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My Background

v

Mid 1980's: PhD student studying discrete-event simulation
» Under Donald Iglehart (Stanford) & Gerald Shedler (IBM)
Saw Michael Molloy 1982 paper in IEEE Trans. Comput.:
» “Performance analysis using stochastic Petri nets”
Wrote PNPM85 simulation paper with Gerry Shedler
» “Regenerative simulation of stochastic Petri nets”

v

v

v

Kept working (in between Info. Mgmt. research) ...
Modelling power for simulation [HS88]

Prototypes: SPSIM, “Labelled” SPN simulator [JS89, HS90]
Delays [HS93a,b]

Standardized time series [Haa97,99a,99b]

Transience and recurrence [GH06, GHO7]

Gave this seminar at 2004 Winter Simulation Conference

vV vy vy VvYyy

v

3 Peter J. Haas Petri Nets 2007



Complex Systems

HE0 Ay G

Concurrency

Precedence

Synchronization

Randomness
(non-Markovian stochastics)
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Simulation and SPNs

> Assessment of system performance is difficult
» Even modelling the system is hard!
» Model is usually analytically and numerically intractable
> Huge state space and/or non-Markovian
» Simulation is often the only available numerical method
» But can't simulate blindly
» SPNs can help
» An attractive graphically-oriented modelling framework

» Well suited to sample-path generation on a computer
» Solid mathematical foundation

TN —

~

(0 (@ )<
> @ e
Y & N
/ / \
[ { i \
|
| [ | J
\ ‘\\ / /
\\\ \/\/ /
\\ \_/ //

5 Peter J. Haas Petri Nets 2007



This Tutorial

SPNs Simulation

Simulation theory for SPNs

» SPNs as a modelling framework for discrete-event systems
» Sample path generation for SPNs

» Steady-state output analysis: theory and methods

:
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Sources for This Tutorial

Peter J. Haas

Stochastic
Petri Nets

Modelling, Stability,
Simulation

» “Law of large numbers and functional central limit theorem for
generalized semi-Markov processes.” P. W. Glynn and P. J. Haas.
Comm. Statist. Stochastic Models, 22(2), 2006, 201-232.

» On Transience and Recurrence in Irreducible Finite-State Stochastic
Systems. P. W. Glynn and P. J. Haas. IBM Technical Report, 2007.
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Outline

» Simulation basics

» Discrete-event systems
» The simulation process

» Modelling with SPNs

» Building blocks
» Modeling power for simulation

» Sample-path generation

» The marking process
» Efficiency issues, parallelism

» Steady-state estimation for SPNs

» Conditions for long-run stability (recurrence, limit theorems)
» Output-analysis methods and their validity
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Goals

Illustrate the rich behavior of non-Markvian SPNs

v

» Introduce you to some basic simulation methodology
» Explore foundational issues in modelling and analysis
» Connect modeling practice and simulation theory

» Stimulate your interest in SPNs as a simulation framework
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Part 1l

Simulation Basics
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What We Simulate: Discrete-Event Stochastic Systems

X(t)

» System changes state when events occur
» Stochastic changes at random times
» Underlying stochastic process { X(t): t >0}
» X(t) = state of system at time t (a random variable)

» Piecewise-constant sample paths
» Typically not a continuous-time Markov chain

» Modelling challenge: defining appropriate system state

» Compact for efficiency reasons
» Enough info to compute performance measures
» Enough info to determine evolution
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Why We Simulate: Performance Evaluation

» Steady-state performance measures
» Time-average limits:
ot
a= lim = / f(X(u)) du
J0O
» Steady-state means:
a = E[f(X)], where X(t) = X

> le, B{X(t)=s}—>P{X=s}ast—

» Want point estimate &(t)

» Unbiased: E, [&(t)] = «

» Strongly consistent: P, {lim;_o &(t) =a} =1
» Want asymptotic 100p% confidence interval
(t) = [a(r) — H(t), &(t) + H(1)]
P.{I(t) > o}~ p for large t
Cl width indicates precision of point estimate

>

>
>
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Challenges in Performance Evaluation

» |s steady-state quantity « well-defined?
» Ex: steady-state number in M/M/1 queue with p > 1

» Is steady-state quantity independent of startup condition u?
» Ex: reducible Markov chain

» Statistical challenges

» Autocorrelation problem
> Initialization bias problem

» How to handle Delays?

