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Part I

Introduction
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My Background

I Mid 1980’s: PhD student studying discrete-event simulation
I Under Donald Iglehart (Stanford) & Gerald Shedler (IBM)

I Saw Michael Molloy 1982 paper in IEEE Trans. Comput.:
I “Performance analysis using stochastic Petri nets”

I Wrote PNPM85 simulation paper with Gerry Shedler
I “Regenerative simulation of stochastic Petri nets”

I Kept working (in between Info. Mgmt. research) . . .
I Modelling power for simulation [HS88]
I Prototypes: SPSIM, “Labelled” SPN simulator [JS89, HS90]
I Delays [HS93a,b]
I Standardized time series [Haa97,99a,99b]
I Transience and recurrence [GH06, GH07]

I Gave this seminar at 2004 Winter Simulation Conference
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Complex Systems
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Simulation and SPNs

I Assessment of system performance is difficult
I Even modelling the system is hard!
I Model is usually analytically and numerically intractable

I Huge state space and/or non-Markovian

I Simulation is often the only available numerical method
I But can’t simulate blindly

I SPNs can help
I An attractive graphically-oriented modelling framework
I Well suited to sample-path generation on a computer
I Solid mathematical foundation

Peter J. Haas5 Petri Nets 2007



This Tutorial

Simulation theory for SPNs

I SPNs as a modelling framework for discrete-event systems

I Sample path generation for SPNs

I Steady-state output analysis: theory and methods
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Sources for This Tutorial

I “Law of large numbers and functional central limit theorem for
generalized semi-Markov processes.” P. W. Glynn and P. J. Haas.
Comm. Statist. Stochastic Models, 22(2), 2006, 201–232.

I On Transience and Recurrence in Irreducible Finite-State Stochastic
Systems. P. W. Glynn and P. J. Haas. IBM Technical Report, 2007.
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Outline

I Simulation basics
I Discrete-event systems
I The simulation process

I Modelling with SPNs
I Building blocks
I Modeling power for simulation

I Sample-path generation
I The marking process
I Efficiency issues, parallelism

I Steady-state estimation for SPNs
I Conditions for long-run stability (recurrence, limit theorems)
I Output-analysis methods and their validity
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Goals

I Illustrate the rich behavior of non-Markvian SPNs

I Introduce you to some basic simulation methodology

I Explore foundational issues in modelling and analysis

I Connect modeling practice and simulation theory

I Stimulate your interest in SPNs as a simulation framework
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Part II

Simulation Basics
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What We Simulate: Discrete-Event Stochastic Systems

I System changes state when events occur
I Stochastic changes at random times

I Underlying stochastic process {X (t) : t ≥ 0 }
I X (t) = state of system at time t (a random variable)
I Piecewise-constant sample paths
I Typically not a continuous-time Markov chain

I Modelling challenge: defining appropriate system state
I Compact for efficiency reasons
I Enough info to compute performance measures
I Enough info to determine evolution
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Why We Simulate: Performance Evaluation

I Steady-state performance measures
I Time-average limits:

α = lim
t→∞

1

t

∫ t

0

f
(
X (u)

)
du

I Steady-state means:

α = E [f (X )], where X (t)⇒ X

I I.e., Pµ {X (t) = s } → P {X = s } as t →∞

I Want point estimate α̂(t)
I Unbiased: Eµ [α̂(t)] = α
I Strongly consistent: Pµ { limt→∞ α̂(t) = α } = 1

I Want asymptotic 100p% confidence interval
I I (t) = [α̂(t)− H(t), α̂(t) + H(t)]

I Pµ { I (t) 3 α } ≈ p for large t
I CI width indicates precision of point estimate
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Challenges in Performance Evaluation

I Is steady-state quantity α well-defined?
I Ex: steady-state number in M/M/1 queue with ρ > 1

I Is steady-state quantity independent of startup condition µ?
I Ex: reducible Markov chain

I Statistical challenges
I Autocorrelation problem
I Initialization bias problem

I How to handle Delays?

lim
n→∞

1

n

n−1∑
j=0

f (Dj)
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The Simulation Process
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How Modelling Frameworks Can Help

I But challenges, also:
I Immediate transitions and markings
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Part III

