

# STOCHASTIC PETRI NETS FOR DISCRETE-EVENT SIMULATION

Peter J. Haas

IBM Almaden Research Center  
San Jose, CA

Petri Nets 2007

# Part I

## Introduction

# My Background

- ▶ Mid 1980's: PhD student studying discrete-event simulation
  - ▶ Under Donald Iglehart (Stanford) & Gerald Shedler (IBM)
- ▶ Saw Michael Molloy 1982 paper in *IEEE Trans. Comput.*:
  - ▶ "Performance analysis using stochastic Petri nets"
- ▶ Wrote PNPM85 simulation paper with Gerry Shedler
  - ▶ "Regenerative simulation of stochastic Petri nets"
- ▶ Kept working (in between Info. Mgmt. research) ...
  - ▶ Modelling power for simulation [HS88]
  - ▶ Prototypes: SPSIM, "Labelled" SPN simulator [JS89, HS90]
  - ▶ Delays [HS93a,b]
  - ▶ Standardized time series [Haa97,99a,99b]
  - ▶ Transience and recurrence [GH06, GH07]
- ▶ Gave this seminar at 2004 Winter Simulation Conference

# Complex Systems



Concurrency



Precedence



Synchronization



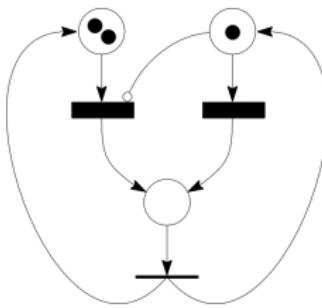
Priority

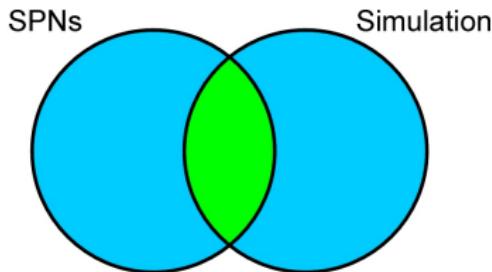


Randomness  
(non-Markovian stochastics)

# Simulation and SPNs

- ▶ Assessment of system performance is **difficult**
  - ▶ Even modelling the system is hard!
  - ▶ Model is usually analytically and numerically intractable
    - ▶ Huge state space and/or non-Markovian
  - ▶ Simulation is often the only available numerical method
    - ▶ But can't simulate blindly
- ▶ **SPNs can help**
  - ▶ An attractive graphically-oriented modelling framework
  - ▶ Well suited to sample-path generation on a computer
  - ▶ Solid mathematical foundation

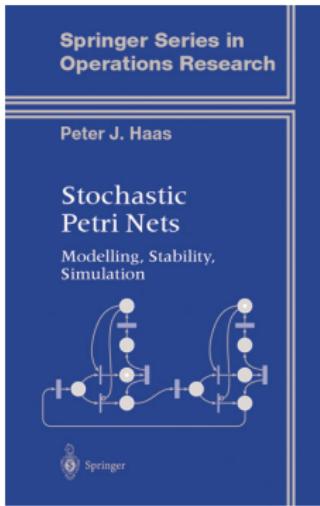




## Simulation theory for SPNs

- ▶ SPNs as a modelling framework for discrete-event systems
- ▶ Sample path generation for SPNs
- ▶ Steady-state output analysis: theory and methods

# Sources for This Tutorial



- ▶ “Law of large numbers and functional central limit theorem for generalized semi-Markov processes.” P. W. Glynn and P. J. Haas. *Comm. Statist. Stochastic Models*, 22(2), 2006, 201–232.
- ▶ *On Transience and Recurrence in Irreducible Finite-State Stochastic Systems*. P. W. Glynn and P. J. Haas. IBM Technical Report, 2007.

# Outline

- ▶ **Simulation basics**
  - ▶ Discrete-event systems
  - ▶ The simulation process
- ▶ **Modelling with SPNs**
  - ▶ Building blocks
  - ▶ Modeling power for simulation
- ▶ **Sample-path generation**
  - ▶ The marking process
  - ▶ Efficiency issues, parallelism
- ▶ **Steady-state estimation for SPNs**
  - ▶ Conditions for long-run stability (recurrence, limit theorems)
  - ▶ Output-analysis methods and their validity

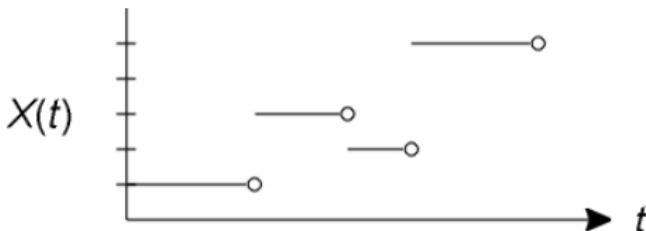
# Goals

- ▶ Illustrate the rich behavior of non-Markvian SPNs
- ▶ Introduce you to some basic simulation methodology
- ▶ Explore foundational issues in modelling and analysis
- ▶ Connect modeling practice and simulation theory
- ▶ **Stimulate your interest in SPNs as a simulation framework**

# Part II

## Simulation Basics

# What We Simulate: Discrete-Event Stochastic Systems



- ▶ System changes **state** when **events** occur
  - ▶ Stochastic changes at random times
- ▶ Underlying stochastic process  $\{X(t): t \geq 0\}$ 
  - ▶  $X(t)$  = state of system at time  $t$  (a random variable)
  - ▶ Piecewise-constant sample paths
  - ▶ Typically **not** a continuous-time Markov chain
- ▶ Modelling challenge: **defining** appropriate **system state**
  - ▶ Compact for efficiency reasons
  - ▶ Enough info to compute performance measures
  - ▶ Enough info to determine evolution

# Why We Simulate: Performance Evaluation

- ▶ Steady-state performance measures

- ▶ Time-average limits:

$$\alpha = \lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t f(X(u)) du$$

- ▶ Steady-state means:

$$\alpha = E[f(X)], \text{ where } X(t) \Rightarrow X$$

- ▶ I.e.,  $P_\mu \{ X(t) = s \} \rightarrow P \{ X = s \}$  as  $t \rightarrow \infty$

- ▶ Want point estimate  $\hat{\alpha}(t)$

- ▶ Unbiased:  $E_\mu [\hat{\alpha}(t)] = \alpha$

- ▶ Strongly consistent:  $P_\mu \{ \lim_{t \rightarrow \infty} \hat{\alpha}(t) = \alpha \} = 1$

- ▶ Want asymptotic  $100p\%$  confidence interval

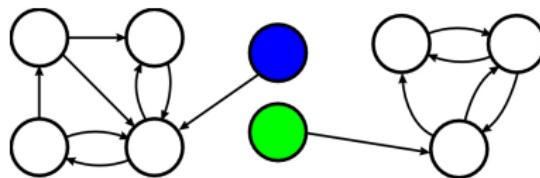
- ▶  $I(t) = [\hat{\alpha}(t) - H(t), \hat{\alpha}(t) + H(t)]$

