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ABSTRACT

Smartphone users are increasingly shifting to using appgas-
ways” to Internet services rather than traditional web luens.
App marketplaces for iOS, Android, and Windows Phone ptaifo
have made it attractive for developers to deploy apps anyglfeas
users to discover and start using many network-enabledmpgidy.
For example, it was recently reported that the iOS AppStai® h
more than 350K apps and more than 10 billion downloads. Fur-
thermore, the appearance of tablets and mobile devicesottidr
form factors, which also use these marketplaces, has setdhe
diversity in apps and their user population. Despite theecias-
ing importance of apps as gateways to network services, weda
much sparser understanding of how, where, and when theade u
compared to traditional web services, particularly atesc@his pa-
per takes a first step in addressing this knowledge gap bgmtiag
results on app usage at a national level using anonymizeebriet
measurements from a tier-1 cellular carrier in the U.S. Veaiidy
traffic from distinct marketplace apps based on HTTP sigesatu
and present aggregate results on their spatial and temp@aed-
lence, locality, and correlation.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions - Network monitoring; C.4Rerformance of Systemp Mea-
surement techniques

General Terms
Measurement
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The number and popularity of mobile apps is rising dram#ica
due to the accelerating rate of adoption of smartphoneseXn-
ple, Android has 150K apps and 350K daily activatidnd [12k-P
installed with marketplace portals such as the AppStoreQf, i
Market on Android, and MarketPlace on Windows Mobile, popu-
lar smartphone platforms have made it easy for users to\dsco
and start using many network-enabled apps quickly. By Jan 22
2011, more than 350K apps are available on the AppStore with
downloads of more than 10 billionl[1]. Furthermore, the appe
ance of tablets and mobile devices with other form factotsckv
also use these marketplaces, has increased the diverajppsand
their user population. The existence of marketplaces aaifiopin
APIs have also made it more attractive for some developeira-to
plement apps rather than complete web-based servicesit®tsp
increasing importance of apps as gateways to network e
have a much sparser understanding of how, where, and whgn the
are used compared to traditional web services, partiguddrdcale.
This paper takes a first step in addressing this knowledge gap

A previous study found evidence that there is substantiedreli
sity in the way that different people use smartphone pp3H{aiv-
ever, because the study relied on volunteers using instigde
phones, it was limited to two platforms and less than threg hu
dred users in a few geographic areas. Other studies of mobile
application/app usagé [1L.118,122] have been similarlytéchin
scope. Thus, it is difficult to extrapolate these results &kenrep-
resentative conclusions about spatial locality, tempwaaiation,
and correlation of apps at scale. For example, “where ars app
more popular?”, “How is their usage distributed across atg@”,
“How does their usage vary throughout the day?”. While there
have been studies of smartphone performance at largesq&dle
[2,[20], which use volunteer measurements or network daté+to o
tain measurements at scale, measuring the usage of diffgppa
from these data sources is more challenging. \olunteer uneas
ments are typically obtained by deploying a measurememttao
an app marketplace, but many popular platform APIs do nahjter
the measurement of other apps in the background, so it isuiffi
to write an app that captures this information. Network daty
contain information that can identify app behaviors, big thfor-
mation is not typically part of standard traces. To makees@n-
tative conclusions about apps, we require a network datthaet
identifies apps in network traffic and contains a significamnn
ber of measurements covering a representative number wfedev
users, locations, and times.

In this study, we address the limitations by collecting amized
IP-level networking traces in a large tier-1 cellular netkvim the
U.S. for one week in August 2010. In contrast to previous work



we use signatures based on HTTP headers (included in theydP-I The rest of this paper is organized as follows: Related werk i
trace) to distinguish the traffic from different apps. Duéhe for- discussed in[82, [§3 describes our data 4dt, 84 presents @dr me
mat of User - Agent in HTTP headers when mobile apps use stan- surement results[ 85 outlines some implications, and welada
dard platform APIs, this technique gives us the ability tothga our study in Bb.
statistics about each individual app in a marketplace, usitgate-
gories of network traffic characterized by port number. Moss, 2. RELATED WORK
our work examines the spatial and temporal prevalencelitpca
and correlation of apps at a national scale, not just in oaa ar
over a small population of users.

To our best knowledge, our study is the first to investigate th
diverse usage behaviors of individual mobile apps at sdaléhis
study, we make the following five contributions:

A plethora of studies focus on understanding smartphons app
from different perspectives. Among them, studies of sninmte
usage have yielded insights into different entities in thebile
computing communitye.g., content providers, network providers,
OS vendors, mobile app designests, Accordingly, understanding
the usage of mobile apps is critical for content providergdner-

. .. ... ate,optimize, and deliver content, for network provideraltocate

o The data set Fhat we use to §tudy mob|!e apps is signifi- radio resources, for OS vendors to support on-device appapp
cantl_y more c_ilverse geographically and in user base than designers to implement efficient prograres,. Overall, our study
previous studies. It covers hundr.eds of thousands of smqrt— is the first that attempts to address the lack of sufficienttedge
phones throughout the U.S. in a_1t|er-1 Cellular_networksTm about how, where, and when mobile apps are used at a national
allows us to make more generalizable conclusions abouitsmarscale_
phone usage patterns. A group of studies attempted to improve the performance of mo

bile apps via OS infrastructure suppart([5] I3} [10,64,, offload-

ing resource intensive computation to clolid [5], providiigan

intermediate interface for apps by the ©SI[13], and siggatio-

bile devices by network providers via notification chanmesave

resource[10]. Our study is complementary to these, aslises on

profiling the usage patterns of mobile apps; we note thatesed

of supportive infrastructure would also benefit from thewteaige

of mobile app usage patterns.

Also related are studies that proposed measurement tools fo
smartphone devices characterizing either the device ipeaface or
the performance of certain apps 4] 30, 24g,, 3GTest[1#] mea-
sures the network performance of popular smartphone prasfo
PowerTutor [[3D] profiles energy consumption of running apps
Android, ARO [21] characterizes the radio resource usagamf
g Dbile appsetc. Compared to these studies, we focus on usage pat-
terns of mobile apps rather than their performance, but arkw
also has implications on resource consumption.