n—1
1
Jim — ,; f(D;)
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The Simulation Process

Decide

Expected idle time
Long-run avg. cost
Long-run throughput
Expected delay

Estimates

Analyze \

Sample paths

14

Program &
Execute

Model

Robot arm
Conveyor
Exp(u) arrival rate

Simulation model

/ Specify

{X(t):t>0}
{S, :n=0}
{D,:n>0}

Stochastic process(es)

Peter J. Haas



How Modelling Frameworks Can Help

Queuing model

1 1-p 2

\ {X(t):t=0}

Robot arm . (r
Conveyor Direct Specification »| {5, :n=0)
Exp(u) arrival rate (GSMP) {D, :n>0}
Simulation model Stochastic process(es)

SPN Model

» But challenges, also:
» Immediate transitions and markings

15 Peter J. Haas
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Part Il
Modelling with SPNs

16
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The SPN Graph

s=(2,1,1)

d3

» D = finite set of places
» E = finite set of transitions (timed and immediate)

» marking = assignment of token counts to places
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Transition Firing

p(s';s, e*)

» The marking changes when an enabled transition fires
» Removes 1 token per place from random subset of input places

» Deposits 1 token per place in random subset of output places

18 Peter J. Haas Petri Nets 2007



Clocks (Event Scheduling)

clock reading

N M

» One clock per transition: records remaining time until firing

» Enabled transitions compete to trigger marking change
» The clock that runs down to 0 first is the “winner”
» Can have simultaneous transition firing: p(s’;s, E¥)
» Numerical priorities: specify simultaneous-firing behavior
» At a marking change: three kinds of transitions
» New transitions: Use clock-setting distribution function
» Old transitions: Clocks continue to run down
» Newly-disabled transitions: Clock readings are discarded
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Clocks, Continued

» Clock-setting distribution depends on:
» Old marking, new marking, trigger set
» Clocks run down at marking-dependent speeds r(s, e)

» Processor sharing
» Zero speeds: preempt-resume behavior

20 Peter J. Haas
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Timed and Immediate Markings

» Immediate marking: > 1 immediate transition is enabled
» An immediate marking vanishes as soon as it is attained

» Otherwise, marking is timed
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Example: Cyclic Queues with Feedback

1 1-p 2
Y »x X —@—<b—p> X
position: 12 3 4 5
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Bottom-Up and Top-Down Modeling

23 Peter J. Haas
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Other Modeling Features

Concurrency: Synchronization:
Precedence: Priority:

D

24 Peter J. Haas
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Why This SPN Model?

» Conciseness: small set of building blocks
» Generality: subsumes GSPNs, etc.
» Theory carries over

» Modelling power: captures many discrete-event systems
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Modeling Power of SPNs

» Compare to Generalized semi-Markov processes (GSMPs)
Arbitrary state definition (s)

Set E(s) of active events is a building block

No restrictions on p(s’; s, E*)

No “immediate events”

vV vy VvYy

» Strong mimicry

Define X(t) = state of system at time t

Define (S5, C,) = (state, clocks) after nth state transition
{X(t):t >0} processes have same dist'n (under mapping)
{(Sn, C;) : n > 0} have same dist'n (under mapping)

v

v vy

» Theorem: SPNs and GSMPs have same modeling power

» Establishes SPNs as framework for discrete-event simulation
» Allows application of GSMP theory to SPNs
» Methodology allows other comparisons (e.g., inhibitor arcs)
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Part IV

Sample-Path Generation

27
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The Marking Process

» Marking process: { X(t):t >0}

» X(t) = the marking at time t

» A very complicated process
» Defined in terms of Markov chain {(S,,C,) :n >0}
System observed after the nth marking change
Sp=(S5n1;---,Sn) = the marking
Co=(Co1,..., Cym) = the clock-reading vector
Chain defined via SPN building blocks

v

vV vy
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Definition of the Marking Process

marking

A !
S,- _No=2
83 | I\:I(t) =3 5
NLTCLLI ;
Si- N(t) =1 i

(Se.Co)  t(S4.Cq)  t(S5,Cy) t’l‘(83,C3) )
\ T | ! —>time
(=0 {4 {o (3 t {4
X(t) = Spy
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Generation of the GSSMC { (S, C,): n >0}

1. [Initialization] Set n = 0. Select marking S and clock
readings Cy; for ej € E(Sp); set Coj = —1 for e; & E(So).