- ▶  $P_\mu \{ I(t) \ni \alpha \} \approx p$  for large  $t$

- ▶ CI width indicates precision of point estimate

# Challenges in Performance Evaluation

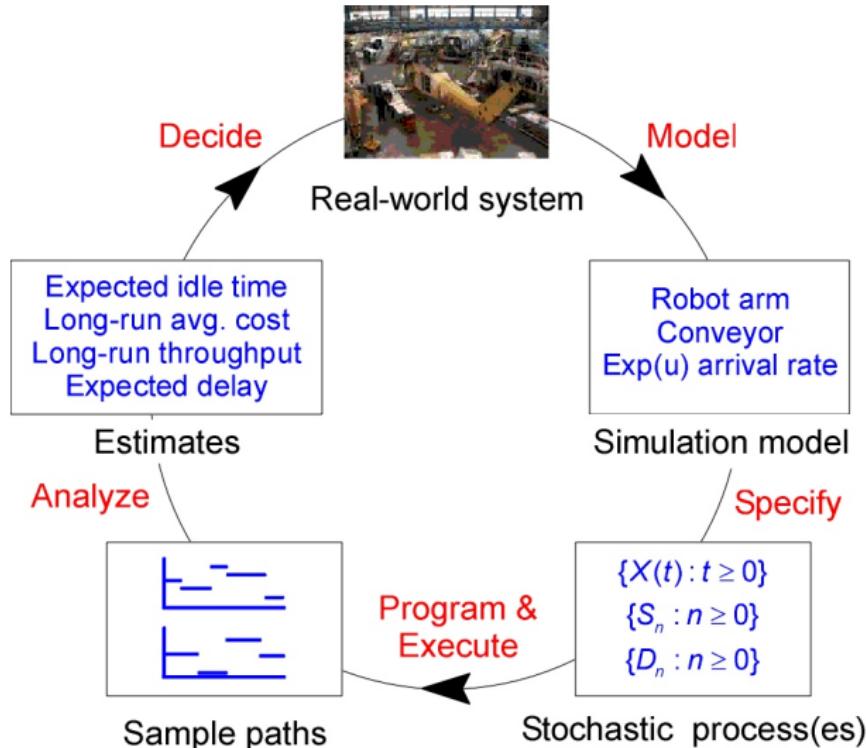
- ▶ Is steady-state quantity  $\alpha$  well-defined?
  - ▶ Ex: steady-state number in  $M/M/1$  queue with  $\rho > 1$
- ▶ Is steady-state quantity independent of startup condition  $\mu$ ?
  - ▶ Ex: reducible Markov chain



- ▶ Statistical challenges
  - ▶ Autocorrelation problem
  - ▶ Initialization bias problem
- ▶ How to handle Delays?

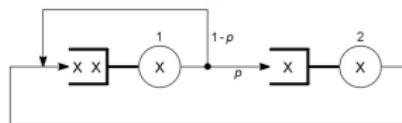
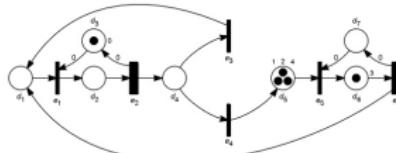
$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(D_j)$$

# The Simulation Process



# How Modelling Frameworks Can Help

## Queuing model



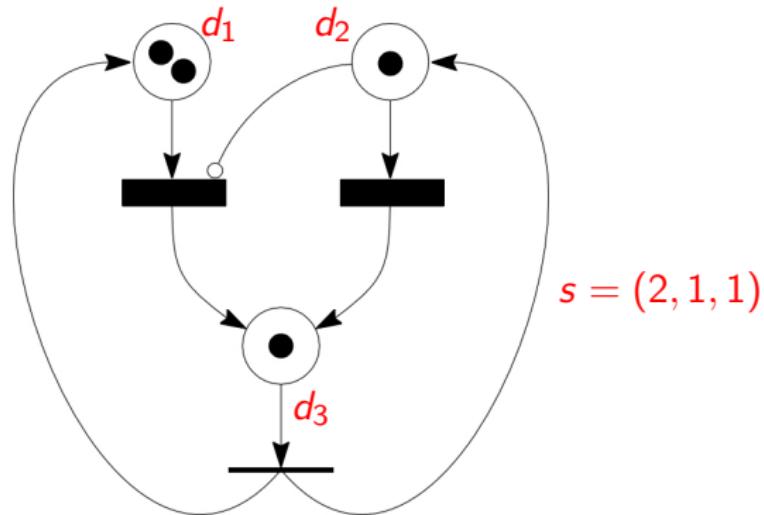
SPN Model

- ▶ But challenges, also:
  - ▶ Immediate transitions and markings

# Part III

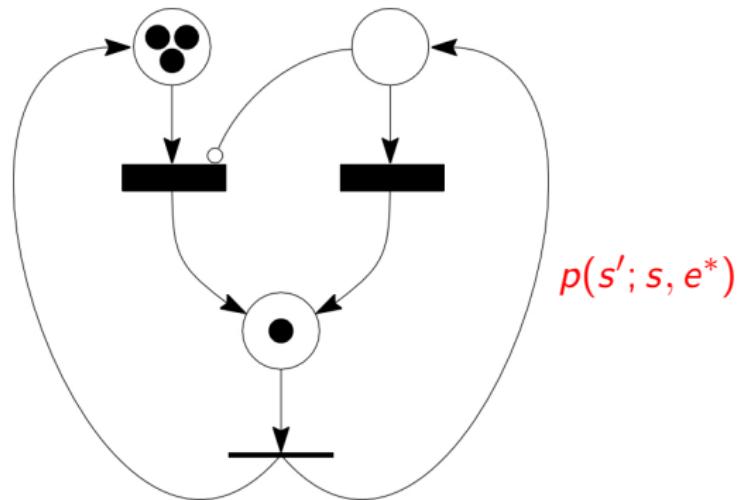
## Modelling with SPNs

# The SPN Graph



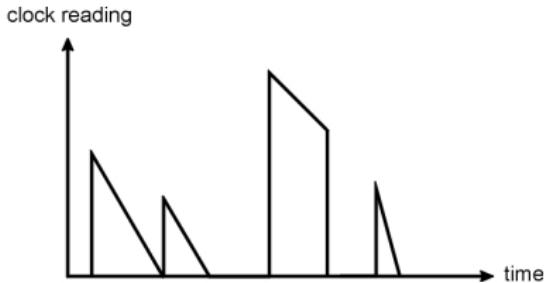
- ▶  $D$  = finite set of **places**
- ▶  $E$  = finite set of **transitions** (timed and immediate)
- ▶ **marking** = assignment of **token** counts to places

## Transition Firing



- ▶ The marking changes when an **enabled** transition **fires**
- ▶ Removes 1 token per place from random subset of input places
- ▶ Deposits 1 token per place in random subset of output places

# Clocks (Event Scheduling)

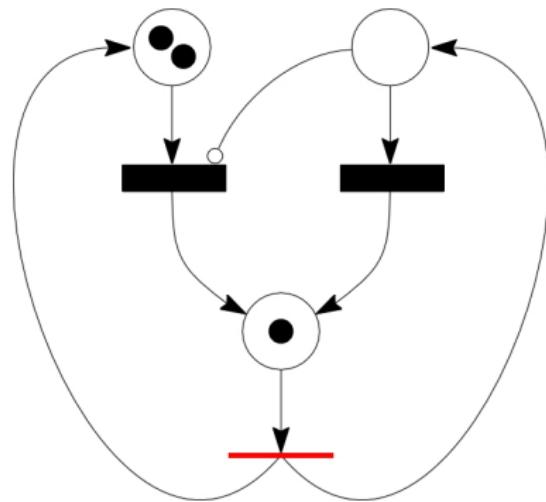


- ▶ One clock per transition: records remaining time until firing
- ▶ Enabled transitions compete to trigger marking change
  - ▶ The clock that runs down to 0 first is the “winner”
  - ▶ Can have simultaneous transition firing:  $p(s'; s, E^*)$
  - ▶ Numerical priorities: specify simultaneous-firing behavior
- ▶ At a marking change: three kinds of transitions
  - ▶ **New transitions**: Use clock-setting distribution function
  - ▶ **Old transitions**: Clocks continue to run down
  - ▶ **Newly-disabled transitions**: Clock readings are discarded

