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Abstract—The Internet has become a critical communication
infrastructure for citizens to organize protests and express
dissatisfaction with their governments. This fact has not gone
unnoticed, with governments clamping down on this medium
via censorship, and circumvention researchers working to stay
one step ahead. In this paper, we explore video games as a
new avenue for covert channels. Two features make video
games attractive for use as a cover protocol in censorship
circumvention tools: First, games within a genre share many
common features. Second, there are many different games,
each with their own protocols and server infrastructures. These
features allow circumvention tool developers to build a single
framework that can be adapted to work with many different
games within a genre; therefore allowing quick response to
censor created blockades. In addition, censored users can
diversify their covert communications across many different
games, making it difficult for a censor to respond by simply
blocking a single covert channel.

We demonstrate the feasibility of this approach by imple-
menting our circumvention scheme over three real-time strat-
egy games (including two best-selling closed-source games).
We evaluate the security of our system prototype, Castle, by
quantifying its resilience to a censor-adversary, similarity to
real game traffic, and ability to avoid common pitfalls in
covert channel design. We use our prototype to demonstrate
that our approach can provide the throughput necessary for
bootstrapping higher bandwidth channels and also the transfer
of textual data, such as web articles, e-mail, SMS messages,
and tweets, which are commonly used to organize political
actions.

1. Introduction

The Internet has become a critical communication infras-
tructure for citizens to obtain accurate information, organize
political actions [1], and express dissatisfaction with their
governments [2]. This fact has not gone unnoticed, with gov-
ernments clamping down on this medium via censorship [3],
[4], [5], surveillance [6] and even large-scale Internet take
downs [7], [8], [9]. The situation is only getting worse, with
Freedom House reporting 36 of the 65 countries they survey
experiencing decreasing levels of Internet freedom between
2013 and 2014 [10].

Researchers have responded by proposing several look-
like-something censorship circumvention tools. These tools
aim to disguise covert traffic as another (benign) protocol to
evade detection by censors. This can take two forms: either
mimicking the cover protocol using an independent imple-
mentation, as in SkypeMorph [11] and StegoTorus [12], or
encoding data for transmission via an off-the-shelf imple-
mentation of the cover protocol, as in FreeWave [13].

This has created an arms race between censors and
circumvention tool developers. For example, Tor’s intro-
duction of “pluggable transports”, i.e. plugins that embed
Tor traffic in a cover protocol to counter censors that block
Tor [14]. Censors have already begun blocking some of these
transports [15], and some censors have gone so far as to
block entire content-distribution networks that are used by
some circumvention systems [16].

Furthermore, recent work has shown that care must
be taken when designing and implementing a look-like-
something covert channel. For example, Houmansadr et al.
showed that, when a covert channel re-implements its cover
protocol, the copy is unlikely to be a perfect mimic of the
original protocol, and a censor can use the differences to
recognize when a client is using the covert channel [17].
Worse yet, Geddes et al. demonstrate that even running
the cover application is not enough to avoid detection by
censors [18] – i.e., approaches like FreeWave may be de-
tected via architectural, channel, and content mismatches
between the application’s regular behavior and its behavior
when being used as a covert channel.

1.1. The promise of video games

In light of this state of affairs, this paper argues that
video games have several features that make them an at-
tractive target for covert channel development.

There are many games available, enabling developers
to create a diverse set of circumvention tools. The
number of real-time strategy games has grown rapidly in
the last few years. This growth has been driven in part
by the democratization of game publishing, as embodied
in game distribution platforms such as Steam [19] – e.g.,
Figure 1 shows the total number of real-time strategy video
games that have been released since 2010 on the Steam
platform. Further, each game uses its own network protocol
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Figure 1: Growth of the real-time strategy game video game
genre on the Steam distribution platform [19].

and infrastructure, so the censor cannot simply block all
games using a single technique. Censorship circumvention
developers can use this large body of games to adapt and
evade a censor’s attempt to block any particular game.

Video games share common elements, making it possible
to use a single framework across many games. For
example, most Real-Time Strategy (RTS) games have the
notions of buildings, units, and rally points, and censorship
circumvention tools that encode information by interacting
with these objects can be easily ported from one RTS game
to another. Many games also feature replay logs and similar
user interfaces, enabling covert channel frameworks that are
only loosely coupled to the internals of any particular game.

Game-based circumvention tools can re-use off-the-shelf
game implementations Since games have features that
make it relatively easy to automate interaction with the
game, circumvention tool developers do not need to re-
implement the game (or its network protocol), ensuring that
the circumvention tool can leverage the existing implemen-
tation of the game. This prevents attacks that can distinguish
between the original implementation and the cover-protocol
implementation of an application or protocol [17].

Game-based circumvention tools avoid previously en-
countered pitfalls. Games in select genres often support
both peer-to-peer and server-based gaming sessions (e.g.,
real-time strategy games), so they can adapt to whichever
is better for the circumvention tool. This allows architec-
tural matching as described by Geddes et al. [18]. Games
must maintain synchronized state, so they are loss sensi-
tive, avoiding the channel mismatch between multimedia
and Web/textual covert content identified by Geddes et al.
[18]. Finally, games are reasonably able to avoid content
mismatches by due to the large amount of diversity in typical
content characteristics.

Games often have built-in security features that can sup-
port secure covert channels. It is considered good practice
for games support encryption and authentication in order
to prevent cheating [20], [21] – e.g., the Microsoft DirectX
networking API [22] and the Steam peer-to-peer networking
API [23] which are commonly used by game developers
include support for SSL sockets. Additionally, some games
also support password-protected sessions, which can prevent

application-level attacks in which the censor attempts to
identify covert channels by joining the game.
Games have the potential to reverse the resource imbal-
ance in the arms race between censors and developers.
By lowering the development cost of creating new covert
channels, video games can create an asymmetry that cir-
cumventors can use to win the arms race against censors.
Censors can respond to look-like-something circumvention
tools by blocking the cover protocol entirely or attempting
to distinguish legitimate uses of the protocol from uses by
the covert channel. If developing such mechanisms is time
consuming for the censor, but circumvention tool developers
can quickly construct new tools, there will almost always be
effective circumvention tools available for end users.

1.2. Our contributions

In spite of the above benefits, we must answer several
questions to understand the feasibility of using video games
for covert channels:

• Security: Can we encode data in the video game so
that the censor cannot distinguish regular game play
from covert channel sessions?

• Extensibility: Can we build a framework that can
be quickly adapted to new games?

• Performance: Can video games support good covert
channel bandwidth?

To answer these questions, we have built Castle, a pro-
totype video game-based covert-channel framework. Castle
encodes data as player actions in an RTS game. Castle uses
desktop-automation software to execute these actions in the
game. The video game software transmits these moves to the
other players in the same gaming session, who then decode
the message and send replies in the same way.
Security. Castle’s design makes it resilient to several classes
of attacks. Since Castle uses the underlying game to trans-
mit data, an attacker cannot use simple IP- or port-based
blocking to block Castle without blocking the game entirely.
When used with games that encrypt and authenticate their
traffic, an attacker cannot use deep packet inspection to dis-
tinguish Castle traffic from regular game traffic. Encryption
and authentication also preclude simple packet injection or
manipulation attacks. Since games use network communica-
tion to synchronize their state, they are loss sensitive, unlike
some VoIP protocols. Thus Castle cannot be distinguished
from regular gaming sessions through selective packet delay
or dropping attacks. Finally, when used with password-
protected gaming sessions, Castle is immune to application-
level attacks, such as the censor attempting to join the same
gaming session to observe the player’s in-game actions.