Studies have also proposed creative mobile apps to enhaace u
experience under mobility [17] 4} [3.]1&g., xShare[[17] enabling
friendly, efficient, and secure phone sharing on existingifeo
phones, Escort]4] leading a user to the vicinity of a desfrexon
in a public placegtc. Although mobile apps are fixed in our study,
our work provides app designers with measurements andidinsc
that can help them improve design decisions.

e We also find that the diurnal patterns of different genres of ~ Besides app usage, app selection has been explored as well in
apps can be remarkably different. For example, news apps context-aware mobile apps recommendation systenis [26, 29]
are much more frequently used in the early morning, sports key requirement for an app recommendation system is toifgtent
apps are more frequently used in the evening’ while other the users WhO Shal’e Cel’tain Similar app interestS SO tha[llp[E-
apps have diurnal patterns less visible and their usageris mo  dict apps of interest. Understanding patterns in userestsiis also
flat during a day. These findings suggest that cloud platforms Part of our study.
that host mobile application servers can leverage distisct On a large scale, there have been studies characterizimgahe
age patterns in classes of apps to maximize the utilization bile traffic [11/18[ 8/ 15] and user interactive behaviorgngmart-
of their resources. Furthermore, network operators may be Phones[[7. 24, 23]. Compared to these studies, our studgligsr
able to leverage these results by optimizing their network f ~ On & data set that can represent the majority of smartphcers us

different apps during different times of the day. across the U.S.; (2) covers the impact of more than one faetor
location, time, device, usegc.; (3) places more emphasis on the

e Mobility patterns can be inferred from network access pat- usage of smartphones rather than traffic flows, content tgpe,
terns. Some apps are more frequently used when users areVViFi usage.
moving around; some of them are used more often when We believe that our study makes an important step in adaigssi
users are stationary. Mobility affects connectivity andqe the lack of knowledge of usage behaviors of mobile apps.
mance, so bandwidth sensitive apps that are mobile may need
to consider techniques to compensate for bandwidth véwiabi 3. OVERVIEW OF DATA SET
ity. We find that there is a significant degree of diversity in
the mobility of apps. 3.1 Data Set

e We find that a considerable number of popular apps (20%)
arelocal, in particular, radio and news apps. In terms of traf-
fic volume, these apps are accountable for 2% of the traffic in
thesmartphone appscategory i.e., all the marketplace apps
that can be identified bifser - Agent) — that is, their user
base is limited to a few U.S. states. This suggests signtfican
potential for content optimization in such access netwasks
LTE and WiFi where content can be placed on servers closer
to clients. Furthermore, it suggests that network opesator
need to understand the impact of different app mixes in dif-
ferent geographical areas to best optimize their netwark fo
user experience.

e Despite this diversity in locality, we also find that there ar
similarities across apps in terms of geographic coverage,
urnal usage patternstc. For example, we find that some
apps have a high likelihood ab-occurrence on smartphones
— that is, when a user uses one app, he or she is also likely
to use another one. Users also use several alternativdsefor t
same type of appe(g., multiple news apps). These findings
suggest that some apps can be treated as a “bundle” when try-
ing to optimize for their user experience and that there may
be opportunities for integration.
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Figure 1: distribution of traffic volume, access time, and sbscribers across categories of apps.

In this paper, we use an anonymized data set from a tier-1 cel-
lular network provider in the U.S. It is collected during tiveek
of August 24th, 2010 — August 30th, 2010. The data set comtain
flow-level information about IP flows carried in PDP Contaxt-t
nels {.e, all data traffic sent to and from cellular devices). This
data set is collected from all links between SGSNs and GG8NSs i
tier-1 network’'s UMTS core network. Hence, we have a nation-
wide view of cellular data traffic. Due to volume constrajrasly
traffic from a uniform random sample of devices is collecteor a
random sample of devices, the data contains the followifagrima-
tion for each IP flow per minute: the start and the end timepgam
per-flow traffic volume in terms of both the bytes and the nunadfe
packets, the device identifier, and the app identifier. Alickeand
subscriber identifierse(g., IMSI, IMEI) are anonymized to protect
privacy without affecting the usefulness of our analysisirtirer-
more, the data sets do not permit reversing the anonymizatio
re-identification of subscribers.

App identifiers include information about application ool
(e.g., HTTP, DNS, and SIP) and classd., streaming audio, stream-
ing video, web, email). Moreover, given that these poputaars-
phone platforms include the app’s name in tlser - Agent field
when the app uses the standard API to access URL network re-
sources, the marketplace apps can be identified bystére Agent
field in HTTP headers. We focus on these apps in this paper and
we classify them into themartphone appscategory. Note that the
browser and YouTube are not included in smartphone appg sinc
they come with the smartphone OS and are not present in the mar
ketplace.

We further categorize smartphone apps by the genre that it is
listed under in its platform’s marketplace. To find the catgg
we use the API provided by each smartphone platform’s market
to search for the app name presented in the HTS& - Agent .
While the APl typically returns multiple results that matble query
(by treating it as a wild card), we manually validated the apps
whether the top first result is correct. Table 1 shows theespand-
ing validation results of the querying. Upon the responseauth
query, we have three attitudesight, wrong, and unknown. We
consider a response as right or wrong only if we are confident o
the correctness. For example, we believe thdéex - Agent con-
tainingPandor a is a music app and anothieser - Agent including
Facebook is not a sport app. There are some apps that are very hard
to tell by us according to thelsser - Agent fields such a¥\8DU 4,
which we label as unknown. Additionally, those queries vehies
sponses are empty are labeled as unknown. According to [Thble
we are confident on the correctness of the top first resultifer t
majority of the smartphone apps.