## Clocks, Continued

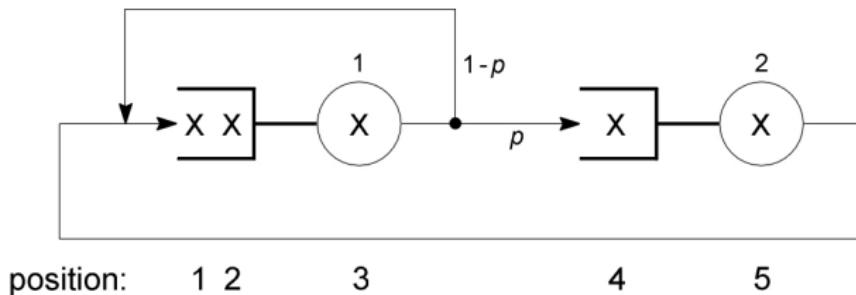
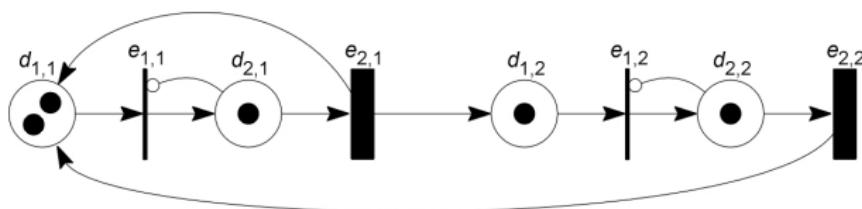
- ▶ Clock-setting distribution depends on:
  - ▶ Old marking, new marking, trigger set
- ▶ Clocks run down at marking-dependent **speeds**  $r(s, e)$ 
  - ▶ Processor sharing
  - ▶ Zero speeds: preempt-resume behavior

## Timed and Immediate Markings

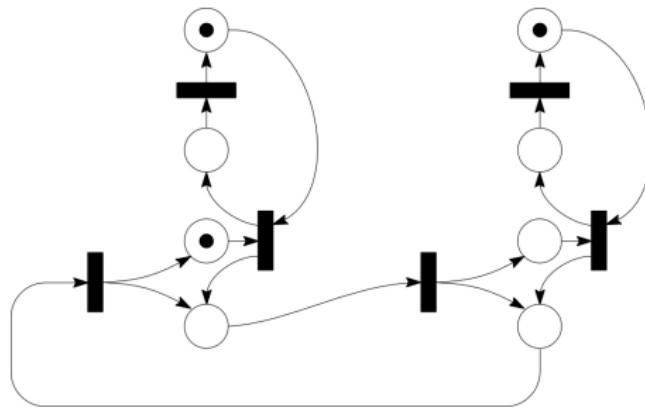


- ▶ **Immediate marking:**  $\geq 1$  immediate transition is enabled
- ▶ An immediate marking vanishes as soon as it is attained
- ▶ Otherwise, marking is **timed**

## Example: Cyclic Queues with Feedback

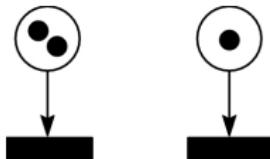


# Bottom-Up and Top-Down Modeling

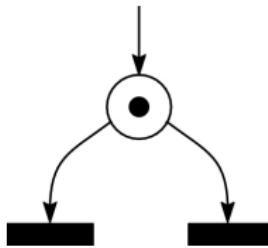


# Other Modeling Features

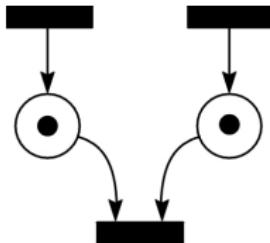
Concurrency:



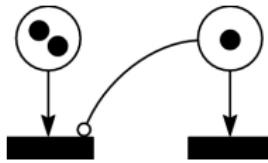
Synchronization:



Precedence:



Priority:



# Why This SPN Model?

- ▶ **Conciseness:** small set of building blocks
- ▶ **Generality:** subsumes GSPNs, etc.
  - ▶ Theory carries over
- ▶ **Modelling power:** captures many discrete-event systems

# Modeling Power of SPNs

- ▶ Compare to **Generalized semi-Markov processes (GSMPs)**
  - ▶ Arbitrary state definition ( $s$ )
  - ▶ Set  $E(s)$  of active events is a building block
  - ▶ No restrictions on  $p(s'; s, E^*)$
  - ▶ No “immediate events”
- ▶ **Strong mimicry**
  - ▶ Define  $X(t)$  = state of system at time  $t$
  - ▶ Define  $(S_n, C_n)$  = (state, clocks) after  $n$ th state transition
  - ▶  $\{X(t) : t \geq 0\}$  processes have same dist'n (under mapping)
  - ▶  $\{(S_n, C_n) : n \geq 0\}$  have same dist'n (under mapping)
- ▶ **Theorem:** SPNs and GSMPs have **same** modeling power
  - ▶ Establishes SPNs as framework for discrete-event simulation
  - ▶ Allows application of GSMP theory to SPNs
  - ▶ Methodology allows other comparisons (e.g., inhibitor arcs)

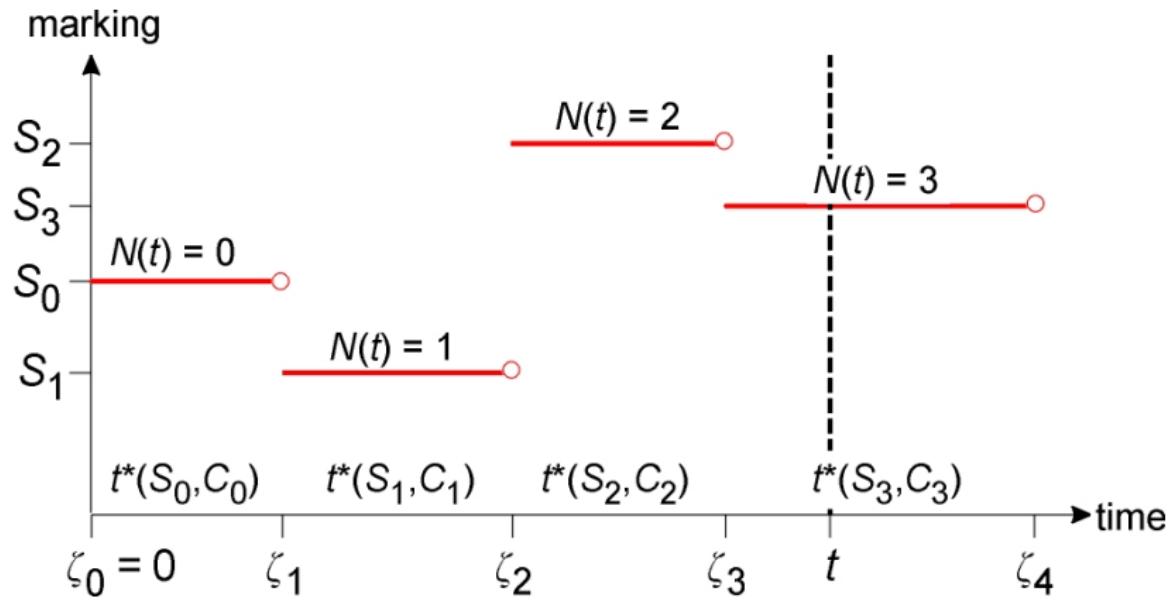
# Part IV

## Sample-Path Generation

# The Marking Process

- ▶ Marking process:  $\{ X(t) : t \geq 0 \}$ 
  - ▶  $X(t)$  = the marking at time  $t$
  - ▶ A very complicated process
- ▶ Defined in terms of Markov chain  $\{ (S_n, C_n) : n \geq 0 \}$ 
  - ▶ System observed after the  $n$ th marking change
  - ▶  $S_n = (S_{n,1}, \dots, S_{n,L})$  = the marking
  - ▶  $C_n = (C_{n,1}, \dots, C_{n,M})$  = the clock-reading vector
  - ▶ Chain defined via SPN building blocks