We evaluate Castle’s security against statistical traffic-
analysis attacks by applying several previously published
classifiers – i.e., the Liberatore [24], Herrmann [25], and
Shmatikov [26] classifiers. We find that packet sizes and
inter-packet times of Castle’s traffic deviate from those of
regular human-driven game play by the same amount that
different human player’s traffic differ from each other.



Extensibility. Castle can be easily adapted to new RTS
games. Our current prototype supports three such games:
“0-A.D.” [27] and two extremely popular (over 8.5 million
copies sold) closed-source games from different develop-
ment studios that we refer to as “Aeons” and “Conquerors”.
It took a single undergrad less than six hours to port Castle
from 0-A.D. to each game.

Castle is easy to port to new RTS games for two reasons.
First, Castle uses only features that are nearly universal to
RTS Games – e.g., gameplay characteristics and game re-
play features. Thus the high-level architecture and encoding
scheme can be re-used across games. Second, Castle is only
loosely coupled to game internals – requiring no access to
the game source-code. For example, Castle uses desktop-
automation software to execute game actions through the
game’s standard graphical user interface. As a result, Castle
does not need to understand the game’s network protocol or
any other internals.
Performance. Castle offers good bandwidth for text-based
communications. Our current prototype provides between
50 and 200 B/s of bandwidth, depending on configuration
parameters. Castle has about 100x more bandwidth than
other proposed game-based covert channels [28], [29],
[30]1. With some game-specific tuning, the Aeons version
can deliver over 400 B/s. Even 50 B/s is sufficient for boot-
strapping high bandwidth communication channels (e.g.,
distributing Tor bridge IPs), text-based web articles, email,
SMS messages, tweets, and other asynchronous communi-
cations which are widely used organizational tools among
political activists. There are also several ways to potentially
increase Castle’s bandwidth (see Section 8 for details).

Together, these results show that video games offer
promise as a target for covert channel development and they
may enable circumvention tool developers to gain the upper
hand in the arms race against censors.
Paper outline. In Section 2, we present the adversary
model that we consider in this paper. Section 3 provides
background on real-time strategy games, details the proper-
ties that makes them favorable for use as cover protocols in
covert channels, and explains how Castle makes use of each
of these for sending and receiving covert data. In Section 4,
we provide details on our publicly available implementation
of Castle. Following this, we describe our evaluation criteria
in Section 5. In Sections 6, 7, and 8, we present the results of
Castle’s security, extensibility, and performance evaluation,
respectively. In Section 9, we compare the primary design
principles of Castle with its most similar counter-parts.
Finally, in Section 10, we draw our conclusions.

2. Adversary and Threat Model

In this paper, we consider a network-level censor (e.g.,
an ISP) able to (1) perform analysis over all traffic that
it forwards from or to clients within its network and (2)

1. Despite the similarity of their names and their common use of video
games, Rook and Castle were developed independently and have quite
different goals. See Section 9 for details.

perform manipulations (e.g., dropping and injecting packets)
of the network traffic via on-path or in-path middleboxes.
In addition, the adversary may also take an active approach
by probing and interacting with application endpoints.

2.1. Network traffic attacks

Passive analysis. We consider censors that are able to per-
form stateless and stateful passive analysis of traffic at line
rate. In particular, the censor is able to perform the following
passive analyses to detect the use of a circumvention tool:

• IP and port filtering: The censor can observe the IP
addresses and port numbers of connections on their
network (e.g., using tools like Netflow [31]).

• Deep-packet inspection: The censor may look for
specific patterns in packet headers and payloads
(e.g., payloads indicative of a specific game).

• Flow-level analysis: The censor may perform sta-
tistical analyses of flow-level characteristics such as
inter-packet times and sizes) while maintaining a
reasonable amount of state.

The first two of these capabilities mean that the ISP
can detect flows related to the video game in general. For
example, if the game uses a specific set of servers (IPs) or
ports, these flows may be easily identified. Similarly, game-
specific payloads can reveal game traffic to the ISP. The last
property can reveal information about game behavior to the
ISP. A circumvention system must avoid perturbing these
features to remain undetected and unblocked.
Active manipulations. In order to detect and/or disrupt
the use of censorship circumvention tools, censors may
perform a variety of active manipulations on suspicious
connections that transit its network. In particular, the censor
may drop, insert, or delay packets. Additionally, they may
also modify the packet contents and headers. The adversary
may perform these manipulations to observe the behavior of
flow endpoints to distinguish legitimate game traffic from
the covert channel. They may also use these actions to
block covert connections (e.g., sending TCP RST packets,
or dropping traffic).

2.2. Application layer attacks

In the context of detecting look-like-something covert
channels, censors may take additional actions outside the
scope of standard active and passive analysis. Specifically,
they may interact with the application that the covert channel
aims to hide within. They may attempt to join game servers
and observe games in progress (i.e., to identify who is
playing with whom). Additionally, they may seek to observe
properties of the games being played (e.g., map state, player
move behaviors) or join and interact with game players.

2.3. Censor limitations

We impose limitations on the computational and storage
capabilities of censors. While they have a large amount of



computational resources, they are still unable to maintain a
large amount of per-connection state for long durations or
decrypt encrypted communication channels and guess high
entropy passwords. We also assume that the censor does
not have a back door into the game or game servers. For
example, we assume the censor is not able to break into the
game servers (e.g. by exploiting a buffer overflow or other
bug). We also assume that the operators of the game servers
do not cooperate with the censor, e.g. they do not allow the
censor to see other user’s private game state.

3. The Castle Circumvention Scheme

Castle aims to demonstrate that highly portable, secure,
and low-bandwidth look-like-something defenses are possi-
ble via applications such as real-time strategy video games.
In this section, we provide a background on the real-time
strategy genre and highlight key properties of these games
that enable Castle to create covert channels that generalize
to a large number of games within the genre. Finally, we
describe how Castle encodes, sends, and receives data.

3.1. Real-time strategy games

Real-time strategy games are a genre of video games
that center around the idea of empire-building. Typically,
the goal is for a player to assert control over enemy territory
through a combination of military conquest and economic
maneuvering. Below we highlight commands and features
that are common to a large majority of real-time strategy
games (Table 1) and are critical to the extensibility of Castle.
Units. Real-time strategy games allow players to create
and train a large number of units (e.g., human characters,
livestock, machinery). Units may perform many actions. For
example, in 17 of the Top 20 best-selling real-time strategy
games [32], a unit can be instructed to move to a location
on the map by left-clicking it and then right clicking the
destination location on the map.
Buildings. Players may construct a number of buildings
over the course of a game. Buildings are required to train
certain units and research new technologies – e.g., barracks
are required to train infantry. In many (e.g., in 17 of the Top
20 best-selling) real-time strategy games, unit-producing
buildings can be assigned a rally point – i.e., a location
at which all units created by the building will assemble.
Maps and map editors. Real-time strategy games are set
in a landscape covered by plains, forests, mountains, and/or
oceans. Many (including 17 of the Top 20 best-selling) real-
time strategy games allow users to create and use their own
maps, or modify existing maps for use within the game.
This is either from within the game, or via external mods.
Replay files. In newer games, players may be given
the option to record all moves and commands issued by
themselves and other players in the game. This is used to
replay or watch previously played video games. When this
option is enabled, the game writes, in real-time, all in-game

commands to a replay log. While this replay log may be
stored in a propietary format, we found decoders to read
these formats are available for 11 of the Top 20 best-selling
real-time strategy games.

