, 72, 75, 79].
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Figure 2: MobiChem Prototype: (a) A phone case with a lid to secure the filters, (b) A foldable design for enhanced portability
and robustness, (c) A concave design for embedding filters, and (d) A case lid positioned beneath the lights.

However, these techniques remain not deployable for end-user ap-
plications in the foreseeable future due to their complexity and high
cost, especially for everyday environments such as homes and gro-
cery stores. Recent work proposed a smartphone-based hyperspec-
tral imaging system (MobiSpectal [54]) for fruit sensing. However,
MobiSpectal requires infrared cameras, which are not commonly
found in today’s smartphones. Their method involves substantial
data collection and device calibration, rendering it impractical for
commercial off-the-shelf (COTS) mobile devices. Additionally, the
system can only perform coarse-grained fruit sensing (e.g., binary
organic food classification), which limits its application scenarios.
Therefore, a ubiquitous, low-cost, fine-grained, non-destructive
fruit-monitoring mechanism has remained an open problem.

In this paper, we introduce MobiChem, a novel fruit monitoring
system deployed on COTS smartphones with accuracy compara-
ble to the gold-standard colorimeter-based approaches. As shown
in Figure 1, MobiChem captures images across numerous narrow,
contiguous optical bands, allowing for a detailed analysis of fruits
by identifying subtle physiological changes that are not visible to
the naked eye. Specifically, MobiChem reuses the phone screen
to emit multiple narrow-band light spectrums toward the fruit. It
utilizes the front-facing camera to capture the spectral profile of ma-
terials from reflected light, subsequently estimating fruit ripeness,
chemical concentrations, and physical factors.

While the system’s concept is clear, it needs to address two main
challenges in COTS smartphone scenarios. First, the spectral res-
olution required for an accurate maturity assessment is typically
achieved with expensive and bulky equipment like dedicated LEDs
and prism. Second, it is nontrivial to estimate fruit ripeness and
various chemical concentrations from a limited number of spec-
trum channels. Compared with commercial hyperspectral cameras
that can produce over 200 narrow bands, MobiChem can only pro-
duce eight bands. To address these challenges, we first introduce a
ubiquitous, foldable toolkit for mobile HSI using a low-cost, zero-
power phone screen cover featuring custom 3D-printed cases and
an automated filter selection process to expand illumination from
three RGB wavelengths to broader spectral ranges. The toolkit
enables reliable multispectral sensing compatible with COTS smart-
phones while optimizing portability, cost-efficiency, and ambient
light blocking. We then develop two deep-learning models that

accurately predict the chemical composition (chlorophyll, lycopene,
sugar content) and physical properties (firmness) of fruits during
ripening. Our deep learning framework comprises a robust matu-
rity classification and a Rank-N-Contrast-based regression model
to accurately predict chemical and physical properties, ensuring the
system can handle imbalanced datasets and capture the non-linear
relationships inherent in fruit ripening.

To examine the feasibility of MobiChem, we built a foldable
(67% volume saving), compact (15 cm × 21 cm × 5.6 cm), and low-
cost (<$50) prototype using off-the-shelf hardware components
(Figure 2). Our prototype comprises an optical filter grid with eight
narrow-band illumination from 463nm to 621 nm. We evaluated the
prototype by sensing 117 tomatoes, 98 bananas, and 73 avocados.

The contribution of this paper is summarized as follows:
• To the best of our knowledge, MobiChem is the first to leverage
the smartphone’s front-facing camera and screen to perform
hyperspectral imaging and sensing.

• We present a smartphone-based toolkit for mobile HSI utilizing
a low-cost, zero-power phone screen cover. It incorporates an
automated pipeline for custom hardware generation and a fil-
ter selection process that enables the expansion of illumination
beyond the three RGB channels.

• Wedeveloped Rank-N-Contrast-based deep learningmodels lever-
aging hyperspectral images to capture subtle color and chemical
composition differences in maturing fruits, enabling robust la-
tent space alignment to capture the continuous and non-linear
progression of biochemical transformations, outperforming tra-
ditional regression methods in modeling the ripening process.

• Experiments show MobiChem achieved 95.67% in chlorophyll
measurement, 98.76% for lycopene detection, 93.53% for sugar
concentrations, and 91.34% average in classifyingmaturity (96.64%
for tomato, 86.37% for banana, and 91.03% for avocado).

Potential Applications. MobiChem’s capabilities open the door
to numerous innovative applications that have yet to be explored.
Patients with diabetes can monitor their glucose levels by taking
photos of their food with their smartphone, allowing better man-
agement of sugar intake. Farmers can monitor the growth stages
and health of fruits, optimizing irrigation, fertilization, and pesti-
cide use, and shoppers can assess the ripeness and quality of fruits
before buying or consuming them.



Tomato Ripening: 2 ~ 6 weeks Banana Ripening: 2 ~ 5 days Avocado Ripening: 3 ~ 7 days

Figure 3: Post-Harvest Fruit Ripeness Based on USDA Guidelines: (Left) Six stages of tomato ripeness range from fully green to
overripe [10, 33, 52, 76]. (Middle) Seven stages of banana ripeness range from green and firm to yellow and speckled [12, 22, 57].
(Right) Four stages of avocado ripeness range from hard and unripe to soft and ready to eat [42, 73]. (Fruits color figures online)
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Figure 4: Comparison Between Existing Mobile Hyperspectral Imaging Systems (left) and MobiChem (right): Existing methods
require costly and bulky optical components (e.g., external LEDs [20, 49, 71], prisms, and mechanical parts [43, 58, 59]).
MobiChem reuses the smartphone’s front camera and screen with narrow-band optical filters for accessible spectral sensing.