## Definition of the Marking Process



$$X(t) = S_{N(t)}$$

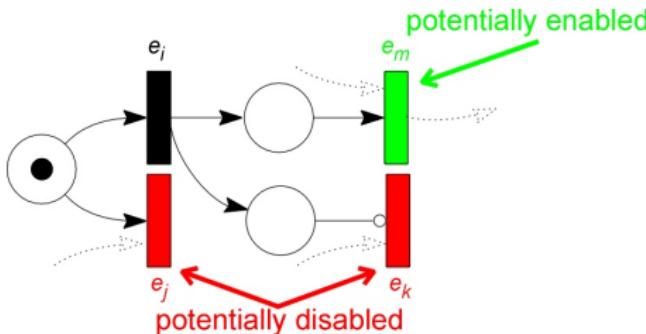
## Generation of the GSSMC $\{ (S_n, C_n) : n \geq 0 \}$

1. [Initialization] Set  $n = 0$ . Select marking  $S_0$  and clock readings  $C_{0,i}$  for  $e_i \in E(S_0)$ ; set  $C_{0,i} = -1$  for  $e_i \notin E(S_0)$ .
2. Determine holding time  $t^*(S_n, C_n)$  and firing set  $E_n^*$ .
3. Generate new marking  $S_{n+1}$  according to  $p(\cdot ; S_n, E_n^*)$ .
4. Set clock-reading  $C_{n+1,i}$  for each **new** transition  $e_i$  according to  $F(\cdot ; S_{n+1}, e_i, S_n, E_n^*)$ .
5. Set clock-reading  $C_{n+1,i}$  for each **old** transition  $e_i$  as  $C_{n+1,i} = C_{n,i} - t^*(S_n, C_n)r(S_n, e_i)$ .
6. Set clock-reading  $C_{n+1,i}$  equal to  $-1$  for each **newly disabled** transition  $e_i$ .
7. Set  $n \leftarrow n + 1$  and go to Step 2.

Can compute GSMP  $\{ X(t) : t \geq 0 \}$  from GSSMC

# Implementation Considerations for Large-Scale SPNs

- ▶ Use event lists (e.g., heaps) to determine  $E^*$ 
  - ▶  $O(1)$  computation of  $E^*$
  - ▶  $O(\log m)$  update time, where  $m = \#$  of enabled transitions
- ▶ Updating the state is often simpler in an SPN
- ▶ Efficient techniques for event scheduling [Chiola91]
  - ▶ Encode transitions potentially affected by firing of  $e_i$



- ▶ Parallel simulation of subnets
  - ▶ E.g., Adaptive Time Warp [Ferscha & Richter PNPM97]
  - ▶ Guardedly optimistic
  - ▶ Slows down local firings based on history of rollbacks

## Part V

### Stability Theory for SPNs

# Stability and Simulation

- ▶ Focus on **time-average limits**:

$$r(f) = \lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t f(X(u)) du \quad \tilde{r}(\tilde{f}) = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \tilde{f}(S_n, C_n)$$

- ▶ Ex: long-run cost, availability, utilization
- ▶ Extensions:
  - ▶ Functions (e.g. ratios) of such limits
  - ▶ Cumulative rewards (impulse/continuous/mixed), gradients
  - ▶ Steady-state means
- ▶ Key questions:
  - ▶ When do such limits exist?
  - ▶ When do various estimation methods apply?
  - ▶ Can get **weird** behavior:  $\lim_n E[\zeta_n - \zeta_{n-1}] = \infty$  but explodes!
- ▶ Approach: analyze the chain  $\{(S_n, C_n) : n \geq 0\}$

# Harris Recurrence: A Basic Form of Stability

- ▶ Definition for general chain  $\{ Z_n : n \geq 0 \}$  with state space  $\Gamma$

$$P_z \{ Z_n \in A \text{ i.o.} \} = 1, \quad z \in \Gamma \quad \text{whenever} \quad \phi(A) > 0$$

- ▶  $\phi$  is a **recurrence measure** (often “Lebesgue-like”)
  - ▶ Every “dense enough” set is hit infinitely often w.p. 1
  - ▶ No “wandering off to  $\infty$ ”
- ▶ **Positive Harris recurrence:**
  - ▶ Chain admits invariant probability measure  $\pi$
  - ▶  $P_\pi \{ Z_1 \in A \} = \pi(A)$
  - ▶ Implies stationarity when initial dist'n is  $\pi$
- ▶ When is  $\{ (S_n, C_n) : n \geq 0 \}$  (positive) Harris recurrent?
  - ▶ **Fundamental** question for steady-state estimation

# Some Stability Conditions

- ▶ Density component  $g$  of a cdf  $F$ :  $F(t) \geq \int_0^t g(u) du$
- ▶  $s \rightarrow s'$  iff  $p(s'; s, e) > 0$  for some  $e$
- ▶  $s \rightsquigarrow s'$ : either  $s \rightarrow s'$  or  $s \rightarrow s^{(1)} \rightarrow \dots \rightarrow s^{(n)} \rightarrow s'$
- ▶ **Assumption PD( $q$ ):**
  - ▶ Marking set  $G$  is finite
  - ▶ SPN is irreducible:  $s \rightsquigarrow s'$  for all  $s, s' \in G$
  - ▶ All speeds are positive
  - ▶ There exists  $\bar{x} \in (0, \infty)$  s.t. all clock-setting dist'n functions
    - ▶ Have finite  $q$ th moment
    - ▶ Have density component positive on  $[0, \bar{x}]$
- ▶ **Assumption PDE:** replace finite  $q$ th moment requirement by

$$\int_0^\infty e^{ux} dF(x) < \infty \quad \text{for } u \in [0, a_F]$$

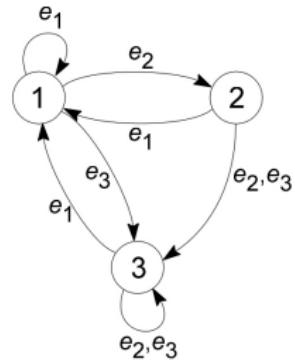
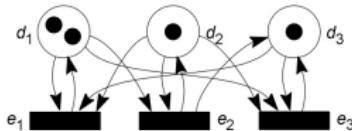
## Harris Recurrence in SPNs