In this paper, we are concerned about four main featuregyper a

top X apps| right (%)  wrong (%) unknown (%)
10 | 8 (80%) 0 (0%) 2 (20%)
20 | 17 (85%) 1 (5%) 2 (10%)
50 | 46 (92%) 2 (4%) 2 (4%)
100 | 91 (91%) 4 (4%) 5 (5%)
200 | 176 (88%) 5 (3%) 19 (10%)
500 | 427 (85%) 14 (3%) 69 (14%)

Table 1: accuracy of usingUser - Agent to categorize apps
(via manual comparison to app names in the app marketplace).

traffic volume, access timeunique subscribers andlocations
We estimate traffic volume as the sum of the flow byte counts, ac
cess time as the sum of the flow durations (with a precisiorof s
onds), and the number of unique subscribers as the numbés-of d
tinct anonymous device identifiers. There is only one anongch
identifier per distinct device. To determine the locationeath
device at the time a flow is in progress, we use the cell sedéor-i
tified in the PDP context used to tunnel the flow. This cell @ect
is typically recorded when the PDP context begins, when &dev
moves far enough that the SGSN its traffic routes throughgdsn
switches from 2G to 3G (or vice versa), or switches from 3G to
WiFi. While this sector may be slightly stale, previous w{zK]
showed that they are still almost always accurate to witBikitb-
meters. Thus, they suffice for most of our results that onbklo
at U.S. states as distinct regions. For other results weeptem
sector changes, we may underestimate the number of changes d
to this limitation.

In total, the sample data set includes approximately 60GK di
tinct subscribers and approximately 22K distinct smartighapps.

3.2 Limitation

Our approach to identifying apps using the HTT$®r - Agent
field may miss traffic that does not use the standard platfoRh U
API. However, in Sectioin 3] 3 we show that this approach capta
large fraction of traffic that is not email, web browsingestming,
or a marketplace download (which we identify separatelyetam
other well known heuristics). Obviously, our data set wit cap-
ture app usage except when there are network flows. Thisépacc
able for our study, since we are primarily interested in ¢hptare
gateways to Internet services, not apps that do not use there

Another limitation is the time difference when we use these A
gustUser - Agent fields generated from the trace during the week of

August 24th, 2010 — August 30th, 2010, and query them on the cu

rent marketplace. Because developers may chandsséne Agent

field in updating their apps, this may result inaccuracy oagm



phone app identification. However, according to Table &, éfffect
should be small.

3.3 Traffic Summary

Figure[d shows a summary of all traffic in our data set. Devices
1, 2, 3, and 4 are four major device types in this tier-1 nekwor
Figure[1(a) shows the distribution of traffic volume. We abee
that the volume of known smartphone apps traffic is comparabl
with the traffic volume of web browsing and other HTTP traffic,
which is a major motivation for our study. Moreover, the nwrk
category also contributes to considerable traffic, whididates a
high demand for smartphone apps from subscribers.

Figure[1(b) shows the distribution of access time of app-cate
gories. It is interesting to note that the streaming categoonly
accountable for a small fraction of the total network acdiess of
all smartphone apps. The gaming, p2p, and voip categoicasia
mostly port and header-identified traffic for common desktpps.

We see that they have a small fraction of both traffic voluntbaa:
cess time, which means that these apps are not common omeslevic
on this cellular network. Figufd 1(c) shows the distriboted num-
ber of unique subscribers. In this figure, the misc categuriudes

streaming audio; thus, users of these two apps would receivs
on their smartphones with a substantial difference in thenae of
traffic generated.

We observe a similar variation in Figure 2(b). The top apgher
is a “social utility connecting people”, with a total netwaaiccess
time exceeding 100 years (aggregated across all its us&ts$.
app alone contributes to 86% of the total network access time
the smartphone apps category, but the majority of the simamgp
apps are seen accessing the network for only about 1 minute - 1
hour. This “social utility” app also has the largest numbfaurdque
subscribers, 540,230 according to Figure 2(c). The totaiber of
unique subscribers in our data set is 633,892 by examinangum-
ber of unique subscribers with DNS requests in Fifilire 1. Tives
may estimate that 6 in every 7 subscribers use this “sodiilut
app on their smartphones. Recall that this data set cormailysa
random sample of subscribers, so the numbers here do nattrefle
the total number of subscribers in the cellular network. uka
60% smartphone apps have no more than 10 unique users in our
data set, thus illustrating the long tail of smartphone amppshe
market. Because of this long tail, we filter out the smallgrsafor
some of our analysis as they do not have enough measurements.

DNS requests, so the misc category roughly has the same numbeWe discuss this further if84.2.

of subscribers as total number of subscribers that we obdarny

Figurel2(d) shows the correlation between the traffic volame

the data set. The smartphone apps and web browsing categorie the number of unique subscribers, and between the accesartich

cover almost all the subscribers.
For the remainder of this paper, we only examine traffic in the
smartphone apps category.

4. USAGE PATTERNS OF SMARTPHONE
APPS

In this section, we investigate how, where, and when smarnph
apps are used from spatial, temporal, and user perspectives
first choose appropriate metrics to evaluate smartphons, @yl
then attempt to understand the impact of location, timer, @l
app interest accordingly.

4.1 Characterizing Usage with Different Met-
rics

We begin our analysis by presenting some broad charaaterist
of smartphone app usage. For our analysis, we choose a namber
different natural metrics that profile network activity. Wee the
following three metrics for each app through most of our gsial
(a) traffic volume, defined as the number of bytes consumed by
all subscribers using the app; (ymber of subscribers defined
as the number of unique subscribers using this app throughou
week-long data set; (a)etwork access time defined as the total
duration summed across all the IP flows generated by the aap ov
our week-long data set.