2 BACKGROUND AND MOTIVATION
Fruit Ripening. Fruits that continue to ripen naturally when
stored at room temperature are known as climacteric fruits. Ba-
nanas, apples, mangoes, tomatoes, peaches, and avocados are all
common examples of climacteric fruits. Climacteric fruits spans
tropical and temperate regions, and are pervasive in groceries [3, 55].
Sensing fruit properties plays a crucial role in global agriculture
and human diets because they continue to undergo biochemical
changes and influence their texture, flavor, and nutritional profile.
Figure 3 shows examples of tomatoes, avocados, and bananas turn
from lighter to darker colors during ripening. The color transfor-
mation results from a combination of chemical changes (chloro-
phyll, lycopene, and sugar content) and physical factors (firmness)
[47]. For example, tomatoes and tomato-based products are widely
recognized as rich sources of chlorophyll and lycopene, offering
significant health benefits [50]. Chlorophyll, a green pigment, is
prevalent in plants and vegetables, while lycopene, a red pigment,
belongs to the carotenoid family of phytochemicals. Regarding their
reflection properties, lycopene exhibits primary absorption peaks at
approximately 455-470 nm and 640-660 nm, whereas chlorophyll-a
shows absorption peaks around 430-440 nm and 662-680 nm [7, 74].

Hyperspectral Imaging System. The hyperspectral imaging
(HSI) system captures light across a broad range of wavelength
bands, providing detailed spectral information about the target
object. The finer-grained wavelength spectral profile enables HSI
systems to be applied across various bio and agricultural fields,

expanding their use beyond traditional computer vision techniques
that use RGB images.

However, existing HSI systems rely on intricate optical compo-
nents to disperse light across various regions of the scene (line or
area scan), utilizing prism arrays and mechanical elements such
as translational belts for accurate positioning. As shown on the
left of Figure 4, existing methods rely on two system setups to
obtain narrow-band spectral reflection: (a) using external LEDs
[20, 49, 71] or (b) using prism line scan [43, 58, 59]. The external
LEDs setup employs a standard camera sensor in a controlled light-
ing environment, using a combination of narrow-band light sources
or a wide-band source modulated by a rotating filter wheel [48].
The setup selection is based on the availability and form factors
of the camera sensor and illumination sources. Alternatively, a
hyperspectral imaging system can also be achieved through the
setup of prism line scan. This setup employs advanced camera con-
figurations to filter selected spectral bandwidths reflected from a
single wide-band light source. This mobile configuration can be
achieved with miniaturized optical prisms or a customized CMOS
sensor with more sensing bands than traditional RGB setups. Both
setups require dedicated and expensive hardware, which are not
commonly found in consumer devices, limiting their deployment
on mainstream mobile devices.

Enabling HSI on standard RGB camera devices has the potential
to broaden the scope of mobile sensing applications, significantly
increasing their accessibility and adoption. To fill the research gap,
we take advantage of the standard arrangement of the smartphone:
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Figure 5: System Overview. It combines a customized smartphone-based toolkit with backlight controls and deep-learning
models that optimize spectral data collection using feature embedding techniques to improve fruit property predictions.

the co-location of the front-facing camera and display. As illus-
trated on the right of Figure 4, we reuse the phone screen as the
sole illumination source and the front-facing camera as the visual
sensor. We then utilize narrow-band optical filters and tile them
on the phone screen to achieve narrow-band lighting illumination.
By modulating the camera capture time and position of light on
and off according to the filter location, we can control each frame
representing the narrow-band reflection at a particular wavelength.

3 MOBICHEM OVERVIEW
We propose MobiChem, which is compatible with widely available
COTS smartphones and supports hyperspectral sensing. As shown
in Figure 5, MobiChem consists of a Smartphone-based Toolkit hard-
ware design and Fruit Properties Analysis algorithm.

Toolkit Design. The hardware module integrates a passive, fold-
able, and portable toolkit that can be easily attached to COTS smart-
phones for everyday use. The toolkit design module includes a
phone-specific 3D printable outer shell and a custom backlight con-
trol application. First, geometric measurements, including phone
dimensions, display size, camera position, and field of view, define
the toolkit’s outer shell and filter rack. Since MobiChem operates
by utilizing the filtered backlight from the smartphone display,
precise control over filter placement and modulation of display
illumination is crucial during image capture. Second, the optical
characteristics of the smartphone’s display are examined, focusing
on its spectral response at full brightness across each color channel.
By accurately quantifying this response, narrowband filters can be
simulated to generate additional spectral channels. These optical
measurements optimize filter placement for uniform illumination
at each narrowband wavelength. During continuous image acquisi-
tion, the backlight control application sequentially activates and
deactivates specific filter regions for desired wavelengths.

Multi-Spectral Capture. After 3D-printing the hardware mod-
ule, the user can simply place the optical filter array on top of the
smartphone display, similar to a screen protector. The precisely
engineered filter rack ensures accurate alignment of the filters
corresponding to all wavelengths. Multispectral imaging is then
achieved using the phone’s front-facing (selfie) camera, with the
synchronized activation and deactivation of specific filter regions

on the display serving as the light source. During each HSI capture,
MobiChem acquires a sequence of images of the same object un-
der varying spectral illuminations. Since the system controls the
wavelength of the light source for each frame, the data processing
organizes the captured images into an HSI datacube format, with
dimensions of height ×width × spectral channels, for fruit maturity
classification and regression tasks.

Fruits Properties Analysis. Since spectral sensing, in general,
is advantageous in fruit analysis, MobiChem uses the raw multi-
spectral images for the application of fruit property analysis. To
boost the accuracy of fruit stage recognition, a feature embedding
module is proposed to enhance the model performance and reduce
the bias. This module uses the Rank-N-Contrast to map the raw
input into a continuous feature space. In the end, the system is
useful for inferring the properties of unseen fruit samples in terms
of maturity stage, chemical concentration, and physical factors.

4 UBIQUITOUS TOOLKIT DESIGN FOR
MOBILE HSI SYSTEM

We discuss MobiChem’s smartphone-based toolkit for mobile HSI
using a low-cost, zero-power, foldable phone screen cover here.