2. Determine holding time t*(S,, C,) and firing set Ej;.

3. Generate new marking S,.1 according to p(-; Sp, EJY).

4. Set clock-reading C,1; for each new transition e; according
to F(-;Snt1,€i,Sn, EY).

5. Set clock-reading C,1 ; for each old transition e; as
Chi1,i = Coi — t%(Sn, Ca)r(Sn, €)-

6. Set clock-reading C,.1; equal to —1 for each newly disabled
transition e;.

7. Set n <+ n+1 and go to Step 2.
Can compute GSMP { X(t): t > 0} from GSSMC

30 Peter J. Haas Petri Nets 2007



Implementation Considerations for Large-Scale SPNs

» Use event lists (e.g., heaps) to determine E*

» O(1) computation of E*

> O(Iog m) update time, where m = # of enabled transitions
» Updating the state is often simpler in an SPN
» Efficient techniques for event scheduling [Chiola91]

» Encode transitions potentially affected by firing of ¢;

potentially enabled

i -

e/ ‘ €
potentially disabled

» Parallel simulation of subnets
» E.g., Adaptive Time Warp [Ferscha & Richter PNPM97]
» Guardedly optimistic
» Slows down local firings based on history of rollbacks
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Part V
Stability Theory for SPNs

32
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Stability and Simulation

33

» Focus on time-average limits:

r(f) = lim /(;tf(X(u)) du F(f) = lim fo (Sn, Cn)

n—oo N

» Ex: long-run cost, availability, utilization

» Extensions:
» Functions (e.g. ratios) of such limits
» Cumulative rewards (impulse/continuous/mixed), gradients
» Steady-state means

» Key questions:

» When do such limits exist?
» When do various estimation methods apply?
» Can get weird behavior: lim, E [(, — (,—1] = oo but explodes!

» Approach: analyze the chain {(5,,C,):n>0}

Peter J. Haas Petri Nets 2007



Harris Recurrence: A Basic Form of Stability

» Definition for general chain { Z, : n > 0} with state space I'

P,{Z,cAio.} =1zl whenever ¢(A)>0

> ¢ is a recurrence measure (often “Lebesgue-like")
» Every “dense enough” set is hit infinitely often w.p. 1
» No “wandering off to co”

» Positive Harris recurrence:
» Chain admits invariant probability measure 7
» P.{Z1 € A} =7(A)
» Implies stationarity when initial dist'n is 7
» When is { (Sn, Cy) : n > 0} (positive) Harris recurrent?
» Fundamental question for steady-state estimation
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Some Stability Conditions

35

>
>
>
>

v

Density component g of a cdf F: F(t) > [ g(u)du

s — s iff p(s’;s,e) > 0 for some e

s~ eithers > s ors — s — ... 55N g
Assumption PD(q):

>

vvyy

Marking set G is finite
SPN is irreducible: s~ s’ for all 5,5’ € G
All speeds are positive

/

There exists x € (0,00) s.t. all clock-setting dist'n functions

» Have finite gth moment
> Have density component positive on [0, X]

Assumption PDE: replace finite gth moment requirement by

/ e dF(x) < oo for wu€|0,aF]
0

Peter J. Haas

Petri Nets 2007



Harris

Recurrence in SPNs

Embedded chain: {(Sn, Cp) : n > 0} observed only at
transitions to timed markings

> ¢({s} x A) = Lebesgue measure of AN [0, x]"

36

Theorem: If Assumption PD(1) holds, then the embedded
chain is positive Harris recurrent with recurrence measure ¢
Implies £, {S, =sio.} =1forallse S
Proof:

> First assume no immediate transitions
Show that embedded chain is “¢-irreducible”

Establish Lyapunov drift condition and apply MC machinery
Extend to case of immediate transitions using strong mimicry

vV Vvyy

Alternate approach to recurrence: geometric-trials arguments

» Can drop positive-density assumption
» Use detailed analysis of specific SPN structure

Peter J. Haas Petri Nets 2007



A Surprising Recurrence Result [Glynn and Haas 2007]

» S, = marking just after nth marking change
» Conjecture: P{S, =si.0.} =1 for each s if

» Marking set S is finite

» SPN is irreducible

» 3x > 0s.t. each F(-;e) has positive density on (0, X)
» CONJECTURE IS FALSE!