Modelling with SPNs
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The SPN Graph

s = (2, 1, 1)

d1 d2

d3

I D = finite set of places

I E = finite set of transitions (timed and immediate)

I marking = assignment of token counts to places
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Transition Firing

p(s ′; s, e∗)

I The marking changes when an enabled transition fires

I Removes 1 token per place from random subset of input places

I Deposits 1 token per place in random subset of output places
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Clocks (Event Scheduling)

I One clock per transition: records remaining time until firing
I Enabled transitions compete to trigger marking change

I The clock that runs down to 0 first is the “winner”
I Can have simultaneous transition firing: p(s ′; s,E∗)
I Numerical priorities: specify simultaneous-firing behavior

I At a marking change: three kinds of transitions
I New transitions: Use clock-setting distribution function
I Old transitions: Clocks continue to run down
I Newly-disabled transitions: Clock readings are discarded
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Clocks, Continued

I Clock-setting distribution depends on:
I Old marking, new marking, trigger set

I Clocks run down at marking-dependent speeds r(s, e)
I Processor sharing
I Zero speeds: preempt-resume behavior
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Timed and Immediate Markings

I Immediate marking: ≥ 1 immediate transition is enabled

I An immediate marking vanishes as soon as it is attained

I Otherwise, marking is timed
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Example: Cyclic Queues with Feedback
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Bottom-Up and Top-Down Modeling
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Other Modeling Features

Concurrency: Synchronization:Synchronization:

Precedence:Precedence:Precedence: Priority:
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Why This SPN Model?

I Conciseness: small set of building blocks
I Generality: subsumes GSPNs, etc.

I Theory carries over

I Modelling power: captures many discrete-event systems
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Modeling Power of SPNs

I Compare to Generalized semi-Markov processes (GSMPs)
I Arbitrary state definition (s)
I Set E (s) of active events is a building block
I No restrictions on p(s ′; s,E∗)
I No “immediate events”

I Strong mimicry
I Define X (t) = state of system at time t
I Define (Sn,Cn) = (state, clocks) after nth state transition
I {X (t) : t ≥ 0 } processes have same dist’n (under mapping)
I { (Sn,Cn) : n ≥ 0 } have same dist’n (under mapping)

I Theorem: SPNs and GSMPs have same modeling power
I Establishes SPNs as framework for discrete-event simulation
I Allows application of GSMP theory to SPNs
I Methodology allows other comparisons (e.g., inhibitor arcs)
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Part IV

Sample-Path Generation
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The Marking Process

I Marking process: {X (t) : t ≥ 0 }
I X (t) = the marking at time t
I A very complicated process

I Defined in terms of Markov chain { (Sn,Cn) : n ≥ 0 }
I System observed after the nth marking change
I Sn = (Sn,1, . . . ,Sn,L) = the marking
I Cn = (Cn,1, . . . ,Cn,M) = the clock-reading vector
I Chain defined via SPN building blocks
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Definition of the Marking Process
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Generation of the GSSMC { (Sn, Cn) : n ≥ 0 }

1. [Initialization] Set n = 0. Select marking S0 and clock
readings C0,i for ei ∈ E (S0); set C0,i = −1 for ei 6∈ E (S0).

2. Determine holding time t∗(Sn,Cn) and firing set E ∗
n .

3. Generate new marking Sn+1 according to p( · ;Sn,E
∗
n ).

4. Set clock-reading Cn+1,i for each new transition ei according
to F ( · ;Sn+1, ei ,Sn,E

∗
n ).

5. Set clock-reading Cn+1,i for each old transition ei as
Cn+1,i = Cn,i − t∗(Sn,Cn)r(Sn, ei ).

6. Set clock-reading Cn+1,i equal to −1 for each newly disabled
transition ei .

7. Set n← n + 1 and go to Step 2.

Can compute GSMP {X (t) : t ≥ 0 } from GSSMC
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Implementation Considerations for Large-Scale SPNs
I Use event lists (e.g., heaps) to determine E ∗

I O(1) computation of E∗

I O
(
log m

)
update time, where m = # of enabled transitions

I Updating the state is often simpler in an SPN
I Efficient techniques for event scheduling [Chiola91]