Implementing multispectral sensing on the mobile phone is chal-
lenging as there are not sufficient resources to realize robust light
source transceivers like in traditional HSI systems. Smartphone
displays are typically limited to three wide-band peaks in the red,
green, and blue regions, but true multispectral systems require more
distinct wavelengths. Furthermore, display dimensions, brightness,
and RGB spectral signatures vary across different brands and mod-
els, complicating the development of a universal method to derive
sufficient narrow-band illuminations from three-peak RGB sources.

To tackle these challenges, we introduce a pipeline process to
generate custom hardware compatible with COTS smartphones
and enable them to perform hyperspectral analysis reliably. Fig-
ure 6 illustrates the hardware generation pipeline, consisting of
two primary components: (1) custom 3D-printed cases for sample
placement, designed to align with the light path and display charac-
teristics of the smartphone camera, and (2) a filter selection process
that utilizes optical filters customized for the phone screen.

The pipeline for 3D-printed cases begins with gathering details
about the smartphone’s form factor, such as height, width, camera
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Figure 6: Flowchart for Generating Passive Toolkit Add-on of MobiChem. The pipeline consists of two main components: (a)
custom 3D-printed cases designed to align with smartphone camera specifications and (b) a filter selection process that uses
optical filters to expand illumination wavelengths beyond standard RGB.

position, and field of view. These parameters can be obtained from
the phone’s technical specifications or easily measured. Using an
automated geometric generation routine, the system quickly cal-
culates the dimensions for a customized 3D model tailored to the
specific smartphone and sensing application. Printing these phone
cases with entry-level 3D printers costs under $10 in filament. We
optimized the box volume with a foldable design (Figure 2b), reduc-
ing its size from 15×21×17 cm to 15 × 21 × 5.6 cm—a 67% reduction.

The filter selection process addresses the challenge of expanding
illumination from three RGB wavelengths to a broader range. This
involves automatically identifying suitable optical filters tailored
to the smartphone. The process begins with obtaining the phone
display’s optical metrics and the front-facing camera’s sensitivity
range, information readily available from technical specifications
or measurements. As shown in the middle of Figure 6, it involves
choosing from a pool of filter candidates. There are two types of
filters: plastic and glass. Plastic filters, made by injecting dyes, are
easy to cut and offer a wide range of options, allowing for more
combinations to shift the RGB peak of different display lights and
generate new wavelength peaks [14]. However, their transmission
rates can be irregular. In contrast, glass filters operate based on
the Fabry-Perot cavity principle, providing precise narrow-band
transmission rates but being more rigid in shape [19].

The selection of optimal filters follows two criteria: (1) a mini-
mum intensity cutoff to ensure sufficient illumination power and
(2) a minimum center peak wavelength deviation from RGB to guar-
antee that the selected spectral differ from the original RGB lights.
These criteria ensure effective brightness and spectral coverage.

Using the OnePlus 8 Plus as an example, we identified five
narrow-band filters with optimal wavelengths, enabling the cre-
ation of eight distinct illumination sources when combined with

the phone’s original RGB peaks. The filter selection process is cus-
tomized based on the RGB peaks and specific filter properties. To
begin, we measured the phone’s bright light spectrum without any
filter using a Sekonic C-7000 Spectrometer [46]. Next, we obtained
the band-pass ratios of the filters at different wavelengths from their
vendor’s specifications. We considered two filter options: ROSCO
plastic filters [16] and narrow-band optical glass filters [67], both
priced at approximately $0.02 per square inch. A total of over 180
filters were selected as candidates. Using the RGB spectral profile
and the filters’ band-pass characteristics, we simulated the resulting
peak wavelengths and intensities through an automated filter se-
lection process. The a minimum intensity cutoff was set as 20% and
minimum center peak wavelength deviation, 5nm. Ultimately, we
identified eight distinct wavelengths—463nm, 468nm(blue), 515nm,
525nm(green), 531nm, 545nm, 561nm(red), and 621nm—as shown
in Figure 6 and Table 1.

Filter Peak wl FWHM Screen Backlight Resulting wl

[62] 490 nm 30 nm blue (468 nm) 463 nm

[63] 510 nm 20 nm green (525 nm) 515 nm

[64] 550 nm 20 nm green (525 nm) 531 nm

[65] 570 nm 25 nm green (525 nm) 545 nm

[66] 590 nm 40 nm green (525 nm) 561 nm

Table 1: Selected Filters for the display of OnePlus 8 Plus

Beyond the filter selection process, we optimize smartphone
camera settings by adjusting the front camera’s capture time and
controlling the backlight area at specific filter positions aligned
with the hardware-mounted filter locations. To ensure consistency,
we fix camera parameters such as exposure time, ISO, and frame
duration, maintaining uniform settings across all captured images.
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Auto-exposure, auto-focus, and auto-white balance are disabled to
prevent automatic adjustments during image capture. If the cam-
era’s internal hardware allows for precise control, all photographic
parameters are standardized. Additionally, we designed a foldable
phone case to embed the filter (Figure 2), enhancing portability
and effectively blocking ambient light. When the screen is off, the
illumination within the phone case remains below 5 lux, ensuring
low light levels during data collection.

5 MATURITY DETECTION AND FRUIT
PROPERTIES ANALYSIS

This section provides a detailed discussion of the classification and
regression of fruit maturity, chemical and physical properties.

5.1 Classifying Fruit Maturity Stage
Maturity classification involves assigning fruits to discrete cate-
gories. For example, for tomato, there are “mature green”, “breaker”,
or “dark red”, etc. These categories represent distinct stages in the
ripening process, which are characterized by unique spectral re-
sponse in the hyperspectral images captured by MobiChem. We
propose a Convolutional Neural Network (CNN) model for our
classification task. CNNs are particularly well-suited for this task
because they excel at learning hierarchical features directly from
complex raw image sources, enabling effective discrimination be-
tween these discrete classes.