> In the presence of heavy-tailed clock-setting dist'ns

37 Peter J. Haas Petri Nets 2007



The Counterexample

38

» S={(2,1,1),(1,2,1),(1,1,2) }
> p(s’;s,e*)=0o0r1
(see schematic diagram)
» Clock-setting distributions:
» F(tie)=1—-(1+41t)“
» F(t;e)=1—(1+1t)#
» F(-;e3) is Uniform[0, 3]
with 8 >1/2and a+ <1

» SPN hits marking s = (1,2, 1) only if:

» ¢e; occurs and then e, occurs
» No intervening occurrence of e3

» Theorem: P{S,=(1,2,1)i0.} =0

Peter J. Haas
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Another Type of Stability: Limit Theorems
» Theorem (SLLN): If Assumption PD(1) holds, then for any f

t
lim / f(X(u)) du = r(f) as.
0
» Theorem (FCLT): If Assumption PD(2) holds, then for any f

Uy(f) = o(F)W as v — 00

v

U, (F)(t) = v1/2 fo”f(f(X(u)) - r(f)) du
= denotes weak convergence on CJ[0, c0)

W = standard Brownian motion on [0, o)
» “Functional” form of CLT (ordinary CLT is a special case)

v

v

» Note: r(f) and o(f) are independent of initial conditions
» Follows from general result in [Glynn and Haas 2006]
> Uses results for Harris recurrent MCs
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FCLT Example: Donsker's Theorem

SyN3
So 2

Soh3

S4N3

Sg/N10

Sgh2
SgMN10

t=0 t=1 ¢ SqA10

=]
o

Sy N2

S4N10

40 Peter J. Haas
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Part VI

Steady-State Simulation

41
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Regenerative Simulation: Regenerative Processes

X(0)

A PAASRZ Y,
1 1 1 1
Ty T T. T,

e 1 —ofe 2o 15 o 5y

\ 4
~

» A regenerative process can be decomposed into i.i.d. cycles
» System “probabilistically restarts” at each T;

» Ex: successive arrival times to an empty GI/G/1 queue
» Analogous definition for discrete-time process { X,: n >0}
» Extension: one-dependent cycles

» Harris recurrent chains are od-regenerative
(basis for previous SLLN and FCLT)

42 Peter J. Haas Petri Nets 2007



Regenerative Simulation: The Ratio Formula

> Let -
Y,' _/ f(X(u)) du and Ti = T,' — T,'_1
Tl*l

> (Y1,71),(Y2,72),... are i.i.d. pairs

» |t follows that

1 [Tn Y Y, E[Y]de
| rx)au= el 2 T Eile
Tn Jo Zi:lTi Tn

almost surely as n — oo (need E [11] < 00)

» Can show that

1/t
t/ f(X(u)) du —ras.ast— oo
0

» If 7 is “aperiodic”, then X(t) = X and E[f(X)] = r
Petri Nets 2007
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Regenerative Simulation: The Regenerative Method

» Point estimate (biased): 7, = Y, /7,

» 7, — r a.s. as n — oo (strong consistency)
» Confidence interval

» Set Z; =Y, —rm;

» 71,2,...1id. with E[Z] =0 and Var[Z] = o2
» Apply Central Limit Theorem (CLT) for i.i.d. random variables:
V(P —r) V(P —r)
_— N(0,1 d ——= N(0,1
O'/E[Tl] = ( ’ ) an 5n/7_-n = ( ’ )

as n — oo, where s, estimates o (we assume 02 < 00)
» 100p% asymptotic confidence interval:
/r\n_ _Zpsn s In _Zpsn 9
To/n’ Tan/N
where P{ -z, < N(0,1) < z, } = p, i.e., (1 + p)/2 quantile
» Many extensions: bias reduction, fixed-time or

fixed-precision, generalized Y and 7, estimate
a=g(E[Y],E[7]), ...