Feature Number of Games
Common Comands 17
Map Editors 17
Replay Decoders 11

TABLE 1: Real-time strategy game features used by Castle
and the number of games in the Top 20 best-sellers of all-
time that possess them [32].

In addition to the above elements, the following net-
working and security properties are standard in the real-time
strategy genre. These properties make real-time strategy
games very suitable for use as covert channels.

Network communications. For scalability reasons, real-
time strategy games do not broadcast state information
to all players in the game. Instead, they pass commands
issued by the players in fixed intervals (e.g., 100 ms). These
commands are then simultaneously simulated in each game
client. This allows clients to execute the game identically,
while requiring little bandwidth [33]. As a consequence, any
data encoded as an in-game command is received as such,
by other players.

Additionally, while most real-time strategy games make
use of UDP channels for command communication, reliable
delivery mechanisms are implemented in the application
layer. This makes many active traffic manipulation attacks
described in previous work [18] ineffective.

In terms of network architecture, real-time strategy
games may take two forms, with players joining a game
hosted on a public game server (e.g., servers hosted by game
publishers such as Microsoft, Blizzard, Electronic Arts, etc.),
or connecting directly to each other in a peer-to-peer mode.
Therefore, any covert channel system utilizing video games
as a cover, can employ whichever is the dominant mode
of operation and shift from one to the other if required, to
evade a censor blockade.

Security considerations. In order to prevent cheating in the
multi-player setting, it is considered good practice to imple-
ment encrypted and authenticated communication channels,
in real-time strategy games [20], [21]. Additional mecha-
nisms such as verification of game-state consistency (be-
tween all clients in the game) [33] and password-protected
multi-player game sessions [23] are also common.

These security mechanisms have several vital conse-
quences in the context of using real-time strategy games as
covert channels. First, since the game command channel is
encrypted, passive adversaries are unable to view commands
issued by players in a game by simply observing network
traffic. Second, the presence of authenticated channels and
game-state verification algorithms prevents active attackers
from using falsified game packets to interact with, or observe
other clients on the game servers. Finally, the presence
of password-protected game instances prevents adversaries



from joining multi-player games (to observe the in-game
state and identify players).

Commonalities between real-time strategy games. Our
design leverages the common command structure, map de-
sign capabilities, and tools for decoding saved games and re-
plays generated by real-time strategy games. Table 1 shows
the results of our survey of the prevalence of these features
in real-time strategy games. We find that 11 of the top 20
best-selling games of all-time include these features.

3.2. Building game-based covert channels

Straw-man approach. One may consider establishing
covert channels via the in-game voice or text chat channels.
However, this approach has several drawbacks.

First, previous work shows that encoded data is eas-
ily distinguishable from human audio communication [17],
[18]. Furthermore, voice communication channels are fairly
uncommon in the real-time strategy game genre. Second,
while game data is encrypted, it is often the case that text
communication channels are left unencrypted. Finally, while
one may expect a fairly constant stream of human issued in-
game commands in a real-time strategy game, it is rare to
have long text or audio communication while playing the
game. These factors allow covert channels built on these
approaches to be either difficult to implement/extend, or to
be easily detected by an adversary, or both.

The Castle approach. To create a covert channel mecha-
nism that is extensible to a large number of games in the
real-time strategy genre, Castle exploits two key properties.

• Presence of common commands. Real-time strat-
egy games share a common set of commands.
Specifically, the ability to select buildings and assign
a location where units created in these building
should assemble. This location is called a “rally
point”. We denote the command of setting the
rally point for units created in a given building
by SET-RALLY-POINT. Games also provide the
ability to move a selected unit to a given location
(denoted by the MOVE command). Thus, any encod-
ing that translates covert data into a combination of
unit/building selections and these primitives will be
extensible across games in the genre.

• Access to replay logs. Often, real-time strategy
games provide a replay option which saves every
players’ moves to disk (for later playback). There-
fore, all in-game commands are written to disk
where they can be read and decoded in real-time.

Castle consists of two main components to send and
receive data. These are illustrated in Figure 2. Sending
is done by encoding data into game commands and then
executing them within the game using desktop automation.
The receiving process monitors the log of game commands
and decodes this list to retrieve data sent via the system.

  

Game Client
Desktop 

Automation
EncoderData

Game 
Moves Execute moves

Sending data

Game Client
Game Play 
Analyzer

DecoderData

Game 
Moves Game data

Receiving data

Figure 2: Overview of data flow for sending an receiving
in Castle. Shaded components are implemented as part of
Castle while the others use existing off-the-shelf software.

3.3. Encoding data into game commands

Castle relies on the ability of the player to select units
and buildings and set rally points to encode data. A naive
encoding may consider selecting each unit and directing it to
a different point on the game map to encode a few bytes of
information per unit. However, in preliminary experiments,
we observed that this approach resulted in a covert channel
that could not match the properties of the original game
traffic (moving O(100s) of units to distinct locations is not
a usual action for players).

Encoding in Castle is accomplished, without inflating
the amount of game data transferred, using the following
scheme. First, the participants in Castle use (standard or
Castle-specific) maps which contain either n immobilized
units (e.g., units placed in unit sized islands, within walls,
etc.) or n unit producing buildings (e.g., barracks, stable,
etc.). The Castle sending process then encodes data by se-
lecting a subset of these n units and executing either a MOVE
command in the case of units or SET-RALLY-POINT in
the case of buildings. While we discuss the encoding in the
context of units and the MOVE command, Castle is easily
implemented using either primitive.

Instead of using each of the n units to represent a single
bit sequence, which would result in log2(n) bits of data
transferred per command, we use a combinatorial scheme
where we select k of the n units, to increase efficiency.
Intuitively, the selection of k of n units results in

(
n
k

)
different values or log2

(
n
k

)
bits that may be transferred

per command. We use combinatorial number systems [34]
to convert log2

(
n
k

)
bits of data into a selection of k of

the n units. In preliminary experiments, we found that
the selection of a constant number of units per command
resulted in traffic which was more uniform than regular
game traffic. As a result, we adjusted our scheme to select
between 0 and k units for encoding to increase variability
of packet sizes. Section 6 provides a more in-depth view of
how we evaluate our similarity to actual game traffic.

In addition to selecting the set of units, we can also
select a location for all k selected units to move to. Note
that since we select a single location for k units (instead of
k distinct locations) this does not impact the data transfer



size. Given a game map with m = xmax × ymax potential
locations we can additionally encode log2 m additional bits
of data in a given turn.

Assuming a map with n units/buildings, a maximum
of m = xmax × ymax map locations, and a game which
allows for a maximum of k units/buildings to be selected
simultaneously, the game-independent encoding of covert
data into a MOVE or SET-RALLY-POINT command is done
as shown in Algorithm 1.