Figure2 shows CDFs of these metrics for the apps. For each met
ric, we aggregate together all the users of a particular @pe.long
tail of these CDFs directly shows the huge diversity in sptaohe
apps and their network characteristics. The top app in E[@(a)
is a “personalized Internet radio app”, and is responsittarfore
than 3TB data in one week, while the majority of smartphongsap
generate only 1 — 10 MB over the same time period. Note that thi
top app is by itself responsible for generating over 50% efttal
traffic volume in the smartphone apps category. This drarvati-
ation in the traffic volume is due to many factoesy., app genres,
popularity of apps, device types, preferences of the usss, lwn-
tent of appsetc. For example, both news apps and radio apps may
provide users with the latest news, but news apps typicalliyet
most of their content via text while radio apps deliver cohtéa

the number of unique subscribers. We aggregate the appsheith
same 169N) (N is the number of unique subscribers) and present
the minimum, 28 percentile, median, 7'5percenti|e, and maxi-
mum in each aggregation point accordingly. Both the traffic v
ume and the network access time roughly increase lineattytive
number of unique subscribers, but the high variation stibts in
the correlation. Due to the high variation, it is difficultéstimate
the an app’s traffic volume and network access time basedamnly
its number of users. However, given a certain large numbepp$
together, their traffic volume and access time may be pradiet
Accordingly, cellular providers may be able to estimate rédio
resource consumption and allocate radio resources.

Figure[3 shows the CDFs of the apps’ traffic volume and access
time, now normalized by the number of subscribers that use th
app. We see a similar variation across apps in these CDFslas we
For example, in FigurE]l3(a), the app with the largest traftit v
ume per subscriber consumes 5GB in one week, but the majority
of apps consume less than 1MB data per subscriber in the week.
Likewise, in Figurd B(b), the app with the longest accese tper
subscriber lasts for 2 days in one week, while the majoritgpds
access the network for only 10 seconds - 1 hour per subsdnber
the week. From Figuilel 2 and Figuide 3, we also observe apps with
very marginal usage in the long taég., the app consuming only
less than 1KB, the app accessing the network less than l@rsec,
the app with only one user. These numbers indicate why we need
to filter out these tiny apps for our analysis.

4.2 Popular Smartphone Apps

Figure2 shows that there are a substantial number of snuargph
apps with only 1 subscriber and that 60% of the smartphonse app
have no more than 10 unique subscribers. Thus, these apmd do n
provide enough data for analysis, and, in this section, vpboes
how to decide systematically which apps can be considergdl@ao
and how we can eliminate the effect of apps with marginal @sag
on our analysis.

In effect, we want to identify the popular smartphone appeta
on the numbers of their unique subscribers, but at the sane ti
we do not want to discriminate against apps with few subscsib
that have a significant impact on the networle,, generate a lot
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of traffic or access the network for long time periods. So, wech
two questions to answer: (1) is the number of unique subscria
good metric for filtering? (2) if so, what is a reasonable shad
on the number of unique subscribers?

Intuitively, if the number of unique subscribers is a goodnine

and the “access time by top subs”. Likewise, the contrimstiof

the topX apps based on traffic volume and number of unique sub-
scribers are also close, although a little difference doédt.eWe
note that over 90% of the total volume and access time is atedu
for by the top 1000 apps based on the number of unique subssrib

Thus, Figuré ¥ indicates that somewhere above 1000 would be a
reasonable boundary to distinguish popular apps from appgsei
tail given the 90% coverage. We further explore the margiagire
of the apps ranking above 1000 in Figlile 5. Fidure 5(a) shows
that each app in top 1000 have more than 471 unique subscriber
Figure[B(b) shows the network access time and the trafficwelu
per user for apps ranking in 1000 — 4000. For both traffic velum
and access time, we aggregate every 100 apps into one erttoaba
shows the minimum, median, and maximum of every 100 apps.
The app accessing network the most consumes only 250 seconds
per user in a week, and the app transferring the most dataajese
only 500 KB per user in a week. Because of these small traffic
volumes and short access times, we do not consider theseé@pps
be sufficiently active for our analysis.

Our discussion suggests that a natural threshold would dée th
top 1000 apps ranked by the number of unique subscriberte[@ab
shows the number of apps in each genre, both for the top 1q80 ap
as well as all the 22K apps. In the remainder of the paper, We wi

for filtering, the topX apps based on the number of unique sub- refer to these top 1000 apps@spular apps.

scribers should contribute similar amounts of traffic voduand

access times as the t&papps based on the traffic volume or access
time. We first compare the contribution of the témpps based on

different metrics. FigurEl4 compares the contribution &f tibp X

apps based on the number of unique subscribers againstabe to

4.3 Spatial Patterns: Distribution of the Geo-
graphic Usage of Smartphone Apps

Next, we investigate the diversity of smartphone apps begagl
by subscribers in different geographic locations. Unadeding the

apps based on the traffic volume and based on the networksacces spatial usage patterns of smartphone apps suggests waysrtive

time. We can observe that the cumulative contributionsefdipX

apps based on access time and thexapps based on number of

unique subscribers are quite close, by comparing the “adtes”

user experience and performance from many aspects, sucimas c
tent placement, context-aware applications, and mobiersde-
ment system. Taking content placement as an example, iéobnt
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providers know that some of their apps are most used at ndotai
cations, they may choose to place content close to thosédnsa
so that users experience better performance.

4.3.1 Local Smartphone Apps

We first examine whether any apps #oeal apps i.e., whether
the majority of an app’s traffic comes from a region. We perfor
the following analysis: for each app, we divide its traffic(ty.S.)
state of the user, and compute the top 1, 3 and 5 state(s)dhat ¢
tribute the most traffic volume or the longest network actiesss.
We expect that if an app’s usage is truly localized, mostsofrf-
fic or access timeg(g., 90%) will originate from a small number of
states.
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Figure 6: contribution of volume from top X states.

Figurd® shows the CDF of the fraction of the traffic volumenfro
top 1, 3, and 5 states for top 1000 apps that we have chosEi@n §4

90% of their traffic volume originating from 3 states, 5.8%loé
popular apps have 90% of the traffic originating from only dtest
and 1.7% of the popular apps have all their traffic from 1 state
These 20% apps, which have more than 90% of their traffic velum
originating from 3 states, account for 2% traffic in the siplache
apps category. The distribution of the contribution of ascéme
of popular apps are very close to the one of traffic volume.sThu
we see that a significant number of the popular apps are local.