I Encode transitions potentially affected by firing of ei

I Parallel simulation of subnets
I E.g., Adaptive Time Warp [Ferscha & Richter PNPM97]
I Guardedly optimistic
I Slows down local firings based on history of rollbacks
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Part V

Stability Theory for SPNs
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Stability and Simulation

I Focus on time-average limits:

r(f ) = lim
t→∞

1

t

∫ t

0
f
(
X (u)

)
du r̃(f̃ ) = lim

n→∞

1

n

n−1∑
i=0

f̃ (Sn,Cn)

I Ex: long-run cost, availability, utilization
I Extensions:

I Functions (e.g. ratios) of such limits
I Cumulative rewards (impulse/continuous/mixed), gradients
I Steady-state means

I Key questions:
I When do such limits exist?
I When do various estimation methods apply?
I Can get weird behavior: limn E [ζn − ζn−1] =∞ but explodes!

I Approach: analyze the chain { (Sn,Cn) : n ≥ 0 }
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Harris Recurrence: A Basic Form of Stability

I Definition for general chain {Zn : n ≥ 0 } with state space Γ

Pz {Zn ∈ A i.o. } = 1, z ∈ Γ whenever φ(A) > 0

I φ is a recurrence measure (often “Lebesgue-like”)
I Every “dense enough” set is hit infinitely often w.p. 1
I No “wandering off to ∞”

I Positive Harris recurrence:
I Chain admits invariant probability measure π
I Pπ {Z1 ∈ A } = π(A)
I Implies stationarity when initial dist’n is π

I When is { (Sn,Cn) : n ≥ 0 } (positive) Harris recurrent?
I Fundamental question for steady-state estimation
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Some Stability Conditions

I Density component g of a cdf F : F (t) ≥
∫ t
0 g(u) du

I s → s ′ iff p(s ′; s, e) > 0 for some e

I s ; s ′: either s → s ′ or s → s(1) → · · · → s(n) → s ′

I Assumption PD(q):
I Marking set G is finite
I SPN is irreducible: s ; s ′ for all s, s ′ ∈ G
I All speeds are positive
I There exists x̄ ∈ (0,∞) s.t. all clock-setting dist’n functions

I Have finite qth moment
I Have density component positive on [0, x̄ ]

I Assumption PDE: replace finite qth moment requirement by∫ ∞

0
eux dF (x) <∞ for u ∈ [0, aF ]
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Harris Recurrence in SPNs

I Embedded chain: { (Sn,Cn) : n ≥ 0 } observed only at
transitions to timed markings

I φ̄({s} × A) = Lebesgue measure of A ∩ [0, x̄ ]M

I Theorem: If Assumption PD(1) holds, then the embedded
chain is positive Harris recurrent with recurrence measure φ̄

I Implies Pµ {Sn = s i.o. } = 1 for all s ∈ S
I Proof:

I First assume no immediate transitions
I Show that embedded chain is “φ̄-irreducible”
I Establish Lyapunov drift condition and apply MC machinery
I Extend to case of immediate transitions using strong mimicry

I Alternate approach to recurrence: geometric-trials arguments
I Can drop positive-density assumption
I Use detailed analysis of specific SPN structure
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A Surprising Recurrence Result [Glynn and Haas 2007]

I Sn = marking just after nth marking change
I Conjecture: P {Sn = s i.o. } = 1 for each s if

I Marking set S is finite
I SPN is irreducible
I ∃ x̄ > 0 s.t. each F ( · ; e) has positive density on (0, x̄)

I CONJECTURE IS FALSE!
I In the presence of heavy-tailed clock-setting dist’ns
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The Counterexample

I S = { (2, 1, 1), (1, 2, 1), (1, 1, 2) }
I p(s ′; s, e∗) = 0 or 1

(see schematic diagram)
I Clock-setting distributions:

I F (t; e1) = 1− (1 + t)−α

I F (t; e2) = 1− (1 + t)−β

I F ( · ; e3) is Uniform[0, a]

with β > 1/2 and α+ β < 1
I SPN hits marking s = (1, 2, 1) only if:

I e1 occurs and then e2 occurs
I No intervening occurrence of e3

I Theorem: P {Sn = (1, 2, 1) i.o. } = 0
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Another Type of Stability: Limit Theorems

I Theorem (SLLN): If Assumption PD(1) holds, then for any f

lim
t→∞

1

t

∫ t

0
f
(
X (u)

)
du = r(f ) a.s.