Algorithm 1 Algorithm for encoding covert data into game
commands

function ENCODE(data, k, n, m, xmax)
r

$←− {1, . . . , k}
z1 ← READ(data, log2

(
n
r

)
)

for i = n→ 0 do
if
(
i
r

)
≤ z1 then

z1 ← z1 −
(

i
r−−

)
selected← selected||i

end if
end for
z2 ← READ(data, log2 m)
(x, y) ← (z2 mod xmax, bz2/xmaxc)
return {selected,(x, y)}

end function
function READ(file, b)

return next b bits from file in base 10.
end function

The combination of selecting between 0 and k units and
setting the location to move to, results in an average of(∑k

i=1 log2 (
n
i)

k + log2 m

)
bits transferred per command.

As mentioned earlier, one may achieve higher data-rates
by always selecting k units, however, this causes identically
sized commands and thus affects the packet size distribution.

3.4. Sending covert data

Once the covert data is encoded into in-game commands,
the sending process must actually execute the commands
in order to communicate them to the receiver. One way to
do this is to modify the game AI to issue commands as
dictated by our encoder. However, this is non-trivial since
most games are closed-source and viewing/modifying game
code is not always an option. Even when source code is
available, the overhead of understanding the game code
and modifying the AI presents a non-trivial hurdle. Given
our vision of adaptability to the large number of available
real-time strategy games, we leverage off-the-shelf desktop
automation to execute the encoded game commands. This
opens the door to extending our approach to a larger set of
games than would otherwise be possible.

Since the map used in Castle is custom made, the starting
location of all units is known in advance. Further, since units
and buildings are immobile, Castle is aware of their location
at all times. The location of units on the game map, along

with the list of commands to be executed is sufficient for
Castle to automatically generate a sequence of key-presses,
and clicks to be made by the desktop automation tool. This
sequence is then passed to the automation tool for execution.

We note that, certain automation tools allow keystrokes
and clicks to be sent to windows that are not currently in
focus. This ensures that Castle does not detract from the
user experience by requiring the game window to be in
focus during data transfer periods. Finally, since automa-
tion tools allow control over the speed of clicks and key-
presses, Castle can be configured to either mimic human
input speeds (lower clicks/second) or maximize throughput
(higher clicks/second). We investigate the trade-off between
these two variables in Sections 6 and 8.

3.5. Receiving covert data

Since the receiving game client does not have the same
in-game screen as the sending client (due to each client
having their camera focused on different map locations),
directly observing the commands made by the sending client
via the screen output is prohibitively complex. Fortunately,
most real-time strategy games maintain a real-time log of
all commands issued in the game to enable replaying moves
or saving game state. In Castle, the receiving process con-
stantly monitors this log file for commands issued by other
participants. These commands can then be decoded back
into their original covert data via the decoding algorithm
specified in Algorithm 2.

Algorithm 2 Algorithm for obtaining covert data from game
commands

function DECODE(selected, (x, y), xmax)
size← |selected|, z1 = 0
selected← SORT-DESCENDING(selected)
for i ∈ selected do

z1 ← z1 +
(

i
size−−

)
end for
z2 ← (y× xmax) + x
return (base2(z1)||base2(z2))

end function

This approach suffers from one minor drawback: replay
logs for games from commercial studios are often stored in
proprietary and undocumented formats that vary from game
to game. However, reverse engineering the format of the
replay logs is made significantly easier since Castle only
issues MOVE or SET-RALLY-POINT commands. There-
fore, we only need to understand how these commands are
stored in replay logs. This can be done by simple techniques
– e.g., sending a unit to the exact same location multiple
times allows us to obtain the byte code used to signify
the MOVE command, sending a unit to two locations in
sequence (with each separated by a single pixel) allows us to
obtain the bytes used to denote the (x, y) destination co-
ordinates, etc. Further, for many popular real-time strategy
games, these formats have already been reverse-engineered



by the gaming/hacking community – e.g., 11 of the Top 20
real-time strategy games have decoded replay file formats.

Additionally, it is important to note that: (1) The over-
head of decoding replay files is amortized over the entire set
of users using that game as a cover, and (2) It is common for
replay formats to be identical for real-time strategy games
published by the same studio – e.g., most Microsoft real-
time strategy games use the MGX replay format. Therefore,
a working decoder for one game from one particular studio
may work for all games from the same studio.

3.6. Bootstrapping Castle communication

In order to bootstrap covert communication, the follow-
ing information needs to be shared between Castle users:
Castle user identity and configuration. For a covert
channel to be established, a Castle user must first be able
to find and join Castle game instances. Due to the absence
of pre-established secrets, doing this in a secure way (i.e.,
a way that cannot also be used by the adversary censor
to identify Castle game instances) is a currently an open
research problem. We envision that current solutions such
as BridgeDB [35] can be used for distributing game instance
identities and configurations. In particular, BridgeDB may
be used to distribute names and passwords of Castle game
instances (in the case of games hosted on public servers)
and IP address/port numbers of Castle games (in the case
of peer-to-peer direct-connect game instances).
Castle map. In order to establish a covert communication
channel, Castle users may also need to share a common
Castle compatible map (that is used by the Castle game
instance). While such maps might be quite large (in the order
of a few MB), Castle provides a generic map generation
script that is able to generate identical maps for all clients in
the game with just a few bytes of configuration information.

Generally, to automate the process of Castle compatible
map creation via a map editor, one needs a subroutine for
creating buildings at specific locations on the map. Given
this single subroutine, it is possible to automate the entire
map generation process. In many map editors (e.g., map
editors of 17 of the Top 20 best-selling real-time strategy
games), we observe that such a subroutine only requires
the automation of two clicks – one on a button to select
the building type and one on the location at which the
building is to be placed. For such editors we provide a
generic Castle map creation automation script which only
requires the following information for its building placement
subroutine: the location of the button for the desired building
type, the dimensions of the selected building type, and the
available screen space. This information requires only a few
bytes and allows users supplying the same parameters to
generate identical maps. Additionally, it can be shared using
the identity and configuration distribution mechanism.

4. Castle Prototype Implementation

In this section, we describe our implementation of Cas-
tle. We prototype on three games, each from a different

publisher, to illustrate the extensibility of our approach.

• 0 A.D.: An award-winning, free, open-source, and
cross-platform real-time strategy game made avail-
able under the GPLv2+ license, by Wildfire Games.

• Aeons: A best-selling (in the top 2 grossing
real-time strategy games of all-time), closed-source,
Windows-based real-time strategy game from Studio
X.

• Conquerors: A best-selling (in the top 5 grossing
real-time strategy games of all-time) closed-source,
Windows-based real-time strategy game from Studio
Y.

Our prototype comprises of ∼500 LOC and was coded
in a combination of Python and AutoHotkey (desktop au-
tomation) [36] scripts. It includes the following components:

Custom map. To test Castle, we created a custom game
map for each of the three games. The map was comprised
of n buildings packed as tightly as possible to facilitate our
selection-based encoding. For 0 A.D., we created a map
with n = 1600 buildings on a single game screen, while
for Aeons and Conquerors, we were only able to have n =
435 and n = 416, respectively (owing to larger unit sizes).
For all games, a region large enough to contain 16 bits of
location data was left unoccupied. This is used to assign
rally-point coordinates to the selected buildings.