To explore what these local apps are and where they are local-
ized, we examine in more detail the 100 most local apps based o
the contribution of the top 3 states; for each of these appsop 3
states contribute at least 97% of their total traffic voluigure[T
shows the distribution of the top 3 states of the 100 most kuas;
we differentiate the rank of the top 3 states for these 108l lagps
as well so that we know, for example, California is the statd t
originated the most traffic for 19 apps, the state originétedsec-
ond most traffic for 15 apps, and the state originated thd thivst
traffic for 12 apps. As expected, California, Texas, and NerkY
are the states with most local apps — these are the statetavgéh
populations of smartphone users. However, there are matgsst
with much smaller populations such as Louisiana, Wyomimgl, a
Kentucky that also have some local apps; upon further aisalyés
turn out to be because content from some apps is tailoredfispec
cally for users from some regionag., local TV programs, news,
radio, weather appgtc. As an example for validation, we show
the local apps for Louisiana in Talfle 3; we see that the sis dpgt
have most of their traffic originating from Louisiana proeid@V,
news, radio and weather specifically for Louisiana resglent

We also explore the genre-wise breakdown of the local apps, a
the genre of an app reflects the content and service type ofig-sm
phone app to a great degree. TdHle 4 shows the distributitimeof

According to Figurd1s, 20% of the popular apps have more than genres of the 100 most local apps in TdBle 7. According toe@bl
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Table 2: distribution of the genre of apps.

app | description on Google

WWLTV | New Orleans News, Breaking News, Weather ...
KATC | News Coverage at Acadiana-Lafayette, Louisiana ...
KSLANews12 | News, Weather and Sports at Shreveport, Louisiana ...
KPLC 7 News | Lake Charles, Louisiana — kplctv.com ...
WBRZ | TV Channel 2 Baton Rouge, LA ...
GOWAFB | Local news, weather ... at Baton Rouge, LA ...

Table 3: local apps from Louisiana.
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Figure 7: fraction of traffic size in top X states for each smart-
phone app.

these apps are mostly news, weather, and entertainmenti&pfys
due to the local nature of their contemnt., local weather, local
news, local TVetc. In music, the local apps are usually online lo-
cal radio stations. The local education apps are typicadigted by
universities, and mostly used by the local student poprati

4.3.2 National Smartphone Apps

Next, we examine the spatial patterns of smartphone appeusag
nation-wide. For this analysis, we remove the 100 apps iitetht
as local in the previous analysis (Section 4.3.1), and exartfie
nation-wide usage of the remaining apps’ traffic. We terns¢he
remaining apps asational apps Our analysis explores whether
certain genres are more popular (or have heavier usage)ra so
areas than in other areas; in general, we do not expect wsprs-t
fer using apps of a specific genre as a function of their ggica
location, but our results show that this does happen undéaice
conditions.

For ease of reference, we tegaographic usage distributionof
a quantityX to be the the empirical probability distribution function
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#apps|4 5 2 2 7 3 451 1 2 3 3 6 16
Table 4: genres of local apps.

(PDF) of X by U.S. state. First, we compute the geographic usage
distribution of the unique subscribers and of the aggregaféc
volume generated by all national smartphone apps. We then us
them to compute the geographic usage of traffic volume nermal
ized by the number of unique subscribers in the state. Figap

is the PDF of the geographic usage of the aggregate traffitl of a
national apps together, while Figdre 8(b) is the PDF of the-ge
graphic usage of the normalized traffic of all national apps
expected, California, Texas, New York, Florida, and llisare the
states that have the highest aggregate traffic from then@tapps

in Figure[8(a). However, after normalizing the volume tocaott

for the number of subscribers, the distribution looks flaitte=ig-
ure[8(b). We perform the rest of our analysis (Fiddre 8(@f)the
normalized traffic, since it makes differences across stateeasier
identified.
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Figure 9: difference in the geographic usage of different ap
genres

Figure[8(c-f) illustrates the geographic usage of someessm-
tative genres (all genres are listed in Tdhle 2). Fiflire @a)on-
strates the PDF of traffic volume from each state of all natidate
apps. Lifestyle, music, news, and social networking geheeg
very similar patterns of geographic usage as the aggregfie.t
As an example, we show the social networking apps in Figok 8(
which is is most similar to the aggregate traffic in Figure)8gdu-
cation apps in Figuilel 8(d) appear to be extremely populaeias;
further analysis revealed that this is because some appisiged
by universities €.g., TAMU) generate a significant fraction of traf-
fic among the education apps. Likewise, Figlite 8(f) shows tha
weather apps seem to be highly used in the south-easterhisS.
may perhaps have happened because the time periods of aur dat
coincide with the peak hurricane season in those aféds |9 19
such variable and dangerous weather conditions may caess us
to check weather forecasts more frequently.

Next, we measure how far the geographic usage of different ge
res are from the aggregate geographic usage of the apps. aVe us
the Euclidean distance to measure the distance betweem afpai
geographic usage distributions. The Euclidean distantedas
a pair of distributiongxy,Xo, - -+ ,Xn] @and[y1,Y¥2,---,yn] is defined



100 100 100

¥, 20 -, 20 -, 20
10 10 10
' ;s ' | |
220240 TZ02x% TZ02x%

a. aggregate (not normalized) c. social networking e. @raghy
100 100 100
‘ -
50 50 50
20 , 20 e 20
‘ 10 10 10
T2 02 e e
b. aggregate normalized d. education f. weather

Figure 8: distribution of the geographic usage of apps in diferent genres.

as/SI, (x —yi)2 Figure[® shows the distance between each 100 | I
genre’s geographic usage distribution and the distributfcaggre-

gate national apps. We note that some genres, such as babks an 80 1
education, are disproportionately used in some statese wttiers,
such as social networking apps generate traffic more priopate
to the total traffic generated by that state.