- ▶ **Embedded chain:**  $\{(S_n, C_n) : n \geq 0\}$  observed only at transitions to timed markings
- ▶  $\bar{\phi}(\{s\} \times A) = \text{Lebesgue measure of } A \cap [0, \bar{x}]^M$
- ▶ **Theorem:** If Assumption PD(1) holds, then the embedded chain is positive Harris recurrent with recurrence measure  $\bar{\phi}$
- ▶ Implies  $P_\mu \{ S_n = s \text{ i.o.} \} = 1$  for all  $s \in S$
- ▶ Proof:
  - ▶ First assume no immediate transitions
  - ▶ Show that embedded chain is “ $\bar{\phi}$ -irreducible”
  - ▶ Establish Lyapunov drift condition and apply MC machinery
  - ▶ Extend to case of immediate transitions using strong mimicry
- ▶ Alternate approach to recurrence: geometric-trials arguments
  - ▶ Can drop positive-density assumption
  - ▶ Use detailed analysis of specific SPN structure

# A Surprising Recurrence Result [Glynn and Haas 2007]

- ▶  $S_n$  = marking just after  $n$ th marking change
- ▶ Conjecture:  $P\{S_n = s \text{ i.o.}\} = 1$  for each  $s$  if
  - ▶ Marking set  $S$  is **finite**
  - ▶ SPN is **irreducible**
  - ▶  $\exists \bar{x} > 0$  s.t. each  $F(\cdot; e)$  has **positive density** on  $(0, \bar{x})$
- ▶ **CONJECTURE IS FALSE!**
  - ▶ In the presence of **heavy-tailed** clock-setting dist'ns

# The Counterexample



- ▶  $S = \{ (2, 1, 1), (1, 2, 1), (1, 1, 2) \}$
- ▶  $p(s'; s, e^*) = 0$  or  $1$   
(see schematic diagram)
- ▶ Clock-setting distributions:
  - ▶  $F(t; e_1) = 1 - (1 + t)^{-\alpha}$
  - ▶  $F(t; e_2) = 1 - (1 + t)^{-\beta}$
  - ▶  $F(\cdot; e_3)$  is Uniform[0, a]
- with  $\beta > 1/2$  and  $\alpha + \beta < 1$
- ▶ SPN hits marking  $s = (1, 2, 1)$  only if:
  - ▶  $e_1$  occurs and then  $e_2$  occurs
  - ▶ No intervening occurrence of  $e_3$
- ▶ Theorem:  $P \{ S_n = (1, 2, 1) \text{ i.o.} \} = 0$

## Another Type of Stability: Limit Theorems

- **Theorem (SLLN):** If Assumption PD(1) holds, then for any  $f$

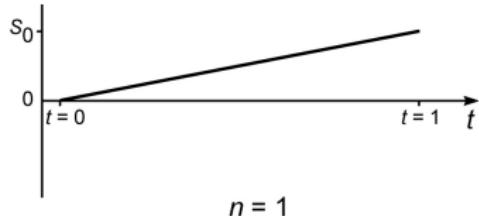
$$\lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t f(X(u)) du = r(f) \text{ a.s.}$$

- **Theorem (FCLT):** If Assumption PD(2) holds, then for any  $f$

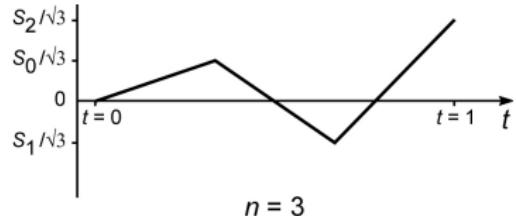
$$U_\nu(f) \Rightarrow \sigma(f)W \quad \text{as } \nu \rightarrow \infty$$

- $U_\nu(f)(t) = \nu^{-1/2} \int_0^{\nu t} (f(X(u)) - r(f)) du$
- $\Rightarrow$  denotes weak convergence on  $C[0, \infty)$
- $W$  = standard Brownian motion on  $[0, \infty)$
- “Functional” form of CLT (ordinary CLT is a special case)
- Note:  $r(f)$  and  $\sigma(f)$  are **independent of initial conditions**
- Follows from general result in [Glynn and Haas 2006]
  - Uses results for Harris recurrent MCs

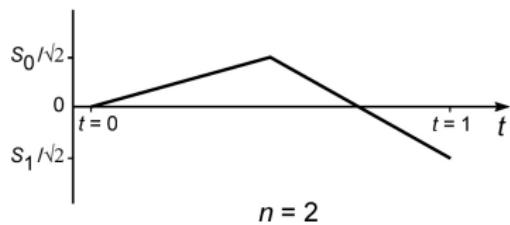
# FCLT Example: Donsker's Theorem



$n = 1$



$n = 3$



$n = 2$



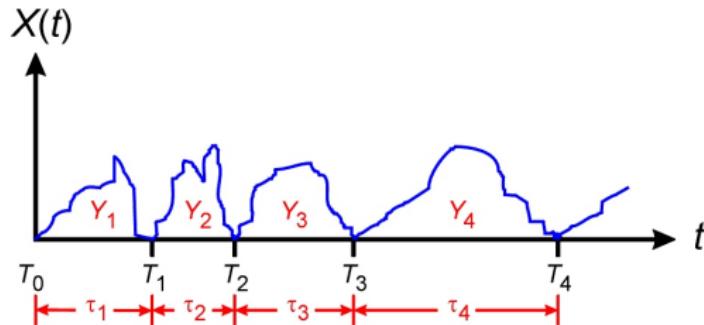
$n = 10$

$$S_n = \sum_{i=0}^n X_i$$

# Part VI

## Steady-State Simulation

# Regenerative Simulation: Regenerative Processes



- ▶ A **regenerative process** can be decomposed into i.i.d. **cycles**
- ▶ System “probabilistically restarts” at each  $T_i$ 
  - ▶ Ex: successive arrival times to an empty GI/G/1 queue
- ▶ Analogous definition for discrete-time process  $\{X_n: n \geq 0\}$
- ▶ Extension: one-dependent cycles
  - ▶ Harris recurrent chains are od-regenerative (basis for previous SLLN and FCLT)

## Regenerative Simulation: The Ratio Formula

- ▶ Let

$$Y_i = \int_{T_{i-1}}^{T_i} f(X(u)) \, du \quad \text{and} \quad \tau_i = T_i - T_{i-1}$$

- ▶  $(Y_1, \tau_1), (Y_2, \tau_2), \dots$  are i.i.d. pairs
- ▶ It follows that

$$\frac{1}{T_n} \int_0^{T_n} f(X(u)) \, du = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n \tau_i} = \frac{\bar{Y}_n}{\bar{\tau}_n} \rightarrow \frac{E[Y_1]}{E[\tau_1]} \stackrel{\text{def}}{=} r$$

almost surely as  $n \rightarrow \infty$  (need  $E[\tau_1] < \infty$ )

- ▶ Can show that

$$\frac{1}{t} \int_0^t f(X(u)) \, du \rightarrow r \text{ a.s. as } t \rightarrow \infty$$

- ▶ If  $\tau_1$  is “aperiodic”, then  $X(t) \Rightarrow X$  and  $E[f(X)] = r$

# Regenerative Simulation: The Regenerative Method

- ▶ **Point estimate** (biased):  $\hat{r}_n = \bar{Y}_n / \bar{\tau}_n$ :
  - ▶  $\hat{r}_n \rightarrow r$  a.s. as  $n \rightarrow \infty$  (strong consistency)
- ▶ **Confidence interval**
  - ▶ Set  $Z_i = Y_i - r\tau_i$
  - ▶  $Z_1, Z_2, \dots$  i.i.d. with  $E[Z_i] = 0$  and  $\text{Var}[Z_1] = \sigma^2$
  - ▶ Apply Central Limit Theorem (CLT) for i.i.d. random variables:

$$\frac{\sqrt{n}(\hat{r}_n - r)}{\sigma/E[\tau_1]} \Rightarrow N(0, 1) \quad \text{and} \quad \frac{\sqrt{n}(\hat{r}_n - r)}{s_n/\bar{\tau}_n} \Rightarrow N(0, 1)$$

as  $n \rightarrow \infty$ , where  $s_n$  estimates  $\sigma$  (we assume  $\sigma^2 < \infty$ )

- ▶ 100p% asymptotic confidence interval:

$$\left[ \hat{r}_n - \frac{z_p s_n}{\bar{\tau}_n \sqrt{n}}, \hat{r}_n + \frac{z_p s_n}{\bar{\tau}_n \sqrt{n}} \right],$$

where  $P\{-z_p \leq N(0, 1) \leq z_p\} = p$ , i.e.,  $(1 + p)/2$  quantile

- ▶ **Many extensions:** bias reduction, fixed-time or fixed-precision, generalized  $Y$  and  $\tau$ , estimate  $\alpha = g(E[Y], E[\tau])$ , ...