~
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Regenerative Simulation of SPNs

45

vV v . v Y

vy

A marking 5 is a single state if E(5) ={e}

Define 6(k) = kth marking change at which & fires in 5

Set Tk = Coky and 74 = Ty — Tx—1

Theorem: Suppose Assumption PD(2) holds and SPN has a
single state 5

» Random times { Ty : k > 0} form sequence of regeneration
points for marking process

» Finite expected cycle length: E,[r1] < o0

» Finite variance constant for any f:

o%(f) = Var, | TT; f(X(u)) du—rm] < oo

Can therefore apply standard regenerative method

Variant theorems are available
» Variants of single state (e.g., memoryless property)
» Other recurrence conditions (geometric trials)
> Discrete-time results

Peter J. Haas Petri Nets 2007



The Method of Batch Means

» Simulate system to (large) time t = mv (where 10 < m < 20)

» Divide into m batches of length v and compute batch means:

_ 1 iv
Y, = — f(X(u)) du
|, rx@)

v

i—1)v

» Treat Y1, Ya,..., Yy asiid., N(u,o?):
» Point estimate: . = (1/m)>_", Y;
» 100p% confidence interval:

|:A tp,mflsm A tp,mflsm

Ty — e+
t \/m s I't \/m

where t, n—1 = (1 + p)/2 quantile of Student’s T dist'n
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Batch Means, Continued

] 1
0 v 2v

» Why might batch means work?

» Formally, want to show

» Consistency of 7; and validity of Cl as t — oo
» For m fixed (standard batch means)
» What if m = m(t)? Overlapping batches?

» Special case of standardized-time-series methods

47 Peter J. Haas

Petri Nets 2007



Standardized Time Series

» Consider a mapping £ : C[0, 1] — R such that
> &(ax) = a&(x) and &(x — be) = £(x), where e(t) =t
» P{E(W)>0}=1land P{WeD(&)}=0
> Set Y, (t) = (1/v) ;" f(X(u)) du and %, = Y, (1)
» Theorem: If Assumption PD(2) holds, then r exists and

bo—r (k=) cW(1)  W(1)

&Y) V(Yo —re)) T ag(W)  gW)

so that an asymptotic 100p% confidence interval for r is
[?1/ - f(\_/u)zpa Fy + 5(\_/11)213} )

where P{—z, < W(1)/¢(W) < z,} = p
» Different choices of ¢ yield different estimation methods

» batch means (fixed # of batches)
» STS area method, STS maximum method

48 Peter J. Haas Petri Nets 2007



Consistent-Estimation Methods (Discrete Time)
» Set 7, = (1/n) 2}7:_01 f(S;, C;) and suppose that

lim 7, =F a.s. and M = N(0,1)

n—o0 g
» If we can find a consistent estimator V,, = 52, then
n(f, —F
M = N(0,1)
/2
Vi

» Then an asymptotic 100p% confidence interval for ¥ is

7sz,}/2 R sz,}/2

rn \/ﬁ arn+ \/ﬁ 9

where z, = (14 p)/2 quantile of N(0,1)
» Narrower asymptotic confidence intervals than STS methods
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Consistent-Estimation Methods for SPNs

» Look at polynomially dominated functions:
f(s,c) = O(1 + maxy<i<pm c) for some g > 0
» Require aperiodicity: no partition of marking set G s.t.
Gl—>G2—>---—>Gd—>G1—>G2—>---
» Focus on "localized quadratic-form variance estimators”
» Quadratic-form:

Vo =33 F(Si, G)F(S;. Gl

i=0 j=0

» Localized:

7] < {/ i =gl < m(n);
J a»(n)/n if |i —j| > m(n)

where ay(n) — 0 and m(n)/n — 0
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Exploiting Results for Stationary Output

» Theorem: For an aperiodic SPN, suppose that
» Assumption PDE holds (3 invariant distribution 7)
{#(S, Ca): n>0} obeys a CLT with variance constant &2
V, is a localized quadratic-form estimator of 52
V,, = 52 when initial distribution = 7

v vy

Then V,, = & for any initial distribution
» Proof:
» {(Sn, Ch): n >0} couples with stationary version
> Localization: difference between V,, versions becomes negligible

» Consequence: can exploit existing consistency results for
stationary output

51 Peter J. Haas Petri Nets 2007



Coupling Harris-Ergodic Markov Chains

state

T — s B e
01 2 3 4 5 6 7 8 910 1112 n
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Application to Specific Variance Estimators

» Variable batch means estimator of 52:

» b(n) batches of m(n) observations each y
» VBM estimator is consistent if Assumption PDE holds, f is
polynomially dominated, b(n) — oo, and m(n) — oo.
» Spectral estimator of 52:
> Form of estimator: V\®) = h":_l(m_l) :\(h/m)f?h
» Ry = sample lag-h autocorrelation of { f(S,, C,): n >0}
» A(-) = “regular” window function (Bartlett, Hanning, Parzen)
» m = m(n) = spectral window length 5
» Spectral estimator is consistent if Assumption PDE holds, f is
polynomially dominated, m(n) — oo, and m(n)/n*/? — 0
» Overlapping batch means: asymp. equivalent to spectral

» Can extend results to continuous time (and drop aperiodicity)

53 Peter J. Haas Petri Nets 2007



Estimation of Delays in SPNs

54

v

A /

v

v

Want to estimate lim,_..(1/n) 37 f(D;)

Delays Dg, D1, .