Since 0 A.D. stores maps in a simple and readable XML
format, the process of map creation was easily automated
(via a Python script). This was not the case for Aeons and
Conquerors which required manual generation of the map
using the official GUI map editor. However, the current ver-
sion of Castle comes with an easy to configure automation
script to automatically generate Castle maps for many real-
time strategy game requiring map generation via GUI editors
(including Aeons and Conquerors).

Data encoding and decoding. Code for translating be-
tween covert data and in-game commands (and vice-versa)
was written in under 200 lines of Python using the encoding
and decoding described in Section 3.3. The output of the
encoding code was a vector of buildings to be selected and
a single (x, y) coordinate.

Desktop automation. We used the open-source desk-
top automation tool, AutoHotkey, to execute the series of
commands output by the encoding scheme. Since custom
maps were used, the location of all buildings and units
were known. As a result, selecting and commanding those
indicated by our encoding program was straightforward.

Reading recorded game data. We implemented code that
monitored the log file of commands issued (maintained by
the game), for all games. For 0 A.D., this information was
already made available in a simple to parse text file. In order
to obtain this information for Aeons and Conquerors, the
game replay file was parsed using replay-decoder tools and
information made available by the gaming/hacking commu-
nity. The file was then scanned to obtain each command as
a vector of selected buildings and an (x, y) coordinate.



The commands were then decoded to retrieve the originally
encoded covert data.
Coordinate calibration. The isometric perspective of the
game screen posed a challenge during the decoding process.
Specifically, the presence of a viewing angle meant that a
sender may have intended to move a unit to the screen
coordinate (xs, ys), but the game actually logged the
command as an order to move the unit to the game co-
ordinate (xg, yg), making this the command obtained by
the receiver on decoding the move log. To avoid this, Castle
goes through a one-time calibration process of mapping on-
screen coordinates to coordinates as interpreted in the game.
Note that the results of this calibration process can be shared
across game clients that have the same resolution.

5. Evaluation Setup

We evaluate Castle along three axes – security, extensi-
bility, and performance. In Section 6 we consider security
of the Castle by quantifying its resilience to the censor-
adversary described in Section 2 and its ability to avoid the
mismatches highlighted by Geddes et al. [18]. Next, in
Section 7 we evaluate the extensibility of Castle– i.e., how
easy is it to implement Castle over a closed-source game.
Finally, in Section 8 we study throughput of Castle using
the encoding scheme laid out in Section 3.

For the evaluation in Sections 6 and 8, we use our
implementation of Castle with a building-based map, us-
ing SET-RALLY-POINT commands.The evaluation was
performed on Windows 8.1 running AutoHotkey [36] for
automation. The game was set up in direct connect mode
– i.e., the two players were connected directly to each
other via their IP address (rather than through the game
lobby). Since both players were on the same (fast) university
network, negligible effects of lag were experienced.

Castle was used to transfer a randomly generated (via
/dev/urandom) 100KB binary file from one player to
another. Network traffic generated by the game was captured
using Rawcap (a command-line raw socket packet sniffer for
Windows) with additional processing done using tcpdump.

We considered the impact of command rate (i.e., how
long AutoHotkey waits between each issued command) and
the impact of the maximum number of buildings selected
(k) on the performance and security of Castle. For this we
varied the command delays from 100 to 1000 ms/command
and the number of selected buildings from 25 to 200.

In order to compare the traffic characteristics of Castle
with characteristics of the standard game, we gathered net-
work traces of regular 0 A.D. two-player games. These were
also collected in a similar setting – i.e., with both players
on the same university network and via direct connect. Ten
traces were collected (one per game played). Each of the
recorded games was between 20 and 60 minutes long.

In order to evaluate the extensibility of Castle, armed
with a working implementation of Castle over 0-A.D., an
undergraduate researcher was given the task of implement-
ing Castle over the popular closed-source Aeons and Con-
querors. Finally, to observe the impact of game-specific

modifications, we evaluated the throughput of Castle over
0-A.D, Aeons, and Conquerors with and without any game-
specific modifications, in the same settings described above.

6. Security Evaluation

We now perform an evaluation of Castle against the
network adversary described in Section 2.

6.1. Resilience to network traffic attacks

Passive analysis. We first consider attackers with the ability
to perform IP and port filtering, deep-packet inspection, and
simple flow-level statistical analysis at line rate.

IP and port filtering: Since Castle actually uses an off-
the-shelf implementation of the game application, the IP
address and ports used by Castle are identical to that of the
standard use of the game. This means that an adversary that
triggers blocking based on the destination IP (e.g., the game
server) or port number, will be forced to block all traffic to
and from the game being used as the cover protocol.

In the event that the censor is willing to block all
connections to dedicated game servers (often hosted by
game publishers – e.g., Electronic Arts, Microsoft, Blizzard,
etc.), clients may still utilize Castle in direct-connect (peer-
to-peer) mode, forcing the censor into a game of whack-a-
mole with Castle proxies hosted outside their jurisdiction.
Further, users may also easily migrate Castle to another real-
time strategy game whose game servers are unblocked.

It is also worth noting that blocking game flows is not
without any costs to the censor, specifically with respect
to political good will and PR internationally. For example,
blocking all traffic for a given game, especially a popular
title, may upset citizens and reflect poorly on Internet free-
dom within the censoring country [37], [38], [39].

Deep-packet inspection (DPI): When used with games
that encrypt their communications, Castle is resistant to
deep-packet inspection, since the censor cannot decrypt
the stream of moves being made. However, since Castle
works by issuing only generic commands (i.e., MOVE and
SET-RALLY-POINT commands), it can easily be detected
by DPI boxes if the game communicates commands in plain-
text. Fortunately, it is generally recommended that real-
time strategy games perform command channel encryption,
making them resilient to DPI [20], [21], [22], [23].

Flow-level statistical analysis: To quantify the resilience
of Castle against flow-level attacks, several statistical tests
and classifiers were employed. For each experiment, the
Castle parameters that control the command rate and the
maximum number of buildings selected were varied between
0 to 1000 ms and 25 to 200 buildings, respectively.

First, the Kolmogorov-Smirnov (KS) statistic was used
to compare the similarity of human-game-generated traffic
and Castle-generated traffic. Figure 3 reflects the KS sim-
ilarity statistic on the packet size distributions of human-
and Castle-generated games and Figure 4 does the same
for inter-packet times. We make two observations from
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Figure 3: Kolmogorov-Smirnov (KS) statistic on the distri-
butions of packet sizes. The difference between Castle and
the legitimate game flows is within the variance observed
when comparing traffic between legitimate game flows.

these plots: (1) There is a high variation in the flow-level
features of legitimate (i.e., human-game-generated) traffic.
We hypothesize that this is because the traffic generated
by the real-time strategy game is strongly dependent on
many parameters such as map and scenario type, strategies
employed, and number of players. (2) Castle in many con-
figurations, generates traffic that is well within this variance.
We find that while restricting the maximum number of units
per command to under 50 and the command rate to around
1 command/second, Castle generates traffic that is as similar
to traffic generated by legitimate games.

Next, Castle was evaluated against several traffic finger-
printing classifiers. The goal was to evaluate the accuracy
of classifiers, built for flow-level analysis, in distinguishing
between Castle-generated and human-generated traffic.