# Regenerative Simulation of SPNs

- ▶ A marking  $\bar{s}$  is a **single state** if  $E(\bar{s}) = \{ \bar{e} \}$
- ▶ Define  $\theta(k) = k$ th marking change at which  $\bar{e}$  fires in  $\bar{s}$
- ▶ Set  $T_k = \zeta_{\theta(k)}$  and  $\tau_k = T_k - T_{k-1}$
- ▶ **Theorem:** Suppose Assumption PD(2) holds and SPN has a single state  $\bar{s}$ 
  - ▶ Random times  $\{ T_k : k \geq 0 \}$  form sequence of regeneration points for marking process
  - ▶ Finite expected cycle length:  $E_\mu[\tau_1] < \infty$
  - ▶ Finite variance constant for any  $f$ :
$$\sigma^2(f) = \text{Var}_\mu \left[ \int_{T_0}^{T_1} f(X(u)) du - r\tau_1 \right] < \infty$$
- ▶ Can therefore apply standard regenerative method
- ▶ Variant theorems are available
  - ▶ Variants of single state (e.g., memoryless property)
  - ▶ Other recurrence conditions (geometric trials)
  - ▶ Discrete-time results

# The Method of Batch Means

- ▶ Simulate system to (large) time  $t = mv$  (where  $10 \leq m \leq 20$ )
- ▶ Divide into  $m$  batches of length  $v$  and compute batch means:

$$\bar{Y}_i = \frac{1}{v} \int_{(i-1)v}^{iv} f(X(u)) du$$

- ▶ Treat  $\bar{Y}_1, \bar{Y}_2, \dots, \bar{Y}_m$  as i.i.d.,  $N(\mu, \sigma^2)$ :
  - ▶ Point estimate:  $\hat{r}_t = (1/m) \sum_{i=1}^m \bar{Y}_i$
  - ▶  $100p\%$  confidence interval:

$$\left[ \hat{r}_t - \frac{t_{p,m-1} s_m}{\sqrt{m}}, \hat{r}_t + \frac{t_{p,m-1} s_m}{\sqrt{m}} \right],$$

where  $t_{p,m-1} = (1 + p)/2$  quantile of Student's  $T$  dist'n

## Batch Means, Continued



- ▶ Why might batch means work?
- ▶ Formally, want to show
  - ▶ Consistency of  $\hat{r}_t$  and validity of CI as  $t \rightarrow \infty$
  - ▶ For  $m$  fixed (standard batch means)
  - ▶ What if  $m = m(t)$ ? Overlapping batches?
- ▶ Special case of **standardized-time-series methods**

## Standardized Time Series

- ▶ Consider a mapping  $\xi : C[0, 1] \mapsto \mathfrak{R}$  such that
  - ▶  $\xi(ax) = a\xi(x)$  and  $\xi(x - be) = \xi(x)$ , where  $e(t) = t$
  - ▶  $P \{ \xi(W) > 0 \} = 1$  and  $P \{ W \in D(\xi) \} = 0$
- ▶ Set  $\bar{Y}_\nu(t) = (1/\nu) \int_0^{\nu t} f(X(u)) du$  and  $\hat{r}_\nu = \bar{Y}_\nu(1)$
- ▶ **Theorem:** If Assumption PD(2) holds, then  $r$  exists and

$$\frac{\hat{r}_\nu - r}{\xi(\bar{Y}_\nu)} = \frac{\sqrt{\nu}(\hat{r}_\nu - r)}{\xi(\sqrt{\nu}(\bar{Y}_\nu - r e))} \Rightarrow \frac{\sigma W(1)}{\sigma \xi(W)} = \frac{W(1)}{\xi(W)},$$

so that an asymptotic  $100p\%$  confidence interval for  $r$  is

$$[\hat{r}_\nu - \xi(\bar{Y}_\nu)z_p, \hat{r}_\nu + \xi(\bar{Y}_\nu)z_p],$$

where  $P \{ -z_p \leq W(1)/\xi(W) \leq z_p \} = p$

- ▶ Different choices of  $\xi$  yield different estimation methods
  - ▶ batch means (fixed # of batches)
  - ▶ STS area method, STS maximum method

## Consistent-Estimation Methods (Discrete Time)

- ▶ Set  $\hat{r}_n = (1/n) \sum_{j=0}^{n-1} \tilde{f}(S_j, C_j)$  and suppose that

$$\lim_{n \rightarrow \infty} \hat{r}_n = \tilde{r} \text{ a.s. and } \frac{\sqrt{n}(\hat{r}_n - \tilde{r})}{\tilde{\sigma}} \Rightarrow N(0, 1)$$

- ▶ If we can find a **consistent** estimator  $V_n \Rightarrow \tilde{\sigma}^2$ , then

$$\frac{\sqrt{n}(\hat{r}_n - \tilde{r})}{V_n^{1/2}} \Rightarrow N(0, 1)$$

- ▶ Then an asymptotic  $100p\%$  confidence interval for  $\tilde{r}$  is

$$\left[ \hat{r}_n - \frac{z_p V_n^{1/2}}{\sqrt{n}}, \hat{r}_n + \frac{z_p V_n^{1/2}}{\sqrt{n}} \right],$$

where  $z_p = (1 + p)/2$  quantile of  $N(0, 1)$

- ▶ **Narrower** asymptotic confidence intervals than STS methods

# Consistent-Estimation Methods for SPNs

- ▶ Look at **polynomially dominated** functions:  
 $\tilde{f}(s, c) = O(1 + \max_{1 \leq i \leq M} c_i^q)$  for some  $q \geq 0$
- ▶ Require **aperiodicity**: no partition of marking set  $G$  s.t.  
 $G_1 \rightarrow G_2 \rightarrow \dots \rightarrow G_d \rightarrow G_1 \rightarrow G_2 \rightarrow \dots$
- ▶ Focus on “**localized quadratic-form** variance estimators”
  - ▶ Quadratic-form:

$$V_n = \sum_{i=0}^n \sum_{j=0}^n \tilde{f}(S_i, C_i) \tilde{f}(S_j, C_j) q_{i,j}^{(n)}$$

- ▶ Localized:

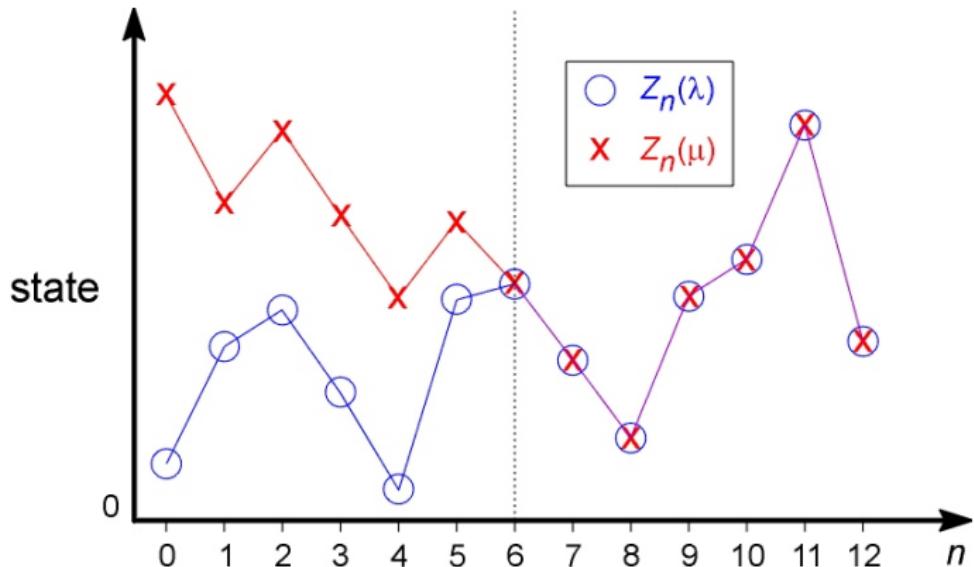
$$|q_{i,j}^{(n)}| \leq \begin{cases} a_1/n & \text{if } |i - j| \leq m(n); \\ a_2(n)/n & \text{if } |i - j| > m(n) \end{cases}$$

where  $a_2(n) \rightarrow 0$  and  $m(n)/n \rightarrow 0$

# Exploiting Results for Stationary Output

- ▶ **Theorem:** For an aperiodic SPN, suppose that
  - ▶ Assumption PDE holds ( $\exists$  invariant distribution  $\pi$ )
  - ▶  $\{\tilde{f}(S_n, C_n): n \geq 0\}$  obeys a CLT with variance constant  $\tilde{\sigma}^2$
  - ▶  $V_n$  is a localized quadratic-form estimator of  $\tilde{\sigma}^2$
  - ▶  $V_n \Rightarrow \tilde{\sigma}^2$  when initial distribution =  $\pi$
- ▶ Then  $V_n \Rightarrow \tilde{\sigma}^2$  for any initial distribution
- ▶ Proof:
  - ▶  $\{(S_n, C_n): n \geq 0\}$  couples with stationary version
  - ▶ Localization: difference between  $V_n$  versions becomes negligible
- ▶ Consequence: can exploit existing consistency results for stationary output

# Coupling Harris-Ergodic Markov Chains



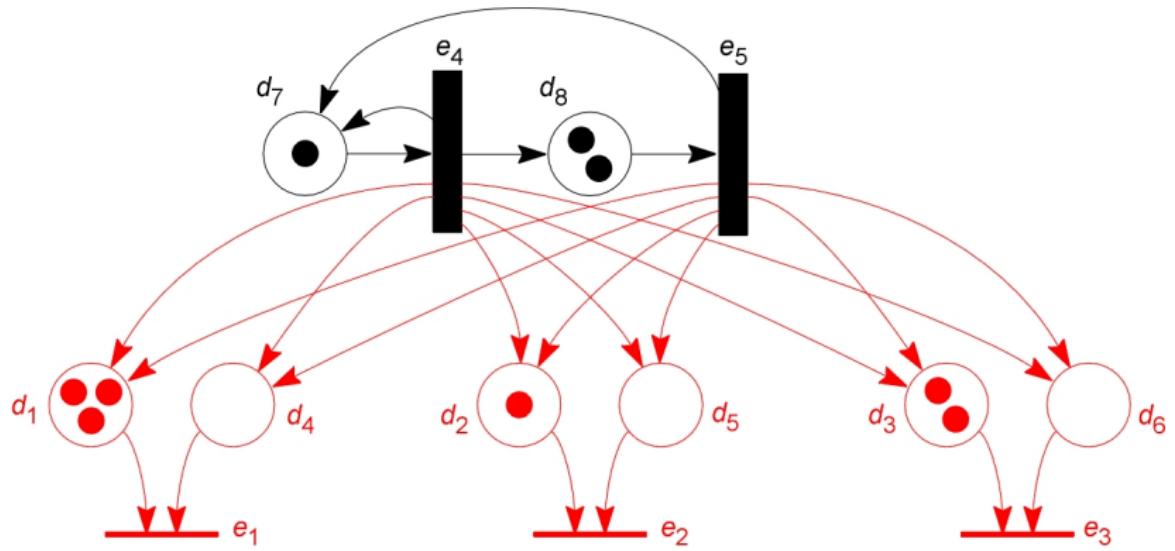
# Application to Specific Variance Estimators

- ▶ **Variable batch means** estimator of  $\tilde{\sigma}^2$ :
  - ▶  $b(n)$  batches of  $m(n)$  observations each
  - ▶ VBM estimator is consistent if Assumption PDE holds,  $\tilde{f}$  is polynomially dominated,  $b(n) \rightarrow \infty$ , and  $m(n) \rightarrow \infty$ .
- ▶ **Spectral** estimator of  $\tilde{\sigma}^2$ :
  - ▶ Form of estimator:  $V_n^{(S)} = \sum_{h=-(m-1)}^{m-1} \lambda(h/m) \hat{R}_h$
  - ▶  $\hat{R}_h$  = sample lag- $h$  autocorrelation of  $\{\tilde{f}(S_n, C_n): n \geq 0\}$
  - ▶  $\lambda(\cdot)$  = “regular” window function (Bartlett, Hanning, Parzen)
  - ▶  $m = m(n)$  = spectral window length
  - ▶ Spectral estimator is consistent if Assumption PDE holds,  $\tilde{f}$  is polynomially dominated,  $m(n) \rightarrow \infty$ , and  $m(n)/n^{1/2} \rightarrow 0$
- ▶ **Overlapping batch means**: asymp. equivalent to spectral
- ▶ Can extend results to **continuous time** (and drop aperiodicity)

# Estimation of Delays in SPNs

- ▶ Want to estimate  $\lim_{n \rightarrow \infty} (1/n) \sum_{j=0}^{n-1} f(D_j)$
- ▶ Delays  $D_0, D_1, \dots$  “determined by marking changes of the net”
- ▶ Specified as  $D_j = B_j - A_j$ 
  - ▶ Starts:  $\{ A_j = \zeta_{\alpha(j)} : j \geq 0 \}$  nondecreasing
  - ▶ Terminations:  $\{ B_j = \zeta_{\beta(j)} : j \geq 0 \}$
  - ▶ Determined by  $\{ (S_n, C_n) : n \geq 0 \}$
- ▶ Measuring lengths of delay intervals is nontrivial
  - ▶ Must link starts and terminations
  - ▶ Multiple ongoing delays
  - ▶ Overtaking: delays need not terminate in start order
  - ▶ Can avoid for limiting average delay  $\lim_{n \rightarrow \infty} (1/n) \sum_{j=0}^{n-1} D_j$
- ▶ Measurement methods: tagging and start vectors