Specified as D; = B} — A;

>

>

>

Starts: { Aj = (u(j) :j = 0} nondecreasing
Terminations: { Bi = sy i = 0}
Determined by { (S, C,): n >0}

Measuring lengths of delay intervals is nontrivial

>

vV vy

Must link starts and terminations
Multiple ongoing delays
Overtaking: delays need not terminate in start order

.. "determined by marking changes of the net”

Can avoid for limiting average delay lim,_.o(1/n) Y/—) D;

Measurement methods: tagging and start vectors

Peter J. Haas
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Tagging




Start Vectors

Assume # of ongoing delays = 1(s) when marking is s
V, records starts for all ongoing delays at (,
Positions of starts = position of entities in system (usually)

Use -1 as placeholder

vV vy VvV VY

At each marking change:
» Insert current time according to i,(s'; s, E®)
» Delete components according to ig(s’; s, E*)
» Permute components according to i (s’;s, E*)
» Subtract deleted components from current time to compute
delays (ignore -1's)

56 Peter J. Haas Petri Nets 2007



Start Vector Example

Vs = (2.9,2.4,0)
D=29-12=17

57 Peter J. Haas Petri Nets 2007



Regenerative Methods: The Easy Case

A
D7
7,
6 Eﬁ_
5
4 D4_
"
D,
2_
14 D1_
]G
Co) Gm e ) t

» Assume SPN has single state and “well behaved” cycles

» Use standard regenerative method

58 Peter J. Haas Petri Nets 2007



Regenerative Methods: The Hard Case

59

n@=4

A

7 D7__

64 D

54 D5

| :

| )

1 e

of & |

o) ,j 70) Yo Cay Yw S t
5

K

» Assume SPN has single state and “well behaved” cycles

» Decompose delays into one-dependent cycles

> Use extended regenerative method or multiple-runs method

Peter J. Haas
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Limiting Average Delay

» Under appropriate regularity conditions

» 1 = # of starts in regenerative cycle

Zl = fcycle Q/J(X(t)) dt
» 1(s) = # of ongoing delays when marking is s
(Zl, (51)7 (Zz, (52), ...areiid.

» Can use standard regenerative method

v

v

» No need to measure individual delays

» One proof of this result uses Little’s Law

60 Peter J. Haas
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STS Methods for Delays

v

Focus on “regular” start-vector mechanism

v

Use polynomially-dominated functions f: &, — Rt
|f(x)| = O(1 4 x9) for some g >0
Theorem: If Assumption PDE holds, then

v

n—1

1
lim — f(Dj)=r as. n(f i317%
anxnjEO (Dj) =ras. and Uy(f) = o(f)

where Uy(f)(t) = n/2 [ (f(Dy,y) — r) du

Proof: Identify one-dependent cycles

v

v

Apply limit theorems for od-regenerative processes
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Colored SPNs

» Tokens have color and transitions fire “in a color”

» Yields more concise graphs
> “Symmetry with respect to color”

» Captures variety of system symmetries
» Can exploit to improve simulation efficiency
» Shorter regenerative cycle lengths
» Shorter Cls for delays
Ex: delay for port 1 in symmetric token ring
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Part VII

Conclusion

63
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Summary
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» SPNs are an attractive framework for simulation
» User-friendly graphical orientation
» Powerful and flexible modeling tool
» Solid mathematical basis

» Efficiency in sample-path generation

» Simulation theory: building-block conditions for

» Stability (recurrence, limit theorems)
» Validity of simulation methods

» Simulation methods:

» Regenerative

» Standardized time series (batch means)

» Consistent-estimation methods (spectral and VBM)
» Further resources

» INFORMS College on Simulation (http://www.informs-cs.org)
» www.almaden.ibm.com/cs/people/peterh

Peter J. Haas Petri Nets 2007
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