First, each network capture was split into (20) one
minute long chunks. For each experiment, classifiers were
given 20 chunks of Castle-generated traffic at a specific con-
figuration and 20 randomly selected human-game-generated
chunks. Ten-fold cross validation was employed for splitting
into training and testing sets.

Since, in our experiments, Castle was used for the
purpose of file transfer, all traffic generated by it was in
a single direction. This makes it trivially detectable by
some fingerprinting classifiers which are heavily reliant on
burst and direction features (e.g., k-NN [40], the Panchenko
classifier [41] and OSAD [42]). We note that in a real
deployment this directionality would not be an issue as there
would be requests and responses from both sides.
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Figure 4: KS statistic on the distributions of inter-packet
times. The difference between Castle and the legitimate
game flows is within the variance observed when comparing
traffic between legitimate game flows.

Due to the directionality of traffic, traffic fingerprinting
classifiers that ignored directional information were used.
These included the Liberatore classifier [24], the Herrmann
classifier [25], and an inter-packet timing classifier [26].
All classifier implementations were obtained from Wang’s
open-source classifier archive [43]. The results of these
experiments are illustrated in Figure 5. In general, the results
indicate that Castle performs very well against packet size
and timing classifiers, with only the Herrmann classifier
achieving an accuracy of over 60% against multiple configu-
rations of Castle– i.e., only the Herrmann classifier achieved
10% higher accuracy than random guessing.

Active traffic manipulations. In the face of active traffic
manipulation attacks, such as probing, packet injection, and
modification, Castle implemented over most commercial
games faces little threat.

Packet injection. If Castle is implemented over a real-
time strategy game with an encrypted and authenticated
command channel, any packets injected by an unauthen-
ticated source are dropped by the game-server. As a result,
a probing adversary learns nothing about the Castle games
running on the server.

Packet modifications. Most packet modification attacks
are prevented by the presence of encrypted and authen-
ticated in-game channels. Additionally, since Castle does
not require any changes to the game or the hosting server,
such attacks will always elicit the same response from both,
legitimate game players and Castle users.

Packet dropping and delaying. Although most com-
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Figure 5: The performance of Castle in various configura-
tions against website fingerprinting classifiers.

mercial real-time strategy games make use of UDP as a
transport, the presence of reliability implemented in the
application layer prevents any threats from adversaries that
drop, or significantly delay packets in transmission. As a
result, attacks (e.g., [18]) that result in denial-of-service
for Castle users are not possible without also affecting
legitimate game players.

6.2. Resilience to application layer attacks

Highly motivated censors may perform actions outside
the realm of standard network traffic analysis and manip-
ulation. We consider censors that may attempt to interact
with the game server using custom game clients in order
to reveal the identities of Castle users. Specifically, censors
may connect to game server lobbies to identify Castle games
and try to join these games to learn the IPs of participating
clients. For these cases, Castle provides several defenses
based on features available in the game.

If the cover game supports the use of password-protected
multi-player games, Castle proxies (i.e., hosts of Castle
games) may configure Castle game instances to require users
to authenticate using high-entropy passwords distributed us-
ing, for example, the BridgeDB mechanism [35]. Therefore
censors without knowledge of the password are unable to
join hosted games and learn the IP addresses of Castle users.

If the cover does not support the use of password-
protected games, a Castle proxy may incorporate either (or,
both) of the following defenses against these adversaries: (1)
The proxy may use standard game maps rather than custom-
made Castle game maps. This allows Castle instances to

blend in with legitimate game instances, making it harder
for the censor to identify which games to join. However,
this comes at the cost of lower throughput since there are
typically fewer units in standard game maps. (2) The proxy
may still use a BridgeDB-like mechanism for password
distribution and require that any Castle client makes the
moves corresponding to the supplied password in order to
receive proxying services. In the event that a client does not
supply this password within some period of time, the Castle
proxy may continue playing the game using a standard AI.
Therefore, even a censor that may enter games is unable to
distinguish between Castle games and legitimate games.

Deniability and ease of distribution. In addition to being
resilient to computational attacks, Castle also has the advan-
tage of being a covert channel that is largely implemented
with off-the-shelf software components with only a few
hundred lines of code dedicated to encoding and desktop
automation scripting. Desktop automation tools are already
commonly used by gamers; the game and game-specific
mods (e.g., replay decoder and map editor) are widespread
enough to warrant little suspicion from censors since (e.g.,
Aeons is installed by millions of users worldwide). Castle’s
small code base also makes it easy to distribute via hard to
block asynchronous methods – e.g., through collage [44],
email, instant messaging, etc.

6.3. Avoiding covert channel pitfalls

Geddes et al. highlight three key mismatches between
covert channels and cover traffic which make these look-
like-something circumvention tools detectable to external
observers [18]. Here we discuss how Castle avoids each of
these three mismatches.

The architecture mismatch. Games provide agility in
terms of architecture that few other channels provide. They
often operate in client-server mode on publisher-hosted
game servers and in peer-to-peer mode in direct-connect
multi-player games. Our proxying approach can operate in
whichever mode is the dominant, and in the presence of
blocking can even shift (e.g., from client-server mode to
peer-to-peer mode).

The channel mismatch. While game data is typically
communicated over a UDP channel, it is unresilient to
packet loss unlike other UDP-based channels (e.g., VoIP),
thus clients come with the ability to handle packet losses
and retransmissions. Further, they also guarantee in-order
delivery and processing of sent data. This makes it useful
as a covert channel for proxied TCP connections which
require reliable transmission. Therefore, attacks that allow
the censor to drop traffic to levels which are tolerable to
legitimate players (but intolerable to Castle users) are not
possible.

The content mismatch. Content mismatches arise when
the content being embedded in the covert channel changes
the flow-level features of the channel. Since the flow-level
features of real-time strategy games are strongly dependent



on many parameters (identified above), they are highly vari-
able. We have shown that Castle, under every configuration,
generates traffic that is well within this variance.

7. Extensibility of Castle

In order to evaluate the extensibility of Castle to new
real-time strategy titles, we considered the time required
and the development procedure used by an under-graduate
researcher to complete a basic port of Castle over two ex-
tremely popular (over 8.5 million copies sold) closed-source
real-time strategy games from two different development
studios – Aeons and Conquerors.

Castle attempts to be easily adapted to many real-time
strategy games by only utilizing the common command
structure for encoding and replay files for decoding. As a
consequence, it was possible to port Castle to Aeons and
Conquerors in under 6 hours per game. The three main
phases for porting Castle to a new real-time strategy game
are map creation, configuring the automation toolkit, and
decoding replay files.

Map creation. In some real-time strategy games where
game maps are stored in easy to read formats (e.g., 0-
A.D.), maps for use with Castle can be generated via simple
scripts. In others which use proprietary map storage formats
(e.g., Aeons and Conquerors), the developer is required to
manually place units at specific (known) locations on the
game map. In such cases, to reduce the effort required
for this time consuming process, Castle currently provides
an easy to configure AutoHotKey script to automatically
generate maps via desktop automation and the GUI map
editor of any real-time strategy game.