I Theorem (FCLT): If Assumption PD(2) holds, then for any f

Uν(f )⇒ σ(f )W as ν →∞

I Uν(f )(t) = ν−1/2
∫ νt

0

(
f
(
X (u)

)
− r(f )

)
du

I ⇒ denotes weak convergence on C [0,∞)
I W = standard Brownian motion on [0,∞)
I “Functional” form of CLT (ordinary CLT is a special case)

I Note: r(f ) and σ(f ) are independent of initial conditions
I Follows from general result in [Glynn and Haas 2006]

I Uses results for Harris recurrent MCs
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FCLT Example: Donsker’s Theorem

Sn =
∑n

i=0 Xi
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Part VI

Steady-State Simulation
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Regenerative Simulation: Regenerative Processes

I A regenerative process can be decomposed into i.i.d. cycles
I System “probabilistically restarts” at each Ti

I Ex: successive arrival times to an empty GI/G/1 queue

I Analogous definition for discrete-time process {Xn : n ≥ 0 }
I Extension: one-dependent cycles

I Harris recurrent chains are od-regenerative
(basis for previous SLLN and FCLT)
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Regenerative Simulation: The Ratio Formula

I Let

Yi =

∫ Ti

Ti−1

f
(
X (u)

)
du and τi = Ti − Ti−1

I (Y1, τ1), (Y2, τ2), . . . are i.i.d. pairs

I It follows that

1

Tn

∫ Tn

0
f
(
X (u)

)
du =

∑n
i=1 Yi∑n
i=1 τi

=
Ȳn

τ̄n
→ E [Y1]

E [τ1]
def
= r

almost surely as n→∞ (need E [τ1] <∞)

I Can show that

1

t

∫ t

0
f
(
X (u)

)
du → r a.s. as t →∞

I If τ1 is “aperiodic”, then X (t)⇒ X and E [f (X )] = r
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Regenerative Simulation: The Regenerative Method
I Point estimate (biased): r̂n = Ȳn/τ̄n:

I r̂n → r a.s. as n→∞ (strong consistency)
I Confidence interval

I Set Zi = Yi − rτi
I Z1,Z2, . . . i.i.d. with E [Zi ] = 0 and Var[Z1] = σ2

I Apply Central Limit Theorem (CLT) for i.i.d. random variables:
√

n
(
r̂n − r

)
σ/E [τ1]

⇒ N(0, 1) and

√
n
(
r̂n − r

)
sn/τ̄n

⇒ N(0, 1)

as n→∞, where sn estimates σ (we assume σ2 <∞)
I 100p% asymptotic confidence interval:[

r̂n −
zpsn
τ̄n
√

n
, r̂n +

zpsn
τ̄n
√

n

]
,

where P {−zp ≤ N(0, 1) ≤ zp } = p, i.e., (1 + p)/2 quantile

I Many extensions: bias reduction, fixed-time or
fixed-precision, generalized Y and τ , estimate
α = g(E [Y ] ,E [τ ]), . . .
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Regenerative Simulation of SPNs

I A marking s̄ is a single state if E (s̄) = { ē }
I Define θ(k) = kth marking change at which ē fires in s̄

I Set Tk = ζθ(k) and τk = Tk − Tk−1

I Theorem: Suppose Assumption PD(2) holds and SPN has a
single state s̄

I Random times {Tk : k ≥ 0 } form sequence of regeneration
points for marking process

I Finite expected cycle length: Eµ[τ1] <∞
I Finite variance constant for any f :

σ2(f ) = Varµ

[∫ T1

T0
f
(
X (u)

)
du − rτ1

]
<∞

I Can therefore apply standard regenerative method
I Variant theorems are available

I Variants of single state (e.g., memoryless property)
I Other recurrence conditions (geometric trials)
I Discrete-time results
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The Method of Batch Means

I Simulate system to (large) time t = mv (where 10 ≤ m ≤ 20)

I Divide into m batches of length v and compute batch means:

Ȳi =
1

v

∫ iv

(i−1)v
f
(
X (u)

)
du

I Treat Ȳ1, Ȳ2, . . . , Ȳm as i.i.d., N(µ, σ2):
I Point estimate: r̂t = (1/m)

∑m
i=1 Ȳi

I 100p% confidence interval:[
r̂t −

tp,m−1sm√
m

, r̂t +
tp,m−1sm√

m

]
,

where tp,m−1 = (1 + p)/2 quantile of Student’s T dist’n
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Batch Means, Continued

I Why might batch means work?
I Formally, want to show

I Consistency of r̂t and validity of CI as t →∞
I For m fixed (standard batch means)
I What if m = m(t)? Overlapping batches?