To ensure consistency across different fruit types, we adopt a
single CNN architecture for all fruits in our experimental setup. The
model consists of three 2D convolutional layers with 32, 64, and
128 filters, each followed by batch normalization, ReLU activation,
and max pooling to extract complex image features. The features
are flattened and passed through two fully connected layers with
128 and 256 units, followed by a dropout layer (probability 0.5) to
prevent overfitting. The nodes on the output layer correspond to

the different maturity stages of the fruit being tested. We trained
the model using the Adam optimizer and a weighted loss func-
tion 𝐿𝐹 = −𝛼𝑡 (1 − 𝑝𝑡 )𝛾 𝑙𝑜𝑔(𝑝𝑡 ) where 𝑝𝑡 is the model’s predicted
probability for the true class, 𝛼𝑡 is the weighting factor for each
class and is set to be inversely proportional to the class frequencies,
and 𝛾 controls the weighting of hard-to-classify samples. This loss
function approach addresses the issue of data imbalance by putting
more focus on hard-to-classify samples, thereby enhancing model
performance and reducing class bias.

However, each fruit type exhibits its own set of maturity stages
with distinct spectral profiles. For instance, tomatoes are classified
into six stages, while avocados are classified into four, as shown
in Figure 3. To account for these differences, we train separate
instances of the CNN for each fruit type. This approach allows
the model to be finely tuned to the specific spectral characteristics
and ripening patterns of each fruit, ensuring high classification
accuracy tailored to the fruit’s unique maturity progression. But
we ensured consistency in training procedures across all the fruit-
specific CNN instances by following identical data splitting (80-20
train-test split), the same augmentation methods, and standard
hyperparameter tuning approaches.

5.2 Prediction of Chemical Concentrations and
Physical Properties

Another key component of MobiChem is its ability to accurately
predict the chemical composition and physical properties of fruits
during different maturity stages. The comprehensive spectral data
captured by our proposed system provides insights into the internal
composition of fruits, which are not discernible in conventional
RGB images [81]. Our goal is to establish a correlation between the
acquired spectral data with the chemical (chlorophyll, lycopene,
and sugar content) concentrations and the physical properties of
fruits (firmness). Our experiments with tomatoes, bananas, and
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avocados showed that they undergo complex and non-linear bio-
chemical transformations during ripening. In tomatoes, lycopene
synthesis intensifies during mid-ripening, changing the fruit’s color
from green to red [31]. Bananas convert starch to sugars, leading
to a rise in sugar content [37], and avocados feature an increase in
oil content [6]. This causes non-uniform, and continuous changes
in the fruits’ chemical composition and physical properties as they
mature (Figure 3). For the prediction of these chemical concentra-
tions, we utilize a regression model based on the Rank-N-Contrast
(RNC) framework [80].

Unlike maturity classification, which deals with discrete stages,
concentration prediction requires estimating the continuous values
of the chemical changes that occur during the ripening process.
Traditional regressionmethods struggle to model these processes ef-
fectively. Linear regression and machine learning techniques (such
as Support Vector Regression) attempt to fit a general relationship
between the input hyperspectral data and the target chemical con-
centrations. However, these methods fail to capture the sigmoidal
or exponential patterns characteristic of ripening, struggling to use
the temporal or stage-wise progression relationships of the natural
continuity during the ripening process. As a result, they produce
fragmented and inconsistent predictions.

We integrated the RNC framework into our predictive system
to capture the continuous and ordered character of fruit ripening.
Unlike traditional regression methods, the RNC framework is ide-
ally suited for this task because it maps hyperspectral data into a
latent space where embeddings reflect the ordered progression of

ripening. This method explicitly optimizes the feature embeddings
to match the desired chemical and physical properties. RNC en-
forces similarity alignment in the embedding space that represents
the maturity progression by ranking samples based on their target
distances and contrasting each sample against others. For instance,
samples representing early-stage green tomatoes are positioned
closer in the embedding space, while mid-ripening samples are
progressively distanced to align with their distinct biochemical
transformations. By suppressing spurious features and capturing
the natural trend of ripening, this ordered embedding helps the
model focus on meaningful variations. Specifically, we implement
a two-stage approach that combines deep learning with the refined
capabilities of the RNC method, as illustrated in Figure 7.

For each fruit type, we train a single RNC model. First, we train a
deep neural network encoder based on a modified ResNet-18 archi-
tecture to extract high-dimensional features from our hyperspectral
images [26]. The encoder is adapted to process our input size of
50 × 50 pixels across eight spectral channels, as opposed to the
standard ResNet-18, designed for 224 × 224 pixel RGB images. We
modified the architecture to increase the input channel depth from
three to eight in the initial convolutional layers, adjusting filter
sizes in deeper layers, and adapting the network to accommodate
smaller spatial dimensions. This customized architecture enables
the model to capture crucial spectral and spatial features related to
chemical content and physical properties in the fruit. The model is
then trained using a ranking and contrastive loss function, which
organizes the images based on their chemical content and physical
properties. Initially, the labels group images with similar chemical
and physical characteristics, providing a reference framework. The
contrastive learning mechanism then leverages this framework to
adjust the embeddings, ensuring that samples with similar labels
are closer to the latent space. In contrast, samples with significantly
different concentrations are pushed further apart. This approach
captures the intrinsic order within the data, reflecting the gradual
changes in chemical content and physical properties during the
ripening process. Once the encoder is trained, we freeze its weights
and use the extracted features as input to a linear regressor. This
regressor maps the latent space representations to the actual val-
ues of chemical content and physical properties using L1 loss. To
enhance robustness, we incorporate data augmentation techniques
and regularization during training.