# Tagging

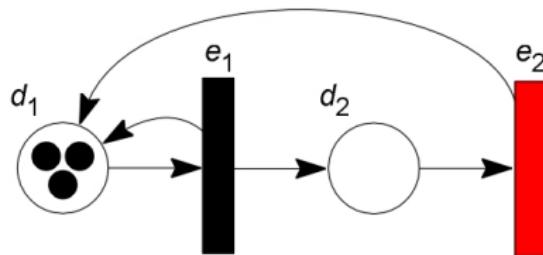


## Start Vectors

- ▶ Assume # of ongoing delays =  $\psi(s)$  when marking is  $s$
- ▶  $V_n$  records starts for all ongoing delays at  $\zeta_n$
- ▶ Positions of starts = position of entities in system (usually)
- ▶ Use -1 as placeholder
- ▶ At each marking change:
  - ▶ Insert current time according to  $i_\alpha(s'; s, E^*)$
  - ▶ Delete components according to  $i_\beta(s'; s, E^*)$
  - ▶ Permute components according to  $i_\pi(s'; s, E^*)$
  - ▶ Subtract deleted components from current time to compute delays (ignore -1's)

## Start Vector Example

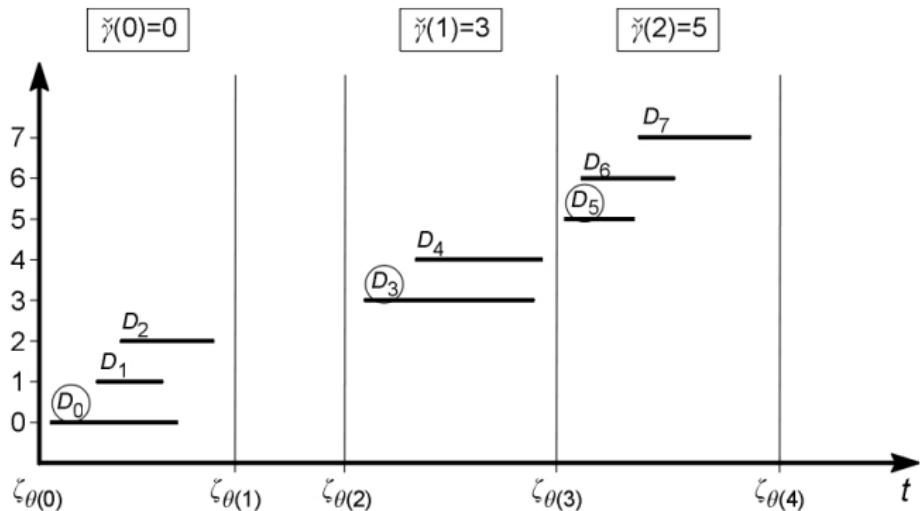
$$T = 2.9$$



$$V_5 = (2.9, 2.4, 0)$$

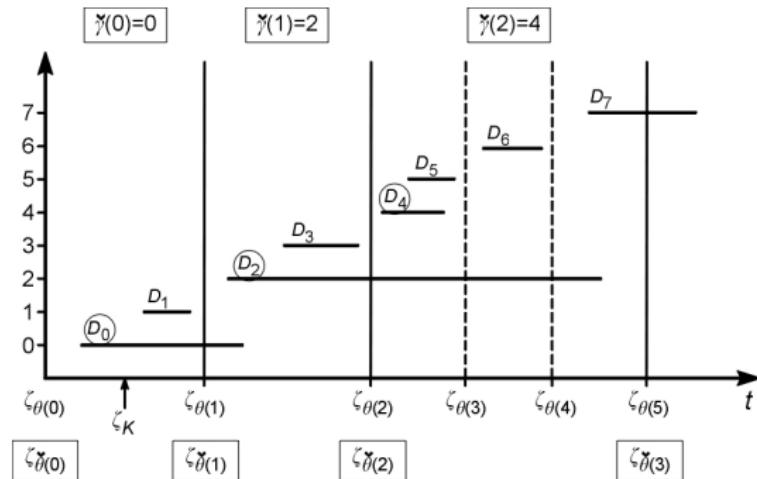
$$D = 2.9 - 1.2 = 1.7$$

# Regenerative Methods: The Easy Case



- ▶ Assume SPN has single state and “well behaved” cycles
- ▶ Use standard regenerative method

# Regenerative Methods: The Hard Case



- ▶ Assume SPN has single state and “well behaved” cycles
- ▶ Decompose delays into one-dependent cycles
- ▶ Use extended regenerative method or multiple-runs method

# Limiting Average Delay

- ▶ Under appropriate regularity conditions

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} D_j = \frac{E_\mu[Z_1]}{E_\mu[\delta_1]} \text{ a.s.}$$

- ▶  $\delta_1 = \#$  of starts in regenerative cycle
- ▶  $Z_1 = \int_{\text{cycle}} \psi(X(t)) dt$
- ▶  $\psi(s) = \#$  of ongoing delays when marking is  $s$
- ▶  $(Z_1, \delta_1), (Z_2, \delta_2), \dots$  are i.i.d.
- ▶ Can use standard regenerative method
- ▶ No need to measure individual delays
- ▶ One proof of this result uses Little's Law

## STS Methods for Delays

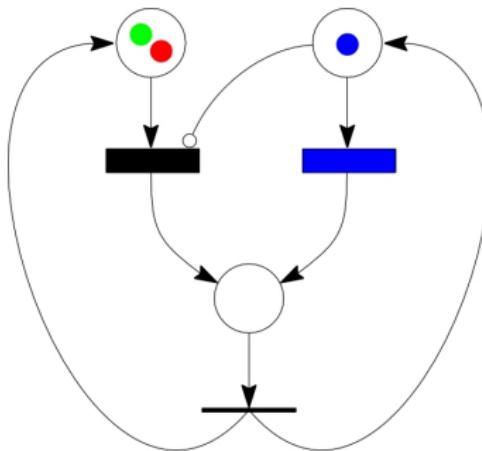
- ▶ Focus on “regular” start-vector mechanism
- ▶ Use polynomially-dominated functions  $f: \mathbb{R}_+ \mapsto \mathbb{R}$ :  
 $|f(x)| = O(1 + x^q)$  for some  $q \geq 0$
- ▶ **Theorem:** If Assumption PDE holds, then

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(D_j) = r \text{ a.s.} \quad \text{and} \quad U_n(f) \Rightarrow \sigma(f)W$$

where  $U_n(f)(t) = n^{-1/2} \int_0^{nt} (f(D_{\lfloor u \rfloor}) - r) du$

- ▶ Proof: Identify one-dependent cycles
- ▶ Apply limit theorems for od-regenerative processes

## Colored SPNs



- ▶ Tokens have color and transitions fire “in a color”
- ▶ Yields more concise graphs
- ▶ “Symmetry with respect to color”
  - ▶ Captures variety of system symmetries
  - ▶ Can exploit to improve simulation efficiency
    - ▶ Shorter regenerative cycle lengths
    - ▶ Shorter CLs for delays

Ex: delay for port 1 in symmetric token ring

# Part VII

## Conclusion

# Summary

- ▶ SPNs are an attractive framework for simulation
  - ▶ User-friendly graphical orientation
  - ▶ Powerful and flexible modeling tool
  - ▶ Solid mathematical basis
- ▶ Efficiency in sample-path generation
- ▶ Simulation theory: building-block conditions for
  - ▶ Stability (recurrence, limit theorems)
  - ▶ Validity of simulation methods
- ▶ Simulation methods:
  - ▶ Regenerative
  - ▶ Standardized time series (batch means)
  - ▶ Consistent-estimation methods (spectral and VBM)
- ▶ Further resources
  - ▶ INFORMS College on Simulation (<http://www.informs-cs.org>)
  - ▶ [www.almaden.ibm.com/cs/people/peterh](http://www.almaden.ibm.com/cs/people/peterh)