Desktop automation. To allow Castle to execute com-
mands within the game, desktop automation tools have to
be integrated with the real-time strategy game. During this
process the developer is required to supply configuration
parameters including maximum number of selectable units,
click sending mode (AutoHotKey provides four modes.
Selection of a mode is dependent on the type of application
and DirectX version), window title, and a sutiable inter-
click speed (e.g., Conquerors blocks clicks from Castle in
its fastest configuration).

Decoding replay files. Finally, in order to decode data sent
by a Castle client, Castle needs to be able to retrieve data
stored in the form of in-game commands in game replay
files. Fortunately, replay decoders are already available in
the hacking/gaming community for many popular games
(e.g., Aeons). For other games without an available decoder
(e.g., Conquerors), gaming and hacking forums such as [45],
[46], [47] provide techniques and support for building a
decoder. Additionally, the process is made simpler since it
is sufficient for the developer to be able to extract MOVE
or SET-RALLY-POINT commands (rather than needing
the ability to decode any command stored in a replay file).
Finally, since most real-time strategy games from a studio
use the same replay format, the overhead of decoding replay

files is amortized over the entire set of users using real-time
strategy games from the same studio as a cover.

7.1. The consequence of extensibility

Although individual game titles do not necessarily rep-
resent a high collateral damage for a censor in the event
that they are blocked, Castle presents a simple framework
to convert each title into an ephemeral and effective covert
channel, with minimal development overhead. This, along
with the fact that most newly released real-time strategy
games are potential covert channels, makes Castle particu-
larly useful in the arms race engaging censors and develop-
ers. In particular, Castle is a proof-of-concept censorship
circumvention tool introducing the feature of portability.
This portability increases potential to achieve a favorable
asymmetry in the arms race – i.e., it is easier and cheaper
for a circumvention tool developer to create a new covert
channel than it is for a censor to detect it.

8. Performance Evaluation

Without any game-specific modifications, Castle offers
performance amenable to transfer of textual data (e.g.,
tweets, e-mail, news articles)2 and even bootstrap higher
bandwidth secure communication channels (e.g., for distri-
bution of Tor Bridge IP addresses).

8.1. Castle throughput

The throughput achieved by Castle is dependent on two
certain game characteristics – maximum number of units on
a game screen and maximum number of selectable units in
a single command.

• Maximum units per game screen (n): Depending
on the size of the units used within the game and
the layout of the game screen, the number of units
that may be placed within a Castle map for the game
varies. For example, as illustrated in Table 2, 0-A.D.
is able to fit up to 1600 units on a Castle map, while
Aeons and Conquerors allow only up to 435 and 416
units, respectively.

• Maximum selectable units per command (k):
Some games impose limitations on the number of
units that may be commanded at once. For example,
0-A.D. allows only up to 200 units/command and
Conquerors allows only up to 40 units/command.

Since Castle is able to send upto
∑k

i=1 log2 (
n
i)

k×8 bytes
per command on average, these parameters directly af-
fect its throughput. Given the game specific parameters,
we are able to achieve averages of approximately 65
bytes/command for 0-A.D., 39 bytes/command for Aeons,
and 14 bytes/command for Conquerors.

2. The success of the voices feeds [48] during the Arab Spring shows
that in some situations textual data is enough to get information out.



Game Max.
Units/Screen

Max. Selectable
Units/Command

Avg. Vanilla Castle
Bandwidth (Bps)

Max. Vanilla Castle
Bandwidth (Bps)

Avg. 10KB Article
Transfer Time (sec)

0-A.D. 1600 200 190 320 52
Aeons 435 435 130 179 77
Conquerors 416 40 42 70 238

TABLE 2: Game imposed limitations and their effect on vanilla Castle performance.
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Figure 6: Throughput of Castle implemented over 0 A.D.
under various configurations

In addition, throughput is also dependent on the time
required by the desktop automation tool to perform the
actions required to issue a command (i.e., click each unit
to be selected and click the target coordinate) and the time
delay issued between successive commands.

To illustrate the effects of these parameters within a
particular game, in Figure 6, we see their effect on Castle
transfer rates when implemented over 0 A.D. Specifically,
Figure 6a shows the effect of increasing the maximum
number of buildings selected in a single command and
Figure 6b demonstrates the effect of increasing the delay
between commands.

At the average performance configurations for 0-A.D.,
Aeons, and Conquerors, vanilla Castle3 requires 52, 77, and
238 seconds for transferring a short 10KB file, respectively.
This is suitable for asynchronous communication and boot-
strapping higher bandwidth communication channels.

3. We refer to the original Castle design as described in Section 3
(without any additional enhancements) as vanilla Castle.

8.2. Improving Castle throughput

There are several approaches to improve the throughput
of castle.
Parallel requests: Since modern real-time strategy games
allow eight or more players to participate in a single multi-
player game, it is possible for one censored user to encode
content requests to as many as seven (or more) proxies
in parallel – achieving at least a seven fold increase in
throughput. This is particularly useful in the context of web
data, where requests are easy to parallelize.
Game specific enhancements: Many real-time strategy
games offer features that are not universal. For instance,
many games provide trigger controls to map designers –
i.e., a feature that allows map designers to specify responses
to player actions (if a player performs action x, action y
happens to unit z). Such features allow Castle to encode
significantly more data than currently possible – e.g., Castle
could use a hierarchical encoding structure if camera motion
actions are permitted in trigger systems. Other games pro-
vide significantly more comprehensive replay information
and include preserving the order of clicks performed by
opponents. This allows castle to achieve significantly more
Bytes per command (O(log2 P (n, k))) than it currently does
(O(log2 C(n, k))). An example of such a non-universal
feature used to improve Castle’s throughput is demonstrated
for Aeons in Section 8.3.
Content compression: Castle proxies may improve perfor-
mance by compressing requested content before encoding.
In the context of web data, the proxies may also pre-render
and compress content before sending to the Castle receiver
(e.g., as was done by the Opera mobile browser [49]).

8.3. Game-specific enhancements for Castle

In this section, we show that the performance of Castle
can be improved significantly through simple game-specific
tweaks. To be able to observe the impact of these game-
specific modifications, Aeons was used as the channel for
vanilla Castle and Castle with Aeons-specific modifications.
The game-specific modifications were introduced and im-
plemented for Castle in just under three hours by an under-
graduate researcher.

The low throughput of Castle over Aeons was because
Aeons had larger units than 0 A.D., thereby allowing players
to place only 435 units within a single screen (as opposed
to 1,600 for 0 A.D.). As a result, the throughput of vanilla
Castle was only ≈ 38 bytes/command (i.e., ≈ 130 bytes/
second) – i.e., with the maximum command rate of Auto-
Hotkey and selection of up to 435 units/command.
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A quick investigation into the Aeons replay mode and
save-game files revealed that even the selection of a single
unit was communicated over the network and logged by
other players. We exploit this fact by creating a set of 2m

units (256 in our case) and mapping each unit to an m−bit
value (i.e., a byte). We then sequentially transfer the data
byte-by-byte via selecting the unit corresponding to the byte
to be encoded.

This encoding allowed AutoHotkey to issue commands
at a significantly faster rate than before (a command was
now just a single mouse click, as opposed to up to 435 key
presses and clicks). At AutoHotkey’s fastest mouse click
rate and m = 8, this encoding achieves a throughput of
up to 3 KByte/second. However, in order to more closely
mimic the command rate and traffic generated by a skilled
human player, a delay of 3 ms per command is added.