However, we found during our experiments that applying a sin-
gle set of hyperparameters universally across all regression tasks



Fruit / Prediction Task Tomato Banana Avocado
Input MobiChem RGB +/- MobiChem RGB +/- MobiChem RGB +/-
Classification Accuracy 96.94% 78.33% 18.61% 86.37% 72.32% 14.05% 91.03% 78.97% 12.06%

Table 2: Maturity classification accuracy for tomato, banana, and avocado using MobiChem or RGB Inputs

Fruit Tomato Banana Avocado
Prediction Task Lycopene Chlorophyll Sugar Content Firmness
Input MobiChem RGB +/- MobiChem RGB +/- MobiChem RGB +/- MobiChem RGB +/-
Regression R2 98.76% 92.31% 6.45% 95.67% 87.34% 8.33% 93.53% 72.32% 21.21% 81.27% 78.04% 3.23%

Table 3: Regression R2 for detecting chemical concentration and firmness using MobiChem and RGB inputs.

(chlorophyll, lycopene, sugar content, and firmness) resulted in sub-
optimal performance due to differences in the spectral and chemical
signatures specific to each attribute and fruit type. Thus, we per-
formed targeted hyperparameter tuning for each regression model
to accommodate distinct chemical and physical characteristic pro-
files. Specifically, we set the learning rate of the encoder to 0.01 for
tomatoes and bananas and 0.1 for avocados. The model predicting
tomato lycopene concentrations was trained for 3,000 epochs while
the other models used to predict chlorophyll, sugar content, and
firmness ran for 5,000 epochs. The SGD optimizer was used with the
specified initial learning rates, a learning rate decay of 0.1, weight
decay of 1e-4, and momentum of 0.9. The RNC loss function was
further configured using a temperature parameter of 2, with L1 as
the label distance function and L2 as the feature similarity function.
A uniform batch size of 64 was applied in all experiments to ensure
consistency. For the linear models across all fruits, we employed
a batch size of 128, trained for 2,000 epochs, and used an initial
learning rate of 0.1 with the same decay, weight decay, and momen-
tum settings. These hyperparameters were determined based on
the coefficient of determination, 𝑅2, observed during the training
process for each fruit’s dataset. This ensures that our regression
model is optimized for each fruit type.

6 EVALUATION
In this section, we begin by evaluating MobiChem’s performance
in fruit maturity classification and regression against the gold-
standard ground truth, showcasing its potential for innovative mo-
bile applications. This is followed by a detailed presentation of
monitoring chemical concentrations (lycopene, chlorophyll, and
sugar content) and physical properties (firmness).

6.1 Experimental Settings

Data Collection Using Real Fruits. We monitor tomatoes, av-
ocados, and bananas for our experimental analysis. MobiChem’s
functionality can be extended to other fruits or objects with similar
properties. To conduct experiments on real fruits with ground truth
measurements for maturity, chemical content (lycopene, chloro-
phyll, and sugar content), and physical factor (firmness), we initi-
ated the study by acquiring fruits of each type in stage 1 (unripe)
according to Figure 3. These fruits were carefully selected to ensure
uniformity at the starting stage of ripeness. Our goal was to capture
the full spectrum of ripening, from the initial stages to full maturity,
thus providing comprehensive data for analysis.

Figure 8 summarizes the data collection process. For tomatoes,
natural ripening was monitored closely, with 5–6 regions measured
per fruit to account for internal variation. This process included 117

tomatoes across six maturity stages, with both RGB and hyperspec-
tral images captured equally for each region. For bananas, ripening
was documented from the green stage to fully ripe with brown
flecks, focusing on starch-to-sugar conversion and chlorophyll
degradation. Data from several peel regions produced a dataset
of 98 bananas at seven ripening stages, with equal RGB and hyper-
spectral imaging emphasizing spectral and visual changes. Avocado
ripening, characterized by firmness reduction and oil accumulation,
was documented across four maturity stages. Unlike tomatoes and
bananas, avocados show minimal color change, so the focus was
on subtle firmness and spectral variations. The dataset included
73 avocados, with RGB and hyperspectral images captured from
various parts of each fruit.

We randomly shuffled the list of fruits and split them into inde-
pendent training and testing sets using standard machine learning
practice. 80% was kept for training and 20% for the test set. To avoid
data leakage, we separated the fruits so that a sample from a fruit
in the training set did not appear in the test set. We also ensured
that samples from the same fruit were kept within their original
set for all of its maturity stages.

Ground Truth. We used a KONICA MINOLTA CR-300 Chroma
Meter [39], which has beenwidely used in previous studies [1, 5, 68],
as illustrated in Figure 9, to correlate colorimeter readings with
maturity grading, lycopene, chlorophyll, sugar content, and firm-
ness in real fruits. We connected the accurate, objective color data
from the device to the internal biochemical changes in the fruits.
This method enabled accurate tracking and analysis of ripeness
progression in our samples.

For each sample, the Chroma Meter ground truth measurement
(Figure 9) and MobiChem capture (Figure 8) occur sequentially,
with a time gap under 2 minutes to ensure consistency. During
ground truth measurement, 4—6 random scanning areas per fruit
are recorded for reference. For MobiChem capture, each area is
cropped into a 50×50×8 datacube and stored with its corresponding
label. Each fruit is measured 2–5 times to track ripening with at
least a 2-day gap. The final dataset includes 2,248 samples from
117 tomatoes, 1,568 from 98 bananas, and 1,168 from 73 avocados,
covering multiple ripeness stages.

We used existing research [1, 5, 76] to convert Chroma Meter
readings into maturity stages and lycopene/chlorophyll concentra-
tions for tomatoes. For avocados and bananas, once maturity was
determined, sugar content and firmness were interpolated from
relationships in [12, 42, 57, 73, 75].

Evaluation Metrics. We use the following metrics in the evalua-
tion, commonly used in fruit monitoring.
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Figure 11: Comparing RGB and MobiChem Inputs for Fruit
ripeness Classification. (a) Sample images show subtle visual
differences between classes. (b) RGB-based models exhibit
high false positives and false negatives. (c)MobiChemdemon-
strates better class separation with much improved accuracy.

• For fruit maturity experiments, we measure the absolute maturity
classification error between the estimated maturity stages and
ground truth.