I Special case of standardized-time-series methods
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Standardized Time Series

I Consider a mapping ξ : C [0, 1] 7→ < such that
I ξ(ax) = aξ(x) and ξ(x − be) = ξ(x), where e(t) = t
I P { ξ(W ) > 0 } = 1 and P {W ∈ D(ξ) } = 0

I Set Ȳν(t) = (1/ν)
∫ νt
0 f

(
X (u)

)
du and r̂ν = Ȳν(1)

I Theorem: If Assumption PD(2) holds, then r exists and

r̂ν − r

ξ(Ȳν)
=

√
ν(r̂ν − r)

ξ(
√
ν(Ȳν − re))

⇒ σW (1)

σξ(W )
=

W (1)

ξ(W )
,

so that an asymptotic 100p% confidence interval for r is[
r̂ν − ξ(Ȳν)zp, r̂ν + ξ(Ȳν)zp

]
,

where P{−zp ≤W (1)/ξ(W ) ≤ zp } = p
I Different choices of ξ yield different estimation methods

I batch means (fixed # of batches)
I STS area method, STS maximum method
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Consistent-Estimation Methods (Discrete Time)

I Set r̂n = (1/n)
∑n−1

j=0 f̃ (Sj ,Cj) and suppose that

lim
n→∞

r̂n = r̃ a.s. and

√
n
(
r̂n − r̃

)
σ̃

⇒ N(0, 1)

I If we can find a consistent estimator Vn ⇒ σ̃2, then

√
n
(
r̂n − r̃

)
V

1/2
n

⇒ N(0, 1)

I Then an asymptotic 100p% confidence interval for r̃ is[
r̂n −

zp V
1/2
n√
n

, r̂n +
zp V

1/2
n√
n

]
,

where zp = (1 + p)/2 quantile of N(0, 1)

I Narrower asymptotic confidence intervals than STS methods
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Consistent-Estimation Methods for SPNs

I Look at polynomially dominated functions:
f̃ (s, c) = O(1 + max1≤i≤M cq

i ) for some q ≥ 0

I Require aperiodicity: no partition of marking set G s.t.
G1 → G2 → · · · → Gd → G1 → G2 → · · ·

I Focus on “localized quadratic-form variance estimators”
I Quadratic-form:

Vn =
n∑

i=0

n∑
j=0

f̃ (Si ,Ci )f̃ (Sj ,Cj)q
(n)
i,j

I Localized:

|q(n)
i,j | ≤

{
a1/n if |i − j | ≤ m(n);

a2(n)/n if |i − j | > m(n)

where a2(n)→ 0 and m(n)/n→ 0
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Exploiting Results for Stationary Output

I Theorem: For an aperiodic SPN, suppose that
I Assumption PDE holds (∃ invariant distribution π)
I { f̃ (Sn,Cn) : n ≥ 0 } obeys a CLT with variance constant σ̃2

I Vn is a localized quadratic-form estimator of σ̃2

I Vn ⇒ σ̃2 when initial distribution = π

Then Vn ⇒ σ̃2 for any initial distribution
I Proof:

I { (Sn,Cn) : n ≥ 0 } couples with stationary version
I Localization: difference between Vn versions becomes negligible

I Consequence: can exploit existing consistency results for
stationary output

Peter J. Haas51 Petri Nets 2007



Coupling Harris-Ergodic Markov Chains
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Application to Specific Variance Estimators

I Variable batch means estimator of σ̃2:
I b(n) batches of m(n) observations each
I VBM estimator is consistent if Assumption PDE holds, f̃ is

polynomially dominated, b(n)→∞, and m(n)→∞.