In Figure 7, we show the effect of this game-specific
modification on the throughput of Castle. From the same
figure, we can also observe the effect of varying the total
number of units with vanilla Castle and the Aeons-specific
version of Castle. We see that increasing n results in a
linearly increasing throughput for vanilla Castle, and a loga-
rithmically increasing throughput for Aeons-specific Castle.
However, because the cross-over point of these functions is
higher than the game allows, Aeons-specific Castle always
achieves better throughput for Aeons.

8.4. Castle system requirements

From previous work on the pitfalls of circumvention
tools [17], [18], it is clear that any look-like-something
covert channel should transmit data via an off-the-shelf
implementation of the cover protocol. This results in compu-
tation resource consumption since the implementation must
always be executed in the background during transmission.

While video games are more resource-intensive than
other cover applications, real-time strategy games are the
least demanding of the many genres of video games. For
example, 19 of the top 20 best-selling real-time strategy
games of all-time do not require graphics cards (beyond
standard integrated cards) and have fairly modest memory
requirements (under 2 GB RAM). Since Castle does not
add much computational overhead beyond the running of

the cover video game itself, it is usable by a large number
of censored users.

9. Castle and the State-of-the-art

In this section we compare the design methodology,
extensibility, and performance of Castle with the state-of-
the-art in look-like-something circumvention systems: Rook
[30], FreeWave [13], and Skypemorph [11].
Design methodology and adversary model. Like Castle,
both FreeWave and Rook actually use their cover protocols
(VoIP and video games, respectively) – i.e., they insert
covert data via the application layer, rather than directly at
the transport layer (as is done by Skypemorph). As a result,
standard mimicry detection attacks such as IP/Port filtering
and active probing are unable to distinguish the use of the
covert channel from the cover channel (while they succeed
against Skypemorph [17], [18]).

While both FreeWave and Castle rely on the fact that
their main communication channels are encrypted, Rook
does not. Rather, Rook focuses on achieving steganographic
security (resulting in a much stronger adversary); even if the
adversary is able to observe the unencrypted communica-
tions between a Rook server and client, it is still unable to
distinguish the usage of Rook from the cover video game.
This is not the case with Castle or FreeWave – i.e., an ad-
versary that is able to observe unencrypted communication
between the proxy and the client is easily able to distinguish
the covert channel from the cover channel.

Although Castle, Rook, and FreeWave all use UDP
communication channels, FreeWave is unable to avoid de-
tection by active attacks which perturb the network traffic by
delaying or dropping packets. This is a result in a mismatch
of reliability requirements between the cover protocol (mul-
timedia VoIP) and the covert channel data which demands
higher reliability. In contrast, Castle and Rook leverage
video games as a cover protocol where reliability is built
into the application layer (by default in Castle and by the
covert protocol in Rook).
Extensibility. Since Castle, Rook, and FreeWave insert
covert data via the application layer, they are extensible to
varying degrees. Skypemorph on the other hand is built to
mimic the Skype protocol, and is therefore not extensible.

As demonstrated in Section 7, Castle is easily extensible
to any real-time strategy game which has (1) a map editor,
(2) a MOVE or SET-RALLY-POINT command, and (3) a
replay file decoder. In contrast, extensibility of Rook and
Freewave is hindered by: requiring a deep understanding of
the internal networking protocol used by the cover channel
(Rook), or the absence of a large number of cover applica-
tions to extend to (FreeWave).
Performance. In terms of throughput, both VoIP based
covert channels – FreeWave and Skypemorph perform better
than Castle and Rook. Skypemorph is able to achieve a
covert data transmission rate of 34 KBps, while FreeWave
achieves 2.4 KBps. The large difference between the two
systems should be attributed to the significantly stronger



adversary model used by FreeWave (FreeWave is built to
be secure against active probing).

The throughput achieved by Castle is dependent on the
characteristics of the game being used as a cover channel.
In our experiments considering three different cover video
games, we observed covert data transfer rates in the range
of 42 - 320 Bps without any modifications to Castle. With
game specific modifications, we were able to achieve up to
435 Bps. Since Rook focuses on steganographic security (a
much more powerful adversary than Castle), it also suffers
from lower throughput – i.e., between 3 and 5 Bps.

10. Conclusions

In this paper we have presented Castle, a general ap-
proach for creating covert channels using real-time strategy
games as a cover for covert communications. We demon-
strate our approach by prototyping on three different games
with minimal additional development overhead and show its
resilience to a network adversary.

We argue that the popularity, availability, and generic
functionalities of modern games make them an effective
circumvention tool in the arms-race against censors. Specif-
ically, our results show that Castle is:

• Portable and Extensible: Incorporating new closed-
source games as covert channels for Castle requires
only a few hours of developer time – including the
addition of title-specific enhancements for increased
throughput.

• Secure: Castle is resistant to attacks such as IP/port
filtering and deep-packet inspection since it actually
executes the game application. More complicated
and expensive attacks such as traffic analysis attacks
are avoided due to the high variability of standard
game flows. In addition, Castle is also resilient
against active and application-layer attacks.

• Usable: Even without any game-specific modifica-
tions, Castle is able to provide throughput sufficient
for transfer of textual data and bootstrapping higher-
bandwidth channels.

The results presented in this work motivates two in-
dependent future research directions. First, Castle demon-
strates that portability is possible in circumvention tools.
Therefore, extending our work to different classes of ap-
plications which may enable higher throughput rates may
yield a more powerful defense against censorship. Second,
integrating the Castle approach into platforms to make it
usable to users e.g., via a Web browser plug-in or integration
with the suite of Tor Pluggable Transports [50].

Code and data release: The source code of Castle (not
including game specific code – e.g., replay decoders, map
generators, etc.) is available under the CRAPL license 4 at
https://github.com/bridgar/Castle-Covert-Channel.

4. http://matt.might.net/articles/crapl/

Acknowlegements

This material is based upon work supported by the
National Science Foundation under grant numbers CNS-
1350720 and CNS-1518845, a Google Faculty Research
Award, and an Open Technology Fund Emerging Technol-
ogy Fellowship. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation, Google, or the Open
Technology Fund.

References

[1] Philip N Howard, Aiden Duffy, Deen Freelon, Muzammil Hussain,
Will Mari, and Marwa Mazaid. Opening Closed Regimes: What Was
the Role of Social Media During the Arab Spring? 2011.

[2] Lev Grossman. Iran protests: Twitter, the Medium of the Movement.
Time Magazine, 17, 2009.

[3] ONI Research Profile: Burma. http://opennet.net/research/profiles/b
urma, 2012.

[4] H. Noman. Dubai Free Zone No Longer Has Filter-Free Internet
Access. http://opennet.net/blog/2008/04/dubai-free-zone-no-longer-h
as-filter-free-internet-access.

[5] ONI Research Profile: Indonesia. http://opennet.net/research/profiles
/indonesia, 2012.

[6] Glenn Greenwald and Ewen MacAskill. NSA Prism Taps into User
Data of Apple, Google, and Others. http://www.theguardian.com/wo
rld/2013/jun/06/us-tech-giants-nsa-data.

[7] A. Dainotti, C. Squarcella, E. Aben, K.C. Claffy, M. Chiesa,
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