• For the experiments on chemical concentrations and physical
properties, we leverage the coefficient of determination (𝑅2) as
the primary criterion to enable comparison with existing studies
[5, 15, 77]. The formula of 𝑅2 is defined as Eq. 1:

𝑅2 = 1 −
∑𝑚
𝑘=1 (𝑦𝑘 − 𝑦𝑘 )2∑𝑚
𝑘=1 (𝑦𝑘 − 𝑦)2 (1)

where 𝑦𝑘 and 𝑦𝑘 are the ground truth and estimated value of the
𝑘𝑡ℎ chemical concentration or physical properties, respectively.
𝑚 is the total number of experiment samples. 𝑦 is the mean value
of the ground truth. The coefficient of determination 𝑅2 = 1 if
the predicted value 𝑦𝑘 exactly matches the observed value 𝑦𝑖 .
𝑅2 < 0 indicates that the system is worse than using the mean of
the observed values.

Baselines. In the evaluation, we consider two baselines: first,
traditional RGB photos to estimate fruit maturity, chemical con-
centrations, and physical properties (§6.2), and second, MobiSpec-
tral [54], a recent mobile HSI system for fruit monitoring achieved
by software-level spectral upsampling from RGB-I images (§6.3).

6.2 Overall Performance
Maturity Stages Classification. In this experiment, we compared
the maturity stage classification accuracy using MobiChem (8-
channel HSI) and traditional RGB images. The results in Table 2
clearly show the advantage of MobiChem for maturity classifica-
tion across all three fruit types—tomatoes, bananas, and avocados,
emphasizing the value of additional spectral information in cap-
turing the biochemical and physical changes during fruit ripening.
For tomatoes, MobiChem achieved 96.94% accuracy, surpassing the
78.33% accuracy using RGB inputs. For bananas, MobiChem’s accu-
racy was 14.05% higher than RGB, showing it is better at handling
complex ripening processes, such as starch-to-sugar conversion and
uneven chlorophyll breakdown. RGB inputs struggle in stages with
less distinct visual transitions (e.g., early green-to-yellow), while
MobiChem provides more robust spectral signatures to differentiate
these stages. For avocados, MobiChem achieved 91.03% accuracy,
outperforming RGB inputs at 78.97%, representing a 12.06% im-
provement. During ripening, avocados exhibit subtle changes like
oil accumulation and hardness loss, which are challenging to detect
with RGB imaging but are captured effectively with hyperspec-
tral imaging. This indicates that MobiChem’s enhanced spectral
resolution allows for detecting subtle variations in biological char-
acteristics, helping to differentiate between ripening phases.

The detailed confusion matrices in Figure 10 further illustrate
the differences in stage-wise classification performance between
RGB and MobiChemmodels for tomatoes. As shown in Figure 10(b),
MobiChem achieved an accuracy of 96.94% across all stages. In con-
trast, the RGB image classification method proved less effective
overall, achieving an accuracy of only 78.33%. Figure 10(a) shows
more significant misclassifications across all maturity stages, partic-
ularly at intermediate ripening stages. For the ‘Breaker’ stage, only
52.38% are correctly classified, with 28.57% misclassified as ‘Ma-
ture Green’ and 14.29% as ‘Turning’. For the ‘Turning’ stage, only
64.29% are correctly classified, with 7.14% misclassified as ‘Mature
Green’ and 10.71% as ‘Breaker’. However, the MobiChem model
exhibits notable advancements at every level. The misclassification
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Figure 12: Result of predicting lycopene concentration using MobiChem. (a) The latent space of the RGB Model shows more
scattering of the data. (b) A less organized latent space means the regression results are also more spread around the diagonal
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Figure 13: Regressor Prediction using MobiChem vs. RGB:
(a) Tomato lycopene concentration (b) Tomato chlorophyll
content (c) Banana sugar level (d) Avocado firmness

as ‘Mature Green’ for ’Breaker’ drops to 2.38%, and the ‘Breaker’
stage improves significantly to 97.62%. With an accuracy of 45.26%,
the ‘Turning’ stage demonstrates the model’s capacity to resolve
intermediate phases. Accuracy in the late phases, such as ‘Pink’ and
‘Light Red’, also improves, with 94.23% and 95.71%, respectively,
compared to 66.04% and 65.71% for the RGB model. The final ‘Dark
Red’ stage achieves 92.06% accuracy, reducing misclassification sig-
nificantly. In addition, if we analyze some adjacent states, we can
tell by side-by-side sample comparison for fruit samples, the precise
stage is difficult of user to identify in real scenario, and mostly for
many RGB image based CV system. Figure 11 is an ablation view
of the tomato, banana and avacado confusion matrix at visually
similar adjacent stages. These stages are essential to distinguish. For
example, tomatoes contain the richest Lycopene content at the full
red stage, and avocados have the most oil content at the Ripe stage
instead of the overripe stage. However, through side-by-side com-
parison of the MobiChem vs RGB input for the classification task,
MobiChem proves it has better precision to distinguish between
these easily confused classes.

The comparison demonstrates the superiority of HSI over RGB
for classifying tomato maturity stages. MobiChem leveraged ad-
ditional spectral information captured by the 8-channel methods,
providing crucial data, particularly in stages where color differences
are subtle, to achieve higher classification accuracy. These findings
validate our approach of using hyperspectral filters with smart-
phones to capture detailed spectral data, significantly enhancing
the accuracy of tomato maturity stage determination compared to
traditional RGB imaging techniques.

Chemical Concentration and Firmness Prediction. Table 3
summarizes the regression 𝑅2 values for predicting chemical con-
centrations and physical properties across tomatoes, bananas, and
avocados using MobiChem and RGB inputs. MobiChem consis-
tently outperforms RGB models across all tasks and fruit types,
highlighting its ability to capture subtle spectral features that RGB
models fail to detect. Lycopene prediction in tomatoes achieved an
𝑅2 of 98.76% with MobiChem, compared to 92.31% for RGB, reflect-
ing a 6.45% improvement. Similarly, chlorophyll prediction yielded
𝑅2 values of 95.67% for MobiChem versus 87.34% for RGB, with an
8.33% improvement. For the sugar content in bananas, MobiChem
achieved an 𝑅2 of 93.53%, compared to 72.32% for RGB, with a
21.21% improvement. For avocado firmness prediction, MobiChem
achieved an 𝑅2 of 81.27%, representing a improvement of 3.23%
over RGB’s value of 78.04%.