The distribution of geographic usage of different apjthin the
same genre may also differ. Figlird 10 shows the geographgeus 20
distribution of a number of smartphone apps in the news géfoe
this analysis, we select the apps of a few newspapers thatedlre 0 1 5 3 A s
known across the entire U.S., and cover news relating to arty p # sectors
of the world. The location of each news app in Figuré 10 only re
flects where the newspaper headquarter is located. Hovemree
of them have a location indicated in their names (marked With
Figure[I0). Although all these apps are used nation-widenate
that apps whose names have a location indicated seem todve-dis
portionally preferred at those respective locations. lditazh, the
Washington D.C. news app seems to be highly preferred in Wash
. . genre
ington state as well, thus suggesting users look for appstipear #apps|
to be local to their region.
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Figure 11: travel-area of apps.
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Table 5: genres of high travel-area smartphone apps.
4.3.3 Travel Area of Smartphone Apps
Our final analysis of the spatial patterns of app usage ex@snin
whether individual users use some apps across larger ggogra from more than two sectors. Thus, our results indicate thajrafi-
areas than othergg., whether Internet radio apps, which users cant fraction of the apps are used when users move arourdinge
may listen to during their commute, are used across a larger a  another issue for content caching and delivery techniqigese
than books. Such an analysis can help understand what kinds o Stations in future cellular network designsg(, LTE) have been

apps need to be more robust to variations in network quality. considered potential locations for content caching anairapation
For this analysis, we define theavel-area as a smartphone’s ~ (Since they would be the first IP hop), so significant amoust us
geographic coverage per individual subscriber over shog, e.g., movement could make it more difficult to cache content approp

6 hours. We use the number of sectors to estimate the geagraph ately. Tabldb shows that the majority of these apps are games
coverage, since we do not have access to the device’s exast lo  social networking apps, but there are also a few music and new
tions. As noted in Sectionl 3, the number of sectors obsemed i apps.

our data set is an underestimate of the actual number ofrsecto 44 U Patt - t of U Int t
that the device passes through, but our results still givielea of : Ser Fatterns. Impact o ser Interests

the relative travel-area of different apps. Specificatly,dach app, on Smartphone Apps Usage

we compute the average number of unique sectors used bg activ.  The needs and interests of individual users are the prinzary f

subscribers in each 6 hour time interval. tors that inform their usage of apps. Because of user irteride
Figure[11 shows the distribution of the average travel-af¢ae usage of different apps tends to be correlated. In this@eatie an-

top 1000 popular apps. It shows that 10% apps access thermketwo alyze the extent to which user apps are correlated. Our sisdigs
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Figure 10: distribution of the geographic usage of apps in te same genre.

many motivations: knowing what sets of apps are correlataav
be helpful for both app developers as well as OS vendors,egs th
can factor this correlation into their designs and help fhesavork
better with each other. From a network perspective, suclivkno
edge could help optimize performance or user experience $et

of apps as a bundle, and may also enhance troubleshootiagdin
tion, app markets can leverage this information for recomnmfirey
new apps to users.
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Figure 12: distribution of the Jaccard Similarity Coefficient of
the popular apps.

We use thelaccard Similarity Coefficient to quantify the over-
lap between a pair of ap@sandb: we count the number of unique
subscribers who have used battandb, i.e., joint(a,b), and the
number of unique subscribers who have used either b, i.e,

union(a,b). We can obtaind2M@0) o g pairs of apps in the

union(a,b)
popular 1000 apps.

Figurd 12 shows the distribution of the Jaccard Similaribgfi-
cient between the top 1000, 500, 100, and 50 apps. We observe t
there is a small fraction of app pairs that have a very higlealac
Similarity Coefficient. For example, consider a pair of appls

Whosedgiig(&?) = 0.05, and assume thaiandb have 2000 unique

subscribers together (we know from Figlite 5(a) that eacheofdp
50 most popular apps have over 2000 unique subscribersh dthe

this value of the Jaccard Similarity Coefficieatandb share 100
unique subscribers. Given that there are more than 600,0iQ0e!
subscribers in our data set, the overlap of 100 subscrilseus-i
likely to be due to random chance, indicating that users pfap
have a tendency to also use dpp/Ve also note that as we increase
the number of popular apps from 50-1000, there is a smaber fr
tion of app pairs that have a significant overlap in subscsib€his

is expected, since an app is more likely to have subscribendap
with other apps when gets used by more and more subscribers.
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Figure 13: distribution of the dependency between popular
apps.

Next, we analyze how likely it is for a pair of apps to have a
substantial overlap in their users. Our analysis compdre®m-
pirical probabilities of a subscriber using each app irtiially to
the empirical probability of a subscriber using both apmgetber.
More precisely, leq, b denote apps, arfer [a], Pr[b] denote the em-
pirical probabilities of a subscriber using apgb respectively. Let
Pr[ab] denote the empirical probability of a subscriber using both
appsa andb. If the subscribers for each app are selected at random
from the total population, then we would expect tRafab] to be
somewhat close to the produRt[a]Pr[b]. Figurd I8 shows the dis-
tribution of the ratio% (we term this quantity thdependency
ratio for ease of reference). It shows that nearly 10% of the app
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Table 6: measuring the dependency between genres: apps witigh dependency-ratio.

pairs have a dependency ratio that exceeds 10, and 254 pa@s h
a ratio exceeding 100.
Table[® shows the frequency distribution of the genres cfethe

254 pairs (.e,, pairs with dependency-ratio exceeding 100). We can

make two immediate observations from this table. Firstsapphe
same genre are much more likely have correlated usage. &or-ex
ple, 110 pairs of two games apps that have high dependetioy-ra
but games apps are part of a only 230 pairs in total. Secopd,iap
similar genres are more likely to have high dependence;rat.,
entertainment and games, news and entertainment, entagaf
and social networking, travel and navigation, weather amaisn
social networking and newsic.