I Spectral estimator of σ̃2:

I Form of estimator: V
(S)
n =

∑m−1
h=−(m−1) λ(h/m)R̂h

I R̂h = sample lag-h autocorrelation of { f̃ (Sn,Cn) : n ≥ 0 }
I λ( · ) = “regular” window function (Bartlett, Hanning, Parzen)
I m = m(n) = spectral window length
I Spectral estimator is consistent if Assumption PDE holds, f̃ is

polynomially dominated, m(n)→∞, and m(n)/n1/2 → 0

I Overlapping batch means: asymp. equivalent to spectral

I Can extend results to continuous time (and drop aperiodicity)
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Estimation of Delays in SPNs

I Want to estimate limn→∞(1/n)
∑n−1

j=0 f (Dj)

I Delays D0,D1, . . . “determined by marking changes of the net”
I Specified as Dj = Bj − Aj

I Starts:
{

Aj = ζα(j) : j ≥ 0
}

nondecreasing
I Terminations:

{
Bj = ζβ(j) : j ≥ 0

}
I Determined by { (Sn,Cn) : n ≥ 0 }

I Measuring lengths of delay intervals is nontrivial
I Must link starts and terminations
I Multiple ongoing delays
I Overtaking: delays need not terminate in start order
I Can avoid for limiting average delay limn→∞(1/n)

∑n−1
j=0 Dj

I Measurement methods: tagging and start vectors
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Tagging
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Start Vectors

I Assume # of ongoing delays = ψ(s) when marking is s

I Vn records starts for all ongoing delays at ζn
I Positions of starts = position of entities in system (usually)

I Use -1 as placeholder
I At each marking change:

I Insert current time according to iα(s ′; s,E∗)
I Delete components according to iβ(s ′; s,E∗)
I Permute components according to iπ(s ′; s,E∗)
I Subtract deleted components from current time to compute

delays (ignore -1’s)
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Start Vector Example
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Regenerative Methods: The Easy Case

I Assume SPN has single state and “well behaved” cycles

I Use standard regenerative method
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Regenerative Methods: The Hard Case

I Assume SPN has single state and “well behaved” cycles

I Decompose delays into one-dependent cycles

I Use extended regenerative method or multiple-runs method
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Limiting Average Delay

I Under appropriate regularity conditions

lim
n→∞

1

n

n−1∑
j=0

Dj =
Eµ [Z1]

Eµ[δ1]
a.s.

I δ1 = # of starts in regenerative cycle
I Z1 =

∫
cycle

ψ
(
X (t)

)
dt

I ψ(s) = # of ongoing delays when marking is s
I (Z1, δ1), (Z2, δ2), . . . are i.i.d.

I Can use standard regenerative method

I No need to measure individual delays

I One proof of this result uses Little’s Law
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STS Methods for Delays

I Focus on “regular” start-vector mechanism

I Use polynomially-dominated functions f : <+ 7→ <:
|f (x)| = O(1 + xq) for some q ≥ 0

I Theorem: If Assumption PDE holds, then

lim
n→∞

1

n

n−1∑
j=0

f (Dj) = r a.s. and Un(f )⇒ σ(f )W

where Un(f )(t) = n−1/2
∫ nt
0

(
f (Dbuc)− r

)
du

I Proof: Identify one-dependent cycles

I Apply limit theorems for od-regenerative processes
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Colored SPNs

I Tokens have color and transitions fire “in a color”

I Yields more concise graphs
I “Symmetry with respect to color”

I Captures variety of system symmetries
I Can exploit to improve simulation efficiency

I Shorter regenerative cycle lengths
I Shorter CIs for delays

Ex: delay for port 1 in symmetric token ring
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Part VII

Conclusion
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Summary

I SPNs are an attractive framework for simulation
I User-friendly graphical orientation
I Powerful and flexible modeling tool
I Solid mathematical basis

I Efficiency in sample-path generation
I Simulation theory: building-block conditions for

I Stability (recurrence, limit theorems)
I Validity of simulation methods

I Simulation methods:
I Regenerative
I Standardized time series (batch means)
I Consistent-estimation methods (spectral and VBM)

I Further resources
I INFORMS College on Simulation (http://www.informs-cs.org)
I www.almaden.ibm.com/cs/people/peterh
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