MobiChem’s hyperspectral imaging captures fine-grained spec-
tral information, leading to better latent space organization and
clustering, as shown in Figure 12. In the RGB model (Figure 12(a)),
we can see a relatively scattered distribution of points in the latent
space representation and a less clear separation between different
lycopene concentration levels. In contrast, the 8-channel HSI latent
space (Figure 12(c)) has a more organized and distinct clustering
with a smooth color gradient from purple to yellow, indicating a
better alignment of lycopene concentration values. This organized
clustering highlights MobiChem’s ability to capture detailed spec-
tral nuances. Because of this, the scatterplot of the actual versus
predicted results for MobiChem (Figure 12(d)) exhibits a tighter
clustering of values around the diagonal line, indicating higher
prediction accuracy than the scatterplot for RGB (Figure 12(b)).

The improved 𝑅2 values across all fruits and properties, which
reflect MobiChem’s consistent ability to extract meaningful spec-
tral data correlating with target attributes. The scatterplots for
MobiChem (Figure 13) further illustrate its tighter alignment with



Figure 14: Comparison with Spectral Reconstruction: We
replicated the RGB up-sampling algorithm from MobiSpec-
tral and performed experiments to benchmark the perfor-
mance in (left) classification and (right) regression tasks.

actual values, in contrast to the broader dispersion seen with RGB.
This demonstrates MobiChem’s precision and reliability in both
chemical and physical property predictions.

6.3 Comparison with Spectral Reconstruction
In this section, we compare MobiChem with MobiSpectral [54],
a phone-based hyperspectral imaging system using MST++ [9]
for spectral reconstruction. Unlike MobiChem, which uses filters
to retrieve spectra, MobiSpectral relies on a generative model to
up-sample from RGB data. We evaluate classification and regres-
sion accuracy between MobiChem’s eight spectral channels and
MobiSpectral’s transformer-upsampled channels.

Experimental Settings. We compare the classification model
(§5.1) and regression model (§5.2) using two inputs: (1) MobiChem’s
8-channel data samples (50×50×8) and (2) 40-channel datacubes
up-sampled from RGB data (50×50×40). Both use the same test-
train split, epochs, and learning rate, with MobiChem following the
settings in (§6.1). We trained the MST++ transformer for spectral
reconstruction using the open-source MobiSpectral dataset, which
includes five fruits: tomato, kiwi, apple, blueberry, and strawberry.
Since the application domain is in visible range, we modified the
original model to take three-channel RGB and outputs 40 channels,
covering the 400–700nm visible spectrum.

Result. As shown in Figure 14, MobiChem outperforms the exist-
ing solution, improving classification accuracy by 13.5% and 𝑅2 by
20.6%. This indicates that MobiChem’s 8-channel output provides
richer data than MobiSpectral’s RGB-based spectral reconstruction.
Additionally, comparing with Table 2, MobiSpectral results closely
match those from RGB, suggesting spectral reconstruction adds
insufficient additional information for our learning models.

6.4 Ablation Study
To assess MobiChem’s robustness and key components, we con-
ducted an ablation study on fruit maturity classification and chemi-
cal/physical property prediction. Each ablated model was trained
and tested using the same dataset and protocols as the full models
(Sections 5.1 and 5.2) for consistency.

Maturity Classification Model. For the classification model,
we tested the following modifications to the CNN: (1) variation
in network depth (2, 3, or 4 layers), (2) adjustment of network

Ablation Tomato Banana Avocado

MobiChem Model 96.94% 86.37% 91.03%

2 Layer CNN 94.44% 82.17% 88.98%
4 Layer CNN 96.89% 82.80% 88.46%
16-32-64 Network 90.00% 81.85% 89.32%
64-128-256 Network 97.03% 87.58% 89.32%
Leaky ReLU 96.22% 86.31% 90.17%
No Dropout 94.44% 83.76% 88.46%

Table 4: Ablation study: Accuracies formaturity classification
in tomatoes, bananas, and avocados

Ablation Lycopene Chlorophyll Sugar Firmness

MobiChem 98.76% 95.67% 93.53% 81.27%

ResNet-18 (L1) 86.74% 61.09% 44.65% 77.66%

Table 5: Ablation study: Regression 𝑅2 for predicting chemi-
cal concentration and physical characteristics in tomatoes,
bananas, and avocados

width (16-32-64/32-64-128/64-128-256), (3) substitution of ReLU
with LeakyReLU, and (4) removal of dropout regularization. Table
4 shows the results.

Reducing the network depth to 2 layers lowered test accuracy to
94.44% for tomatoes, 82.17% for bananas, and 88.98% for avocados,
while increasing it to 4 layers achieved 96.89%, 82.80%, and 88.46%,
respectively. Neither model matched the baseline accuracy. Narrow-
ing the filters to 16-32-64 decreased accuracy to 90% for tomatoes,
81.85% for bananas, and 89.32% for avocados. Widening the network
improved accuracy for tomatoes (97.03%) and bananas (87.58%) but
not avocados (89.32%), suggesting overfitting. Replacing ReLU with
LeakyReLU caused only a slight accuracy dip (96.22% for tomatoes,
86.31% for bananas, and 90.17% for avocados), indicating ReLU suf-
fices. Removing dropout reduced training accuracy to 94.44% for
tomatoes, 83.76% for bananas, and 88.46% for avocados. Overall,
MobiChem delivers optimal results without excessive complexity.