There are many reasons that pairs of apps have highly cadela
usage. First, many different apps often provide the same tfp
content in different forme.g., there may be multiple local news or
Internet radio stations targeting the same location, aedsusften
are interested in trying them all out. Or, there may multigpges
that allow users to access the same social networking sités w
different user interfaces. A second reason may be that apajps
serve similar purpose, but neither may provide completeicer

category | # apps|
entertainment| 20

description
small games, video channegsc.

radio 28 music radio channels, news radio channets,
healthcare| 12 sleep aid utilitiesgtc.
books 6 bible, referencestc.

Table 7: description of late night apps.

We first investigate the diurnal patterns by aggregatinghe|
popular apps together. For this analysis, we map each floheto t
local time of the device’s geo-location (based on the segt@re
the device is connected to the cellular network). Figui@)lgiiows
clear diurnal patterns of traffic volume and network accése.t
Around 1AM — 2AM, the total traffic volume and access time are
at their minimum; they start increasing around 4AM, reaehdbak
usage around noon, start decreasing after 3PM and drop tirama
cally after 8PM.

In general, apps have more activity during the daytime than a
night. However, this may not apply to every popular app. Fig-
ure[I3(b) shows the distribution of the traffic contributiduring

on its owne.g., users may have_z_iccoun'Fs with multiple banks, and |5te night for popular apps. According to Figlfd 14(a), ints of
need to use each bank's specific app in order to keep track of al 4t traffic volume or access time, the time period 1:00 AM593:

their accounts. Yet another reason may be that differers tgget
similar user interests, and users may try them all out totifjen
their favoritese.g., crossword puzzle apps or sudoku apps.

4.5 Temporal Patterns: Distribution of the Traf-
fic over time of Smartphone Apps

Understanding the diurnal patterns of apps is importanséer
eral reasons. For example, differences in when certain apps
used can help inform cloud providers on how to best multipéex
sources and operators on what to optimize the network foifat d
ferent times. In this analysis, we compare the traffic volsiaed
access times consumed by smartphone apps at differentdfdabes
day, both in aggregate as well as for different genres. Cault®
show that there are diurnal patterns of app usage both iregats,
as well as by genre, but that the patterns of different geares
noticeably different.

AM contributes 4.2% traffic. Even if an app generates uniftraf
fic every hour of the day, it should generate 12.5% traffic fio60
AM to 3:59AM. So, Figuré K (b) indicates that there are sopysa
that are quite active late at night. We manually investi¢ia¢se top
66 late night apps according to Figutel14(b) that contribute more
than 12.5% traffic late at night. Tallé 7 summarizes the tesul
It appears that several entertainment and radio apps adlemme
frequently than expected at night.

Finally, we analyze diurnal patterns across different genwe
expect that different genres of apps to have different upagerns,
since they appeal to different interests. As we did in eadiealy-
sis, we aggregate together the popular apps in the same, gewlre
compute the distribution of traffic volumes by genre at hpumt
tervals (again, using the local time of the flow). Figliré 16veh
the normalized traffic volume across the day; it clearly shbow
different genres do have very different diurnal patterngdrticu-
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Figure 15: diurnal patterns across different genres.

lar, we see that social network apps have almost exactlyaime s
pattern as the aggregate, but weather and news apps arereiost f
quently used at early morning. Sports apps, on the other, ipeadk

in the early evening, perhaps because users may watch reaiche
check scores frequently during those hours. Games apppeddo
after standard work hours as we would expect, since thabisapr
bly the typical recreation time for most subscribers.

4.6 Device Patterns: Differences Across Plat-
forms

Finally, we compare smartphone app usage across diffeiratg k
of devices. We expect that faster devices allow for longssises,
faster downloads, and more interactivity, thus enhandiegend-
user experience. Power users, who use their devices moyelsta
gravitate to newer and faster devices. We focus on threerdiit
devices from the same device family, as we expect deviceabper
ing system to also affect overall usage patterns. We contheze
devices in the same device family but of different generatio we
term these device 2, device 3, and device 4 in Fifilire 1. D&ice
is a HSDPA category 6 device (capable of 3.6Mbps downling)rat

and device 3 and device 4 are in HSDPA category 8 (capable of

7.2Mbps downlink) [[24]. Device 2 and device 3 are not HSUPA
enabled while device 4 is HSUPA category 6 (capable of 5.4&Vib
uplink) [25].

For this analysis, we use slightly different metrics thanhage
used in the rest of the paper, since our goal is to measuredray |
a user interacts with the device, and compare these measutem
across different devices. For this, we defiméividual access time
and theindividual traffic volume to be the network access time
and the traffic volume per flow respectively. We use theseiosetr
for our analysis as we expect the individual access timeduvige

a measure of how long a user spends with an app, and the indi-
vidual traffic volume to reflect how much data is transferradre
time a user interacts with an app. Obviously not every flow bel
larger or longer, but we expect that a device that allows &iteln
interaction will have on average more large flows and longsvd]

In Figure[16, we compare the individual traffic volume and in-
dividual access time between device 2 and device 4, and batwe
device 3 and device 4. For our analysis, we aggregate alldpe p
ular apps to first compute directly the individual accessetiand
individual traffic volume for these three platforms, andrtteem-
pute the relative differences by comparing device 2 agaiegice
4, and device 3 against device 4. According to Fidure 16te), t
individual access time for device 2 and device 4 are veryegias,
the median relative difference is 0. However, individuaffic vol-
ume for device 2 is much smaller. The median difference of the
individual traffic volume is—30%. Such a big difference indicates
that the user experience is substantially different betvtieese two
device categories; users of device 4 consume much moretgata,
ically through video. FigurE16(b) shows the comparisonveen
device 3 and device 4; these two device categories are masarcl
than device 2 and device 4. There may be two explanationst, Fir
a faster device tends to give users better overload experiend
encourages them to download more content from the netwead:. S
ond, power user are more likely upgrade to the latest smamigh
while users not as active may be more likely to keep using thei
older devices.