Chemical Concentration and Physical Property Prediction
Model. For the chemical concentration and physical property
prediction task, we assess the impact of RNC loss on regression
performance. Our complete pipeline integrates an encoder with
RNC loss followed by a linear regression layer with L1 loss using a
shared ResNet-18 backbone. We compare this to a baseline model
with a ResNet-18 encoder trained with L1 loss. The results in Table
5 show the advantage of the MobiChem model, with its 𝑅2 values
significantly higher than the ResNet-18 model: 97.82% (-0.94%) for
lycopene, 61.09% (-34.58%) for chlorophyll, 44.65% (-48.88%) for
sugar content in bananas, and 75.23% (-6.04%) for avocado firmness.

Location and Time. We evaluated our system’s robustness across
different locations and seasons by collecting data frommultiple sites
over three batches within one year. To assess the impact of ambient
light and seasonal changes, we partitioned the data by location and
collection time. Locations tested the hardware’s ability to block
external light, while seasonal variation ensured the system could
handle the same fruit species in different conditions. We sampled
10% from each location or batch as a test set. The results, shown in
Figure 15, reveal no significant accuracy differences across fruits
or conditions, demonstrating that the system is robust to ambient
light changes and generalizable across seasons.



Figure 15: System Evaluation under Varied Conditions

7 RELATEDWORKS

MobileApplication in FoodQuality Sensing. For food/chemical
sensing tasks to mobile devices, there are mainly two directions
of implementation: standalone prototypes [20, 24, 25, 27], or in-
corporation with existing COTS mobile devices [13, 35, 78]. For
example, BabyNutri [27] uses a customized printed spectrometer
with selected wavelengths, so as to analyze the purity and con-
centration of liquid food products. CapCam [78] makes use of the
vibration-induced ripple of the speaker of the smartphone captured
by the camera to measure the alcohol concentration. Although
the standalone prototype have more sensor choices, incorporation
with smartphone achieves wider ubiquity deployments and better
sensing potentials. MobiChem stands out from previous work as
it is ubiquitously compatible with most smartphones. Among all
smartphone-based implementations for food quality control, to the
best of our knowledge, MobiChem is the first work to use an optical
filter array, phone screen, and front camera to achieve on-device
hyperspectral image captures.

Hyperspectral Imaging System for FoodQuality Sensing. Hy-
perspectral imaging (HSI) has broad sensing capability for food
products. Many prior works have been successful in assessing
tenderness, water concentration, and possible contamination of
meat[17], poultry carcass [11], and fish [38]. Due to the spatial
nature of hyperspectral imaging output, Hyperspectral Imaging
system assist visualization for the sugar distribution, ripening area,
and einsect infecting location of citrus [40], melons[60], and toma-
toes [47], etc. However, many of those HSI system empathize more
with accuracy over cost and portability. All traditional configura-
tions of a hyperspectral imaging system require expensive optical
components and bulky mechanical structures. These gaps limit the
costs and mobility of hyperspectral imaging systems, and motivate
MobiChem as a low-cost mobile HSI sensing system.

Low-Cost Implementation of Hyperspectral Imaging System.
To make hyperspectral imaging system suitable for diverse mobile
applications, [32, 45, 51, 61] works focus on optimizing hardware
configurations through low-cost and compact components. For ex-
ample, [61] miniaturizes the 100-spectral band system to the size
of a normal image sensor by electronic fabrication of microscopic
wedge filter arrays on top of every sensor unit. HyperCam [21]

as one of the early low-cost HSI works, provides a low-cost hard-
ware implementation using LEDs to allow faster switching between
wavelength channels. Recently, researchers also considered spec-
tral reconstruction from RGB images to hyperspectral images as a
computer vision task [4, 36, 69]. Among all models, MST++ [9] by
Cai et al. is the latest state-of-the-art model. MST++ pioneers using
the vision transformer model (ViT) for spectral reconstruction. Mo-
biSpectral [54] incorporated MST++ as a mobile software on the
stand-alone phone-based hyperspectral imaging system. However,
MobiSpectral requires IR camera of Pixel 4a and is not practical.

8 DISCUSSION

Generalization Across Different Fruit Types In this paper,
we focus on three climacteric fruits: tomatoes, bananas, and av-
ocados. Our approach can naturally extend to other climacteric
produce, assuming linear or near-linear correlations between mea-
surable attributes and maturity progression. Such relationships are
well-documented in fruits like mangoes and papayas [55]. How-
ever, species-specific factors must be considered for robust gen-
eralization, as some fruits may have subtler visual or chemical
changes requiring more calibration. Despite this, the core Mo-
biChem pipeline—spectral filtering, data processing, and ranking-
based regression—is transferrable to other fruits.

Hardware Generalization As shown in Figure 6, MobiChem
is easily adaptable to different phone brands. After collecting a
small set of phone-specific measurements, replicating the work-
flow requires minimal effort. With different models, we can create
a similar 3D-printed shell and select filters based on the phone’s
backlight. While demonstrated with one smartphone, our modu-
lar, parameter-driven pipeline is universal, making hyperspectral
imaging applicable to all COTS smartphones.

9 CONCLUSION
In this paper, we presented MobiChem, a smartphone-based toolkit
for practical fruit monitoring. MobiChem utilizes the smartphone’s
front camera and display, enhanced with a zero-powered screen
cover. Combined with deep learning models, it delivers hyper-
spectral imaging capabilities traditionally limited to costly, bulky
equipment. Our experiments on tomatoes, avocados, and bananas
demonstrated MobiChem’s high performance in fruit monitoring,
achieving 95.67% accuracy in chlorophyll measurement, 98.76% in
lycopene detection, 93.53% in sugar concentration analysis, and
91.34% average in classifying maturity (96.64% for tomato, 86.37%
for banana, and 91.03% for avocado). MobiChem offers an accessible
solution for non-destructive fruit monitoring for mobile devices.
We believe such an application has the potential to transform daily
consumer grocery habits and traditional agricultural practices, as
well as enhance food assessment.
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