IMPLICATIONS

In previous sections, we investigate the usage patternsafts
phone apps from spatial, temporal, user, and device pengpec
We believe that our previous observations have importaptida-
tions for the smartphone community. In this section, we wsc
these implications following our previous observations.

5.

5.1 Content Providers

In the analysis of spatial patterns of smartphone usagespwe
serve a considerable number of local apps (20%) which dari&i
2% of the traffic volume in the smartphone apps category. The
content provided by these local apps are very deterministic
news apps, regional radio online services, weather foreqass,
etc. Given both the customers and locations for these apps aye ver
closely clustered, content placement and delivery canibestiop-
timized accordingly. It is therefore beneficial to place doatent
close to GGSNs in the cellular networks 28] for cellularnssand
place the content close to the geographic location of WiErus
Besides local apps, for national apps, the distributioreaiggaphic
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coverage is still very dependent on the gemrg.(weather apps are  apps category, and the app with the longest network acaess ti
highly used in the south-eastern U.S.), even the app’s name (  takes 86% of the total network access time of the smartphppe a
the news app headquartered in CHICAG@}, Therefore, con- category. Understanding the usage patterns of these agp&rk

tent placement according to the geographic coverage isaiolei providers may do certain optimizations case by case.
for both national and local apps. The temporal patterns of smartphone apps help networkgeowi
. . allocate radio resource. For example, the access time piéoviP

5.2 Context-Aware Applications helps network providers decide the timers in state promdge].

Despite very diverse usage usage patterns across diffamemt- We observe that some smartphone apps have large usage radius
phone apps, they still have some common traits. Accordirauto i.e, users of certain social networking apps and games apps are
observations, first, apps in the same genre share similgraefic more likely to move around across several base stationsituinef,
coverage. Second, some apps share a large set of common usellsTE networks will push the first IP hop forward to base station
due to the similarity of content and interestg., social network- which increases the flexibility of content placement andmojza-
ing apps strongly correlate with entertainment apps, mapjts, tion. However, if users frequently move around, the comesp

news appsetc. Third, some apps share similar diurnal patterns due ing mobility may increase the complexity to decide whereaohe
to content characteristicgg., the peak hours of news apps and content and what content to cache.
weather apps come at early morning. .

Context-aware applications can take advantage of theimgist 9.4 OS Vendors and Apps Designers
similarity/correlation across smartphone apps. Take tphane Since smartphones have limited resources, the OS is account
apps recommendation systems as an example. Unlike normal PCable for resource managemeel., the push notification on iOS,
users, smartphone users depend on apps far more than bsowser Android, Windows Phone. Understanding the access pattefrns
Since a smartphone apps recommendation system is the first apapps on device, OS can add some flexibility to apps and optimiz
proach for users to explore various smartphone apps thatthese the resource usage. For example, if a user frequently sctme

interests, these systems can be quite important. As thgenbid- certain sleep aid app, then OS may allocate less resourbese t

tween app marketplace and app customers, if apps recomtimnda  apps that may interrupt the user’s sleep.

systems can learn user interests and dependency acrosshagyps Certain genres of smartphone apps have different chaiscter

can identify more appropriate apps for userg,, suggesting gam-  tics, which may be taken advantage by apps designers. We ob-

ing fans more entertainment apps and social networking.apps serve that news and weather apps have distinctive diurtizirps.
Another example of context-aware application is advemiset Since the content of these apps usually are very time depeadd

systems, which upon learning user’s interests in apps, etved content fetching time is very predictable, apps designerimgle-

more relevant ads to users. Camera or camcorder advertisEBme ment some prefetching mechanism to reduce the latencyipedce

may target more smartphone users that use more entertdiamen by users. Similarly, the content of social networking apas be
game apps because photography apps are more correlateghwith  prefetched before dinner time.
tertainment and game apps.

5.3 Network Providers 6. CONCLUDING REMARKS

Besides content providers, cellular network providers alsy In this study, we comprehensively investigated the divessge
an important role in content delivery and customization.uBger- patterns of smartphone apps via network measurements fran a
standing the access patterns of smartphone apps, netvowiki@rs tional level tier-1 cellular network provider in the U.S. Qatudy
can benefit in allocating radio resource, setting cachitigggp@om- is the first attempt in addressing the lack of how, where anénwh
pression policygtc. smartphone apps are used at the scale of the entire U.S.

If a large number of smartphone apps are targeted, thefictraf We observed that a considerable fraction of popular app&)20
volume and access time roughly have linear correlation wigir are local because their content are expected to serve loeed such
number of unique subscribers. Accordingly, cellular pdevs can as news and radio apps. This suggests that there is sighifican
estimate and allocate radio resources. sibility for content optimization in LTE and WiFi access werks

We observe that the several few top apps contribute the major where the flexibility of placing content is high.
ity traffic. For example, the app with the largest traffic kel is We also found out that there are similarities across appsring

accountable for 50% of the total traffic volume of the smaotph of geographic coverage, diurnal usage patteetts, Certain apps



have a high likelihood of co-occurrence — that is, (i) whersaru
uses one app, he is also likely to use another one; or (iisuses
alternatives for the same type of interestg,, multiple news apps,
bank apps. These observations suggest that some apps bleould
treated as a “bundle” when trying to optimize for their user e
perience. There may be opportunities for integrating tregges
together.

Diurnal patterns of smartphone apps can be remarkablyrdiffe
ent. For instance, news apps are much more frequently ugbd in
early morning while sports apps are more frequently usedhén t
evening. These findings suggest that content providags losted
on cloud) can leverage distinct usage patterns in classaspsfto
maximize the utilization of their resources.

Many social networking and games apps are more frequently
used when users are moving around. Mobility affects comnect
ity and performance, so bandwidth sensitive content thainao-
bile may need to consider techniques to compensate for hdtidw
variability.

We believe that our findings on the diverse usage patterns of
smartphone apps in spatial, temporal, user, device dimessiill
motivate future work in the mobile community.
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